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Abstract

Widely used constitutive laws for engineering materials assume plastic

incompressibility, and no effect on yield of the hydrostatic component of

stress.  However, void nucleation and growth (and thus bulk dilatancy) are

commonly observed in some processes which are characterized by large local

plastic flow, such as ductile fracture.  The purpose of this work is to develop

approximate yield criteria and flow rules for porous (dilatant) ductile materials,

showing the role of hydrostatic stress in plastic yield and void growth.  Other

elements of a constitutive theory for porous ductile materials, such as void

nucleation, plastic flow and hardening behavior, and a criterion for ductile

fracture will be discussed in Part II of this series.

The yield criteria are approximated through an upper bound approach.  Sim-

plified physical models for ductile porous materials 6ggregates of voids and

ductile matrix) are employed, with the matrix material idealized as rigid-perfectly

plastic and obeying the von Mises yield criterion.  Velocity fields are developed

for the matrix which conform to the macroscopic flow behavior of the bulk
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material.  Using a distribution of macroscopic flow fields and working through

a dissipation integral, upper bounds to the macroscdpic stress fields required

for yield are calculated.  Their locus in stress space forms the yield locus.

It is shown that normality holds for this yield locus, so a flow rule

results.  Approximate functional forms for the yield loci are developed.



-,ymbols

a            microscopic equivalent tensile yield stress0

2, a microscopic stress tensor
ij

S. S microscopic deviatoric stress tensor
.-'     ij

E, E.. microscopic rate of deformation tensor'" 1 J

v, vi microscopic velocity field

X, X. microscopic position vector, cartesian coordinates-           1

E, E.. macroscopic stress tensor1 11
i, fl.. macroscopic rate of deformation tensor-4 . 1 J

fi £:. macroscopic deviatoric rate of deformation tensor, 11

V           volume of body

S            surface of body

n, ni
unit normal vector on  S

W            macroscopic dissipation

f            void volume fraction

qi           undefined parameters

4            parameter used to minimize  W ; angle of rigid-plastic boundary

Cl,..C V* V* macroscopic parameters, used to meet macroscopic boundary
7'  32'  23 conditions

e, Y angles of rotation about the (3) axis, y  also used as an index

E' E E* macroscopic rate of deformation parameters (see eqns. 3.3)'  '  23

a, b inner and outer radius of void-matrix model

r            radius of a point inside the matrix

2, A geometric parameters

E            macroscopic equivalent tensile stress
eqv

macroscopic dilatational stress, cylindrical model
Y



I            macroscopic dilatational stress, spherical modelkk

T, T.. normalized macroscopic stress-   13

X, g intermediate parameters

$            yield function

C            an empirical coefficient
eqv

cosh, sinh hyperbolic cosine and sine

a,a,n coefficients in arithmetic seriesm        m        m

m            index and exponent

a            angle of rigid-plastic boundary

1, Vi macroscopic velocity boundary conditions

N   N3 ' Vi V , normalized by  b

3           dilatation function

'GH normalized dilatation stress, cylindrical model

B.           macroscopic yield function coefficients, functions of  f1

E,I normal and shear stresses on a plane of zero extensionn s

P, L void radius and spacing, used in one of the references

S, V superscripts on  y  and  f , indicating shape and volume change

r, 6, 0 spherical coordinates

h.. geometric parameter
1J

n            solid angle

T            normalized dilatation stress, spherical modelL.
..

6            indicates small variation
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Introduction

It has been observed [1-6] that ductile fracture in metals can involve

the generation of considerable porosity, via the nucleation and growth of voids.

Constitutive theories which take account of porosity are therefore a desirable

component of a mathematical model of the ductile fracture process.  Previously

developed plasticity models, such as that due to von Mises, predict plastic

incompressibility and therefore could not show the dilatancy evident in porous

ductile materials.  In this and a companion paper (Part II), an approximate

plastic constitutive theory will be developed which takes account of. void nuclea-

tion and growth.  This constitutive theory will then be used in a model of the

ductile fracture process developed in part II.

A plastic constitutive theory can be constructed from the following

components:  First, a function of stress which defines the combinations of

stress for which plastic yield takes place (a yield criterion) is needed.  The

next component is a flow rule, which defines the ratio of the strain components

as a function of the stress state at yield.  This can often be put in terms of

the normal to the plastic potential, another function of stress. (In many cases,

the yield function can be used as a plastic potential, see [7].)  To relate the

increment of plastic flow to the increment in stress, a consistency relation and

some hardening assumptions are needed.  When void nucleation as well as void

growth takes place, a nucleation criterion must be added to complete the con-

stitutive description.

