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THE LEVENBERG-MARQUARDT ALGORITHM: 

IMPLEMENTATION AND THEORY 

Jorge J. More 

1. Introduction 

Let F: R -> R be continuously differentiable, and consider the nonlinear least 

squares problem of finding a local minimizer of 

m 
(1.1) ^(x) =j I fj(x) = j|lF(x)ir r̂. 1.x; = -̂  P A X ; II 

i=l 

Levenberg [1944] and Marquardt [1963] proposed a very elegant algorithm for the 

numerical solution of (1.1). However, most implementations are either not robust, 

or do not have a solid theoretical justification. In this work we discuss a robust 

and efficient implementation of a version of the Levenberg-Marquardt algorithm, and 

show that it has strong convergence properties. In addition to robustness, the main 

features of this implementation are the proper use of implicitly scaled variables, 

and the choice of the Levenberg-Marquardt parameter via a scheme due to Hebden 

[1973]. Numerical results illustrating the behavior of this implementation are also 

presented. 

Notation. In all cases | • || refers to the £_ vector norm or to the induced operator 

norm. The Jacobian matrix of F evaluated at x is denoted by F'(x), but if we have a 

sequence of vectors {x, }, then J, and f are used instead of F'(x,) and F(x,), 

respectively. 

2. Derivation 

The easiest way to derive the Levenberg-Marquardt algorithm is by a lineariza­

tion argument. If, given x e R , we could minimize 

TCp) = 1|F(X4P)|| 

as a function of p, then x+p would be the desired solution. Since ¥ is usually a 

nonlinear function of p, we linearize F(x+p) and obtain the linear least squares 

problem 

Hv) = |1F(X) + F'(X)PI| . 

Of course, this linearization is not valid for all values of p, and thus we con­

sider the constrained linear least squares problem 

Work performed under the auspices of the U.S. Energy Research and Development 
Administration 
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(2.1) min{ii)(p): ||DPII <_ A} . 

In theory D is any given nonsingular matrix, but in our implementation D is a diago­

nal matrix which takes into account the' scaling of the problem. In either case, p 

lies in the hyperellipsoid 

(2.2) E = {p: IIDPII < A} , 

but if D is diagonal, then E has axes along the coordinate directions and the length 

of the ith semi-axis is A/d.. 

We now consider the solution of (2.1) in some generality, and thus the problem 

(2.3) min{|lf+JpI|: I|Dp|| < A} 

where f e R and J is any m by n matrix. The basis for the Levenberg-Marquardt 

method is the result that if p is a solution to (2.3), then p = p(^) for some 

X >̂  0 where 

(2.4) p(X) = -(J^J + XD̂ D)"''-Ĵ f . 

If J is rank deficient and X = 0, then (2.4) is defined by the limiting process 

Dp(0) 5 lim Dp(X) = -(JD~-'")̂ f . 
X-̂ 0+ 

There are two possibilities: Either X = 0 and |lDp(0)|| £ A, in which case p(0) is 

the solution to (2.3) for which ||DP1| is least, or X > 0 and |lDp(X) || = A, and then 

p(X) is the unique solution to (2.3). 

The above results suggest the following iteration. 

(2.5) Algorithm 

(a) Given A, > 0, find \ ^ 0 such that if 

then either ^̂ ^ = 0 and \\\P^\\ £ Aĵ , or Xĵ  > 0 and II\Pî I! = \ ' 

(b) If I1F(XĴ +PĴ II < |lF(xp|I set x^^^ = Xĵ +p̂ ^ and evaluate Jĵ ^̂ ;̂ otherwise 

set X, ., = x, and J, , - = J, • k+1 k k+1 k 

(c) Choose Aj^^^ and ^^y 

In the next four sections we elaborate on how (2.5) leads to a very robust and 

efficient implementation of the Levenberg-Marquardt algorithm. 
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3. Solution of a Structured Linear Least Squares Problem 

The simplest way to obtain the correction p is to use Cholesky decomposition on 

the linear system 

(3.1) (Ĵ J + XD^D)p = -j'̂ f . 

Another method is to recognize that (3.1) are the normal equations for the least 

squares problem 

J 
(3.2) 

X ^ 
p = 

f 

0 

and to solve this structured least squares problem using QR decomposition with 

column pivoting. 

- The main advantage of the normal equations is speed; it is possible to solve 

(3.1) twice as fast as (3.2). On the other hand, the normal equations are particu­

larly unreliable when X = 0 and J is nearly rank deficient. Moreover, the formation 
T T 

of J J or D D can lead to unnecessary underflows and overflows, while this is not 

the case with (3.2). We feel that the loss in speed is more than made up by the 

gain in reliability and robustness. 

