

BLANK PAGE

X

Contraction of the second second second

ж С

のでは、「ないのないない」ないのと

ł

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce \$285 Port Royal Road, Springfield, Virginia 22161 Price: Printed Copy \$4.50; Microfiche \$2.25

This ""on" was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration. United States Nuclear Regulatory Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights

ORNL/CSD/TM-4

MACTO

Contract No. W-7405 eng 26

COMPUTER SCIENCES DIVISION

A 218-GROUP NEUTRON CROSS-SECTION LIBRARY IN THE AMPX MASTER INTERFACE FORMAT FOR CRITICALITY SAFETY STUDIES

W. E. Ford, II[†] C. C. Webster R. M. Westfall

JULY 1976

Work performed for the U.S. Nuclear Regulatory Commission under Interagency Agreement 40-494-75.

NOTICE

This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.

UNION CARBIDE CORPORATION, NUCLEAR DIVISION operating the Gak Ridge Gaseous Diffusion Plant • Oak Ridge National Laboratory Oak Ridge Y-12 Plant • Paducah Gaseous Diffusion Plant for the

ENERGY RESEARCH AND "EVELOPMENT ADMINISTRATION

The report was proported as an extense of our's submood by the Fulled States Generators Hushey the United States are the United States Farry Benerich and Development Administrations, not any of their exployees, her any of these constraints, unknowner, or these employees, makes any wornery, expanding to the accuracy, complete subday or exployees in Highled, or security uses are advised on a subject, or paratra provem declaration, or explored the accuracy, advised of any information, paparates, product or provem declaration of any information the sub world app

TABLE OF CONTENTS

والوالية المعدم الجارات والمعط

ABSTRACT	•••••••••••••••••••••••••••••••••••••••	v
LIST OF FIGU	RES AND TABLES	1 i i
ACKNOHLEDGHEN	ns	ix
I. The Criti	icality Safety Master Cross-Section Library	1
II. Availabil Master Cr	lity and Utilization of the Criticality Safety ross-Section Library	4
REFERENCES .	• • • • • • • • • • • • • • • • • • • •	20
APPENDIX A:	AMPX Master Library Interface	22
APPENDIX B:	Criteria Used in the Selection of Group Bounda. es	33

. * .)

ABSTRACT

A P_3 , 218 neutron group cross-section library in the AMPX master interface format has been generated from ENDF/B-IV data for 65 nuclides of primary interest in criticality safety calculations. The library was generated with the AMPX modular code system. Procedures used to generate the cross sections and the crganization of the library are described.

LIST OF FIGURES AND TABLES

Figure No.		Page
1	Fissicn-1/Ec _T (Oxygen)-Maxwellian Weight Function	6
2	Fission-l/E-Maxwellian Weight Function	7
3	<pre>1/E^c_T(Inconel)-Maxwellian Weight Function</pre>	8
4	1/EL _I (Stainless Steel 304)-Maxwellian Weight Function	9
5	Major Modules of the AMPX System	10

Table No. • Criticality Safety 218 Neutron Group Master 1 11 2 12 3 Definition of Reaction Types..... 15 4 Point-to-Fine Group Weighting Functions 17 5 218-Group Fission-1/E-Maxwellian Weight Function. 18 **B.1** Criteria for Selection of the 140 Epithermal

33

víi

ACKNOWLEDGHENTS

The authors wish to express appreciation to D. M. Plaster and B. R. Digg^c who contributed to the generation of the cross-section library described herein, to N. M. Greene and L. M. Petrie who provided AMPX guidance, to R. W. Roussin, J. B. Wright, and other members of the Radiation Shielding Information Center Staff who packaged the library for distribution, and to Becky Eddlemon who typed this report.

I. The Criticality Safety Master Cross-Section Library

The XLACS module of the AMPX modular code system¹ was used to generate a P_3 , 218 neutron group cross-section library from the latest ENDF/B-IV data for the fuel, structural, and neutron-absorbing materials listed in Table 1. Data in the library are in the AMPX master interface format described in Appendix A. The library is a data base for the generation of fine- or broad-group cross sections for shipping cask calculations and other criticality safety neutronics analyses using Monte Carlo codes such as KENO² or MORSE³, or using the one- or two-dimensional discrete ordinates transport codes AMISH⁴ or DOT⁵, respectively.

The objective in the selection of the energy group boundaries for the library was to fit the important cross-section structure of materials likely to appear in criticality safety problems. Emphasis was placed on the resonance and thermal energy ranges. The 218 energy group structure, which includes 140 epithermal groups above and 78 thermal groups below 3.05 eV, is listed in Table 2. In the epithermal energy range, the energy boundaries were chosen to fit the reaction thresholds and major resonance levels of the following nuclides: De, B-10, C, N, O, F, Na, Mg, Al, Si, K, Ca, Cr, Mn, Fe, Ni, Cu, Zr, Mo, Ag, Cd, In, Sn, Ba, Gd, Hf, Pb, Th-232, U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, and Pu-241. Of the 160 epithermal groups, 51 groups cover the fission-neutron-energy range from 20 MeV to 8.03 keV. This energy range includes most of the crosssection structure for the light and intermediate-mass nuclides. It also includes inelastic scattering and fission thresholds for certain of the heavy nuclides. The 89 groups between 8.03 keV and 3.05 eV were chosen to bracket major resonance levels in the intermediate-mass and heavy nuclides. In the thermal energy range, several of the fuel and neutron absorbing

BLANK PAGE

and the second se

West Ball 1990

The second s

÷.

And the second second second second

f,

いていたいというないであるというと

nuclides have large resonances which are broad relative to the neutron energy exchange per collision. The 78 closely spaced thermal groups are designed to account for the effects of these resonances in the presence of thermal upscatter. Criteria used in the selection of energy boundaries are listed in Appendix B.

Among the many types of cross-section libraries that can be generated with the AMPX system (libraries such as ANISN-formatted libraries, CCCCor ISOTIS-formatted libraries, or "working" libraries), the format of an AMPX master interface cross-section library is the most general way to store multigroup neutron cross-section data in the AMPX system. Included in a master cross-section library are one-dimensional multigroup crosssection data, transfer matrices for elastic and inelastic scattering reactions and for neutron producing reactions (e.g., (n,2n)) with arbitrary orders of scatter for fast and thermal data where required, resonance selfshielding parameters for subsequent processing, fission spectrum data, weighting function data, etc. These data are available in a compacted magic word format to remove extraneous zeros and consequently to Subscantially reduce tape storage requirements. One-dimensional and transfer matrix data in the criticality safety library are identified by MT number^a in Table 1 and the MT number - reaction relation is identified in Table 3.

Data sets with resolved resonance parameters, resonance nuclei, are identified in Table 1. An unresolved potential scattering cross section of 5 x 10^4 barns/atom was used to calculate the master cross sections. Resonances were Doppler broadened at 293° K. Resolved resonance cross sections, which will depend on the heterogeneous system to which the cross sections will be applied, must be calculated and added to the master

^aIt is assumed that the reader is familiar with the ENDI nomenclature described in Ref. 6.

cross-section data. As noted above, parameters are included in the master library for the subsequent processing of resolved resonance cross sections by the NITAWL module of the AMPX system. The NITAWL module also combines the master cross-section data with the resolved cross-section data to give a "complete" neutron cross-section data set.

Several weighting spectra were used to prepare the fine group data in the master cross-section library from the ENDF/B point data. For nonresonance materials, a fission-1/EO_T-Mexwellian weighting spectrum was used. Materials with resonance parameters were processed with a fissioni/E-Maxwellian weighting function. In addition to being processed with the resonance material weight function, Fe, Ni, and Cr data sets were weighted over a $1/\text{EE}_{T}(\text{inconel})$ -Maxwellian and over a $1/\text{EE}_{T}(\text{scainless}$ steel 304)-Maxwellian weight function. The weight functions used for the data sets in the criticality safety library are identified in Table 1. Energy ranges over which the weight functions were used are listed in Table 4. Plots of the fission- $1/\text{EO}_{T}(\text{oxygen})$ -Maxwellian, the fission- $1/\text{E}_{-}$ Maxwellian, the $1/\text{EE}_{T}$ inconel-Maxwellian, and the $i/\text{EE}_{T}(\text{stainless}$ steel 304)-Maxwellian weight functions are shown in Figs. 1-4, respectively.

The master cross-section library was checked using the AMPX module RADE to prove the following cross-section relationships:

$$\sigma_{\rm T} = \sigma_{\rm a} + \sigma_{\rm s} \tag{1}$$

$$\sigma_{\text{inel}} = \sum \sigma_{\text{inel}}^{\text{partial}}$$
(2)

 $\sigma_{a} = \sigma_{c} + \sigma_{f}$ (3)

$$\sigma_{c} = \sigma_{nv} + \sigma_{n0} + \sigma_{n0} + \sigma_{nd} + \dots$$
 (4)

 $\sigma_{el}^{g} = \sum \sigma_{0}^{g} (g \neq g')$ (5)

$$\sigma_0(\mathbf{g} \mathbf{+} \mathbf{g}') > 0 \tag{6}$$

$$\sigma_{\mathbf{T}}, \sigma_{\mathbf{a}}, \sigma_{\mathbf{f}}, \sigma_{\mathbf{np}}, \sigma_{\mathbf{n\gamma}}, \dots \text{ etc. } \geq 0$$
(7)

$$-1 \leq \mu(g \neq g') \left[= \frac{\sigma_1(g \neq g')}{3\sigma_0(g \neq g')} \right] \leq 1 \quad . \tag{8}$$

11. Availability and Utilization of the Criticality Safety Master Cross-Section Library

The criticality safety master cross-section library, the AMPX modular code system, and the transport codes identified herein may be obtained on request from the Radiation Shielding Information Center at the Oak Ridge National Laboratory.

The flowchart shown in Fig. 1 and the following summary describe how the master cross-section library and modules of the AMPX systom can be used to generate either fine- cr broad-group cross sections in different formats:

- The MALOCS module can be used to collapse data sets from the master library to any broad group structure which is a subset of the 218 group structure. The multigroup fission-1/E-Maxwellian weighting function used in the generation of the data sets for resonance nuclides in the master library is listed in Table 5. These data can be used as a collapsing function in MALOCS.
- The NITAWL module can be used to prepare ANISN-formatted cross sections from data in the master library.^a

^aANISN library format is described on page 23 of Ref. 4.

• The LAPHNGAS module can be used to prepare secondary gamma-ray production data in any specified gamma-ray group structure. These data are prepared from data in the ENDF/B libraries. The SMUG module can be used to prepare photon interaction cross sections in any multigroup gamma-ray structure. The CHOX module can be used to combine data from the criticality safety master cross-section library with the LAPHNGAS and SMUG generated data for further processing in the NITAWL module to ultimately generate coupled neutron-gamma multigroup cross sections.

- The COMMAND module can be used to collapse ANISN-formatted data sets to any broad group structure which is a subset of the 218 group structure. The weighting function listed in Table 5 can be used as a collapsing function in COMMAND.
- The ICE module can be used to prepare macroscopic master cross sections from the criticality safety master cross-section library.
- The UPDATE feature of the XLACS module can be used to update the master cross-section library by adding or removing data sets.
- "Working" cross-section libraries produced by the NITAWL module from master data sets can be flux weighted in the XSDRNPM module to produce weighted fine- or broad-group ANISN-formatted libraries, "working" crcss-section libraries, or CCCC-formatted libraries. XSDRNPM is the AMPX module with one-dimensional S_n capability for spatial cross-section weighting.

of the second

.

