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Abstract

Widely used constitutive laws for engineering materials assume plastic
ingompfessibility, and no effect on yield of the hydrostatic component of .
stress. .However, void nucleation and growth (and thus bulk dilatancy) are
béﬁmonly observed in some processes which are characterized by large local
blastic flow, such as ductile fracture. The purpose of this work is to deVeiop
vapproXimate yield criteria and flow rules for porous (dilatant) ductile materials,
showing the féle of hydrostatic stress in plastic yield and void growth. Other
 éléménts of a constitutive theory for porous ductile materials, such as void
nucleation, plastic flow and hardening behavior, and a criterion for ductile
fracture will be discussed in Part II of this series.

The yield criteria are approximated through an upper bound approach. Sim-
plified physical models for ductile porous materials @ggregates of voids and
ductile matrix) are employed, with the matrix material idealized as rigid-perfectly
plastic and obeying the von Mises yield criterion. Velocity fields are developed

for the matrix which conform to the macroscopic flow behavior of the bulk

e
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material. Using a distribution of macroscopic flow fields énd_working through
a diésipation integral, upper bounds to the macroscépic stress fields required

for yield are calculated. Their locus in stress space forms the yield locus.

It is shown that normality holds for this yield'locus,.so'a flow rule

results. Approximate functional forms for the yield loci are developed.
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.ymbols
‘06 ’ microscopic equivalent tensile yield stress
g, o, microscopic stress tensor
~ 13 ,
§,'sij microscopic deviatoric stress tensor
£, Eij microscopic rate of deformation tensor
¥, Vi oo microscopic velocity field
Xs Xs " microscopic position vector, cartesian coordinates
Ly Zij macroscopic stress tensor
.E’.Eij macroscopic rate of deformation tensor
E; Bij macroscopic deviatoric rate of deformation tensor
v volume of body
'8 surface of body
n, n, “unit normal vector on S
i o macroscopic dissipation
£ void volume fraction
q undefined parameters
Y parameter used to minimize W ; angle of rigid-plastic boundary
e g X * . - - .
Cl"'C ,.V32, V23 macroscopic parameters, used to meet macroscopic boundary
7 conditions
8, ¥ angles of rotation about the (3) axis, y also used as an index
L] ' * L4 * . . .
E: E, E23 macroscopic rate of deformation parameters (see eqns. 3.3)
a, b ' inner and outer radius of void-matrix model
T radius of a point inside the matrix
u, A geometric parameters
Z macroscopic equivalent tensile stress

macroscopic dilatational stress, cylindrical model




Zkk\ , hacroscopic dilatational stress, spherical model
T, Tij normalized macroscopic stress

X, g infermediate paraﬁeters

J 3 yield functioﬁ

eqv ‘an empirical coefficient

cosh, sinh  hyperbolic cosine and sine

a s dm’ n_ coefficients in arithmetic series

m index and exponent

o | angle of rigid-plastic boundary

'X, Vi ' .macroscopic velocity.boundary conditions

KN, Vg V , normalized by. b | |

F dilatation function

“oH normalized diiatation sfress,.Cylihdrical model

Bi macroscopic yvield function coefficients, fgnctions qf f
Zn; Zs normal and shear stresses on a plane‘of zero extension
P, L void radius_and spacing, used in one ofAthé.refergnqeg
s, v superscripts on ¥ and é s indiqating shape and vqlume change
r, 6, ¢ spheriqal coordinates

hij geometric paramefer

Q solid angle

T, normalized dilatation stress, spherical model

5 indicates small variation
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Introduction

It has been observed [1-6] that ductile fracture in metals can involve
the generation of considerable porosity, via the nucleation and growth of voids.

Constitutive. theories which take account of porosity are therefore a desirable

' component of a mathematical model of the ductile fracture process. Previously .

developed plasticity models, such as that due to von Mises, predict plastic
incompressibility and therefore could not show the dilatancy evident in porous
ductile materials. In this and a companion paper (Part II), an approximate

plastic constitutive theory will be developed which takes account of void nuclea-

tion and growth. This constitutive theory will then be used in a model of the

" ductile fracture process developed in part II.

‘A plastic constitutive theory can be constructed from the following
components: First, a function of stress which defines the combinations of
'Stress.for which plastic yield takes place (a yield criterion) is needed. The

next component is a flow rule, which defines the ratio of the strain components

.as a function of the stress state at yield. This can often be put in terms of

the normal to the plastic_potential, another function of stress. (In many cases,
the yield function cén be used.as a plastic potential, see [7].) To relate the
increment of plastic'flow to the increment in stress, a consistency relation and
some hardening assumptions are needed. When void nucleation as well as void
growth takes place, a nucleation .criterion must be added to complete the con-
stitutive description.

In this paper, the yield criterion and flow rule for porous ductile
materials are investigated. Approximate yield criteria are derived using simple

rigid-plastic material models and the upper bound theorem of plasticity.



(Because void growth>and ductile fracture involve large amoﬁnts of plastic
flow, a rigid-plastic idealizatibn is taken as acceptible.) A normal flow rule
is established, with the approximate yield functions serving as'plastié potén—
tials. (For a discussion of the normal flow ruie and its application to the
specific forms of the plastic potential developed here, see the'appendix.)
The subjects of continuing plastic flow, hardening, void nucleation at second
phases, and predictions of ductility (strain to fracture) will be invesfigatéd
in the subsequent paper. |

Along with the observations cited‘above;‘somé recent”theoreticai studies
[8-10] indicate that when voids are present in ductile materials, thé'hYdrostétic
component of stress can cause macroscopig dilatation and affect plastic yield.

Because the material surrounding the void is idealized as incompressible, the

dilatation is due completely to void growth. vThe épproximate yield functions
(usable as plastic potentials) developed héré will contain terms which are func-
tions of hydrostatic stress, and thus allow plasfic dilatancy through}fhe néré
mality rule.

The general physical model used here is a "unitﬁ cube not unlike that of
Bishop and Hill [11], only of a porous material (aggregate of voids and ductile
matrix) rather than a polycrystalline aggregate. 'The'cube is by definition
large enough to be statistically representative of the properties of the
aggregate. As Berg [lQ]ihas'pointed out, the Bishop and Hill analysis can be
extended to apply to a porous ﬁaterial. This allows proof of a'macroscopic'
maximum plastic work principle for the aggregate, if the same prinCiple abplies
locally to the matrix material. Thfoughout this‘papér, the adjecti#e
"macroscopic" refers to average valueshof physical quantities (étress, dissipa—

tion, velocity, etc.) which represent the aggregate behavior.




"Microscopic" refers to pointwise quantities, such as the stress or velocity
fields in the ductile matrix.