The least squares solution of (3.2) proceeds in two stages. These stages are 

the same as those suggested by Golub (Osborne [1972]), but modified to take into 

account the pivoting. 

In the first stage, compute the QR decomposition of J with column pivoting. 

This produces an orthogonal matrix Q and a permutation ir of the columns of J such 

that 

(3.3) QJTT = 

T S 

0 0 

where T is a nonsingular upper triangular matrix of rank (J) order. If X = 0, then 

a solution of (3.2) is 

p = IT 

T •*" 0 

0 0 
Qf H J f 

where J refers to a particular sjmnmetric generalized inverse of J in the sense 

that JJ~ is symmetric and JJ~J = J. To solve (3.2) when X > 0 first note that (3.3) 

implies that 

(3.4) 
• Q 0 • 

T 
0 Tr\ 

J 
ir = 

' R ' 
0 

}i T, where D = X \ Dir is still a diagonal matrix and R is a (possibly singular) upper 
A 

triangular matrix of order n. 
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In the second stage, compute the QR decomposition of the matrix on the right of 

(3.4). This can be done with a sequence of n(n+l)/2 Givens rotations. The result 

is an orthogonal matrix W such that 

(3.5) W 
R 
0 

'• X-* 

_ ' \ 

0 

where R is a nonsingular upper triangular matrix of order n. The solution to (3.2) 

is then 

^-1 
p = -•'TRT U 

,n where u e R is determined from 

w 
[ Q f l 

0 
s= 

U 

V 

It is important to note that if X is changed, then only the second stage must be 

redone. 

4. Updating the Step Bound 

The choice of A depends on the ratio between the actual reduction and the pre­

dicted reduction obtained by the correction. In our case, this ratio is given by 

(4.1) P(p) = 
||F(x)|[^ - llF(x+p)||^ 

||F(X)|!^ -1|F(X)+F'(X)P|P 

Thus (4.1) measures the agreement between the linear model and the (nonlinear) func-
T 

tion. For example, if F is linear then p(p) = 1 for all p, and if F'(x) F(x) 7̂  0, 

then p(p) -> 1 as l]pl| ->• 0. Moreover, if 11F(X+P)II >̂  I|F(X)II then p(p) <_ 0. 

The scheme for updating A has the objective of keeping the value of (4.1) at a 

reasonable level. Thus, if p(p) is close to unity (i.e. p(p) >̂  3/4), we may want to 

increase A, but if p(p) is not close to unity (i.e. p(p) <_ 1/4), then A must be 

decreased. Before giving more specific rules for updating A, we discuss the compu­

tation of (4.1). For this, write 

(4.2) P = 
Iff - llfjl' 

if ir - iif«pir 

with an obvious change in notat ion. Since p s a t i s f i e s (3 .1 ) , 

(4.3) | | f f -|lf+JpIl2 = |ljpl|2 + 2Xl|Dp||2 . 

and hence we can rewrite (4.2) as 



1 -
(4.4) 

fllJplf 
I llfllj + 2 fxllDpil 

2 • 

Since (4.3) implies that 

k. ||jp|I<IIfII, xlDplllllfll, 

the computation of the denominator will not generate any overflows, and moreover, 

the denominator will be non-negative regardless of roundoff errors. Note that this 

is not the case with (4.2). The numerator of (4.4) may generate overflows if |lf_̂ll 

is much larger than ffH, but since we are only interested in positive values of p. 

If l|f+II ̂  l|f|I "^ ^^^ just set p = 0 and avoid (4.4). 

We now discuss how to update A. To increase A we simply multiply A by a con­

stant factor not less than one. To decrease A we follow Fletcher [1971] and fit a 

quadratic to 6(0), 6'(0) and 6(1) where 

6(9) =|llF(x+ep)|l2 . 

If y is the minimizer of the resulting quadratic, we decrease A by multiplying A by 

y, but if y / \-—, y , we replace y by the closest endpoint. To compute y safely, 

first note that (3.1) implies that 

Y = 

T^T^ fJlMl \\>>M''' 

and that Y e [-1.0]. It is now easy to verify that 

(4.5) 

Y4 

2 ^ 

1 -

r 

iif+r 2-| 

If ||f, II £ ||f II we set y = 1/2. Also note that we only compute y by (4.5) if say, 

l|f+ll 1 10||f II. for otherwise, y <_ 1/10. 