- - - - -

OR-4L-04675-13816

Figure 5. Major Modules of the AMPX System

10

				Next Part 1	44 (v. 1	a
--	--	--	--	-------------	----------	---

	150-1	••••		•••••	and the second s	and the second s	
- 2 €	19 10 - 1911 - 1	••• • • • •	••••		· · · · · · · · · · · · · · · · · · ·	a ding conner al ange an	Artis 2 = 3
		•	•			•	\$1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
	• • •		-	+ 1	······································		1961 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
1.1							
<u>.</u>		2	:				
			:		n an	·····	
8-11	11 9		•	1 A.A.		• • • • • • • • • • • • • • • • • • •	
			:			· · · · · · · · · · · · · · · · · · ·	
		•	•	•			
				· •			
	•	•	•				
A1-11					······································	104 Steel 104	
1.01		i.		•			
\$ - 32	2.0		•		107,107,107,109	1.00108.00106	
4	114 9 1150		:		- 1,2,4,20,4,2,1,4,0,20,000,2000,2000,2000	1.4.12.28,5.4. ¹ .4.120 ¹	
Č.	1105	•	•	- 244	12214020 22227,29101-1381111111000	1,16,22,29,51-3,91,1061	
Ti N	1296				1224,16271004204204204204 1224 16227720107420410712000	1,14,51,41,141 1,14,12,24,51-54,41,190	
	::•:		1	•	117.+14.20147.28.101-10 ⁺ ,1944		
1			3		10104140000000000000000000000000000000	1.10,21,28,51-91,100" .0.21 28 51-91 100"	
10-11	::•				1.1	1.16,17,1.20,51-55.91.100	
	::•: ••••			11.1	1.1.4.10.72.27.28.101.127.1090	1114_11_10.51="0,91.100"	
	1192	÷.			1,1,4,10,1,1,7,19,161,167,1090		
Ca-34	1149	1	,	1194	1.1.4.10.27.301-145.107.1011.1000	1.14.51-59.41.138	
91 91	1196		,	119901	1.2 6,16,27,28,101-139,107,1099 1.2.4 66,27,28,107-169,187,1099		
51	3190		i	114010.	1.2.4.14.07.28.101-101.101.1099	14.28.51-85.97.1007	
6 m 2 m			;		1,1,4,10,11,12,17,10,101,104,106,101,1096	1,14,17,22,49,51-94,94,148 	
22862	128-	•		1.20	1.014.14.07.191-101.207.2044	1.18.51-85 \$11100T	
36-51	1144		?	1144	1.7.4.14.17.17.17.103-163.107.1.10.1094	1,14,17,17,31+82,41,190 ⁻⁷	
Ag-121	1114	1	i		1,1,4,14,17,101-134,107,1021,1044	2.14.51-54.95.100*	
- 1 m	11.19		<u>.</u>			.,18,1,-N.91,100 ⁻	
Sn			;				
Ra-118	14.94			1 کار میں 1 در دیار	\$1714_14_1127_1141+129_107_1090	· · · · · · · · · · · · · · · · · · ·	
Dy-las	1011		:			2,14,27,57,42,41,30°C	
8 ar 17 f	101-	100	,	a det		2.4.27.51.58.44.230	
1.4+114 No	1.14		;		1,1,4,14,17,17,171-103,107,1923,1090 7,4,19,17,102-1,3,7340	1,14,17,17,98,98,1877 1,1967	
ta-tel	1285	. .	,		1,7,4,18,17,77,171,162,105,1680	2,14,11,5,547,41,1307	
	1116	1			1	2,14,17,29,51-58,47,197 TA 57,38,51,54,40,1397	
	11.40		,				
8-18e	1141	100	2		1.1,4,34,17,17,14,301,107,107,107,107,107,107,107	21141172P.52-54.4111001	
Re-14	100.4				1,2,4,5*,2*,2*,1*1,102,102,102	1.1.1.1.41.91.100	
Au-141	1.78 4	<u>`</u>	:		112.4.14.17.24.27.1114.183.107.17.11.1044	1,10,17,11-06,01,1307	
- 78 29-230		1 **	:		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.14.27.51-54.40.1007	
r - : • 1			•	24.345	12,4,14-14,2111-1,192,492,1021,1022,1940,1114	2,28,27,57-57,91,5007	
1 - 1 1	1.11		1	1.4		1,10,11,11,11,000 (,10,11,11,11,00,100)	
- *	1141	1		1.4 M 2	112.4.14-18.27.131.101.452.1021.1004.1018	1,14,11-14,41,1001	
	1242	1-4		1244	1.7_4,18-18_27_1111_04511018_401022_11448 1.7_4_18-18.7_110_107_4511021_1522_7988_123.8		
P-1-23P	10.00	-	j.		111		
Pu - 210	1.44		1		122.4.14-14.17.17.171.172.452.2018.14.11.172.474	1,14,11,11-10,01,100 1 14,11,11-10,01,01,100	
Pa-241	1286		;		1,2,4,3,4,4,2,1,1,1,1,2,2,4,2,3,1,4,1,2,2,1,1,4,2,2,1,1,44	2,14,11,12,49,40,1007	
Page 242	11-1	Y	:		111,4,14,4,27,17,17,17,47,73,81,17,1,1944	2,04,07,50-60,60,000 61,7065	
	1142		i		1	2.10.11.31.60.01.070	

1

r tr

•

-

•

-

•

.