In this paper, the yield criterion and flow rule for porous ductile

materials are investigated.  Approximate yield criteria are derived using simple

rigid-plastic material models and the upper bound theorem of plasticity.
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(Because void growth and ductile fracture involve- large amounts of plastic

flow, a rigid-plastic idealization is taken as acceptible.)  A normal flow rule

is established, with the approximate yield functions serving as plastic poten-

tials.  (For a discussion of the normal flow rule and its application to the

specific forms of the plastic potential developed here, see the appendix.)

The subjects of continuing plastic flow, hardening, void nucleation at second

phases, and predictions of ductility (strain to fracture) will be investigated

in the subsequent paper.

Along with the observations cited above, some recent-theoretical studies

[8-10] indicate that when voids are present in ductile materials, the hydrostatic

component of stress can cause macroscopic dilatation and affect plastic yield.

Because the material surrounding the void is idealized as incompressible, the

dilatation   is due completely   to void growth. The approximate yield functions                              '1

(usable as plastic potentials) developed here will contain terms which are func-

tions of hydrostatic stress, and thus allow plastic dilatancy through the nor-

mality rule.

The general physical model used here is a "unit" cube not unlike that of

Bishop and Hill [11], only of a porous material (aggregate of voids and ductile

matrix) rather than a polycrystalline aggregate.  The cube is by definition

large enough to be statistically representative of the properties of the

aggregate.  As Berg [12] has pointed out, the Bishop and Hill analysis can be

extended to apply to a porous material.  This allows proof of a macroscopic

maximum plastic work principle for the aggregate, if the same principle applies

locally to the matrix material.  Throughout this paper, the adjective

"macroscopic" refers to average values' of physical quantities (stress, dissipa-

tion, velocity, etc.) which represent the aggregate behavior.

S
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"Microscopic" refers to pointwise quantities,  such  as the stress or velocity

fields in the ductile matrix.

The general method used here to calculate an upper bound yield function

for a void-matrix aggregate is as follows:  The von Mises equations are used to

characterize the yield and flow behavior of the matrix, which is itself incom-

pressible.  An approximate form is then assumed for the microscopic velocity

field in the matrix, which allows the voids to change volume while maintaining

matrix incompressibility.  This velocity field must obey compatibility, and meet

kinematic boundary conditions on the surface of the unit cube which correspond

to prescribed macroscopic rates of deformation.  An upper bound inequality is

then used to calculate upper bounds to the macroscopic stresses required to sus-

tain plastic flow.  The locus of upper bound macroscopic stresses for a given

'

void geometry (size, shape, distribution, etc.) and a range of macroscopic rate

of deformation fields form an upper bound yield locus for that unit cube.  Given

certain restrictions on the approximate microscopic velocity field, a maximum

plastic work principle can be established for the upper bound yield locus.

(Bishop and Hill establish one for the true yield locus).  A functional form

which gives a good fit to the upper bound yield locus can be called the approxi-

mate (upper bound) yield function.

For purposes of analysis, the void-matrix aggregate is idealized as a single

void in a rigid-plastic cell; the void volume fraction (f) of the cell equalling

that of the aggregate.  (In this way, some account is taken of the interaction

of neighboring voids).  The cell is presumed to behave under loading as the

aggregate would, exhibiting void growth when undergoing yield with a positive

hydrostatic component of macroscopic stress.  Two void geometries are con-

dered; the long circular cylinder and the sphere.  The outer cell wall is
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idealized as geometrically similar to, and centered around the void.  These

geometries were chosen because they resemble many of the void shapes seen ex-

perimentally, they provide the expected isotropy (transverse directions for

the cylinder, total for the sphere), and because their symmetry properties

significantly aid the analysis.  See figs. 1, 2, and 3.

These simple cell models will not, of course behave exactly like aggregates

with random distributions of voids. Therefore, the upper bound yield  ·loci

obtained for the cell models are in a strict sense only estimates (bounding

properties unknown) of the yield loci for more random aggregates.

The approximate velocity fields used in the upper bound calculations can

be simple or complex, depending on the degree of approximation desired.  The

simplest fields need only meet those conditions discussed previously.  More

complex fields may contain extra factors which can be adjusted to achieve

better upper bounds.  The simplest velocity fields allow the rigorous deter-

mination of functional forms for the upper bound yield functions, thus giving

a clear (if approximate) picture of the role of hydrostatic stress in the

yield and flow of porous ductile materials.

Some of the previous work done in this field is as follows:  McClintock

[8] developed a fracture criterion based on his analysis of a cylindrical

cavity in an infinite matrix subject to axial and transverse stresses.  An

exponential dependence of the void growth rate on biaxial stress was found.