The general method used here to calculate an upper bound yield function
for a void-matrix aggregate is as follows: The von Mises equations are used to
characterize the yield and flow behavior of the matrix, which is itself incom-
préssible. An approximate form is then assumed for the microscopic velocity
'bfield in the matrix, which allows the voids to change volume while maintaining
matrix incompressibility. .This velocity field must obey compatibility, and meet
" kinematic boundary conditions on the surface of the unit cube which correspond
fo prescribed macroscopic rates of deformation. An upper bound inequalify is
then used to calculate upper bounds to the macroscopic stresses required to sus-
tain plastic flow. The locus of upper bound macroscopic stresses for a given
void geometry (size, shape, distribution, etc.) and a range of macroscopic rate
-~ of deformation fields form an upper bound yield locus for that unit cube. Given
vceptain restrictions on the approximate microscopic velocityvfield, a maximum
plastic work principle can be established for the upper bound yield locus.
(Bishop and Hill establish one for the true yield locus).' A functional form
which gives a good fit to the upper bound yield locus can be called the approxi-
mate (upper bound) yield function.

For purposes of analysis, the void-matrix aggregate is idealized as a single
void in a rigid-plastic cell; the void volume fraction (f) of the cell equalling:
that of the aggregate. (In this way, some account is taken of the interaction
of neighboring voids). ' The cell is presumed to behave under loading as the
aggregate would, exhibiting void growfh when undergoing yield with a positive
hydrostatic component of macroscopic stress. Two void geometries are con-

dered; the long circular cylinder and the sphere. The outer cell wall is



idealized as geometrically similar to, and centered- around the void. These
geometries were chosen because they resemble meny of the voidrshapes seen ex-
perimentally, they provide the expected isotr;py (transverse directions. for

the cylinder, total for the sphere), and because their symmetry propentiee
significantly aid the analysis. See figs., l,m2, and 3.

These simple cell models will not, of cou;se behave exactly like aggregates-
with random distributions of voids. Therefore, the upper bound yield ‘'loci
obtained for fhe cell models are in a strict sense only estimates,(bouﬁding
properties unknown) of the yield loci for more randoﬁ aggregates.

The apéroximate velocity fields used in the upper bound calculations can
be simple or complex, depending on the degree of approximation desired.: The"
simplest fields need only meet those conditions‘discussed previously. 'Mofe
complex fields may contain extre factors which can be adjusted to achieve
better upper bounds. The simplest velocity fields allow the_rigorous deter— -
mination of functional forms for the upper bound yield,funcfions, thus giving
a ciear (if approximate) picture of the role of hydrostatic stress in the
yield and flow of porous ductile materials.

Some of the previous work done in this field is as follows: McClintock
[8] developed a fractere criterion based on his analysis of a cylindrical
cavity in an infinite matrix subject to axial and transverse stresses. An .
exponential dependence of the void growth rate on biaxial stress was found.
Rice and Tracey [9] considered a spherical void in an infinite matrix, and
found an exponential dependence of void growth rate on triaxial stress. Kahlow

and Avitzur [10] studied the problem of the critical pressure needed to prevent

void growth during axially symmetric deformation. Their model was-a closed .




cylindef‘of aucfile material with a cylindricél hale at the center, and their
'approach was in some ways similar to that used here.

There are several studies which motivated the examination of more complex
"vmicroscopic flow filelds. Nagpal, McClintock, Berg, aﬁd.Subudhi [13] presented
a.plAne strain slib line solution for a'band of eQenly spaced holés under
vvarYing ratios of shearvand nérmai traction. Needleman [14], and Haward and
-d%eﬁ [15] presented finite eleﬁent studies of large flow in two-dimensional
models of pcrous‘materiélé,‘using elastic-plastic constitutive descriptions

i'fof‘the matrix'materiai. Specifically, these studies suggest that part of
'-:the'ﬁatrix hiéht not attain piastic yield for some types of aggregate yield.
ThéSe "non-plastié"vareas are idealized as rigid here.- Their shapes are appro-

B ximated as shown in fig, 4,



2. General Theory

The general model considered here is a "unit" cube of porous material of
volume V , large enough to be statistically representative of the properties of
the aggregate (Fig. 1).  The matrix material is a homogeneous, -incompressible, .

|
rigid-plastic, von Mises material. Its yield and flow relations are . . - R |

3 2 ey §
2 S13%15 © % @) syyle) = L Y2 (»)
- , . _ . .
‘ (2.1)
. 1 avi OVL.Yy P ) ' -
€13 ° Ei[ax, + BxiJ > fkk =v>0 (9)’

where o is the equivalenf‘tensile yield stress in the matrix,T sij-ﬂthe micrb—
scopic deviatoric stress field, éij is the microscopic.rate-of deformation . field, '
vy is the microscopic velocity field, and xi' is the position of a material
point in cartesian coordinates. |

The macroscopic rate of deformation is defined, as in Bishop and Hill [11],

in terms of the velocity field on the sufface of the unit cube.

tr
1)
<

1 ’ B
5 Js(vinj + vjni)ds . (2.2)

V is the volume of the unit cube, S 1is its outer surface, and n is the unit
outward normal on S . Using the Gauss theorem and eqn. 2.lc, it can be shown .
that
.o i av . (2.3)
ij A ij
v . .
¥here n 1is still a surface normal in the outward direction, this can be sepa-.

rated into integrals over the matrix material and the void surface:

ij

- L 11 . | |
= 3 f €354V + 7 3 J (ving + v,n;)ds - (2.4)

matrix voids , ~




The last term above includes the dilatational part of iij » and is zeroc when there
is no porosity. The boundary conditions on the outer surface which must be met by
the vi field are expressed‘in terms of the éij . It is important to note the
- éij dre average quantities (eén. 2.2), and éan represent many different boundary
distributions of Vi
: Thé velocity field must also meet the constraints of incompressibility and

contihuity in the matrix. Velocity fields which involve matrix separation are
therefdre»excluded.

‘ - Among the infinity of incompressible vs fields which meet the above condi-
“tions, the acfual vs .field is characterized by its generation of the minimum of

the dissipaiton W ;
W= s, (06, .av (2.5)
vy ij e’ vij o _ 4 .

whefe the terms in the integrand are related to vi by eqns. 2.1. (This is prov-
en later oﬁ; see egqn. 2.23.) All physical quantities associated with the actual
§i field wili be labeled‘with the superscript "A", since they are also actual
solutions. -Quantities associated with other A fields are approximate solutions.
An important property of ogj is that it is an equilibrium stress field. It is

expected that v? is homogeneous of degree one in the Eij .
Bishop and Hill postulate that no correlation exists between ogj and posi-
~ tion or displacement (velbcity) over any.plaﬁe section through the unit cube. They

.also establish a maximum plastic work principle on the microscopic level, which

also applies to Sij(é) as defined in eqn.‘2.l:

L
a
o

(2.6)

oM
S
em

[sij(g) - sij(g )]eij >0 ,



Using the non-correlation postulate (above) and the principle of virtual Qork,
Bishop and Hill are able to prove that, when igj . is definéd as .the areavaveﬁage
of U?j over the appropriate face of the unit cube, Eé 'ié_the;WOrk-conjugate of -
£