2.0000E 0.7^* $-0.693-0.441$ 4.4000E06 $0.441-0.734$ 4.3000E06 $1.74-0.843$ 2.4790E06 $1.204-1.395$ 2.4790E06 $1.395-1.395$ 1.3500E06 $1.395-1.395$ 1.3500E06 $1.395-1.395$ 1.3500E06 $1.395-1.395$ 1.3500E06 $1.395-2.077$ 1.3170E06 $2.077-2.079$ 1.3170E06 $2.207-2.207$ 1.3170E06 $2.207-2.207$ 1.3170E06 $2.297-2.386$ 9.2000E05 $2.498-2.436$ 9.2000E05 $2.498-2.436$ 9.2000E05 $2.499-2.396$ 9.2000E05 $2.499-2.396$ 9.2000E05 $2.499-2.396$ 9.2000E05 $2.499-2.436$ 8.4000E05 $2.499-2.436$ 9.2000E05 $2.499-2.436$ 9.2000E05 $2.499-2.391$ 9.2000E05 $2.399-2.396$ 9.2000E05 $3.116-2.432$ 9.2000E05 $3.1170-3.219$ 9.2000E05 $3.124-3.172$ 4.2000E05 $3.124-3.172$ 4.2000E05 $3.124-3.172$ 9.2000E05 $3.124-3.172$ 4.2000E05 $3.124-3.172$ 4.2000E05 $3.124-3.172$ 4.2000E05 $3.124-3.172$ 9.2000E05 $4.356-4.605$ 1.2000E05 $4.366-4.605$ 1.2000E05 $4.366-4.804$ <
$\begin{array}{llllllllllllllllllllllllllllllllllll$
2.0000E 07^{*} $-0.693-0.44$ 6.4340E06 $0.441-0.73$ 4.8000E06 $0.441-0.73$ 4.8000E06 $1.204-1.39$ 2.4790E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.4790E06 $1.395-1.44$ 1.3500E06 $2.027-2.07$ 1.3500E06 $2.027-2.26$ 1.1000E05 $2.120-2.27$ 1.1000E05 $2.493-2.27$ 8.7000E05 $2.493-2.27$ 4.7000E05 $2.493-2.27$ 5.7000E05 $2.490-2.70$ 4.7000E05 $2.490-2.70$ 4.7000E05 $2.490-2.70$ 4.7000E05 $2.120-2.27$ 5.7030E05 $2.490-2.70$ 4.7000E05 $2.190-2.29$ 5.7030E05 $2.190-2.29$ 5.7030E05 $2.190-2.30$ 2.703-2.81 $3.124-3.11$ 4.7000E05 $3.124-3.12$ 5.7000E05 $4.526-4.76$ 8.7000E05 $4.605-4.76$ 8.7000E04 $4.804-4$
2.0000E 07^* $-0.693-0.44$ 6.4340E 06 $0.441-0.73$ 4.8000E 06 $0.441-0.73$ 4.8000E 06 $1.204-1.39$ 2.4790E 06 $1.395-1.44$ 2.3560E 06 $1.395-1.44$ 2.4790E 06 $1.395-1.44$ 2.3560E 06 $1.395-1.44$ 2.3550E 06 $1.395-1.44$ 1.3500E 06 $2.027-2.07$ 1.1000E 06 $2.207-2.26$ 1.10100E 05 $2.436-2.47$ 9.2000E 05 $2.408-2.47$ 8.6110E 05 $2.436-2.47$ 6.7000E 05 $2.436-2.47$ 6.7000E 05 $2.436-2.47$ 7.3000E 05 $2.436-2.47$ 8.5000E 05 $2.136-2.47$
2.0000E 07^{*} $-0.693-0.44$ 6.4340E06 $0.441-0.73$ 4.8000E06 $1.204-1.39$ 2.4790E06 $1.204-1.39$ 1.4000E06 $1.395-1.44$ 2.3540E06 $1.204-1.39$ 1.4000E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 1.3170E06 $1.987-1.96$ 1.3170E06 $2.027-2.07$ 1.3170E06 $2.027-2.07$ 1.3170E06 $2.207-2.26$ 1.1000E05 $2.408-2.47$ 9.2000E05 $2.408-2.47$ 8.7500E05 $2.408-2.47$ 8.7500E05 $2.436-2.47$ 8.7500E05 $2.436-2.47$ 8.7500E05 $2.436-2.47$ 8.7000E05 $2.436-2.47$ 4.7000E05 $2.436-2.47$ 4.7000E05 $2.436-2.47$ 4.7000E05 $2.436-2.47$ 4.7000E05 $2.436-2.47$ 4.7000E05 $2.436-2.47$ 4.7000E05 $2.997-3.07$ 4.7000E05 $3.124-3.17$ 4.7000E05 $3.1170-3.21$ 3.0000E05 $3.411-3.61$ 3.0000E05 $4.356-4.66$ 1.2830E04 $4.804-4.37$ 4.7000E05 $4.200-4.37$ 1.2830E04 $4.804-4.87$ 4.7000E05 $4.200-4.37$ 1.2830E04 <td< td=""></td<>
2.0000E 07^{*} $-0.693-0.44$ 6.4340E06 $0.441-0.7$ 4.8000E06 $1.204-1.3$ 2.4790E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.4790E06 $1.395-1.44$ 1.3500E06 $2.027-2.07$ 1.3500E06 $2.027-2.26$ 1.1000E06 $2.207-2.26$ 1.1000E05 $2.438-2.47$ 8.7000E05 $2.408-2.47$ 8.7000E05 $2.408-2.47$ 4.7000E05 $2.436-2.47$ 5.7000E05 $2.436-2.47$ 5.7000E05 $2.436-2.47$ 4.7000E05 $2.436-2.47$ 5.7000E05 $2.436-2.47$ 4.7000E05 $2.499-2.297$ 5.7000E05 $2.1997-3.07$ 4.7000E05 $3.124-3.17$ 4.7000E05 $3.124-3.17$ 5.7000E05 $3.411-3.61$ $2.7000E$ 05 $3.612-3.91$ $2.7000E$ 05 $4.200-4.37$ $4.7000E$ 05 $4.605-4.77$ $4.8000E$ 04 $4.804-4.80$ $4.804-4.80$ <t< td=""></t<>
2.0000E 07^* $-0.693-0.44$ 6.4340E 06 $0.441-0.7$ 4.8000E 06 $0.734-0.8$ 4.3040E 06 $1.204-1.3$ 2.4790E 06 $1.395-1.4$ 2.3540E 06 $1.395-1.4$ 2.4790E 06 $1.395-1.4$ 2.3540E 06 $1.395-1.4$ 2.35500E 06 $1.395-1.4$ 1.3000E 06 $1.395-1.4$ 1.3000E 06 $1.395-1.4$ 1.3000E 06 $2.027-2.0$ 1.1000E 06 $2.293-2.3$ 9.2000E 05 $2.408-2.4$ 8.5000E 05 $2.436-2.4$ 8.6110E 05 $2.436-2.4$ 8.7500E 05 $2.408-2.4$ 9.2000E 05 $2.436-2.4$ 9.2000E 05 $2.386-2.4$ 9.
2.0000E 07^{*} $-0.693-0.44$ 6.4340E06 $0.441-0.7$ 4.8000E06 $1.204-1.3$ 2.4790E06 $1.204-1.3$ 2.4790E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 1.3500E06 $1.987-1.90$ 1.4000E06 $1.987-1.90$ 1.3500E06 $2.079-2.17$ 1.3500E06 $2.079-2.17$ 1.1000E06 $2.207-2.20$ 1.1000E05 $2.408-2.47$ 8.7500E05 $2.493-2.27$ 8.7000E05 $2.490-2.27$ 6.7000E05 $2.490-2.47$ 6.7000E05 $2.490-2.70$ 6.7000E05 $2.990-2.90$ 5.5000E05 $2.997-3.07$ 4.7000E05 $3.124-3.17$ 4.7000E05 $3.1170-3.21$ 4.7000E05 $3.111-3.61$ 2.7000E05 $3.912-4.27$ 3.3000E05 $3.411-3.61$ 3.3000E05 $4.306-4.46$ 4.5000E05 $4.405-4.76$ 4.5000E05 $3.411-3.61$ 2.6000E05 $3.612-3.91$ 3.612-3.91 $4.405-4.76$ 4.5000E05 $4.605-4.76$
2.0000E 07^{*} $-0.693-0.44$ 6.4340E06 $0.441-0.73$ 4.8000E06 $0.734-0.84$ 4.3040E06 $1.204-1.39$ 2.4790E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.3540E06 $1.446-1.68$ 1.4000E06 $1.987-1.96$ 1.3560E06 $1.987-1.96$ 1.3560E06 $1.987-1.96$ 1.3560E06 $2.027-2.07$ 1.3560E06 $2.207-2.28$ 1.3000E05 $2.120-2.26$ 1.1000E06 $2.293-2.38$ 9.2000E05 $2.436-2.46$ 9.2000E05 $2.436-2.46$ 9.2000E05 $2.436-2.46$ 9.2000E05 $2.436-2.46$ 9.2000E05 $2.436-2.46$ 9.2000E05 $2.490-2.96$ 5.7300E05 $2.590-2.96$ 5.7300E05 $2.997-3.05$ 4.7000E05 $3.124-3.17$ 4.2000E05 $3.124-3.17$ 4.2000E05 $3.124-3.17$ 4.2000E05 $3.124-3.17$ 4.2000E05 $3.912-4.26$ 1.2830E05 $4.200-4.35$ 1.2830E05 $4.200-4.35$
2.0000E 07^{*} $-0.693-0.44$ 6.4340E06 $0.441-0.73$ 4.8000E36 $0.734-0.84$ 4.3040E66 $1.204-1.39$ 2.4790E06 $1.395-1.46$ 2.3540E06 $1.395-1.46$ 2.3540E06 $1.395-1.46$ 2.4790E06 $1.446-1.68$ 1.3500E06 $1.998-2.02$ 1.3500E06 $2.027-2.07$ 1.3500E06 $2.027-2.07$ 1.3500E06 $2.207-2.29$ 1.3000E05 $2.486-2.40$ 9.0000E05 $2.436-2.43$ 9.0000E05 $2.436-2.43$ 9.0000E05 $2.436-2.43$ 9.0000E05 $2.436-2.43$ 9.2000E05 $2.990-2.90$ 9.2000E05 $2.990-2.90$ 9.2000E05 $2.990-2.30$ 9.2000E05 $3.124-3.17$ 4.2000E05 $3.1170-3.21$ 4.2000E05 $3.124-3.17$ 4.2000E05 $3.411-3.61$ 2.7000E05 $3.612-3.91$ 2.7000E05 $4.200-4.35$ 1.2830E05 <td< td=""></td<>
2.0000E 07^{*} -0.693-0.446.4340E060.441-0.734.8000E360.734-0.844.3040E061.204-1.203.0000E061.395-1.442.3540E061.395-1.442.3540E061.446-1.681.4000E061.998-2.021.3170E062.027-2.071.3560E062.027-2.071.3560E062.027-2.071.3560E062.207-2.291.0100E062.207-2.291.0100E052.436-2.439.2000E052.436-2.439.2000E052.436-2.439.300E052.436-2.439.4.9952E052.690-2.704.4000E052.997-3.054.4000E053.124-3.174.2000E053.124-3.124.000E053.124-3.124.2000E053.411-3.612.7000E053.411-3.61
2.0000E 07^{*} $-0.693-0.44$ 6.4340E06 $0.441-0.73$ 4.8000E36 $0.734-0.84$ 4.3040E66 $0.734-0.84$ 4.3040E66 $1.204-1.20$ 3.0000E06 $1.395-1.44$ 2.3540E06 $1.395-1.46$ 1.3500E06 $1.987-1.96$ 1.4000E06 $1.987-1.96$ 1.3500E06 $1.987-1.96$ 1.3500E06 $1.987-1.96$ 1.3500E06 $2.027-2.07$ 1.3500E06 $2.027-2.29$ 1.3000E06 $2.207-2.29$ 1.0100E06 $2.207-2.29$ 1.0100E05 $2.436-2.45$ 8.6110E05 $2.436-2.45$ 8.7300E05 $2.436-2.45$ 8.7300E05 $2.436-2.49$ 9.7300E05 $2.490-2.70$ 6.7000E05 $2.859-2.90$ 5.7300E05 $2.990-2.305$ 4.7000E05 $3.124-3.17$ 4.2000E05 $3.124-3.17$ 4.2000E05 $3.124-3.12$ 4.0000E05 <td< td=""></td<>
$2.0000E$ 07^{*} $-0.693-0.44$ $6.4340E$ 06 $0.441-0.73$ $4.8000E$ 36 $0.734-0.84$ $4.3040E$ 66 $0.843-1.20$ $3.0000E$ 06 $1.204-1.39$ $2.4790E$ 06 $1.395-1.44$ $2.3540E$ 06 $1.395-1.44$ $2.3540E$ 06 $1.466-1.99$ $1.4000E$ 06 $1.987-1.89$ $1.3560E$ 06 $1.987-1.89$ $1.3500E$ 06 $2.027-2.07$ $1.3500E$ 06 $2.027-2.29$ $1.3000E$ 06 $2.207-2.29$ $1.1000E$ 06 $2.207-2.29$ $1.1000E$ 06 $2.207-2.29$ $1.1000E$ 05 $2.436-2.43$ $9.0000E$ 05 $2.436-2.43$ $8.7500E$ 05 $2.436-2.45$ $8.7000E$ 05 $2.501-2.59$ $8.7000E$ 05 $2.703-2.81$ $6.7000E$ 05 $2.990-2.70$ $5.7000E$ 05 $2.990-2.70$ $5.7000E$ 05 $2.990-2.90$ $5.7000E$ 05 $2.990-2.90$ $4.9952E$ 05 $2.990-2.91$ $4.0000E$ 05 $3.124-3.17$ $4.2000E$ 05 $3.170-3.21$ $3.3000E$ 05 $3.411-3.61$
$2.0000E$ 07^{*} $-0.693-0.44$ $6.4340E$ 06 $0.441-0.73$ $4.8000E$ 36 $0.734-0.84$ $4.3040E$ 66 $0.843-1.20$ $3.0000E$ 06 $1.204-1.39$ $2.4790E$ 06 $1.395-1.44$ $2.3540E$ 06 $1.446-1.68$ $1.4000E$ 06 $1.987-1.96$ $1.4000E$ 06 $1.987-1.96$ $1.4000E$ 06 $1.987-1.96$ $1.3500E$ 06 $1.987-1.96$ $1.3500E$ 06 $1.987-1.96$ $1.3500E$ 06 $2.027-2.07$ $1.3500E$ 06 $2.027-2.29$ $1.1000E$ 06 $2.207-2.29$ $1.1000E$ 06 $2.207-2.29$ $1.1000E$ 05 $2.436-2.43$ $9.0000E$ 05 $2.436-2.45$ $8.7500E$ 05 $2.490-2.70$ $8.7000E$ 05 $2.501-2.59$ $2.501-2.59$ $2.501-2.59$ $2.703-2.81$ $2.990-2.70$ $4.7000E$ 05 $2.990-2.90$ $2.997-3.05$ $2.997-3.05$ $4.7000E$ 05 $3.124-3.17$ $4.2000E$ 05 $3.170-3.21$
2.0000E 07^{*} $-0.693-0.44$ 6.4340E060.441-0.734.8000E360.734-0.844.3040E661.204-1.392.4790E061.395-1.442.3540E061.4687-1.891.4000E061.987-1.961.4000E061.987-1.961.3560E061.987-1.201.3560E061.987-1.201.3560E061.987-1.201.3560E061.987-1.201.3560E062.027-2.071.3560E062.207-2.291.3000E052.408-2.439.0000E052.436-2.409.0000E052.436-2.438.7500E052.436-2.438.7500E052.490-2.706.7000E052.501-2.595.7300E052.813-2.855.7300E052.859-2.905.5000E052.990-2.706.7000E052.990-2.705.3000E052.990-2.905.3000E052.990-2.904.4000E053.124-3.174.2000E053.124-3.174.2000E053.170-3.21
2.0000E $07*$ $-0.693-0.44$ 6.4340E06 $0.734-0.84$ 4.8000E36 $0.734-0.84$ 4.3040E06 $1.204-1.39$ 2.4790E06 $1.466-1.68$ 1.4000E06 $1.466-1.68$ 1.4000E06 $1.995-1.44$ 1.3000E06 $1.997-1.96$ 1.4000E06 $1.998-2.07$ 1.3560E06 $2.027-2.07$ 1.3560E06 $2.027-2.07$ 1.3560E06 $2.027-2.27$ 1.3170E06 $2.027-2.29$ 1.10100E06 $2.207-2.29$ 1.0100E05 $2.436-2.40$ 9.0000E05 $2.436-2.43$ 8.7500E05 $2.436-2.43$ 8.7500E05 $2.436-2.43$ 8.7500E05 $2.591-2.50$ 8.6110E05 $2.591-2.50$ 8.7300E05 $2.703-2.81$ 6.7000E05 $2.990-2.70$ 5.7300E05 $2.990-2.99$ 4.9952E05 $2.997-3.05$ 4.4000E05 $3.124-3.17$
2.0000E 07^* $-0.693-0.44$ 6.4340E06 $0.441-0.73$ 4.8000E36 $0.734-0.84$ 2.4790E06 $1.204-1.39$ 2.4790E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.3540E06 $1.395-1.44$ 2.4790E06 $1.46-1.68$ 1.4000E06 $1.46-1.68$ 1.4000E06 $1.998-2.02$ 1.3560E06 $2.027-2.07$ 1.3560E06 $2.079-2.120$ 1.3170E06 $2.079-2.120$ 1.1000E06 $2.293-2.386$ 9.2000E05 $2.436-2.408$ 9.2000E05 $2.436-2.408$ 9.2000E05 $2.436-2.408$ 9.2000E05 $2.436-2.408$ 9.2000E05 $2.436-2.408$ 9.2000E05 $2.436-2.408$ 9.2000E05 $2.590-2.590$ 8.6110E05 $2.590-2.590$ 6.7000E05 $2.813-2.859$ 5.7300E05 $2.997-3.058$ 4.9952E05 $3.058-3.122$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
2.0000E $07*$ $-0.693-0.441$ 6.4340E06 $0.441-0.734$ 4.8000E36 $0.734-0.843$ 4.3040E06 $1.204-1.395$ 2.4790E06 $1.204-1.395$ 2.4790E06 $1.395-1.446$ 2.3540E06 $1.446-1.687$ 1.8500E06 $1.446-1.687$ 1.3560E06 $1.998-2.027$ 1.3560E06 $2.079-2.120$ 1.3560E06 $2.079-2.120$ 1.3170E06 $2.207-2.293$ 1.3170E06 $2.207-2.293$ 1.1000E06 $2.207-2.293$ 1.1000E06 $2.293-2.386$ 9.0000E05 $2.436-2.436$ 8.7500E05 $2.436-2.436$ 8.7500E05 $2.436-2.436$ 8.6110E05 $2.590-2.590$ 6.7000E05 $2.813-2.859$ 5.7300E05 $2.859-2.900$ 5.5000E05 $2.859-2.900$
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 06 1.204-1.395 2.4790E 06 1.395-1.446 2.3540E 06 1.395-1.446 2.3540E 06 1.446-1.687 1.8500E 06 1.446-1.687 1.3560E 06 1.897-1.966 1.4000E 06 1.989-2.077 1.3560E 06 1.998-2.077 1.3560E 06 2.079-2.120 1.3560E 06 2.027-2.079 1.3170E 06 2.027-2.293 1.1000E 06 2.120-2.207 1.2000E 06 2.293-2.386 9.2000E 05 2.386-2.408 9.2000E 05 2.438-2.436 9.2000E 05 2.452-2.501 8.6110E 05 2.591-2.590 9.2000E 05 2.591-2.590 9.2000E 05 2.590-2.703 8.6110E 05 2.703-2.813 9.2000E
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.3040E 06 0.734-0.843 4.3040E 06 1.204-1.395 2.4790E 06 1.395-1.446 2.3540E 06 1.46-1.687 1.48500E 06 1.4897-1.998 1.4000E 06 1.498-2.027 1.3560E 06 1.998-2.027 1.3560E 06 1.998-2.027 1.3560E 06 1.998-2.027 1.3560E 06 2.027-2.079 1.3170E 06 2.027-2.079 1.3170E 06 2.027-2.079 1.3000E 06 2.027-2.079 1.3000E 06 2.027-2.207 1.1000E 06 2.120-2.207 1.1000E 06 2.120-2.207 1.000E 05 2.408-2.436 9.0000E 05 2.436-2.436 8.6110E 05 2.590-2.590 2.703-2.813 2.703-2.813 6.7000E 05 2.590-2.690 2.703-2.813 <td< td=""></td<>
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.3040E 06 0.734-0.843 4.3040E 06 1.204-1.395 2.4790E 06 1.395-1.446 2.3540E 06 1.446-1.687 1.4500E 06 1.467-1.897 1.4500E 06 1.4687-1.897 1.4000E 06 1.998-2.027 1.3560E 06 1.998-2.027 1.3560E 06 1.998-2.027 1.3560E 06 2.027-2.079 1.3560E 06 2.027-2.079 1.3170E 06 2.027-2.207 1.3000E 06 2.027-2.207 1.3170E 06 2.027-2.207 1.1000E 06 2.120-2.207 1.1000E 06 2.207-2.293 1.0100E 06 2.2293-2.386 9.0000E 05 2.436-2.452 8.7500E 05 2.436-2.452 8.6110E 05 2.590-2.501 2.590-2.501 2.590-2.501 5.7900E 0
2.0000E $07*$ $-0.693-0.441$ 6.4340E06 $0.441-0.734$ 4.8000E36 $0.734-0.843$ 4.3040E66 $1.204-1.395$ 2.4790E06 $1.395-1.446$ 2.3540E06 $1.446-1.687$ 1.8500E06 $1.446-1.687$ 1.8500E06 $1.998-2.027$ 1.3560E06 $1.998-2.079$ 1.3170E06 $2.027-2.079$ 1.3170E06 $2.027-2.079$ 1.3170E06 $2.027-2.293$ 1.1000E06 $2.207-2.293$ 1.1000E06 $2.229-2.386$ 9.2000E05 $2.436-2.452$ 8.7500E05 $2.436-2.452$ 8.6110E05 $2.590-2.590$ 7.5000E05 $2.590-2.590$
2.0000E $07*$ $-0.693-0.441$ 6.4340E06 $0.441-0.734$ 4.8000E36 $0.734-0.843$ 4.3040E06 $1.204-1.395$ 2.4790E06 $1.395-1.446$ 2.3540E06 $1.446-1.687$ 1.8500E06 $1.446-1.687$ 1.8500E06 $1.687-1.897$ 1.3560E06 $1.998-2.027$ 1.3170E06 $2.027-2.079$ 1.3170E06 $2.079-2.120$ 1.2000E06 $2.207-2.293$ 1.1000E06 $2.293-2.386$ 9.2000E05 $2.436-2.452$ 8.6110E05 $2.452-2.501$
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 06 1.204-1.395 2.4790E 06 1.395-1.446 2.3540E 06 1.46-1.687 1.8500E 06 1.46-1.897 1.4000E 06 1.46-1.998 1.4000E 06 1.998-2.027 1.5000E 06 1.998-2.027 1.3560E 06 1.998-2.027 1.3560E 06 1.998-2.027 1.3170E 06 2.027-2.079 1.3170E 06 2.027-2.079 1.2000E 06 2.027-2.307 1.2000E 06 2.120-2.207 1.1000E 06 2.120-2.207 1.0000E 05 2.386-2.408 9.00000E 05 2.436-2.408 8.7500E 05 2.436-2.452
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 06 1.204-1.395 2.4790E 06 1.395-1.446 2.3540E 06 1.46-1.687 1.8500E 06 1.46-1.897 1.8500E 06 1.46-1.687 1.4000E 06 1.687-1.897 1.5000E 06 1.998-2.027 1.3560E 06 1.998-2.027 1.3560E 06 1.998-2.027 1.3170E 06 2.027-2.079 1.2000E 06 2.027-2.207 1.2000E 06 2.027-2.207 1.1000E 06 2.120-2.207 1.1000E 06 2.207-2.293 1.0100E 06 2.229-2.386 9.20000E 05 2.408-2.436
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 06 1.204-1.395 2.4790E 06 1.395-1.446 2.3540E 06 1.4687-1.897 1.8500E 06 1.4687-1.897 1.4000E 06 1.987-1.966 1.4000E 06 1.998-2.027 1.3560E 06 1.998-2.027 1.3560E 06 1.998-2.027 1.3170E 06 2.027-2.207 1.2000E 06 2.027-2.207 1.1000E 06 2.207-2.236 1.0100E 06 2.2386-7.408
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 06 1.204-1.395 2.4790E 06 1.395-1.446 2.3540E 06 1.446-1.687 1.8500E 06 1.446-1.687 1.8500E 06 1.446-1.687 1.5000E 06 1.687-1.897 1.3560E 06 1.998-2.027 1.3560E 06 1.998-2.027 1.3170E 06 2.079-2.120 1.2000E 06 2.120-2.207 1.2000E 06 2.207-2.293 1.1000E 06 2.207-2.293
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 06 1.204-1.395 2.4790E 06 1.395-1.446 2.3540E 06 1.446-1.687 1.45000E 06 1.466-1.998 1.45000E 06 1.966-1.998 1.3560E 06 1.998-2.027 1.3170E 06 2.027-2.079 1.2500E 06 2.027-2.207 1.2500E 06 2.027-2.207 1.2500E 06 2.027-2.207
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 06 1.204-1.395 2.4790E 06 1.395-1.446 2.3540E 06 1.446-1.687 1.8500E 06 1.4687-1.897 1.8500E 06 1.4687-1.998 1.4000E 06 1.998-2.027 1.3170E 06 2.027-2.079 1.2500E 06 2.079-2.120
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 06 1.204-1.395 2.4790E 06 1.395-1.446 2.3540E 06 1.4687-1.897 1.8500E 06 1.4687-1.897 1.45000E 06 1.4687-1.998 1.4000E 06 1.998-2.027 1.3170E 06 2.027-2.079
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 66 0.843-1.204 3.0000E 06 1.204-1.395 2.4790E 06 1.395-1.446 2.3540E 06 1.446-1.687 1.8500E 06 1.687-1.897 1.5000E 06 1.897-1.998 1.4000E 06 1.998-2.027
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 06 0.843-1.204 3.0000E 06 1.204-1.395 2.4790E 06 1.395-1.446 2.3540E 06 1.446-1.687 1.8500E 06 1.687-1.897 1.5000E 06 1.687-1.996
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 06 0.843-1.204 3.0000E 06 1.204-1.395 2.4790E 06 1.395-1.446 2.3540E 06 1.466-1.687 1.8500E 06 1.687-1.897
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 06 0.843-1.204 3.0000E 06 1.204-1.395 2.4790E 06 1.446-1.687 2.3540E 06 1.446-1.687
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 66 0.843-1.204 3.0000E 06 1.204-1.395 2.4790E 06 1.395-1.446
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 66 0.843-1.204 3.0000E 06 1.204-1.395
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843 4.3040E 66 0.843-1.204
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734 4.8000E 36 0.734-0.843
2.0000E 07* -0.693-0.441 6.4340E 06 0.441-0.734
2.0000E 07* -0.693-0.441
(e) Lenary Kang
(aV) lethers: Dana (pyci Litersy