Rice and Tracey [9] considered a spherical void in an infinite matrix, and

found an exponential dependence of void growth rate on triaxial stress.  Kahlow

and Avitzur [10] studied the problem of the critical pressure needed to prevent

void growth during axially symmetric deformation.  Their model was a closed
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cylinder of ductile material with a cylindrical hale at the center, and their

approach was in some ways similar to that used here.

There are several studies which motivated the examination of more complex

microscopic flow fields.  Nagpal, McClintock, Berg, and Subudhi [13] presented

a plane strain slip line solution for a band of evenly spaced holes under

varying ratios of shear and normal traction.  Needleman [14], and Haward and

Owen [15] presented finite element studies of large flow in two-dimensional

models of porous materials, using elastic-plastic constitutive descriptions

for the matrix material.  Specifically, these studies suggest that part of

the matrix might not attain plastic yield for some types of aggregate yield.

These "non-plastic" areas are idealiged as rigid here. Their shapes are appro-

ximated as shown in fig. 4.
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2.  General Theory

The general model considered here is a "unit" cube of porous material of

volume V , large enough to be statistically representative of the properties of

the aggregate (Fig. 1).  The matrix material is a homogeneous, incompressible,

rigid-plastic, von Mises material.  Its yield and flow relations ara

3 002    (a)  ,       sij (i)  co ij (b)
-2- Sijsij

(   &  )1/2k£ kt
(2.1)

fav. ev.,
E..

, ts< .4  .
:kk 0  (c)

1]

where a is the equivalent tensile yield stress in the matrix,  s...the micro-
0                                                                   1]

.

scopic deviatoric stress field,  E..  is the microscopic rate of deformation field,
1J

v   is the microscopic velocity field, and  xi  is the position of a material

point in cartesian coordinates.

The macroscopic rate of deformation is defined, as in Bishop and Hill [11],

in terms of the velocity field on the surface of the unit cube.

f..     - -1 (v.n  + v.n.)dS . (2.2)
11 f

11     V 2 JS  1      ] 1

V  is the volume of the unit cube, S  is its outer surface, and  n  is the unit

outward normal on  S .  Using the Gauss theorem and eqn. 2.lc, it can be shown

that

l f·
E.. - 1 rdV (2.3)

1]                V   j v   ij

Where  B  is still a surface normal in the outward direction, this can be sepa-

rated into integrals over the matrix material and the void surface:

f. .    - I &· .dV + - -   (vinj + vjni)dS . (2.4)
1 f 1lf

1]           V  J V 11 V 2
S

matrix voids
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The last term above includes the dilatational part of  E.. , and is zero when there
1]

is no porosity.  The boundary conditions on the outer surface which must be met by

the  vi  field are expressed in terms of the  E.. .  It is important to note the
1J

E..  are average quantities (eqn. 2.2), and can represent many different boundary1J

distributions of  vi .

The velocity field must also meet the constraints of incompressibility and

continuity in the matrix.  Velocity fields which involve matrix separation are

therefore excluded.

Among the infinity of incompressible  vi  fields which meet the above condi-

tions, the actual  vi  field is characterized by its generation of the minimum of

the dissipaiton  W ;

W       I s. (6)6..dV (2.5)
1 f

V  J v   1j   -     11

where the terms in the integrand are related to  vi  by eqns. 2.1.  (This is prov-

eB later on; see eqn. 2.23.)  All physical quantities associated with the actual

vi    field  will be labeled  with the superscript "A", since  they  are also actual

solutions.  Quantities associated with other  vi  fields are approximate solutions.

An important property of  c:.  is that it is an equilibrium stress field.  It is
1J

expected that  v   is homogeneous of degree one in the  E.. .
1]

A
Bishop and Hill postulate that no correlation exists between  a..  and posi-

1]

tion or displacement (velocity) over any plane section through the unit cube.  They

also establish a maximum plastic work principle on the microscopic level, which

also applies to  s..(E)  as defined in eqn. 2.1:
1]

Isii (i)   -   sii (i" ) ] ail   a   °      ,         i     "      i* · (2.6)
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Using the non-correlation postulate (above) and the principle of virtual work,

A
Bishop  and  Hill  are  able to prove  that,  when    I. .  · is defined  as .the area average

l]
A                                                     A

of  a..  over the appropriate face of the unit cube, S   is the work conjugate of
1J

E:
"

I      l f  A d S+U A
A-

A JACij 1] 1]
I..E.. . (2.7)

Using the principle of virtual work, they are then able to prove a maximum plastic

work principle on the macroscale for  EA :

A    A*
(I.. - I.. )E.. 3 0 (2.8)

11     l]   11

A*                 •*where  E is related to  E  , and f' differs from  i . The yield locus of .SA
thus has the properties of convexity and normality.  Equations 2.7 and 2.8 can

then be combined to show

61·   =  6E..E.. + E..6E..
A. A  .