B - i-J Hass-wt = BE.L. 2.
i3 A A 13 ‘ i | . L i . _

Using the principle of virtual work, they are then able to prove a maximum plastic

work principle on the macroscale for -EA :
g - R s 0, o (2.8)

i3 i3 i3

% ote

. L X X3 . . .
where EA is related to E , and E differs from E . The yield locus of AEA

-~

thus has the properties of convexity and normality. EQUations 2.7 and 2.8 can

then be combined to show

o = et i+ sheR.
1] 13 1] 13
GZA E = 0 by normalit
13515 . ¥ pormauity.
N 2 | o
B> T I | B L @209)
i3

é?j was derived from v? » the actual velocity field, and gave the actual
dissipation through eqn. 2.5. When an approximate field Ve is used, eqn. 2.5
defines an approximate dissipation. The ] fields considered here have the
functional form

v, = vi(g,f,§) . _ | ' o {?.10)._

There may be additional dependence on other parameters q, s 49, s eee 5 @S in

v, F vi(g,f,ﬁ,ql,qQ...) o ‘ (2.11)




with the qi's chosen to minimize the dissipation. For these optimal values,

q; = q(E,f) (2.12)

8o the fqrm'of eqn. .2.11 reduces to that of eqn. 2.10. All of the forms of vi

. . - * bd s
‘considered here are homogeneous of degree one in the components of E , i.e.,
Patd

) = cvi(E E ) (2.13)

l’CE -i, 22,.-..

22,-.0.

for ¢ = constant, v,(cE
_ o i1

€ - and W are then also homogeneous of degreé one in the éij » giving

° a‘:] ) . .
W = —7—-Ei. . (2.14)
3E,, I |
‘15

'Define the approximate macroscopic stress needed to cause yielding (via the

fléw field vi) in a way analogous to egn. 2.9:

X f 3¢ .
o1 1 . |
R AT tav (2.15)
9E,, Vv KT
i3 ij

‘using the‘normality of Sij(é)‘ (see eqn. 2.6) to set one part of the integrand to

" ‘zero. . This gives, with eqn. 2.14

Eij = W . (2.16)

=l

. - a

S AN
ijvij 5

|

z

trie

L 1]
' Thhs, 215 as defined above is a work conjugate to éij , as is E?j . By analogy

with eqn. 2.9, normality is thus established for the approximate yield locus

(the locus of stress states zij defined by eqn. 2.15, for all possible directions

of E,.).
1]
A maximum plastic work principle has been established for EA » giving both

convexity and normality. It is desirable to examine under what conditions this

might also be established for . Consider two approximate stress fields I and

z
b . . o
I , corresponding to E and E respectively through egns. 2.15, 2.10, 2.2, and

1. VWrite the following:
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v . 3¢ % hed _ _ .
‘ . b o - 2_ . . - - -
| (£,.-Z,.)E,, = L [ {s (0) =% s (¢ ).———-ffz} E,.dV . (2.17)
ij 137 13 v Iy k& "~ SE k& '~ ap” ij
5 13

If this could be proven non-negative, a maximum plastic work principle would re-
sult. Consider the case of € mnot only homogeneous of degree one, but linear in

E . Then,
~

aek, . de,, . . |

— Ei. = - E.. = ekQ, . - (2.18)

3E,., 3 3E,, 3 , : L ‘
ij ij

With maximum plastic work proven on the microscopic level, the proof is complete.
Equation 2.18 applies to one class of velocity fields used later on. A second

class, to which it does not apply, is of the form
(E,£,%,0) | (2.19

where Ve s and thus é and W , are homogeneous and linear in the éij for a
fixed value of vy . ¥ is an additional parameter equivalent to.-qi~-in eqn. 2.12,
and has the effect of making A homogeneous of degree one, but no-longer linear,-

in the éij . The approximate dissipation thus has the form

W o= W(E.£,WE,E) . (2.20)
Equation 2.15 gives
g = W 4 W A NS L (2.21)
= 3E b
ij ‘'y=const E=zconst ij

Because w(é,f) is determined by_minimizing W with respect to V¥ ,
aﬁ '; . ' : Lo o
w S W i

Unfortunately, the dependence of Yy on i makes it impossible to prove .con-

vexity from eqn. 2.17. Convexity can be used, however, to help judge the value ol




- 11 -

approximate yield functions generated with this formulation. Since the object is

" to approximate the actual yield and flow behavior, an approximation which violates

- convexity should be considered a bad approximation.

To prove that the approximate yield locus lies outside the actual yield locus

-in stress space, write the principle of maximum plastic work in the following form:

. *A . -
V-Jv(sij(e) - sij(g ))eijdv 2 0, R (2.22)

.where the 's,:.Lj are of the form in eqn. 2.1, and both é and éﬁ are compatible

-~ -with the same macfoscopig rate of deformation é . Using egn. 2.5, the principle
of virtual work, and the result that both I and EA are work conjugates to E ,

égﬁ; 2.22 becomes

A .
(zij-zij) Eij >0 . (2.23)

. Sinee. Eiﬁ is -an outward normal to both the zij and Zgj yield loci, this

proves that the Eiﬁ surface always lies on or outside the Zgj surface; I is

 anvuppér'bound approximation to 'gA .

| The most:important properties established for the approximate macroscopic
yield'stfess are its upper bound relationship to §A , the normality and convexity
(given the conditions described above) propefties of its yield locus, and eqns.
2.15-and 2.21 which give its relationship to g . Subsequent sections of this
paber are devoted to the ;olution of eqns. 2.15 and 2.21 for various types of vs

fields, ranges of é s rangeé of void volume fraction £ , and the two void geom-

etries discussed earlier. Varying the é field results in the generation of an

approximate yield locus for a particular void geometry, volume fraction, and flow

field type. With some success, approximate functional forms are derived for these

,ield loci.
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3a. Long Circular Cylindrical Voids - Fully Plastic Flow

This void geometry is meant to represent one limit of random void shape.
Long, roughly cylindrical voids are seen to appear at the necks of tensile
bars after large deformation (see, for example, ref., [31).  They might also
result from long cylindrical inclusions (e.g., sulfides in steels) whic¢h
decohere from the matrix after straining,.or on a larger scale, from drilled
holes in a ﬁomogeneous matériél. THe centered and géometfiéaily similar
matrix displays the traﬁsverse isotropy expected of an aggﬁegate with an
isotropic matrix and a void distribution which is randombin the transversé :
directions.

For the type of flow field considered hefe, in which all of the matrix
mgterial is in the plastic state, a simp;ified form of»eqn; 2;2 is used as

the boundary conditions on v, o

v, 's

= éikxkg (cartesignrcoogd;qates)*_ . | |  &3.1)
The boundary values of Vi_ are thus uniquely defiped by the éi}v" In othgr.<
formulations, the boundary'distribution of v, wil} bg varied, within the con-
straints of egn. 2.2 and certain geometric approximations to achieQe the_best
upper boundlsolution.