.

. . .

.

۰.

هم د و د

e a la seconda po

بالارد المراجورين

Table 2. 218-Group Neutron Structure

.

.

· •

Table 2 (continued)

.

	Upper Energy	-		Upper Energy	
Group	<u>(eV)</u>	Lethargy Range	Group	(eV)	Lethargy Range
101	318002E 01	12.481-12.507	151	2.2100E 00	15.325-15.367
102	3.7000E 01	12.507-12.549	152	2.1200E 00	15.367-15.425
103	3.5500E 01	12.549-12.574	153	2.0000E	15.425-15.455
104	3.46GOE 01	12.574-12.599	154	1.9400E 00	15.455-15.498
105	3.3750E 01	12.599-12.614	155	1.3600E 00	15.498-15.547
106	3.3250E 01	12.614-12.660	156	1.7700E 00	15.547-15.599
107	3.1750E 01	12.660-12.676	157	1.6800E 00	15.599-15.654
108	3.1250E 01	12.676-12.717	158	1.5900E 00	15.654-15.713
109	3.0000E 01	12.717-12.804	159	1.5000E 00	15.713-15.747
110	2.7500E 01	12.804-12.899	160	1.4500E 00	15.747-15.782
111	2.5000E 01	12.899-13.005	161	1.4000E 00	15.782-15.818
112	2.2500E 01	13.005-13.074	162	1.3500E 00	15.818-15.856
113	2.1000E 01	13.074-13.122	163	1.3000E 00	15.856-15.895
114	2.0000E 01	13.122-13.174	164	1.2500E 00	15.895-15.915
115	1.9000F 01	13,174-13,200	165	1.2250E 00	15,915-15,936
116	1.8500E 01	13.200-13.285	166	1.2000E 00	15.936-15.957
117	1.7000E 01	13.285-13.346	167	1.1750E 00	15.957-15.978
118	1.6000E 01	13.346-13.403	168	1.1500E 00	15.978-15.987
119	1.5100F 01	13.403-13.451	169	1.1400E 00	15.987-15.996
120	1.4400F 01	13.451-13.497	170	1 1300E 00	15.996-16.005
121	1.3750F 01	13.497-13 561	171	1 1200F 00	16.005-16.014
122	1.2900E 01	13.561-13.642	172	1.1200E 00	16.014-16.023
123	1.1900E 01	13.642-13.676	173	1.1000E 00	16.023-16.032
124	1.1500E 01	13-676-13 816	174	1 0900E 00	16 032-16 041
125	1.0000F 01	13.816-13.910	175	1 0800F 00	16.041-16.050
126	9.1000E 00	13.910-14.026	176	1.0700E 00	16.050-16.060
127	8.1000E 00	14.026-14.151	177	1.0600E 00	16.060-16.069
128	7.1500E 00	14.151-14.172	178	1.0500E 00	16-069-16 079
129	7.0000E 00	14,172-14,209	179	1 0400E 00	16.079-16.089
130	6.7500E 00	14.209-14.246	180	1.0300E 00	16.089-16.098
131	6.5000E 00	14.246-14.286	181	1.0200E 60	16.098-16.108
132	6.2500E 00	14.286-14.326	182	1.0100E 00	16,108-16,118
133	6.0000E 00	14.326-14.432	183	1.0000E 00	16.118-16.143
134	5.4000E 00	14.432-14.09	184	9.7500E-01	16.143-16.169
135	5.0000F 00	14.509-14.550	185	9.5000E-01	16.169-16.196
136	4.7500E 00	14.560-14.732	186	9.2500E-D1	16.196-16.223
137	4.0000E 00	14.732-14.802	187	9.0000E-01	16.223-16.281
138	3.7300E 00	14.802-14.865	188	8.5000E-01	16.281-16.341
139	3.5000E D0	14.865-14.971	189	8.0000E-01	16.341-16.406
140	3.1500E 00	14.971-15.003	190	7.5000E-01	16.406~16.475
141	3.0500E 00	15.003-15.019	191	7.0000E-01	16.475-16.549
142	3.0000F 00	15.019-15.030	192	6.5000E-01	16.549-16.629
143	2.9700E 00	15.030-15.064	193	6.0000E-01	16.629-16.716
144	2.8700E 00	15.064-15.099	194	5.5000E-01	16.716-16.811
145	2.7700E 00	15.099-15.136	195	5.0000E-01	16.811-16.917
146	2.6700E 00	15,136-15,174	196	4.5000E-01	16.917-17.034
147	2,5700E 00	15.174-15.214	197	4.0000E-01	17.034-17.099
148	2.4700E 00	15,214-15,251	198	3.7500E-01	17.099-17.168
149	2.3800E 00	15.251-15.285	1 199	3.5000E-01	17.168-17.242
150	2.3000E 00	15.285-15.325	200	3.2500E-01	17.242-17.322
				· · · · · ·	