1] 1] l]  13

6IA.E..   =  0   by normality
13 l]

A 3 
.'. E.. = - ·                 (2.9)11     3 ··

1J

&A 
was derived  from    v    , the actual velocity field,   and  gove the actual

dissipation through eqn. 2.5.  When an approximate field  vi  is used, eqn. 2.5

defines an approximate dissipation.  The  vi  fields considered here have the

functional form

v.     vi ( ,f,x)
. (2.10)

1

There may be additional dependence on other parameters  qi , g2 , ··· , as in

vi  = v. (5.,f,x,gl,92···) (2.11)
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with the  qi's  chosen to minimize the dissipation.  For these optimal values,

qi  = q1(E,f) (2.12)

so the form of eqn. 2.11 reduces to that of eqn. 2.10.  All of the forms of  vi

considered here are homogeneous of degree one in the components of S, i.e.,

for  c = constant,  v. (cE ,cE )  =  cv.(£.. E       )           (2.13)1 11 22""' 1  11' 22""'

J  and  W  are then also homogeneous of degree one in the  E.. , giving1]

W -E.. (2.14)
3W  •

ai.. 11
1J

Define the approximate macroscopic stress needed to cause yielding (via the

flow field vi) in a way analogous to eqn. 2.9:

3E
3#              o   kE

I. .      =     -r     =     1-  fvs      (E) -
dv (2.15)13           V   k 2 -

3E.. 3E..
1]                   1]

using the normality of  s..(I)  (see eqn. 2.6) to set one part of the integrand to
lJ '4

Zero.  This gives, with eqn. 2.14

aw  AE..E.. .-. W. (2.16)
1] 11       •  Lij3E..

1]

Thus,   Ei       as
de fined above   is   a   work conj ugate   to      fij    ,   as   is      E£j    . By analogy

with eqn. 2.9,  normality is thus established for the approximate yield locus

(the locus of stress states  I..  defined by eqn. 2.15, for all possible directions
1J

of  E..).
1]

A
A maximum plastic work principle has been established for  S  , giving both

convexity and normality.  It is desirable to examine under what conditions this

might also be established for  5 ·  Consider two approximate stress fields  E  and

*                                 *
S  , corresponding to  E  and  E   respectively through eqns. 2.15, 2.10, 2.2, and

.V

1.  Write the following:
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4                                                            3£                             4      3  *   1

(E..-I-.)E..
   v sk,(i) 41 - sk£(i ) e.1 iii dV

. (2.17)
1J  1J  1J                   3 E.. DE..

1]               1]

If this could be proven non-negative, a maximum plastic work principle would re-

sult.  Consider the case of  £ not only homogeneous of degree one, but linear in

E .  Then,

Di*          3
k£ · kl ·       •

-Tr E.. -E.. (2.18)
11            11     Ekt '3E.. 3E..

1]             1]

With maximum plastic work proven on the microscopic level, the proof is complete.

Equation 2.18 applies to one class of velocity fields used later on.  A second

class, to which it does not apply, is of the form

vi  = v.(i,f,x,9) (2.19
1 *4  rv

where  vi , and thus  i  and  W , are homogeneous and linear in the  E..  for a
1J

fixed value of  0.   4  is an additional parameter equivalent to  qi  in eqn. 2.12,

and has the effect of making  vi  homogeneous of degree one, but no longer linear,

in the  E.. .  The approximate dissipation thus has the form
1J

W *6 f, *C  , f )} . (2.20)

Equation 2.15 gives

3,1 1 . aw. 1          30I. .     =    -. 1 -7 0 (a) (2.21)
il     BE..

| T=  
.

3E..
1] $=COASt E=const  11

Because  *(E,f)  is determined by minimizing  W  with respect to  0 ,./

3W- =0. (b) (2.21)
3*

Unfortunately, the dependence of  4  on E  makes it impossible to prove .con-".

vexity from ean. 2.17.  Convexity can be used, however, to help judge the value oi
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approximate yield functions generated with this formulation.  Since the object is

to approximate the actual yield and flow behavior, an approximation which violates

convexity should be considered a bad approximation.

To prove that the approximate yield locus lies outside the actual yield locus

in stress space, write the principle of maximum plastic work in the following form:

  f (s-d)-s . (2) }5  dV 3 0 , (2.22)
V JV 11 - il -  ij

where the  s    are of the form in eqn. 2.1, and both  £  and  S   are compatible
ij

with the same macroscopic rate of deformation  E ·  Using eqn. 2.5, the principle

of virtual work, and the result that both  S  and  S   are work conjugates to  E ,

eqn. 2.22 becomes

(E..-I:.) E.. 2 0. (2.23)
1]  1J   1]

Since  E..  is an outward normal to both the  I..  and  I:.  yield loci, this
1]                                             1]          1]

proves that the  E..  surface always lies on or outside the  E:.  surface;  5  is
1]                                                   1]

A
an upper bound approximation to  S  .