The approximate velocity field is consﬁyucted in a manner similar to thét
used by Rice and Tracey [9]; compqneﬁts representing shear and.dilatatién are
constructed separately, each satisfy;ng compatibility apd incompressibility;
These components are detefmined‘to wi?hin macroscopic paraﬁgteré, which'are in

turn determined by boundary conditions of the form of eqn. 3.1. When the form
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of a component is not completely determinable from symmetry and incompressibility,
fa geﬁepal form is constructed in accord with a linear viscous (or equivalently,

an incéﬁéreésible elaétic) model., This approach leads to more macroscdpic
'pa§aﬁetérs fhan can be determined from boundary conditions alone, so other
cohditipns, leadingvto refined velocity fields and lower values of W s are
v,devised; This calculation is carried out in ref. [17], and draws on an example
>in;fef. [161.

The general results are as follows:

- ' c
e o 3 -1 -3 #* 7 _ & T
_jbvr — (Clr +Cr+Cxr " +Cr ") cos 28 + V32g cos ¥ + o~ = Eyq =

2 3 " (3.2) |

,- . ._ 3 _3 . - * s - LA -1
Ye = (,QCIr - C2r_+ Cur ;) sin 26 - Vafz siny, v,= E,.z + (Csr + Csr ) cos v

33
' Cl‘ thrpugh' C7 and V32 are the macroscopic parameters referred to above. The
ang;g‘ 0 is rgferred to transverse axes in which ﬁlQ is zero, and the angle
oy is féfepﬁed to axes in which él3 is zero. (This is done to facilitate the
,épplicatioh of boundary conditions - again, the details are in ref. [17]).
_V;g mis‘thé shearing velocity per unit axial length.,  In fig. 2, the axes are
‘,sgch thét‘ E .= 0 . Quantities in the axes where E..= 0 (reached by a rotation

12 13
about the (3) axis) are denoted by the superscript '{¢" .

Boundary conditions are applied at the outer boundary (r = b) in terms

- of the new macroscopic variables defined below. Vés is a normalized shear

- #
~ velocity parallel to the (3) axis, and is in the same spirit at V32(eqn.3.2) .

1
2

1. X _ % _ 1
5 (E 11+E22+E33) (b), Epy = Ejp =5 (V

ﬁ'
o3t 32) ()

(3.3)

(B,,-£)) (@), E=

22 ll kk
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The velocity field on the outer surface is, in terms of these macroscopic

quantities;

* l * v . ) ﬁ, .
= 1 — L] .
vr!s E'b cos (28) + 3 (E22 + Ell) b+ Vo, 2z éos (v),
v | = V¥ b cos (v) + E.. ez, v ‘ ; -E'b sin (26) -.V}? sin (y) >(3 4)
z's 23 33 . e's s 782 . -

These are three equations in the seven unknowns. C1 through VC7 . Some methods
for detérmining the four additional equétions needed for a.solution are discussed
below.

equai to zero. C

First, consider setting C approaches zero when f

1 1

is very small in thé previously cited elastic exémple [16]. Also; it seems
reasonable that v should approach linearity in r for r>>a (&' is the void
radius). This can be true only if Cl lis zero. For these reasons, the
appréximafion
c, =0 - | (3.5)
is adépted. o o o

It is reasonable to expect thét a good approximate flow field will beﬁaQel
in a manner closely resembling the actual flow field. Note now thét.tﬁe §oia
surface is free of both normal and shear tractions. Because the matrix is.: |
a von Mises material, the related shear deformation rates are-also zZero ét

the void surface (see eqn. 2.1b)

€rylpe
rz'r=a

= =0 .
Er6|r=a . .(3 6)
(Of course, an equivalent statement for normal components of traction and ’é
does not apply.)

A fourth and final condition results from minimizing the macroscopic dissi-

pation, W. These procedures are carried out in detail in ref. [17]. Equations
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S.M,ZB;S,Iand:S.Svare used to reduce the number of undetermined Ci to one,
This last value is determined by finding its value which minimizes W .

The details of this calculation are omitted here. The results have a
":funCtional fprm véry close to the result of a much simpler calculation, whicﬁ
Zis descfibéd below; | “

Cu, and C6 are

:Suppose'that in addition to Cl , the coefficients Ca,

also set to zero. Then,
. c

o 7 & *
V. = C2r cos (20) + - Egq 5+ V32z cos (v),
v, = fCQr sin (26) - Va2 sin (y), v, = Ezs * z + Cor cos ) . (3.7)

9

' Equating v at r = b with the boundary conditions in eqn. 3.4 gives

o C:z - £, Cg = Vfa’ and C, = %ékkb2 J
: érr ;-ﬁ; cos (26) - ﬁb2r;2 -_%'ESS’ éee = -E'cos (20) + ﬁbér—z- %-ﬁas,
| | | (3.8)
Ezz.z ﬁés, ére f—é' sin (28), érz = %—(V;Z + V;Z) cos (v),
- Eo, = - %. (v;f’3 + ";2) sin (y), = - f:fs sin (y) .

EQuations 3,8 describe an approximafe ¢ field in which the deviatéric part

r~

has béen‘set'equal to the deviatoriec part of é , and a dilatational part added

‘on which is derived from ékk ’ i33 , and matrix incompressibility. This é

field will now be used to solve for L via eqn. 2.15.

The dissipation can be written as follows, using eqns. 2.5 and 2.1

-1 2 .t s 1/2
e jv/;co (£55635)7 " av . (3.9)
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Using eqns. 3.8, and referring all quanfifies to the same axes; o coe -

. . s 2 *D l‘2 e o ..i .é -2 3 .2 > D i .2.- .2 R
- ] t ~
Eisfyy = 2B By ¢ By + miE'ET + 2802 5 B3t Epg *+ By + Epp v B3, (@)
(3.10)
‘here
()2 _ 22 22 2 ‘
(E;g) =vE1 + Eng (b), p = cos (28), © measured c.c.Ww. from: (2) axis (c),Xr __;é ‘

(a) .

It is assumed that 9 is constant:in the matrix when eqn; ?,15 is applied.
.The locus of . Z in stress space which is related to the entire range of
E (the yield locus) will be expressed approx1mately in terms of thevmacroscoplc
equivalent ten31le stress, and the macroscoplc transverse stress: | |
.é

2 3

324352, ():

L] L} -
Teqv = T Ei3Ei5), T gty 5 L33 12" 21) 7 3 y3+237;37)’
- = 3.11
= 1,2 and zYy, Iyt Z,y ( )

Note that summation over a Greek indegeis over one and tﬁe.

The stress components in eqn.3.1l, when calculatedAvia eqn. 2.15, are
expressed as volume integrals whieh contain the components of g and the anguler
and radial terms yu and A. The general‘method.ofAsolnfion_ﬂdescribed in
ref. [17]) was to expand the inyegrands into polynomials in y , integrate over
U o, and‘then perform the radial integration. It was fonnd that for this simple
flow field (eqn. 3.8) the relation between I ) and I was

. . “ T - eqv - YY . .
invariant to é., to within first order in y . Numerical integration of
several specific cases showed that the_approxinerion was a.good one. The

analysis is outlined below for the simplest case; axisymmetric deformation.