1.1

Τ.4

Table

	Upper Energy	
Group	(eV)	Lethargy Range
201	3-0000E-01	17.322-17.409
202	2.7500E-01	17.409-17.504
203	2.5000E-01	17.504-17.610
204	2.2500E-01	17.610-17.728
205	2-0000E-01	17.728-17.861
206	1.7500E-01	17.861-18.015
207	1.5000E-01	18.015-18.198
208	1.2500E-01	18.198-18.421
209	1.000CE-01	18.421-18.526
210	9.0000E-02	18.526-18.644
211	8.0000E-02	18.644-18.777
212	7.0000E-02	18.777-18.932
213	6.0000E-02	18.932-19.114
214	5.0000E-02	19.114-19.337
215	4.0000E-02	19.337-19.625
216	3.0000E-02	19.625-19.795
217	2.5300E-02	19.795-20.723
218	1.0000E-02**	20.723-27.631

**Bottom energy of group 218 is 1.0000×10^{-5} eV.

Table 3. Definition of Reaction Types

MT Number	Description ^a
1	Total cross section (redundant, equal to the sum of all partial cross sections)
2	Elastic scattering cross section
4	Total inelastic cross section (redundant, equal to the sum of MT≈51,52,53,,90,91)
16	(n,2n) cross section
17	(n,3n) cross section
18	Total fission cross section
22	(n,n')a cross section
23	(n,n')3a cross section
24	(n,2n)a cross section
25	(n,3n)a cross section
26	(n,2n) isomeric state cross section
27	Absorption cross section (sum of MT $*18$ and 102)
28	(n,n')p cross section
51	(n,n') to the l <u>st</u> excited state
52	(n,n') to the 2 <u>nd</u> excited state
•	
•	
90	(n,n') to the 40 <u>th</u> excited state
91	(n,n') to the continuum
101	Parasitic absorption (redundant, sum of MT=102,103, 104,105,106,107,108,109)
102	(n, y) radiative capture cross section
103	(n,p) cross section
104	(n,d) cross section
105	(n,t) cross section
106	(11,He ³) cross section
107	(n, a) cross section
108	(n,2a) cross section
109	(n,3a) cross section
111	(n,2p) cross section

`

Table 3 (continued)

MT Number	Description ^a
112	(n,pa) cross section
113	(n,t2a) cross section
1018	Chi for lowest group
1021	"Background" data for capture reaction to be proc- essed in NITAWL module
1022	"Background" data for fission reaction to be proc- essed in NITAWL module
1023	"Background" data for elastic scattering reaction to be processed in NITAWL module
1099	Point-to-fine group weighting function

^aMT descriptions from Ref. 6.

Table 4. Point-to-Fine Group Weighting Functions

• Non Resonance Materials (fission-l/Eo $_T$ -Maxwellian)

Energy Range	Weighting
20-1.4 MeV 1.4 x 10 ⁶ -0.1264 eV	Fission 1/Ect
$0.1264 - 1.0 \times 10^{-5} eV$	Maxwellian (293°K)

• Resonance Materials (fission-1/E-Maxwellian)

Energy Range	Weighting Spectrum
20-0.1 MeV	Fission
$1.0 \times 10^{3} - 0.12^{6}4 \text{ eV}$	1/E Manuallian (2930)
	INDAWELLIGH (C/J)

• Selected Structural Materials (Fe, Ni, Cr)

Energy Range	Weighting Spectrum
2.0 x 10 ⁷ -0.1264 eV	$(1/E\Sigma_{T})$ inconel or $(1/E\Sigma_{T})$ stainless steel 304
0.1264-1.0 x 10 ⁻⁵ eV	Maxwellian (293°K)

Tanla S	218-17000	Fission-1/E-Maximullian Weight Eurotion

	Weight	1	Weight	ł	Weight
Group	Function	Group	Function	Group	Function
1	8.327300E-01 ^a	51	1.681100E-01	101	2.666800E-02
2	1.787000E 00	52	2.91420CE-01	102	4.138500E-02
3	1.065100E 00	53	4.307800E-01	103	2.568000E-02
4	5.149199E 00	54	4.189100E-02	104	2.487300E-02
5	3.536099E 00	55	2.204700E-01	105	1.492600E-02
6	1.020399E 00	56	1.508200E-01	106	4.616200E-02
7	4.904799E 00	57	1.192400E-01	107	1.587300E-02
8	4.227500E 00	58	4.009400E-02	108	4.082200E-02
9	1.336599E 00	59	2.006699E-01	109	8.701098E-02
10	6.062400E-C1	60	1.495300E-01	110	9.530997E-02
11	5.4651COE-01	61	3.279000E-02	111	1.053600E-01
12	9.586599E-01	62	2.657000E-01	112	6.899297E-02
13	7.310500E-01	63	1.910599E-0!	113	4.879000E-02
14	1.501800E 00	64	3.299699E-01	114	5,129300E-02
15	1.393000E 00	65	1.921700E-02	115	2.666800E-02
16	1.428900E 00	66	1.973600E-01	116	8-455700E-02
17	3.217500E-01	67	5.896100E-01	117	6.062500E-02
18	4.043199E-01	68	6.782299E-02	118	5.789400F-02
39	2.257700E-01	69	1.718500E-01	119	4.746600E-02
20	6.707000E-01	70	1.335300E-01	120	4.618900E-02
21	1.152499E 00	71	1.197600E-02	121	6.381094E-02
22	1.177600E 00	72	7.503498E-02	122	8-0688956-02
23	1.496600E-01	73	3.434900E-02	123	3.419100F-02
24	1.164200E 00	74	4,217300E-01	124	1.397600E-01
25	4-480700E-01	75	2.489800E-02	125	9.431100E-02
26	3-808200E-01	76	3.419100E-02	126	1.164100E-01
27	8.313000E-01	77	6 280094F-02	127	1 247500F-01
28	4.8.7700E-01	78	7.696098F-02	128	2.120200E-02
29	4.857399E-01	79	1 053600E-01	129	3 636800F-02
30	3.209100E-01	80	9 309000E-01	130	3 7740005-(
31	3.183800E-01	81	2 469300F-02	131	3 922100F-02
32	1 087700F 00	82	5 129300F-02	132	4 082200E-02
33	8 889000F-01	83	5 406700E=02	132	1 053600F-01
34	9 646000E-01	84	6 453794F-02	134	7 6960985-07
35	6 231400F-01	85	3 7760008-02	135	5 129300F=02
36	2.482800F-01	86	6 351298F-02	135	1 718500F-01
37	2 9904005-01	87	3 333600F-02	137	6 488597F-02
38	1 625200F-01	69	9.977697E_02	129	6 366/05E-02
20	3 5932005-01	80	2 656700E-02	130	1 0536005-01
<i>4</i> 0	8 022005F_02	0,0	2.030700E-02	1/0	2 226100E-01
40	2 702000F_02	90	2.7293000-02	140	1 4500005-02
41	1 9611005-01	91	1 9/62005-02	141	1.0051008-02
42	1.4210005-01	92	1.040200F-02 2.729400F-02	142	3 4240005-02
45	3 9221005-02	95	2.7204000-02	145	3.4249000-02
44	1 0536005-01	94	3.903100E-02	144	3.54650000-02
45	4 05/500r-01	1 75	2.090/00E=02 2.70/200E=02	143	3 9173005-02
40	1 8232005-01	07	3,7042006-02	140	3 0499005-02
48	3 8566005-01	00	3.33/000E=02 3.474400E=02	1/0	3 71100002-02
-+0 /0	2 692500FL01	70	3.4/4400E-02	140	3./110006-02
47 50	2·002J796-01 2 1266004±01	100	1.2/0/00E-02	149	3.4171005-02 2.0017005-02
20	3.130000r/~01	, 100	2.0330005-02	, TOO	3.331/006-02

^aRead 8.327300 x 10^{-1} .

Table 5 (concluded)

•

	Weight	1	Weight
Group	Function.	Group	Function
151	4.157600E-02	201	8.701098E-02
152	5.826400E-02	202	9.530997E-02
153	3.046400E-02	203	1.053600E-01
154	4.211100E-02	204	1.177800E-0i
155	4.959700E-02	205	1.335300E-01
156	5.218600E-02	206	1.541499E-01
157	5.506000E-02	207	1.824700E-01
158	5.826800E-02	208	3.107700E-01
159	3.390200E-02	209	2.059300E-01
160	3.509100E-02	210	2.737000E-01
161	3.636800E-02	211	3.591100E-01
162	3.774000E-02	212	4.618100E-01
163	3.921900E-02	213	5.803500E-01
164	2.020400E-02	214	7.040200E-01
165	2.061800E-02	215	8.1210995-01
166	2.105500E-02	216	4.041300E-01
167	2.150500E-02	217	1.213400E 00
168	8.734699E-03	218	3.591500E-01
169	8.810800E-03		
170	8.887500E-03		
171	8.968897E-03		
172	9.050898E-03		
173	9.132698E-03		
174	9.215098E-03		
175	9.302597E-03		
176	9.390797E-03		
177	9.478997E-03		
178	9.567797E-03		
179	9.662099E-03		
180	9.756397E-03		
181	9.853497E-03		
182	9.948697E-03		
183	2.531800E-02		
184	2.597500E-02		
185	2.666800E-02		
186	2.739900E-02		
187	5.715800E-02		
188	6.062500E-02		
189	6.453794E-02		
190	6.899297E-02		
191	7.410794 F-0 2		
192	8.004296E-02		
193	8.701098E-02		
194	9.530997E-02		
195	1.053600E-01		
196	1.1/7800E-01		
197	6.453/94E-02		
198	6-899297E-02		
197	/.410/94E-02		
200	8.004296E-02		

REFERENCES

- N. M. Greene, <u>et al.</u>, "AMPX: A Modular Code System for Generating Coupled Multigroup Neutron-Gamma Libraries from ENDF/B," ORNL/TM-3706 (March, 1976).
- 2. G. E. Whitesides and N. F. Cross, "KENO: A Multigroup Monte Carlo Criticality Program," CTC-5, Union Carbide Corporation, Nuclear Division (September 10, 1964).
- 3. E. A. Straker, <u>et al.</u>, "The MORSE Code A Multigroup Neutron and Gamma-Ray Monte Carlo Transport Code," ORNL-TM-4585 (1970).
- W. W. Engle, Jr., "A Users Manual for ANISN, A One-Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering," K-1693, Union Carbide Corporation, Nuclear Division (March 30, 1967).
- 5. W. A. Rhoades and F. R. Mynatt, "The DOT-III Two-Dimensional Transport Code," ORNL-TM-4280 (1973).
- M. K. Drake, (ed.), "Data Formats and Procedures for the ENDF Neutron Cross-Section Library," BNL-50274 (ENDF 102 Vol. 1) (October, 1970).
- 7. D. J. Hughes and J. A. Harvey, "Neutron Cross Sections," BNL-325 (1955).
- 8. D. J. Hughes and R. B. Schwartz, "Neutron Cross Sections," BNL-325, Supplement No. 1 (1957).
- 9. D. J. Hughes and R. B. Schwartz, "Neutron Cross Sections," BNL-325, Second Edition (1952).
- J. R. Stehn, <u>et al.</u>, "Neutron Cross Sections, Volume 1, Z=1 to 20," BNL-325, Second Edition, Supplement No. 2 (1964).
- 11. J. R. Stehn, <u>et al.</u>, "Neutron Cross Sections, Volume III, Z=88 to 98," BNL-325, Second Edition, Supplement No. 2 (1965).
- M. D. Goldberg, <u>et al.</u>, "Neutron Cross Sections, Volume IIA, Z=21 to 40," BNL-325, Second Edition, Supplement No. 2 (1966).
- 13. M. D. Goldberg, <u>et al.</u>, "Neutron Cross Sections, Volume IIB, Z=41 to 60," BNL-325, Second Edition, Supplement No. 2 (1966).
- M. D. Goldberg, <u>et al</u>., "Neutron Cross Sections, Volume IIC, Z=61 to 87," BNL-325, Second Edition, Supplement No. 2 (1966).
- 15. D. E. Cullen and P. H. Hlavac, "ENDF/B Cross Sections," ENDF-200 (1972).
- 16. Radiation Shielding Information Center, private communication (summary documentation for ENDF/B-IV to be published).