The most important properties established for the approximate macroscopic

yield stress are its upper bound relationship to  S" , the normality and convexity

(given the conditions described above) properties of its yield locus, and eqns.

2.15 and 2.21 which give its relationship to  S .  Subsequent sections of this

paper are devoted to the solution of eqns. 2.15 and 2.21 for various types of  vi

fields, ranges of  5, ranges of void volume fraction  f , and the two void geom-

etries discussed earlier.  Varying the  E  field results in the generation of an./

approximate yield locus for a particular void geometry, volume fraction, and flow

field type.  With some success, approximate functional forms are derived for these

jield loci.



'. 1

- 12 -

3a: Long Circular Cylindrical Voids - Fully Plastic Flow

This void geometry is meant to represent one limit of random void shape.

Long, roughly cylindrical voids are seen to appear at the necks of tensile

bars after large deformation (see, for example, ref. [3]).  They might also

result from long cylindrical inclusions (e.g., sulfides in steels) whidh

decohere from the matrix after straining, or on a larger scale, from drilled

holes in a homogeneous material.  The centered and geometrically similar

matrix displays the transverse isotropy expected of an aggregate with an

isotropic matrix and a void distribution which is random in the transverse

directions.

For the type of flow field considered here, in which all of the matrix

material is in the plastic state, a simplified form of eqn. 2.2 is used as

the boundary conditions on  vi :

vi Is    =   Eikxk's C cartesian coordinates) (3.1)

The boundary values of  vi  are thus uniquely defined by the  E.. .  In other
1J

formulations, the boundary distribution of  vi  will be varied, within the con-

straints of eqn. 2.2 and certain geometric approximations to achieve the best

upper bound solution.

The approximate velocity field is constructed in a manner similar to that

used by Rice and Tracey [9]; components representing shear and dilatation are

constructed separately, each satisfying compatibility and incompressibility.

These components are determined to within macroscopic parameters, which are in

turn determined by boundary conditions of the form of eqn. 3.1.  When the form
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of a component is not completely determinable from symmetry and incompressibility,

a general form is constructed in accord with a linear viscous (or equivalently,

an incompressible elastic) model.  This approach leads to more macroscopic

parameters than can be determined from boundary conditions alone, so other

conditions, leading to refined velocity fields and lower values of  W , are

devised.  This calculation is carried out in ref. [17], and draws on an example

in ref. [16].

The general results are as follows:

vr .= (Clr3 + C2r + C3r-1 + C'*r-3) cos 28 + V 20 cos Y +  - E33       (3·2)

v0 = (-2(lr3 - C2r + Cllr-3) sin 28 - V z sin y,   'z = E33Z + (C r + C -1) cos Y

Cl  through  (7  and V are the macroscopic parameters referred to above.  The
32

angle  0  is referred to transverse axes in which E is zero, and the angle12

y  is referred to axes in which E is zero. (This is done to facilitate the13

application of boundary conditions - again, the details are in ref. [17]).

V       is the shearing velocity   per unit axial length.      In   fig .   2,   the   axes   are

such that  E  =0.  Quantities in the axes where  E  =0 (reached by a rotation
12 13

about   the   (3)   axis ) are denoted   by the superscript   'Sk"   .

Boundary conditions are applied at the outer boundary  (r = b)  in terms

*
of the new macroscopic variables defined below. V is a normalized shear

23
*

velocity parallel to the (3) axis, and is in the same spirit at  V  (eqn. 3.2) .
32

. J. *1*'Stf, =1 (1& -A  ) (a), f E 1·   = 1 (1  +f +f ) (b). f- = E  - -(V +V  ) (c)2 ' 22 11 2  kk - 2   11  22  33     ' 23 32 = 2   23  32

(3.3)
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The velocity field on the outer surface is, in terms of these macroscopic

quantities;

v |  =E'bcos (20)+1(E  +E  )b+V't• z  cos (y),
r'S 2   22    11       32

ivzls = V b cos (y) + E33 ' z, vels = -E'b sin (20) - V32 sin (y) (3.4)

These are three equations in the seven unknowns  Cl  through  (7.  Some methods

for determining the four additional equations needed for a solution are discussed

below.

First, consider setting  Cl  equal to zero.  Cl  approaches zero when  f

is very small in the previously cited elastic example [16].  Also, it seems

reasonable that v should approach linearity in  r  for  r>>a  Oa' is the void
I.

radius).  This can be true only if  Cl  is zero.  For these reasons, the

approximation

C =0 (3.5)
1

is adopted.