5. The Levenberg-Marquardt Parameter 

In our implementation a > 0 is accepted as the Levenberg-Marquardt parameter if 

(5.1) 

where 

(5.2) 

I(j)(a)| <_ oA , 

^(a) = ||D(J^J+aD'^D)~-''J^f II - A , 

and a e (0,1) specifies the desired relative error in j[Dp(a)I|. Of course, if 
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(|i(0) <_ 0 then a = 0 is the required parameter, so in the remainder of this section 

we assume that <^(0) > 0. Then <j) is a continuous, strictly decreasing function on 

[0,+") and (})(oi) approaches -A at infinity. It follows that there is a unique 
* * 

a > 0 such that (j)(a ) = 0. To determine the Levenberg-Marquardt parameter we 
assume that an initial estimate a^ > 0 is available, and generate a sequence {a } 

* ^ k 
which converges to a . 

Since (j) is a convex function, it is very tempting to use Newton's method to 

generate {«, }, but this turns out to be very inefficient — the particular structure 

of this problem allows us to derive a much more efficient iteration due to Hebden 

[1973]. To do this, note that 

(5.3) -l-VT. <i>(.a) = |I(J J+al) J f II - A, J = JD -1 

and let J = UIV be the singular value decomposition of J. Then 

*(«) = 

2 2 <>% 
a. z. ' 
1 1 

L 2 2 
i=l (a. +a) J 

^ 1 •' 

- A 

where z = U f and a.,...,a are the singular values of J. Hence, it is very natural 

to assume that 

Hex) = 
b + a 

- A = ^(a) , 

and to choose a and b so that <j)(Cv,) = <}'(ĉ ) and (J)'(a,) = <|)'(a,) 

if 

(5.4) 

Then <|)(aĵ +p = 0 

\+l = \ -

*(cxĵ ) + A ^i\) 
<l>'(\) 

This iterative scheme must be safeguarded if it is to converge. Hebden [1973] pro­

posed using upper and lower bounds u, and £, , and that (5.4) be applied with the 

restriction that no iterate may be within (u,-£, )/10 of either endpoint. It turns 

out that this restriction is very detrimental to the progress of the iteration since 

in a lot of cases u, is much larger than Z,. A much more efficient algorithm can 

be obtained if (5.4) is only modified when a ̂  is outside of (Af+i'"1,4.1) • "̂ ^ 

specify this algorithm we first follow Hebden [1973] and note that (5.3) implies 

that 

u. 
H(JD~^^f| 

is a suitable upper bound. If J is not rank deficient, then (J)'(O) is defined and 

the convexity of (ji implies that 

/ _ KO) 
0 ~ ~ (j)'(O) 



is a lower bound; otherwise let £ = 0. 

(5.5) Algorithm 

(a) If a^ i (-̂ ,Uĵ ) let aĵ  = max{0.001 û ,̂ H^Q ^}. 

(b) Evaluate 41(0,) and (j)'(a,). -Update u, by letting u,^ 

and u, ^ = u, otherwise. Update £, by 

Oĵ  if Koj^) < 0 

Vl = "'̂̂  ^k' \ ^'(a,) 

(c) Obtain a,^ from (5.4). 

The role of (5.5)(a) is to replace a, by a point in (£ ,u,) which is biased 

towards £, ; the factor 0.001 u, was added to guard against exceedingly small values 

of £,, and in particular, ̂  = 0. In (5.5)(b), the convexity of (j) guarantees that 

the Newton iterate can be used to update IL. 

It is not too difficult to show that algorithm (5.5) always generates a 

sequence which converges quadratically to a . In practice, less than two iterations 

(on the average) are required to satisfy (5.1) when a = 0.1. 

To complete the discussion of the Hebden algorithm, we show how to evaluate 

(|)'(a). From (5.2) it follows that 

T,,T. -1,„T 
rf,V„^ - (D q(a)) (J J+aD D) (D q(a)) 
•̂  ̂"•* - ~ liq(a)ll 

where q(a) = Dp(a) and p(*) is defined by (2.4). From (3.4) and (3.5) we have 

and hence. 

T T T T 
TT (J J+aD D)7r = R R 

a ct 

•̂ '(a) = - [|q(a) ,-T 
T T 
ir D q(a) 
II q(a) 11 

6. ScaJ-ing 

Since the purpose of the matrix D, in the Levenberg-Marquardt algorithm is to 

take into account the scaling of the problem, some authors (e.g. Fletcher [1971]) 

choose 

(6.1) 

where 

(6.2) 

Dĵ  = dikg(d^ 

^ (k) = 

(k) ..„<«, 

= 1|8^F(XQ)||, k > 0 . 