REFERENCES (continued)

. .

 R. J. Howerton, "The Lawrence Livermore Laboratory Evaluated Nuclear Data Library (ENDL) Translated into the ENDF/B Format," UCID-16727 (March, 1975).

-

. . .

APPENDIX A

AMPX Master Library Interface*

The AMPX multigroup master cross-section library formats have been designed with a generality paralleling that of the ENDF/B point data libraries. For example:

- 1. Resonance parameters can be passed.
- 2. Any number of reactic. cross sections is allowed. ENDF/B identifications are retained where possible.
- 3. Any scattering p[.] less can be represented anisotropically to any order.
- 4. Any process can have a transfer matrix. For example, XLACS produces a transfer matrix for each inelastic level.
- 5. Temperature dependence is allowed on thermal scattering kernel.

Special arrays designated "magic-word" arrays are used to compact the potentially very lengthy transfer arrays on the interfaces. These formats effectively eliminate zero and impossible elements from the transfer arrays.

Four types of arrays are used in the formats:

- 1. The aforementioned "magic-word" array,
- 2. Temperature dependent 1-D arrays,
- 3. Temperature independent 1-D arrays, and
- 4. The resonance parameter array.

A.1 Magic-Word Array

The structure of a magic-word array is as follows:

- 1. Length of magic-word string which follows,
- Magic word for first non-zero group (note that this is not necessarily the first energy group),

*This material was taken from Section 11 of Ref. 1.

3. String of transfer elements for this group,

4. Magic word for next group,

5. String for next group,

A read statement for this array would contain a list:

 $L_{(X(I), I=1, L)}$

A magic word is a 9-digit integer consisting of three 3-digit integers (IIIJJJKKK). The number of the group scattered into is KKK. III is the lowest numbered (highest energied) group which scatters to KKK. JJJ is the highest numbered group which scatters to KKK. After the magic word, the transfer string to group KKK is in reverse order:

IIIJJJKKK

o(JJJ+KKK)

σ(JJJ-1+KKK)

G **(KKK+KKK)**

o(KKK-1+KKK)

♂(III+KKK)

Note that the within group term does not necessarily fall in the string.

A.2 Temperature Dependent 1-D Arrays

These arrays are structured as follows:

- 1. ENDF/B Process ID (MT),
- 2. Temperature in ^{OK},
- 3. Average cross section for each energy group,
- 4. etc.

A 3 Temperature Independent 1-D Arrays

Temperature independent 1-D arrays are structured:

- 1. ENDF/B process ID for 1st process,
- 2. Average cross sections for lat process for all groups,
- 3. ENDF/B process ID for 2nd process,
- 4. Average cross sections for 2nd process for all groups,
- 5. etc.

A.4 Resonance Array Structure

The makeup of this data array is as follows:

- 1. Mass ratio (A) for the isotope.
- 2. σ_{po} , potential scattering cross section.
- 3. Average statistical factor, g, in the unresolved region.
- 4. Number of resolved resonances.
- 5. s-factor. This factor is used to determine the region over which the Nordheim Integral Treatment is applied for a resolved resonance.
- Average energy level spacing, (D), for the l = 0 unresclved sequence passed.
- 7. $\langle \Gamma_n^{\circ} \rangle$, average unresolved neutron width.
- 8. $\langle \Gamma_{\gamma} \rangle$, average unresolved gamma width.
- 9. $\langle \Gamma_f \rangle$, average unresolved fission width.

10. Energy of first resolved resonance.
11. Γ_n, neutron width of first resolved resonance.
12. Γ_γ, gamma width of first resonance.
13. Γ_f, fission width of first resonance.
14. r-factor (used in Nordheim Treatment).
15. Statistical factor, g.
16.
17.
18.
As for 10-15 for second resolved resonance.
19.
20.
21.
20.
21.
21.
22.
23.
24.
25.
26.
27.
28.
29.
20.
21.
20.
21.
21.
22.
23.
24.
25.
26.
27.
28.
29.
29.
20.
20.
21.
20.
21.
21.
22.
23.
24.
25.
26.
27.
28.
29.
29.
20.
20.
20.
21.
20.
21.
21.
22.
23.
24.
25.
26.
27.
28.
29.
29.
20.
20.
20.
21.
21.
22.
23.
24.
25.
26.
27.
28.
29.
29.
20.
20.
20.
20.
20.
21.
21.
22.
23.
24.
25.
26.
27.
27.
28.
29.
29.
20.
20.
20.
20.
21.
21.
21.
22.
23.
24.
25.
26.
27.
27.
28.
29.
29.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.

These energies will span the unresolved energy range.

- •
- •

A.5 Master Interface Specification

The format of the master cross-section interface is specified below. Reference is made to the array definitions made immediately prior to this section. The format of gamma-ray data is included below; however, the criticality safety master cross-section library contains only neutron data.

Record	Leasth (Words)	Contents
1	110	IDT - interface identification number
		NNUC - number of nuclides in this interface
		NG - number of neutron energy groups
		IFTG - first thermal neutron group
		MSN - zero
		Il - number of gamma energy groups
		12 - zero
		I3 - zero
		I4 - zero
		IS - zero
		A(1+100) Hollerith information describing
		the interface
2	50	ID(1+50) information describing the first
•		nuclide on the interface
-	•	•
•	•	(See the description of record RI below
•	•	for a specification of the ID array.)
NNUC+1	50	As for record 2 for NNUCth nuclide
NNUC+2	2x(NC+1)	Neutron energy group boundaries (high-to-
		low in eV) followed by corresponding
		lethargy boundaries
NNUC+3	2x(I1+1)	Gamma energy group boundaries (high-to-
		low in eV) followed by corresponding
		lethargy boundaries

NOTE: Records 2 through NNUC+1 constitute a Table of Contents for the interface. Record NNUC+2 or NNUC+3 is omitted when NG=0 or I1=0, respectively.

The following set of records is repeated NNUC times, one nuclide after the other:

Record	Length	Contents
Rl	50	ID(1-18) - Hollerith information describing
		the nuclide
		ID(19) - nuclide identification number
		ID(20) - number of resolved resonances
		ID(21) - number of points at which to
		evaluate unresolved "averaged" cross
		sections
		ID(22) - number of one-dimensional neutron
		arrays (temperature independent)
		ID(23) - number of two-dimensional neutron
		processes; i.e., a process which requires
		a neutron-neutron transfer array
		ID(24) - number of temperature dependent
		one-dimensional neutron arrays
		ID(25) - number of one-dimensional gamma
		arrays
		ID(26) ~ number of two~dimensional gamma
		processes
		ID(27) - number of neutron to gamma produc-
		tion processes
		ID(28) - not used
		ID(29) - mass number (neutron equivalent)
		ID(30) - ZA

Length

6
coatents
<pre>UD(31) - neutron (XLACS) weighting option</pre>
ID(32) - identifier of neutron weighting
ID(33) - gamma (SMUG) weighting option
ID(34) - energy per fission (watt-sec/fission)
ID(35) - energy released per capture (eV)
ID(36) - zero
ID(37) - number of processes with Bondarenko
factors
ID(38) - number of σ ₀ 's
ID(39) - number of temperatures
ID(40) - maximum number of groups with
Bondarenko factors
ID(41) - zero
ID(42) - identifier of gamma production
weighting function
ID(43) - zero
ID(44) - gamma production (LAPHNGAS)
weighting option
ID(45) - ENDF material number for fast
neutron data
ID(46) - ENDF material number for thermal
neutron data
ID(47) - ENDF material number for gamma
data

ID(48) - ENDF material number for gamma

production data

Record	Length	Contents
		ID(49) ~ standard CITATION identification
		aunder
		ID(50) - mumber of records for this nuclide
R2	ID(38)+ID(39)+2	(o ₀ (i),i=1,iD(38)), (T(j),j=1,ID(39)),ELO,EHI
		where ELO and EHI define the range over
		where the Bondarenko factors apply
R3	6 * ID(37)	(MT ₁ , i=1, ID(37)),
		(NF ₁ , i=1, ID(37)),
		(ML ₁ , i=1, ID(37)),
		(NX ₁ , i=1, ID(37)),
		(NY ₁ , i=1, ID(37)),
		(NZ ₁ , i=1, ID(37)),
		vhere
		MI is the MI number of the process,
		NF is the first group with Bondarenko
		factors for the process,
		NL is the last group with Bondarenko
		factors, and
		NX, NY, NZ are zeros, presently
The follow:	ing two records are r	epeated ID(37) times:
R4	NL ₁ -NF ₁ +1	$(\sigma_{MT}(i), i=NF, NL)$
		Infinite dilution values for the cross

section of process MT

 $(NL_{i}-NF_{i}+1)*$ (((BF(i,j,k), i=1, ID(38)), j=1, ID(39)), ID(38)*ID(39) k=NF, NL)

R5

Record	Length	Contents
R6	6xID(20)+9+ID(21)	Resonance data array
R 7	ID(22)x(NG+1)	Temperature independent one-dimensional
		arrays
R8	ID(24)x(NG+2)	Temperature dependent one-dimensional arrays
R 9	ID(23) x4	(MTX(I), I=1, ID(23)),
		(LX(I),I=1,ID(23)),
		(NLX(I), I=1, ID(23)),
		(NTX(I), I=1, ID(23)),
		where MTX = the ENDF/B process identifica-
		tion (MT), LX = the maximum length of a
		single matrix for the ith process, NLX =
		the expansion order of the cross sections
		for the ith process, NIX = the number of
		temperatures at which the cross section
		for the process is evaluated

The following arrays are repeated for each two-dimensional neutron process, through ID(23) processes.

R10(a)	T(1)	The temp erature (^O K) at which the transfer
		arrays are given for the iffi process
		NOTE: NT = 0 will not require the array
R10(b)	L(i)max	The P ₀ array for the MT_i process at T_1 ,
		vritten (X(I),I=1,LX)
R10(b+1)	L(i)max	The P $_1$ array for the MT $_1$ process at T $_1$
•		

30

- -

Record	Length	Contents
R10(6+NL)	L(i)max	The P_{NL_1} array for the MT_1 process at T_1
•	•	• •
•	•	•
R1G()	Li(i)max	The P_{C} array for the MT_{i} process at T_{2}
R10()	Li(i) m ax	The P_{NL_i} array for the MT_i process at T_{NT_i}

****Repeat this pattern until all neutron processes are exhausted.

Gamma Production Arrays

P1

ID(27)x4	(MTY ₁ , i=1, ID(27)),
	(LY _i , i=1, ID(27)),
	(NLY ₁ , i=1, ID(27)),
	(NNY ₁ , i=1, ID(27)),
	where MTY ₁ , LY ₁ , and NLY ₁ have meanings
	as stated in record R9. NNY _i is a data
	type identifier. An NNY _i of zero identi-
	fies the production arrays for the ith
	process as fractional yield data. A
	value of one (1) designates that the

arrays are in cross-section units.

The following records are repeated for ID(27) processes.

P2	L(i)max	P ₀ neutron to gamma transfer matrix,
		written L, (X(I),1=1,L)
•		

Record	Length	Contents
P(2+NL ₁)	L(i)max	P _{NL} neutron to gamma transfer matrix
-	•	•
•	•	•
•	•	•
•	•	•

****Repeat until the two-dimensional gamma processes are exhausted.

Gamma Arrays

2...

G1	ID(25)x(I1+1)	One-dimensional gamma interaction arrays
G2	ID(26)x4	(MTZ ₁ , i=1, ID(26)),
		(LZ ₁ , i=1, ID(26)),
		(NLZ ₁ , i=1, ID(26)),
		(NTZ _i ,i=1,ID(26)) [NTZ _i will always have
		all zeros.]
		These terms are defined as for record R9
		except that they apply to gammas.