Because '00 is a constant, use the following normalization:

z
T=e=— . (3.12)
~ O
o
Due'toraxial symmetry, the stress system is

~ Using eqn. 2.15,

C AL . -2 3-2 /2, . .21 22.-2° 3 22 (~1/2
Taa~ T11° 5T I, Eq (E AT+ EQL) dv’Tw"ng E} (E A%+ —333) av
' ' (3.14)
The'following changés-éf variable are used:
3 1 2m b : 1
V-I dv = 5" J J, J dr d6 dz, = I dA for axial symmetry
: v b L 0 'a £ .
. (3.15)
- mml - 322
X = EA ,.g S E33

EQuations_S.lu can now be written

R VY E/f
S0 § | LAY .
These integrals can be found in many standard reference tables (e.g., ref. [211).

The results are

Y ﬁ2+gf2 + E
£(v ﬁ2+g + E)

1/2

. 3 .
Tips 58 =T (3.17)

-(/E+g -v/E +gf ),T I’=

E ~and g can be eliminated between eqns. 3.17 to give an equation in

eqv? TYY’ and f, which is the approximate yield function ([22],[17]).
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The result is

& = T2+ 2f cosh (fi'r ) -1 - £2 = 0 (3.18)
eqv 2 vy .

which is the yield function. It is shown graphically in fig. 6 (axisymmetpic _
flow) for a range of values of f , Note that when f or TYY are zero, the v |
yield function takes on a form of the von Mises yield function. This is quite:

reasonable, since the matrix material is a von Mises material.

When the conditions of eqns. 3.6 and minimization of W are not discarded,-
the approximate flow field becomes:foo complicated for.aﬁalytiéél ahélysis H
(see ref. [17]). The integrals which define the components of I can be.
carried out numerically, and the result is a class of yield functions_whichvéon~

form closely to the following analytic form:

2 3 2 _ o
eqv Teqv + 2f cosh (—E;TYy) -1-£ =0 (3.19)
C is an empirical function of f which varies with the direction of g.

eqv
(The subscript "eqv" indicates that it is a coefficient of Ter') Its upper

and lower limits are

C = (1 + 3f + 24£%)? for B

eqv = 0, plane straln,

3 .
. (3.20)

=1 for E

Ceqv 11 é E22, axial symmetry.

One possible contradiction which comes to mind is the case where plain

strain and axial symmetry occur simultaneously, leading to two separate values

of Ceqv . This can be resolved using the normal flow fulé and eqﬁ; 3.19:
B.=0+T,.=%c .t =7 T =T
33 33~ 2 'yy® 11 22 33 11
(3.21)
symmetry - Tij = 0 for 1 # j, cartesian coords., T, =T,,>T =0.

Tyy = Too ® T35 > Tequ
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..The coeff1c1ent of C qv ‘1n eqn. 3 19 is zero in thls case, so C eqv need not

"'be well deflned and there is no contradlctlon.

In;flg.. , eqn. 3~19 is compared to numerical solutionsvof eqns. 2,15

.'"ffor”plane stralﬁ,. In flg.‘G the yleld loc1 whlch result - from appllcatlon of

eqv
l) was found by solv1ng eqns. 2,15 for zero dila-

lgvto.three dlfferent types of E flelds are shown. c for the inter-




_part of the matrix remains rigid while the other pért undergoes plastic flow to

- 20 -

3b. Long Circular Cylindrical Voids - Plane Strain Flow with Rigid Section

The geometry considered he#e islthelsame és in section 3a; Tﬁe fléw f;éld,
however, has an importaﬁf differénce. Fof the.gase.of plang stfain (é33=0) ’
accommodate the macrﬁscopiq deformation. Also, the macroscopic boundgry-qqndif't‘
tions now fall into the class éf eqn. 2.2, rather tﬁan the simplér class af eqﬂf
3.1.

Plane strain deformation of a matri# gontaining.cylindrical cavities has been
studied via elastic-plastic finite elements [14,15] and (rigid-perfectly plastic)
slip line theory [13], all of which support the idea of part of the matrix remain-
ing rigid for some f and é . The finite element solutions suggest that a radi-~
al plane might be a good approximation to the rigid-plastic boundary, and that the
rigid region is symmetric around the principle axis along which there is the
largest absolute strain rate.

| In this section, primary consideration is given to the plane strain component
of é . If desired, other components as derived in section 3a could be added on.
A quarter section of the model is shown in fig. 7; wedges of rigid material are
symmetric about the (2) axis. (This model can therefore be called the "wedge"
model.) An approximate velocity field is constructed which allows for the rigid-
plastic boundary, and is of the form of eqn. 2.19. ¢ is the angle of the rigid-
plastic boundary to the (2) axis, and takes on its optimum value (wopt) when W

hd 3 . .
is minimized for a given E . (The minimization is carried out numerically.)

- Stresses are calculated via egns. 2.21.

This formulation leads to some interesting numerical results, but does not

lead to concise derived functional forms like eqns. 3.18 and 3.19. Because of this,
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_muéﬁ deféil 6f the type given in section 3a will not a?pear here. At the end of
the.section,_an empirical functional form for the yield criterion will be pre-
sented which has some success in fitting the numerical data.

| Corisider th¢ model in fig. 7. Boundary velocity is spécified at ¢ =0 and
_ﬁ/2 ; in ferms of the boundary velqcities Vl and V2 . The general procedure

is to find the microscopic velocity field in terms of Vl ’ V2 , and ¢y , then to

‘ﬁSe‘eqn. 2.2 to obtain Vl and V2 for a given -é and ¢ . ¥ 1is then varied

#ojéqéa#e ‘w°Ptnf'_AS before, a yigld locus results wﬁen Z is calculated

lj(éqn, 2,21) for a range of E .