It is reasonable to expect that a good approximate flow field will behave

in a manner closely resembling the actual  flow field.  Note now that the void

surface is free of both normal and shear tractions. Because the matrix is

a  von Mises material, ·the related shear deformation rates  are  also  zero  at

the void surface (see eqn. 2.lb)

Ere|r=a = Erz|r=a =
0 (3.6)

(Of course, an equivalent statement for normal components of traction and  E
/W

does not apply.)

A fourth and final condition results from minimizing the macroscopic dissi-

pation, W.  These procedures are carried out in detail in ref. [17].  Equations
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3.4, 3.5, and 3.6 are used to reduce the number of undetermined  C.  to one.1

This last value is determined by finding its value which minimizes  W .

The details of this calculation are omitted here.  The results have a

functional form very close to the result of a much simpler calculation, which

is described below.

Suppose that in addition to  Cl ' the coefficients  (3' (4' and (6  are

also set to zero.  Then,

C7•r*
Vr = C2r cos (20) +F- E33 3- + V32z cos (Y),

ve = -C2r sin (20) -V  z sin (y),  v  =f   •z+ Csr cos (y) . (3.7)32             z    33

Equating  v  at r=b with the boundary conditions in eqn. 3.4 gives

• '           4                     1  ·     2C  =E  C =V and   C   = -E   b
2    '  5 23' 7 2 kk '

· 2 -2   1 · ·        2    1·

e  = E' cos (20) - Eb r  - - E   ;   = - 'cos (28) + Eb2r- - F E33'rr 2  33' -ee

(3.8)

1        -3'E   = E33' Ere =-E' sin (20),  rz = 2 (V23 + V342) cos (y),ZZ

•               1, *          sk                                 ,kE   = - - (V   +V  ) Sin (y),E-E sin (y)ez     2   23    32                23

Equations 3.8 describe an approximate  E  field in which the deviatoric part
..

has been set equal to the deviatoric part of E , and a dilatational part added

on which is derived from  E     E     and matrix incompressibility.  This  £kk '  33 '

field will now be used to solve for S  via eqn. 2.15.

The dissipation can be written as follows, using eqns. 2.5 and 2.1

i. =    1../S ,.
'E..'.., dV . (3.9)
.•  ·  -1/2

0  0    11 1]
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Using eqns. 3.8, and referring all quantities to the same axes;

• 2   ·2    '2         -1    ·2 -2   3 ·2    '2    -2    ·2     2
c. .c. .    =   2E'       +   E          +   E         +   42£'El          +2EA          +   -E         +   E          +   E          +   E          +   E          (a)ij 11             12 21 2 33 13 31 23 32

(3.10)

where

2
· ' 2  ·2   ·2(E' )  =E  +E   (b)·, 11 = cos (20), 0 measured c.c.w. from' (2) axis (c),A E.- 223      13    23

(d)

It is assumed that  a   is constant in the matrix when eqn. 2.15 is applied.

The locus of E  in stress space which is related to the entire range of

E  (the yield locus) will be expressed approximately in terms of the macroscopic

equivalent tensile stress, and the macroscopic transverse stress:

E2        =  (F Ei  Ei ),  =  F (£22-Ill)2  +  - £32 + F(I12+E21)  + T (EY3ZY3+E3.,E37)'eqv

y= 1,2 and E =E +E (3.11)
yy'    11    22

Note that summation over a Greek index is over one and two.

The stress components in eqn.3.11,  when calculated via eqn. 2.15, are

expressed as volume integrals which contain the components of  E  and the angular

and radial terms  y  and  A.  The general method of solution (described in

ref. [17]) was to expand the integrands into polynomials in  y , integrate over

y , and then perform the radial integration.  It was found that for this simple

flow field (eqn. 3.8) the relation between E and E was
eqv YY

invariant to  i , to within first order in  11 . Numerical integration of

several specific cases showed that the approximation was a good one.  The

analysis is outlined below for the simplest case; axisymmetric deformation.
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Because a is a constant, use the following normalization:
0

E

T   =-         .                                                                                           (3.1 2)
-         00

Due to axial symmetry, the stress system is

Tll = T22 ' Teqv = IT33 - Tll|' TYY = 2Tll ' (3.13)

Using eqn. 2.15,

/5. 1  f   •   ( 21-2+ 3. f2  )-1/2(iV,T  = 2.    fx-2(f21-2+ 3 £2 )-1/2dVT33-  Tll=  -T v- Jv E33 4 33 TY 6 JV
4  33

(3.14)

The following changes of variable are used:

1 f 1   fL (2A rb               fl-1 d v= -1 dr de dz, = dA for axial symmetryV JV              wb2L  J O   0 J a Jf
(3.15)

-1      3 ·2
X E E X  ,g E I r E33

Equations 3.14 can now be written

'Elf A./ f
T    = gl/2 E  ,   x-2(x2+g)-1/2dx, T   =21   (x2+g)-1/2dx
eqv         JE YY /5  1 €

These integrals can be found in many standard reference tables (e.g., ref. [21]).