Repeat the following records for each process:

G3	L(1)	The P_0 array for the MTZ ₁ gamma process,
		written (X(I),I=1,LZ)
•	•	
•	•	•
•	•	•
$G(3+NL_i)$	J(1)	The P_{NLZ_i} array for the NTZ ₁ gamma process

****This concludes the data for a nuclide.

APPENDIX B

Criteria Used in the Selection of Group Boundaties

Criteria used in the selection of boundaries for the 218-group energy structure are listed in Table A.1. (The 218-group energy structure is listed in Table 2.) Various versions of BNL-325,⁷⁻¹⁴ ENDF-200,¹⁵ and the ENDF/B data¹⁶ were sources of the criteria. Information in Table A.1 can be used to identify cross-section structure by nuclide and thereby aid in the selection of broad-group structures from the 218 group set. Thresholds and resonance regions are identified by reaction type down to approximately 500 eV. Below 500 eV, individual levels are not identified by reaction type since they may exhibit significant scatter, capture and/or fission.

Table B.1. Criteria for Selection of the 140 Epithermal Group Boundaries

Energy (eV)

Criterion

20+6 ^a	Upper cutoff
6.434+6	0 - inelastic threshold
4.8 +6	C - inelastic threshold
4.304+6	N - n, α threshold
3+6	Hansen-Roach boundary
2.479+6	N - inelastic threshold
2.354+6	0 - n, α threshold B-10 - upper bound on 1.9 MeV (.4b) n, α level
1.85+6	Be - n,2n threshold
1.5+6	U-238 - fission plateau B-10 - lower bound on 1.9 MeV (.4b) n, α level
1.4+6	Hansen-Roach boundary
1.356+6	Ni - inelastic threshold O ~ upper bound on 1.312 MeV (6b) n,n' level
······································	mg – inelastic threshold (1.34 MeV)

 $a_{\text{Read}} 20 \times 10^6$.

Energy (eV)	Criterion
1.317+6	Si - inelastic threshold
1.25+6	B-10 - inelastic threshold O - lower bound on 1.312 MeV (6b) n,n' level
1.2 +6	Th-232 - fission threshold B-10 - n,t threshold Ca - inelastic threshold (1.187 MeV)
1.1+6	0 - upper bound on 1 MeV (8b) n,n' level
1.01+6	K - inelastic threshold Pu-249 - fission plateau
9.20÷5	Zr - inelastic threshold
9.00+5	Hansen-Roach boundary O - lower bound on 1 MeV (8b) n,n' level
8.75+5	Al - inelastic threshold Si - upper bound of 805 KeV (7.5b) n,n' level
8.611+5	Fe - inelastic threshold
8.20+5	Be - upper bound of 810 KeV (5.3b) n,n' level
8.00+5	Be - lower bound of 810 KeV (5.3b) n,n' level
7.50+5	Na - upper bound of 710 KeV (8b) n,n' level Si - lower bound of 805 KeV (7.5b) n,n' level
6.79+5	Cu - inelastic threshold
6.70+5	Be - n,a threshold Be - upper bound of 620 KeV (7.5b) n,n' level Na - lower bound of 710 KeV (8b) n,n' level
6.00+5	U-236 - fission threshold Be - lower bound of 620 KeV (7.5b) n,n' level Si - upper bound of 570 KeV (7.8b) n,n' level
5.73+5	Pb – inelastic threshold Cr – inelastic threshold (575.1 KeV) Mg – inelastic threshold (584 KeV)
5.50+5	Si - lower bound of 570 (7.8b) n,n' level
4.9952+5	Fe - n,p threshold O - upper bound on 442 KeV (17b) n,n' level
4.70+5	Na – inelastic threshold Mg~24 – upper bound on 430 KeV (12b) n,n' level
4.40+5	N - upper bound on 432 KeV (6.5b) n,n' level
4.20+5	N - lower bound on 432 KeV (6.5b) n,n' level