This choice is usually adequate as long as ||9 F(x,)|| does not increase with k. How­

ever, if ||3.F(x,)|| increases, this requires a decrease in the length (= A/d.) of the 

i semi-axis of the hyperellipsoid (2.2), since F is now changing faster along the 



i variable, and therefore, steps which have a large i component tend to be un­

reliable. This argument leads to the choice 

(6.3) d. / " ' - ll'i^cV 

(k) _ 
= max d. 1 

(k-1) 
. l|9iF(xĵ )|l k > 1 . 

Note that a decrease in ||9..F(x,)ll only implies that F is not changing as fast along 

the i variable, and hence does not require a decrease in d,. In fact, the choice 

(6.4) d^^^) = ||3iF(Xĵ )|| , k > 0 , 

is computationally inferior to both (6.2) and (6.3). Moreover, our theoretical re­

sults support choice (6.3) over (6.4), and to a lesser extent, (6.2). 

It is interesting to note that (6.2), (6.3), and (6.4) make the Levenberg-

Marquardt algorithm scale invariant. In other words, for all of the above choices, 

if D is a diagonal matrix with positive diagonal elements, then algorithm (2.5) gen­

erates the same iterates if either it is applied to F and started at x„, or if it is 

applied to F(x) = F(D x) and started at x„ = ^^n* ^°^ this result it is assumed 

that the decision to change A is only based on (4.1), and thus is also scale 

invariant. 

7. Theoretical Results 

It will be sufficient to present a convergence result for the following version 

of the Levenberg-Marquardt algorithm. 

(7.1) Algorithm 

(a) Let a e (0 ,1) . If l l ^ f k l l 1 ( l + o ) \ . se t \ = 0 and p^ = -Jy.fy.-

Otherwise determine X, > 0 such that i f 
k 

D k-* 

P k = -
'V 

then 

(l-a)Aj^ < IIDĴ PĴ I < (l+a)A^ . 

(b) Compute the ratio p, of actual to predicted reduction. 

(c) If p, _< 0.0001, set X, ,, = X, and Ĵ  'k+1 " \ ' 
If p, > 0.0001, set X, ,, = x,+p, and compute J, ,,. 

(d) If P^< 1/4, set Aĵ ^̂ c [^Aj^. I A J . 

If p^c 1 3 
4' 4 

and X = 0, or if p, >_ 3/4, set A^^ = 2||D,PJ|. 
k+1 ^k^'k'i 
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(e) Update D by (6.1) and (6.3). 

The proof of our convergence result is somewhat long and will therefore be pre­

sented elsewhere. 

Theorem. Let F: R -> R be continuously differentiable on R , and let {x, } be the 

sequence generated by algorithm (7.1). Then 

(7.2) lim inf I(W~^)\ll = 0 . 
k -> +" 

This result guarantees that eventually a scaled gradient will be small enough. 

Of course, if {j, } is bounded then (7.2) implies the more standard result that 

(7.3) lim inf ||j, "̂ f, || = 0 . 
-> +00 

Furthermore, we can also show that if F' is uniformly continuous then 

(7.4) lim lljjfĵ i = 0 . 
k -> +0° 

Powell [1975] and Osborne [1975] have also obtained global convergence results 

for their versions of the Levenberg-Marquardt algorithm. Powell presented a general 

algorithm for unconstrained minimization which as a special case contains (7.1) with 

0 = 0 and {D, } constant. For this case Powell obtains (7.3) under the assumption 

that {j, } is bounded. Osborne's algorithm directly controls {x, } instead of {A,}, 

and allows {D,} to be chosen by (6.1) and (6.3). For this case he proves (7.4) 

under the assumptions that {j, } and {X, } are bounded. 

8. Numerical Results 

In our numerical results we would like to illustrate the behavior of our algo­

rithm with the three choices of scaling mentioned in Section 6. For this purpose, 

we have chosen four functions. 

1) Fletcher and Powell [1963] n=3, m=3 

fĵ (x) = 10[X3 - 10e(Xĵ ,X2)] 

f2(x) = 10[(x^^+X2^)^' - 1] 

f^M = x̂  
where , . 

e(x^,X2) = 

arctan (x /x^), x- > 0 

— arctan (x2/x^) +0.5, x < 0 

XQ = (-1,0,0)'̂  



2. Kowalik and Osborne [1968J n=4, m=ll 

x.̂ [u.̂  + x^u.] 