The results are
-

/•2 2 •
1/2 02- / ·2      2                 /5                    4  E  +gf    +  E

TII' = g   Teqv =(4 E +g  -4 E +gf ),TI' E -FTYY= tn. ,  (3.17)

f(  2+g, f)
I                   I

E  and  g  can be eliminated between eqns. 3.17 to give an equation in

T   ,T  , and  f, which is the approximate yield function ([22],[17]).
eqv YY
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The result is

2                      &                    2
0 =T +2 f cosh (- T   ) -1-f =0 (3.18)

eqv 2  YY

which is the yield function.  It is shown graphically in fig. 6 (axisymmetric

flow) for a range of values of  f .  Note that when  f  or T are zero, the
YY

yield function takes on a form of the von Mises yield function.  This is quite

reasonable, since the matrix material is a von Mises material.

When the conditions of eqns. 3.6 and minimization of  W  are not discarded,

the approximate flow field becomes too complicated for analytical analysis

(see ref. [17]).  The integrals which define the components of  S can be

carried out numerically, and the result is a class of yield functions which con-

form closely to the following analytic form:

2                        6                     20=C T        +  2f  cosh  (- T    )  -  1  -  f    = 0 (3.19)
eqv eqv 2  YY

C     is an empirical function of  f which varies with the direction of S.
eqv

(The subscript "eqv" indicates that it is a coefficient of T .)  Its upper
eqv

and lower limits are

62
C    = (1 + 3f + 24f )  for E-  = 0, plane strain,
eqv i3

(3.20)

C    = 1 for E   = E22' axial symmetry.eqv          11

One possible contradiction which comes to mind is the case where plain

strain and axial symmetry occur simultaneously, leading to two separate values

of  C    .  This can be resolved using the normal flow rule and eqn. 3.19:
eqv

• 1E   =0+T   = -T    T   =T   +T   =T33        33   2  yy'  11    22    33    11

(3.21)

symmetry + Tij =0 for  i#j, cartesian coords., Tll = T22 = T33 +T    =0.eqv
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The coefficient of  C     in eqn. 3.19 is zero in this case, so C need not
eqv eqv

be well defined and there ib no contradiction.

In fig. 5, eqn. 3.19 is compared to numerical solutions of eqns. 2.15

f6r plane strain,  In fig. 6, the Yield loci which result from application of

eqrl. 3.19 to three .different types of  S  fields are shown. C for the inter-
eqv

mediate 'curves, ,(E33 = 1, E' = 1) was found by solving eqns. 2.15 for zero dila-

      tation.
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3b.  Long Circular Cylindrical Voids - Plane Strain Flow with Rigid Section

The geometry considered here is the same as in section 3a.  The flow field,

however, has an important difference.  For the case of plane strain  (E  =0) ,33

part of the matrix remains rigid while the other part undergoes plastic flow to

accommodate the macroscopic deformation.  Also, the macroscopic boundary condi-

tions now fall into the class of eqn. 2.2, rather than the simpler class of eqn.

3.1.

Plane strain deformation of a matrix containing cylindrical cavities has been

studied via elastic-plastic finite elements [14,15] and (rigid-perfectly plastic)

slip line theory [13], all of which support the idea of part of the matrix remain-

ing rigid for some  f  and  i .  The finite element solutions suggest that a radi-

al plane might be a good approximation to the rigid-plastic boundary, and that the

rigid region is symmetric around the principle axis along which there is the

largest absolute strain rate.

In this section, primary consideration is given to the plane strain component

of  £ .  If desired, other components as derived in section 3a could be added on.

A quarter section of the model is shown in fig. 7; wedges of rigid material are

symmetric about  the   (2)  axis. (This model can therefore be called the "wedge"

model.)  An approximate velocity field is constructed which allows for the rigid-

plastic boundary, and is of the form of eqn. 2.19.  4  is the angle of the rigid-

plastic boundary to the (2) axis, and takes on its optimum value (4 )  when  U
opt

is minimized for a given  E .  (The minimization is carried out numerically.)

Stresses are calculated via eqns. 2.21.

This formulation leads  to some interesting numerical results, but Aoes  not

lead to concise derived functional forms like eqns. 3.18 and 3.19.  Because of this,
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much detail of the type given in section 3a will not appear here.  At the end of

the section, an empirical functional form for the yield criterion will be pre-

sented which has some success in fitting the numerical data.