 1“Thevmicros§o§ic velocity field:is constructed as follows: Start with general
:'seﬁiés solutions which obey the necessary symmetry conditions about the (1) axis
 (¢= 0) .‘1 .o

- L v - m .
v, = ar cos(nma) N A dr 51n(nma) . , (3.22)
sum over the m

- (ﬁi‘iSSboth'an index and an exponent.) Apply incompressibility, specialized to

' © plane st?ain.

a
1 = = - Ul
Vo, + F'(Va,a+ vr) =0+d (m + 1) n_ . (3.23)
Equations 3.22 thus become
| m n m ,
v, = ar cos (nmu), v = - (m + 1) 3;-r sin (nma) . (3.24)

The rigid-plastié boundary requires that v and Ve be independent of r at

a = %-r ¢-. Terms with m = 0 obviously meet this condition. Because sin (x)
and ¢cos (x) are never both zero for the same value of x , meeting this condition
for mi# 0 requires that the coefficient of either sin (nmu) or cos (nma)

annish for each value of m . This is fulfilled nontrivially for am:#'o only

.lhen m = -1 , Equations 3.24 thus become
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- L1 . X - _ 9 _: ' ,
v, = a cos (noa) +a_,r "~ cos (?5la) s ?fl —[?;zwl’ v, n sin (noa) (3.25)
. Rens B

The next step is to determine n 3 s and‘a_l ~in terms of 'Vl and V2 .».ihe

process is simplified by the following changes of variable:

vlj: Vlb_l , vg' - v2b“l, K =52, A" 1;12 . (3.26)
V2b Vlb,
The boundary conditions then give, using egns. 3.25
at‘[::lg',] v, = Vb »v) = vl ALVY @)
o N ‘ - - S - (3.27)

at(r=:, ] v, = v.b cqs (y) > ¢?s (&) = A_cos [no(§-- v)] (b)_‘
w7 Y } N e ' -Aé . T

v = Vb sin (y) > sin-(w)'=-72;sin'[no(§~— ¥)] (c) -

For a given ¢ , eqns. 3.27 b and ¢ can be solved numerically for n_ and Ao .

N

"o
Note that Ao is a function of ¢ only, and not of 'Ji and V2 . A-l is,
from eqn. 3.27a, expressible in terms of Ao,Vg, and Vg .

Using - A as defined in eqn. 3.10d, v can now be written as

: N.-1/2 Ao N .
v = bl[A V. cos(n a) + A V)X cos{n .a)] -, v = -b —V_sin(n a). (3.28)
r e} e} -1l -1 e .. vno 2 Q

—
=

N

For a given V¢ , v, and v, are linear functions of Vﬁ and Vg . Noting

 that the rigid section has the velocity field

o _ N . _ _oN , . ;
v, = V2 sin (a), v, = V2 cos (a)., (3.29)

a linear homogeneous relationship between VN and E’ (for constant y) can be
obtained via egn. 2.2. (The surface integral in egn. 2.2 is, of course, taken

over both the rigid and the plastic sections.) !N, z,‘é, and thus W are

derivable from E for a given ¢ . A numerical procedure then locates &min

and wopt'
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It is assumed that the yield function for this type of flow field takes
a general form similar to that in the previous section:
2

§ = Too, +EF(f,TYY) =0, (3.30)

where ¥ is some function. Therefore, for plane strain deformation,

'I‘"=0~>T
e

33 (3.31)

o = T2 = Ty
Aéé yield loci for plaﬁe strain can be calculated without computing the Tiq -

| Theséiyield'loci are shown in figs. 8. In comparing these curves with
thése obtainéd for'fullj7plastic flow, it is immediately apparent that the
wedge model givéé_a more negative slope in the lower range of TYY . By the
‘ndrmél flqw.ruie, tﬁe #edgevmodel thus predicts more dilatation in this range.
Considering that the effect of a rigid wedge woﬁ;& be to inhibit contraction
in the (1) direction (seé fig. 7), this is reasonable. The wedge yield loci
.héve'the dééirable ?roperty of convexity to fhe origin (see section 2).

Given the same matrix material and void geometry and the same boundary
value‘problem, each type of yield function will give a different solution.
Thé cbrreét choice is fhe solﬁtion which gives the best upper bound (the lowest
'dissipétion)g This choice should also_reflect which tvpe of microscopic velocity
‘field mofe closely resembles.the actual field. 1Its point in stress space (on the
“correct"‘yield function) will lie closer to the.origin thgn the competing solu-
,tion. Beéause the curves in fig. 8b intersect, a preferred yield locus over
"all stress space would consist of segments of the wedge and fully plastic yield
functions. |

The flow direction predicted (via normality) by the actual yield locus
should obey the fol}owing symmetry conditions. For zero biaxial stress (TYy=0),
there should be no dilatation (ﬁYY=0) , and for an axisymmetric stress state, the

flow should also be axisymmetric. (In plane strain,the latter corresponds to



- 2oy -

Teqv = 0. See eqn. 3.21.) These two conditions on the yield loci are satisfied
by the fully plastic model, but not-by the inherently asymmetric wedge model.
Therefore, if the approximate fully plastic yield function dominétes (is cioser
to the origin) at TYY = 0 and at 'Téqv = 0 , the models gain credibility. . : |

" This is indeed the case over the entire range of f when the yield locus
which resulted from the refiped fully plastic flowvfie;d_(eqn, ?,19) is used,
but is not the case for the unrefined yield locus (egn. 3.18)7 _The %mportayce
of a refinement procedure is thus underscored. _Note that the yedggAfldw’field
was also refined by varying the angle of the rigid-plastic boundary.

As noted previously, no functional form for the yield”locus emerges from

calculations using the wedge flow field. However, some success has been
achieved in fitting the following empirical form tp.theAdata:

= 72 2
$=0=T - [B_ + BTy + ByTg,d »

N
eqv 1Ten = 5T o - (3.32)

TGH YY

The coefficients Bo,Bl,'ar;d'B2 are constant for a given £ . They were determined
by fitting eqn. 3.32 to tﬁree(huﬁérical data poiﬁts, spaced as evenly as possible
over the compdte& yield locusf: See fighﬁé 9a.

‘For values of £ betweeh fhdse‘for'which numerical data;istaVailable;
approximate yield curves can be Obtéinéd by intérpblafién of the .éi over f£.
as functions of f , with

Figure 9b shows the cdmpﬁtéd values of Bo,Bl, and vB2

soiid lines showing the linear intefpolation.: | '
In a paper by Nagpal, McClintock, Berg, and Subhuti'ti3], plane strain slip

line solutions for bands of evenly spaced cylindrical cavities (long axis in the

plane strain direction) are developed. The cross sections of the cavities con-

sidered included slits at véfious'angles, and circular holes. The bands have
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zero extension in the transverse direction, a result of a fracture criterion being
investigated there, For their cylindrical cavities with circular cross sections,
én analogy can be made to the cylindrical cavity models developed hére. The

slip line solutions are doﬁe for various ratios of shear traction to normal
traction (on the band), so with a bit of manipulation, the results generated here

can be compared directly with theirs. The counterclockwise rotation from prin-

ciple axes to axes in which ﬁll=v0 is given by
tan? (6) = - =% , (3.33)
E22

Then, where the superscript # denotes quantities in coordinates reached by that

rotation, and subscripts "n" and "s" denote "normal" and "shear",

& 2 2
Zn = 222 = sin (O)le.+ cos (6)222

(3.34)

z:s = 2:21

"

sin (0) cos (8) (& )

117522

Any comparison of results require an interpretatién of the geometric para-
meters in ref. [13] in terms of void volume fraction f . Their parameters are
? , the void radius, and L , half the intervoid spacing. Extending their one
dimensional void array into a two dimensional square array, and considering the
two most likely band directions (horizontal and diagonal directions in the

square array), one can say that

2 2
125 << =2 (§J2 . (3.35)
na oL

The intermediate value is used in the comparisons.
There are three types of data sets in fig. 10. The points connected by
solid lines and denoted by values of P/L are from the slip line model. The

dashed lines and the unconnected points represent fully plastic and wedge yield
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functions respectively, transformed via egns. 3.34. Note that

P _ 3 _,P\2 _
. §=0.123, .5 w() =0.0178
| (3.36).
M 0,208 - "™,  0.051 = 0.05
"0.50. - . M. 0.29% = 0.30

As can be seen from fig. 10, the wedge yield.locus is a much”bgtterfmatch.l_
thap the fuily plastic yield locus to the results of;the slip line model,
particularly iﬁ slope. (Note that the interpretation of f ‘in terms of P/L
is rather‘arﬁitrary,’and could be changed considerably.)- ThE’Slbﬁe is thé*mést"..
“important factor, because the-direction of "g‘ is determined via normality.