ł

~~~

| Energy (eV)    | Criterion                                                                                                                                                                                                                                               |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.00+5         | Hansen-Roach boundary<br>O - lower bound on 442 KeV (17b) n,n' level<br>Mg-24 - lower bound on 430 KeV (12b) n,n' level                                                                                                                                 |
| <b>3.30+</b> 5 | Mg-24 - upper bound on 275 KeV (13b) n,n' level                                                                                                                                                                                                         |
| 2.70+5         | Sí – upper bound on 200 KeV (llb) n,n' level<br>Cd-ll3 – inelastic threshold                                                                                                                                                                            |
| 2.00+5         | Mo – inelastic threshold<br>Mg-24 – lower bound on 275 KeV (13b) n,n' level                                                                                                                                                                             |
| 1.50+5         | Si - lower bound on 200 KeV (11b) n,n' level<br>Cr-52 - upper bound on 138 KeV (10b) n,n' level                                                                                                                                                         |
| 1.283+5        | Mn-55 - inelastic threshold<br>F - upper bound of 100 KeV (26b) n,n' level<br>Cr-52 - lower bound on 138 KeV (10b) n,n' level<br>and upper bound of 95 KeV (18b) n,n' level<br>Mg - upper bound on 81 KeV (Mg-25) and 85 KeV<br>(Mg-24,45b) n,n' levels |
| 1.00+5         | Hansen-Roach boundary<br>Al - upper bound on 89 KeV (18b) n,n' level                                                                                                                                                                                    |
| 8.5+4          | Fe - upper bound on 83.7 KeV (27b) n,n' level<br>Cr-52 - lower bound on 95 KeV (18b) n,n' level                                                                                                                                                         |
| 8.2+4          | Fe - lower bound on 83.7 KeV (27b) n,n' level<br>Al - lower bound on 89 KeV (18b) n,n' level<br>F - lower bound on 100 KeV (26b) n,n' level                                                                                                             |
| 7.5+4          | Fe - upper bound on 74 KeV (22b) n,n' level                                                                                                                                                                                                             |
| 7.3+4          | Fe - lower bound on 74 KeV (22b) n,n' level                                                                                                                                                                                                             |
| 6.0+4          | Gd - inelastic threshold<br>Mg - lower bound on 81 KeV (Mg-25) and 84 KeV<br>(Mg-24,45b) n,n' levels<br>Na - upper bound on 55 KeV (10b) n,n' level<br>Al - upper bound on 35.04 KeV (34b) n,n' level<br>Cr-52 - upper bound on 51 KeV (25b) n,n' level |
| 5.2+4          | F - upper bound on 49.7 KeV (30b) n,n' level                                                                                                                                                                                                            |
| 5.0+4          | U-238 - fission threshold<br>Th-232 - inelastic threshold (50.2 KeV)<br>Pu-240 - fission threshold<br>Na - lower bound on 55 KeV (10b) n.n' level                                                                                                       |

| Energy (eV)   | Criterion                                                                                                                                                                                                                                                                                                                                                  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.5+4         | F - lower bound on 49.7 KeV (30b) n,n' level<br>Cr-52 - lower bound on 51 KeV (25b) n,n' level<br>U-236 - inelastic threshold (46 KeV)<br>U-238 - inelastic threshold (44.9 KeV)<br>U-234 - inelastic threshold (44.3 KeV)<br>Pu-238 - inelastic threshold (44.3 KeV)<br>Pu-240 - inelastic threshold (43.1 KeV)<br>U-233 - inelastic threshold (40.6 KeV) |
| 3.0+4         | Fe - upper bound on 27.9 KeV (90b) n,n' level<br>F - upper bound on 27.3 KeV (32b) n,n' level                                                                                                                                                                                                                                                              |
| 2.5+4         | Fe - lower bound on 27.9 KeV (90h) n,n' level<br>F - lower bound on 27.3 KeV (32b) n,n' level<br>Mg-25 - upper bound on 20 KeV (8.5b) n,n' level<br>Al - lower bound on 35.04 KeV (34b) n,n' level                                                                                                                                                         |
| 1.7+4         | Hansen-Roach boundary<br>Ni-58 – upper bound on 15.5 KeV (142b) n,n' level<br>Mg-25 – lower bound on 20 KeV (8.5b) n,n' level                                                                                                                                                                                                                              |
| 1.3+4         | U-235 - inelastic threshold<br>Ni-58 - lower bound on 15.5 KeV (142b) n,n' level<br>Ni-60 - upper bound on 12.5 KeV (52b) n,u' level<br>Cr-53 - upper bound on several levels from 3.3 to<br>10.5 KeV (10 to 25b)                                                                                                                                          |
| 9.5+3         | Ni-60 - lower bound on 12.5 KeV (52b) n,n' level<br>Mn - upper bound on 8.87 KeV (140b) n,n' level                                                                                                                                                                                                                                                         |
| 8.03+3        | Pu-239 - inelastic threshold<br>Mn - lower bound on 8.87 KeV (140b) level and<br>upper bound on 7.17 KeV (150b) level                                                                                                                                                                                                                                      |
| 6+3           | Na – upper bound on 2.8 KeV (380b) n,n' level<br>Ni-62 – upper bound on 4.6 KeV (30b) n,n' level<br>Mn – lower bound on 7.17 KeV (150b) n,n' level                                                                                                                                                                                                         |
| <b>3.9+</b> 3 | 2r-96 - upper bound on 3.84 KeV (170b) n,n' level<br>Mn - upper bound on 2.375 KeV (600b) n,n' level                                                                                                                                                                                                                                                       |
| 3.74+3        | 2r-96 - lower bound on 3.84 KeV (170b) n,n' level                                                                                                                                                                                                                                                                                                          |
| 3.0+3         | Hansen-Roach boundary<br>Zr-92 - upper bound on 2.73 KeV (160b) n,n' level<br>Cu - upper bound on 2.55 KeV (Cu-65,22b) and 2.06<br>KeV (Cu-63,41b) levels<br>Cr-53 - lower bound on several levels from 3.3<br>to 10.5 KeV (10 to 25b)<br>N1-62 - lower bound on 4.6 KeV (30b) n,n' level                                                                  |
| 2.58+3        | 2r-92 - lower bound on 2.73 KeV (160b) n,n' level                                                                                                                                                                                                                                                                                                          |

| Energy (eV)     | Criterion                                                                                                                                                                                     |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.2 <b>9+</b> 3 | Zr-94 - upper bound on 2.26 KeV (50b) n,n" level                                                                                                                                              |
| 2.2+3           | Zr-94 - lower bound on 2.26 KeV (50b) n.n' level                                                                                                                                              |
| 1.8+3           | Na - lower bound on 2.8 KeV (380b) n,n' level<br>Cu - lower bound on 2.55 KeV (Cu-65,22b) and 2.06<br>KeV (Cu-63,41b) levels                                                                  |
| 1.55+3          | Zr-91 ~ upper bound on 1.53 KeV (90b) n,n' level                                                                                                                                              |
| 1.5+3           | Zr-91 - lower bound on 1.53 KeV (90b) n,n' level<br>Mn - lower bound on 2.375 KeV (600b) n,n' level                                                                                           |
| 1.15+3          | Mn - upper bound on 1.098 KeV (420b) n,n' level                                                                                                                                               |
| 950             | Mn - lower bound on 1.098 KeV (420b) n,n' level                                                                                                                                               |
| 683             | 2r-91 - upper bound on 679 eV (75b) n,n' level                                                                                                                                                |
| 670             | Zr-91 - lower bound on 679 eV (75b) n,n' level<br>Cu-63 - upper bound on 577 eV (23b) level                                                                                                   |
| 550             | Hansen-Roach boundary<br>Mn – upper bound on 337 eV (2000b) level<br>Cu-63 – lower bound on 577 eV (23b) level                                                                                |
| 305             | Zr - upper bound on 302 eV (Zr-96,55b) and 291.5<br>eV (Zr-91,400b) levels                                                                                                                    |
| 285             | Zr - lower bound on 302 eV (2r-96,55b) and 291.5<br>eV (Zr-91,400b) levels                                                                                                                    |
| 240             | Cu-65 - upper bound on 229 eV (13b) level                                                                                                                                                     |
| 210             | U-238 - upper bound on 208.6 eV (900b) level<br>Cu-65 - lower bound on 229 eV (13b) level<br>Mn - lower bound on 337 eV (2000b) level                                                         |
| 207.5           | U-238 - lower bound on 208.6 eV (900b) level                                                                                                                                                  |
| 192.5           | U-238 - upper bound on 189.6 eV (2800b) level                                                                                                                                                 |
| 186             | U-238 - lower bound on 189.6 eV (2800b) level                                                                                                                                                 |
| 122             | Th-232 - upper bound on 120.75 eV (600b) level                                                                                                                                                |
| 119             | Th-232 - lower bound on 120.75 eV (600b) leve.<br>U-238 - upper bound on 116.9 eV (1500b) level                                                                                               |
| 115             | U-238 - lower bound on 116.9 eV (1500b) level<br>Th-232 - upper bound on 112.87 eV (450b) level<br>Sn-116 - upper bound on 111.2 eV (62b) level                                               |
| 108             | Th-232 - lower bound on 112.87 eV (450b) level<br>Sn-116 - lower bound on 111.2 eV (62b) level<br>U-238 - upper bound on 102.7 eV (3700b) level<br>Ba-135 - upper bound on 104 eV (52b) level |

į

.

| Energy (eV) | Criterion                                                                                                                                                           |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100         | Hansen-Roach boundary<br>U-238 - lower bound on 102.7 eV (3700b) level<br>Ba-135 - lower bound on 104 eV (52b) level<br>Sn-112 - upper bound on 94.8 eV (10b) level |
| 90          | Sr-112 - lower bound on 94.8 eV (10b) level<br>Ba-135 - upper bound on 82 eV (80b) and 88 eV<br>(55b) levels                                                        |
| 82          | U-238 - upper bound on 81.1 eV (250b) level                                                                                                                         |
| 80          | U-238 - lower bound on 81.1 eV (250b) level                                                                                                                         |
| 76          | Pu-239 - upper bound on 74.7 eV (1300b) level                                                                                                                       |
| 72          | Pu-239 - lower bound on 74.7 eV (1300b) level<br>Ba-135 - lower bound on 82 eV (80b) and 88 eV<br>(55b) levels<br>Th-232 - upper bound on 69.13 eV (1500b) level    |
| 67.5        | Th-232 - lower bound on 69.13 eV (1500b) level<br>U-238 - upper bound on 66.2 eV (3300b) level<br>Pu-239 - upper bound on 66 eV (1000b) level                       |
| 65          | U-238 - lower bound on 66.2 eV (3300b) level<br>Pu-239 - lower bound on 66 eV (1000b) level<br>Sn-124 - upper bound on 61.95 eV (8b) level                          |
| 61          | Th-232 - upper bound on 59.46 eV (180b) level<br>Sn-124 - lower bound on 61.95 eV (8b) level                                                                        |
| 59          | Th-232 - lower bound on 59 eV (180b) level                                                                                                                          |
| 53.4        | Pu-239 - upper bound on 52.7 eV (1000b) level                                                                                                                       |
| 52          | Pu-239 - lower bound on 52.7 eV (1000b) level                                                                                                                       |
| 50.6        | Pu-239 - upper bound on 50.1 eV (800b) level                                                                                                                        |
| 49.2        | Pu-239 - lower bound on 50.1 eV (800b) level                                                                                                                        |
| 48.3        | Pu-239 - upper bound on 47.8 eV (200b) level<br>Sn-118 - upper bound on 45.75 eV (12.5b) level                                                                      |
| 47          | Pu-239 - lower bound on 47.8 eV (200b) level                                                                                                                        |
| 45.2        | Pu-239 - upper bound on 44.6 eV (900b) level                                                                                                                        |
| 44          | Pu-239 - lower bound on 44.6 eV (900b) level<br>Sn-118 - lower bound on 45.75 eV (12.5b) level                                                                      |
| 42.4        | Pu-239 - upper bound on 41.7 eV (700b) level<br>Pu-240 - upper bound on 41.6 eV (45b) level                                                                         |
| 41          | Pu-239 - lower bound on 41.7 eV (700b) level<br>Pu-240 - lower bound on 41.6 eV (45b) level<br>Spell7 - upper bound on 38.8 eV (20b) level                          |

| Energy (eV) | Criterion                                                                                                                                                                                                                                      |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39.6        | U-235 upper bound on 39.41 eV (500b) level<br>Pu-240 - upper bound on 38.1 ≥V (650b) level                                                                                                                                                     |
| 39.1        | U-235 - lower bound on 39.41 eV (500b) level<br>Pu-239 - upper bound on 38.5 eV (120b) level                                                                                                                                                   |
| 38          | Pu-239 - lower bound on 38.5 eV (120b) level<br>U-238 - upper bound on 36.7 eV (4800b)                                                                                                                                                         |
| 37          | Sn-117 - lower bound on 38.8 eV (20b) level<br>Pu-240 - lower bound on 38.1 eV (650b) level                                                                                                                                                    |
| 35.5        | U-235 - upper bound on 35.16 eV (600b) level                                                                                                                                                                                                   |
| 34.6        | U-235 - lower bound on 35.16 eV (600b) level<br>U-238 - lower bound on 36.7 eV (4800b) level                                                                                                                                                   |
| 33.75       | ü-235 - upper bound on 33.5 eV (380b) level                                                                                                                                                                                                    |
| 33.25       | U-235ower bound on 33.5 eV (380b) level<br>Pu-239pper bound on 32.3 eV (120b) level                                                                                                                                                            |
| 32.25       | U-235 - upper bound on 32.05 eV (400b) level                                                                                                                                                                                                   |
| 31.75       | U-235 - lower bound on 32.05 eV (400b) level                                                                                                                                                                                                   |
| 31.25       | Pu-239 - iower bound on 32.3 eV (120b) level<br>U-235 - upper bound on 30.8 eV (150b) level                                                                                                                                                    |
| 30          | Hansen-Roach boundary<br>U-235 - lower bound on 30.8 eV (150b) level                                                                                                                                                                           |
| 27.5        | Pu-239 - upper bound on 26.2 eV (300b) level                                                                                                                                                                                                   |
| 25          | Pu-239 - lower bound on 26.2 eV (300b) level<br>Th-232 - upper bound on 23.45 eV (2100t) level<br>Ba-135 - upper bound on 24.4 eV (40b) level<br>Pu-239 - upper bound on 22.2 eV (1000b) level                                                 |
| 22.5        | Th-232 - lower bound on 23.45 eV (2100b) level<br>Ba-135 - lower bound on 24.4 eV (40b) level<br>Pu-240 - upper bound on 20.4 eV (2400b) level<br>U-238 - upper bound on 21 eV (5500b) level<br>Th-232 - upper bound on 21.78 eV (1500b) level |
| 21          | Pu-239 - lower bound on 22.2 eV (1000b) level<br>Th-232 - lower bound on 21.78 eV (1500b) level                                                                                                                                                |
| 20          | U-238 - lower bound on 21 eV (5500b) level<br>U-235 - upper bound on 19.3 eV (1000b) level                                                                                                                                                     |
| 19          | U-235 - lower bound on 19.3 eV (1000b) level<br>Pu-240 - lower bound on 20.4 eV (2400b) level                                                                                                                                                  |

••••

| Energy (eV) | Criterion                                                                                                                                                                                                                                                                                      |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18.5        | Pu-239 - upper bound on 17.7 eV (1100b) leve?<br>Pu-241 - upper bound on 17.83 eV (1500b) level<br>Gd-157 - upper bound on 17.1 eV (990b) level<br>Ag-107 - upper bound on 16.3 eV (600b) level                                                                                                |
| 17          | Pu-239 - lower bound on 17.7 eV (1100b) level<br>Pu-241 - iower bound on 17.83 eV (1500b) level                                                                                                                                                                                                |
| 16          | Gd-157 - lower bound on 17.1 eV (990b) level<br>Pu-239 - upper bound on levels at 14.3 and<br>14.68 eV (1700b)                                                                                                                                                                                 |
| 15.1        | Pu-241 - upper bound on 14.75 eV (2500b) level                                                                                                                                                                                                                                                 |
| 14.4        | Pu-241 - lower bound on 14.75 eV (2500b) level                                                                                                                                                                                                                                                 |
| 13.75       | Pu-241 - upper bound on 13.4 eV (1800b) level<br>Ag-107 - lower bound on 16.3 eV (600b) level<br>Pu-239 - lower bound on levels at 14.3 and<br>14.68 eV (1700b)<br>U-233 - upper bound on 12.9 eV (500b) level                                                                                 |
| 12.9        | Pu-241 - lower bound on 13.4 e <sup>y</sup> (500b) level<br>U-235 - upper bound on 12.39 ≥V (900b) level<br>Pu-239 - upper bound on 11.9 eV (1400b) level                                                                                                                                      |
| 11.9        | U-233 - lower bound on 12.9 eV (500b) level<br>U-235 - lower bound on 12.39 eV (900b) level<br>U-235 - upper bound on 11.67 eV (550b) leve.                                                                                                                                                    |
| 11.5        | Pu-239 - lower bound on 11.9 eV (1400b) level<br>U-235 - lower bound on 11.67 eV (550b) level<br>U-233 - upper bound on 10.45 eV (620b) level<br>Pu-239 - upper bound on 10.95 eV (1600b) level                                                                                                |
| 10          | Hansen-Roach boundary<br>U-233 - lower bound on 10.45 eV (620b) level<br>Pu-239 - lower bound on 10.95 eV (1600b) level<br>Hf - upper bound on 5 levels with peak at<br>7.78 eV (Hf-178,10,000b)<br>In-115 - upper bound on 9.12 eV (1000b) level                                              |
| 9.1         | U-235 - upper bound on 8.79 eV (1000b) level<br>Ag-109 - upper bound on 5.19 eV (12,000b) level<br>Pu-241 - upper bound on 8.6 eV (1800b) level                                                                                                                                                |
| 8.1         | U-235 - lower bound on 8.79 eV (1000b) level<br>Pu-241 - lower bound on 8.6 eV (1800b) level<br>Pu-239 - upper bound on 7.85 eV (1800b) level<br>U-238 - upper bound on 6.67 eV (8000b) level<br>Gd-155 - upper bound on 7.74 eV (160b) level<br>In-115 - lower bound on 9.12 eV (1000b) level |

Energy (eV)

#### Criterion

| 7.15 | Pu-239 - lower bound on 7.85 eV (1800b) level<br>Gd-155 - lower bound on 7.74 eV (160b) level<br>U-235 - upper bound on 7.08 eV (210b) level<br>Pu-241 - upper bound on 6.93 eV (1000b) level |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7    | U-235 - lower bound on 7.08 eV (210b) level<br>U-233 - upper bound on 6.82 eV (800b) level<br>Gd-155 - upper bound on 6.302 eV (510b) level<br>U-236 - upper bound on 5.49 eV (48000b) level  |
| 6.75 | Pu-241 - iower bound on 6.93 eV (10005) level                                                                                                                                                 |
| 6.5  | U-233 - lower bound on 6.82 eV (800b) level<br>U-235 - upper bound on 6.39 eV (600b) level                                                                                                    |
| 6.25 | U-235 - lower bound on 6.39 eV (600b) level                                                                                                                                                   |
| 6    | U-238 - lower bound on 6.67 eV (8000b) level<br>Gd-155 - lower bound on 6.302 (510b) level                                                                                                    |
| 5.4  | U-234 - upper bound on 5.19 eV (59,000b) level                                                                                                                                                |
| 5    | Hf - lower bound on 5 levels with peak at 7.78<br>eV (Hf-178, 10,000b)<br>U-234 - lower bound on 5.19 eV (59,000b) level<br>U-235 - upper bound on 4.845 eV (210b) level                      |
| 4.75 | U-235 - lower bound on 4.845 eV (210b) level<br>Pu-241 - upper bound on 4.3 eV (2200b) level<br>(couplet)<br>In-115 - upper bound on 3.86 eV (850b) level                                     |
| 4    | Pu-241 - lower bound on 4.3 eV (2200b) level<br>(couplet)                                                                                                                                     |
| 3.73 | U-235 - upper bound on 3.61 eV (170b) level<br>U-233 - upper bound on 3.66 eV (280b) level<br>U-236 - lower bound on 5.49 eV (48,000b) level                                                  |
| 3.5  | U-235 - lower bound on 3.61 eV (170b) level<br>U-233 - lower bound on 3.66 eV (280b) level                                                                                                    |
| 3.15 | In-115 - lower bound on 3.86 eV (850b) level<br>U-235 - upper bound on 3.1 eV (90b) level                                                                                                     |
| 3.05 | U-235 - lower bound on 3.1 eV (90b) level<br>Ag-109 - lower bound on 5.19 eV (12,000b) level                                                                                                  |
|      | Cutoff between ENDF/B hydrogen data for fast and thermal energy ranges.                                                                                                                       |

`