^i^^> = ^i - —2- 7~T 
(u. + X„U. + X ) 

1 J 1 4 

where u. and y. are specified in the original paper. 
X = (0.25, 0.39, 0.415, 0.39)^ 

3. Bard [1970] n=3, m=15 

f.(x) = y. 
1 -̂ 1 

. . . "^ 1 x„v. + x_w. 
2 1 3 1 

where u. = i, v. = 16-i, w. = min|u.,v.}, and y. is specified in the 
1 ' 1 1 "̂ 1 1-' 1 

original paper. 

XQ = (i.ia)"^ 

4. Brown and Dennis [1971] n=4, m=20 

2 2 
f.(x) = [Xjĵ  + x^t^ - exp(t^)] + [x^ + x^sin(t^) - cos(t^)] 

where t. = (0.2)i. 

x„ = (25, 5, -5, 1) 

These problems have very interesting features. Problem 1 is a helix with a 
•k 

zero residual at x = (1,0,0) and a discontinuity along the plane x^ = 0; note that 

the algorithm must cross this plane to reach the solution. Problems 2 and 3 are 

data fitting problems with small residuals, while Problem 4 has a large residual. 

The residuals are given below. 

• 1. llF(x*)I| = 0.0 
2. ||F(x )11 = 0.0175358 
3. liF(x*)|j = 0.0906359 
4. ;i|F(x )11 = 292.9542 

Problems 2 and 3 have other solutions. To see this, note that for Kowalik and 

Osborne's function, 

(8.1) lim f,(cx.X2,a,a) = y. - {^i^^^.) , 

while for Bard's function, 

(8.2) lim f (x, ,a,ot) = y. - x. . 

These are now linear least squares problems, and as such, the parameter x„ in (8.1) 

and X. in (8.2) are completely determined. However, the remaining parameters only 

need to be sufficiently large. 

In presenting numerical results one must be very careful about the convergence 

criteria used. This is particularly true of the Levenberg-Marquardt method since, 

unless F(x ) = 0, the algorithm converges linearly. In our implementation, an 
is 4-

approximation x to x is acceptable if either x is close to x or llF(x)ll is close 



to ||F(x )|| . We attempt to satisfy these criteria by the convergence tests 

(8.3) A <_ XTOL ||DX|| , 

and 

(8.4) m' ^ i> iDpj < FTOL . 

An important aspect of these tests is that they are scale invariant in the sense of 

Section 6. Also note that the work of Section 4 shows that (8.4) is just the rela-
2 2 tive error between |1 f+Jp || and H f | . 

The problems were run on the IBM 370/195 of Argonne National Laboratory in dou­

ble precision (14 hexadecimal digits) and under the FORTRAN H (opt=2) compiler. The 
—8 —8 

tolerances in (8.3) and (8.4) were set at FTOL = 10 and XTOL = 10 . Each problem 

is run with three starting vectors. We have already given the starting vector x^ 

which is closest to the solution; the other two points are lOx and lOOx-. For each 

starting vector, we have tried our algorithm with the three choices of {D, }. In the 

table below, choices (6.2), (6.3) and (6.4) are referred to as initial, adaptive, 

and continuous scaling, respectively. Moreover, NF and NJ stands for the number of 

function and Jacobian evaluations required for convergence. 
x„ lOx, 

0 
lOOx 

0 

PROBLEM 

1 

2 

3 

4 

SCALING 

Initial 
Adaptive 
Continuous 

Initial 
Adaptive 
Continuous 

Initial 
Adaptive 
Continuous 

Initial 
Adaptive 
Continuous 

NF 

12 
11 
12 

19 
18 
18 

8 
8 
8 

268 
268 
FC 

NJ 

9 
8 
9 

17 
16 
16 

7 
7 
7 

242 
242 
FC 

NF 

34 
20 
14 

81 
79 
63 

37 
37 
FC 

423 
57 
FC 

NJ 

29 
15 
12 

71 
71 
54 

36 
36 
FC 

400 
47 
FC 

NF 

FC 
19 
176 

365 
348 
FC 

14 
14 
FC 

FC 
229 
FC 

NJ 

FC 
16 
141 

315 
307 
FC 

13 
13 
FC 

FC 
207 
FC 

Interestingly enough, convergence to the minimizer indicated by (8.1) only 

occurred for starting vector lOx of Problem 2, while for Problem 3 starting vec­

tors 10x_ and lOOx led to (8.2). Otherwise, either the global minimizer was ob­

tained, or the algorithm failed to converge to a solution; the latter is indicated 

by FC in the table. 

It is clear from the table that the adaptive strategy is best in these four 

examples. We have run other problems, but in all other cases the difference is not 

as dramatic as in these cases. However, we believe that the above examples ade­

quately justify our choice of scaling matrix. 
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