For this reason, fhe similarity in slope of the'slip line and wedge yieid loci

is particularly satisfying, and helps to justify the development of the wedge

modél.
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4a. Spherical Voids, Fully Plastic Flow
g VThis véid.geOmetfy, shown in fié; 3., is meant tovrepreseﬁt a”limft of void
;hépe different from the long circu;gr qylinder. _Void§'of spberoidal sbape'égn
result from decohesionﬁor breakaée of similérly shaﬁéd secéga pﬁéses auring de-
formation [1-6]. Nucleation without second phases hés also been seen to CECUr”éf '
grain boundary misfits due to straining [lS]. Sintered comﬁgCts of metal powder
can be specially prepared soifhat tﬁey ééntain approximatély equiaxedlvoids [19,20].
Voids can also be present by accident, through faulty‘pfoceséiﬂg;”"“ |

.:Many parts of this analysis are similar to parts of section 3a. ‘The spherical
geometry is simpler to Qofk.with thaﬁ the cyliﬁdrical geometry becé;ée there are no
preferred axes. A refinement procedure analogous to that'caffiea'ouf'fof"the”cyli
inder was carried out for the”gphere; in contrast, ;ittle chapge in the calcuiatedv
yield loci resulte&; Fof this reason, a refinemenf'procedﬁfe'will nét be discussed
here.

Because there are no preferred directions,ithe apprpkjmateJmigstgqpigivglocity

field will be broken up into two parts (as in ref. [9]);<§h§pe:9h§gggzat constant

volume (x?) , and volume change at constant shape (x?) . The total field is then

v = v oty ' m : (4.1)

s

The field calculated from y must, as before, be incompressible, and v wust

2o e

meet external boundary conditions put in terms of the :Eij"

jb..(cartésian words. ) o wl2)
S

This is the same type of boundary condition used for the fully plastic cylindrical

~model. It can be met by a simple incompressible flow field which relates x? ‘to

rie

' (the deviatoric part pf_i)‘and X? “to ékk :




W = ﬁ' % » 5 = .t o= - Kk Ei W= v o 0
i 7 TiTy ij ij ? r 32 i e ~ Yo T
3 (4.3)
: ey ' 2'(b) B P aeV oy . ‘v :
. S e e — S e - = Yy = -
> frr 3 ‘v "k €06 €66 * ‘e - pe - 6o o .
Adding the two components of é» gives
. z LX oy . - e ! . -]:-.. . . . ) . v
£ = g +teg o, ij = Eij + 3 Ekkhij . (4.4)
In spherical coordinates,
. 53 . | -
b = -2 = Phge = -2, hefl =0, (4.5)
i#j
and in cartesian coordinates,
h = (8.. - 3n.n )(-1-)--)3 ' r2 N N T
ij ij iy tr” B 2 3
' x; _ (4.6)
n, = o~ = cartesian components of unit normal to

sphere of radius r .
Carrying out eqn. 2.15 for this simple é field, and separating into devia-

toric and hydrostatic’components gives

v . N | »
2ij = V-J sij(g)dv ) znn = 7 I skz(i)hkldv . (4.7)
v l v v
Using Son T 0 and eqn. 4.5, one can write
1 3 . -
I TV jv 2 Srr(s)hrrdv C° (4.7)

Equations 4.7 can be solved approximately in a manner very similar to that used
for the fully plastic cylindrical model. As béfore, L is presumed constant with

respect to geometry.

The calculations are done in detail in ref. [17], and were originally suggested

in ref. [22]. Some of the intermediate expressions which are similar to those in

the cylindrical example are
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3 , 6 .3
. . _ ! ! R o ! b 2 '2 b . . - r . -l
€13%13 5713 2EnnErr(r) *3 Enn(r) o A=, x=
2, .2 1 1 1
4V = r°sin(¢)d¢dedr = ridRdr ,  § | V.= = dade . (u.8)
: v ‘f
L B 2 ol &t .-5 . ‘ .
= Err §'Bszk2 . ud@ = 0 . Q is a solid angle.

As before, the integrands are expanded into.polynomials in y ; the mulfiple
integrals can then be carried out approximateiy.~ Equations similar to 3.18 and
3.19 are the result. To first order in. u , the yield function for the spherical .
geometry and this simple flow field is
& = T2+ 2f cosh(:T y-1-£ =0 o "'(u'.g‘")‘
eqv 2 'nn ‘ . ‘ 4

.This yield function is shown in fig. l;?.along with a solution.to second_drder
in u and some data points resulting frCm.numerical solution of the sfress inte-
grals. It can be seen that the first order solution is very close to thé:second.
- order solution. Unlike the case of the cyliﬁder, this yield function appears

rather insensitive to the direction of é . Given the geometric. isotropy.of the

model, this is not unexpected. -
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4b. Spherical Voids - Flow with Rigid Section

The model used here is a spherical analog of the model used in section 3b,
and is limited to axisymmetric deformation. The rigid sections are idealized“aé
truncated circular cones capped with spherical sections, whose axes coincide withv
the tensile axis. ¢ is the angle between the tensile axis and the cone wall,
and is used to optimize the flow field via minimization of W . See fig. 4.

The form of the calculations for this model is very similar to that in séc~
tion 3a, as are the solutions. Again, the calculations do not lead to a derived
functional form, but there is some success in fitting the numerical fesulté to an
equation similar in form to eqn. 3.32. |

In the model, the (3) axis is the ténsile direction, and the (1) and (2)
axes are the traﬂsversé directions which are equivalent due fo symmetry. Figure 7
can therefore be used to illustrate importaﬁt quantities, once the index "3" re- -
places the index "2".

Because the similafities are so great, the reader should refer to section 3b -
(or ref. [17])for details of the calculation. Some differences with the cylindri-.
cal model should, however, be noted. These include the incompressibility equation

for the spherical geometry (with axial symmetry):

v ot [2vr -V, tan(a) + A a] = 0 . » (4.10)

k4 2

¥When eqns. 3.22 are inserted, the terms sin(nma) tan(a) appear. Nontrivial
equations result only for special values of nos where trigonometric identities
such as

(u211)
sin(2a) tan(a) = 1 - cos(2a) , sin(#a) tan(a) = -1 + 2 cos(2a) - cos(ka)

aoply. (In the calculations, n is taken no larger than 4.) Because of this, y

takes on a slightly different form than in the cylindrical case.
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'As before, the T fileld is calculated via eqn. 2.21. The yield function is

assumed to have the form .

¢ = Tzqv + FE,Ty) = 0, : S (8.12)
where;hdue to4axie} synnetry,
T o= T~ T | T = &7 = L, o+, )-'_‘ \ (4.13)
eqv 33 11 ,H 3 "kk 3 11 33 , :
Valnes of -Teqv ‘vs. TH fon several values of f are shown-in.fié. l2,ban§ com-

pared nith yield functions derived from fully plestic floﬁ.fields. It should be
noted that the symmntry arguments c1ted in sectlon 3b do not apply in the spherlcal
case. It is therefore not expected that the fully plastlc yield functlon w111 dom-
, 1nate at T = 0 fo: all values»of f . (1t does domlnate, howaver, for very
small values of -f ;S'this is to he expected ) Also note that the yleld loci whlch
result from the "rlgld cone'" model ere convex. o | |
f.The yleld loc1 derlved fron the rlgld cone nodel can also be flt to eon. 3. 32
Cal?ulated values»of Bé ;‘Blu; and B

, are shown in flg. 13.

s
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Summarz

A method has been developed for calculating aﬁproximate yield loci via an
upper bound approach for porous ductile materials. This method was applied to
material models with simplified mafrix and void geometries, and with two différenf'f-
types of matrix flow field approxiﬁations. The results were two different type§
of upper bound yield functions. Comparison with somewhat similar work by‘other‘
authors was encouraging. |

The approximate yield functions developed ﬁere show the important property of
plastic dilataticon; a property not evident in ordinary incoﬁpfessible plasticity
formuiations. Becéuse the dilatancy increases ﬁith thé hydrostatic éomponent of
stress, the yield functionsi(and flow rules) dgvgloped here could lead to better
understanding of plastié behéviof in regions of high hydrostatic sfress (e.g.,
necks in sheets and bars, and near the tips of cracks and notches). | |

As examined here, plastic dilatation requires that some porosity be present,
Vhen this is not initially the case, porosity can sometimes be nucleated during> 
straining at second phases in a ductile matrix or at graihrbéundary misfits.

Nucleation at second phases is examined in ref. [17], and will be discussed in

the next paper of this series.
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Appendix - The Normal Flow Rule and Convexity

The normal flow rule arises from the definition.of £ (eqn. 2.15) and the
fact that the dissipation Wois homogeﬁeoué éf’degree 6ne iﬁ g ‘(eQﬁf 2.14);
These lead to
| 5>:ijéij =0 o BRGE
for 6L emanating from I on the yield surfaca,-andrdirected'élong the'yield
surface, This means that the components of ‘g are propoffional tb the com;..

ponents of the normal to the yield surface in stress-space, i;e.,‘

E '=VA--—-—- . S (A.2)

A is a macroscopic scalar, determined either by boundary conditions in

e

» or dI and the hardening behaviqr qf the_aggregate. See fig. lua;'
Convexity as well as normality can be proven when a maximum plastié work

principle (eqns. 2.8, 2,17 and 2.18) exists. The proof.is illuStratéd~in‘

fig. 1lub,where a concavity in the yield‘sufface is shown to violate the principle.

Now; consider the yield functions shown in figs. 5,6,8,9,11, and 12,
where the axes are functions of stress other than the tensor components. The
questions to be discussed below are when and how the principles of convexity
and normality apply to yield functions expressed in terms of those functions
of stress,

In the general case, tﬁe answer lies in the proofs of convexity and nor-
mality in chapter 2. They will work for any strain rate measure in which W
iz homogeneous of degree o;e, wheﬁ the stress measures are work conjugates to
those strain rate measures. Acceptible stress and strain rate measures can be

found by manipulating the expression for W . For example:
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1 -.'. .];‘ = t B }_ E
Dadsg) (Bly ¢ 3B = s v 3o, E 0 @4

3

W=zx..E.. = (Z'. +
1] 1] 1]

For the special case of axially symmetric distributions of the principle values
of I and é , this becomes

. 1/2

. _ . -]__- . . - 2 .' )
W= zequeqv t_svzkkgnn’ where Equ_ (3 EijEij} . (A.4)
The normal flow rule then gives
e _ a§ . _ a§ |
Eeqv— A az V, 1] Enn - Aa(._l- E ) o ) o (A.S)
€q - YT kK

The flow rule is also valid in terms of T , with the factor o ‘taken account

of in A : )
Eeqv = A F, etc., (A.8)
T . eqv - :

Reférring to figs. 11 and 12, the ratios of the strain rate measures is equal
to the slépe of the normal to the yvield function:

E dr [ - -
eqv _ eqv T =
L] ’ -
Enn.;--d?H |normal.tov .H
$=0

A very simple interpretation of normality thus results for the spherical void

‘wll—-'

Tkk | (A,?)

model when I and E are axisymmetric.
Suppose that the'yield function is constrained to be a function of the
first two stress invariants, as in eqns. 3.18, 3.19, and 3.32 (the approximate

yield function for the spherical model):

=8 (T, Tyof) =0 . (A.8)
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Applying the normal flow rule then gives
T,
‘98 3 "ij 9d
E.. = A = + S..
ij aTeqv 2 Teqv aTkk ij
(A.9)
. _ 33 s P B

*Eeqv A AT » Epp AT -

eqv H

The simple interpretation is thus invariant to E when eqn. A.8 is true.
The approximate yield functions derived for the cylindrical model are
expressed in terms of T and- T 3 T is used in place of T because
eqv YY> vy : kk .
it is a more logical choice as the driving force for dilation in the cylindrical
geometry. Equation A.3 can apply in this situation when the stress is con-
strained such that 'I'YY is expressible in terms of Tkk s such as for plane

stress (T13 =0, i =1, 3), When the yield function takes the form

§ = Q(Teqv, Tw’f) =0 |, (A.10)

plane strain is also in this category because by normality ,

3 1 3 . .
= 1 = = = = -
E33, 0 - T33 0 - T33 5 TYY’ Tkk 5 TYY . (A.11)
Equation A.3 can then be'wpltten as follows, when T22>Tll and E22>Ell
Wzo |T (B -EB.)¢xT B
o | egv 22 11 2 "yy vy
. N 1 (172 '
where (E22 - Ell) = [%eqv 5 EY;] | (A.12)

[32 _532]1/2=A_a§_ Po=p 28
2 yy
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These results can also be obtained from eqn. A.10 using the normalvflow_rﬁle'

(as in eqns. A.8 and A.9), provided that it is recognized that

=t=0 - R (A.13)
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