Consider the model in fig. 7.  Boundary velocity is specified at  a=0  and

71/2., in terms of the boundary velocities  Vl  and V2 . The general procedure

is to find the microscopic velocity field in terms of  Vl ' V2 ' and  4 , then to

use eqn. 2.2 to obtain  Vl  and  V2  for a given  i and  4.  0  is then varied

to locate .0 .  As before, a yield locus results when  E  is calculated
opt

(eqn. 2,21) for a range of  5 .

The microscopic velocity field is constructed as follows:  Start with general

series solutions which obey the necessary symmetry conditions about the (1) axis

(a=0) .

v     amrmcos(nma)  ,    va  = dmrmsin(nma) (3.22)r
sum over the  m

(m      is   both an index  and an exponent. ) Apply incompressibility, specialized  to

plane strain.
a

v +1(v +v)=0+dm=-(m+1)n  . (3.23)
r,r r a,a  r

Equations 3.22 thus become
a

vr = amrm cos (nma), va = - (m + 1) nm rm sin (nma) . (3.24)
m

The rigid-plastic boundary requires that  vr  and  va  be independent of r  at

IT

a=F-  Terms with  m= 0 obviously meet this condition. Because sin (x)

and cos (x) are never both zero for the same value of  x , meeting this condition

for     m 95 0 requires   that the coefficient of either      sin   (nma)      or      cos   (nma)

vanish  for each value  of    m   .   This is fulfilled nontrivially  for    a  it 0    only
then  m = -1  .  Equations 3.24 thus become
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vr = ao cos (noa) + a_lr-1 cos (n-la) , n_1 = 1120 , va = - E' sin (noa) (3.25)
The next step is to determine  n ,a , and a-1  in' terms of  Vl  and  V2 . .The

process is simplified by the following changes of variable:

a a
N      -1 N -1

V =V b
,  V2   =  V2b      ,   AO  = " VN   ,   A-1=  VN- 2-

· (3.26)11
21

The boundary conditions then give, using eqns. 3.25

at fr=b,1 vr   =   V b  +  VN   *  A  VN  +   A     VN            (a)1 0 2 -1 1
la=o J

(3.27)

I.f -,1
at r=b,   1 vr = V b cos (*) + cos (0) = Aocos [no( - - 111)]  (b)

9,         V b   sin    (0)   +   sin    (111)   =  -n'sin   [no( -  -   *)]    (c)0

For a given  4 , eqns. 3.27 b and c can be solved numerically for  n   and  A  .

Note   that     A       is a function  of     *     only,   and   not   of     V      and     V  .    A-1    is,

from eqn. 3.27a, expressible in terms of  A(,V ,  and  V  .

Using  A  as defined in eqn. 3.1Od,  X can now be written as

N                N -1/2 Ao N

vr = b[AaV2cos(noa) + A- VIA    cos<n_la)]  ,   va = -b n  V2sin(naa) . (3.28)

For a given  * , vr  and  va are linear functions of V   and  V  . Noting

that the rigid section has the velocity field

vr  =  V   sin  (a),     va  =  V   cos  (a) , (3.29)

a linear homogeneous relationship between     IN     and     S (for constant   *)   can   be

obtained via eqn. 2.2. (The surface integral in eqn. 2.2 is, of course, taken

over both the rigid and the plastic sections.) VN, b S,  and thus  W  are

derivable from  E  for a given  0.  A numerical procedure then locates  W
- min

and  0
opt
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It is assumed that the yield function for this type of flow field takes

a general form similar to that in the previous section:

2          -

0=T +r-(f,T ) =0, (3.30)
eqv YY

where   3f   is some function. Therefore, for plano strain deformation,

T" =0+T    = |T   -T | (3.31)
33 eqv

' 22    11'

so yield loci for plane strain can be calculated without computing the  Ti3 .

These yield loci are shown in figs. 8.  In comparing these curves with

those obtained for fully plastic flow, it is immediately apparent that the

wedge model gives a more negative slope in the lower range of T .  By theYY

normal flow rule, the wedge model thus predicts more dilatation in this range.

Considering that the effect of a rigid wedge would be to inhibit contraction

in the (1) direction (see fig. 7), this is reasonable.  The wedge yield loci

have the desirable property of convexity to the origin (see section 2).

Given the same matrix material and void geometry and the same boundary

value problem, each type of yield function will give a different solution.

The correct choice is the solution which gives the best uoper bound (the lowest

dissipation).  This choice should also reflect which tvpe of microscopic velocity

field more closely resembles the actual field.  Its point in stress space (on the

"correct" yield function)   will lie closer   to the origin   than the competing   solu-

tion.  Because the curves in fig. 8b intersect, a preferred yield locus over

all stress space would consist of segments of the wedge and fully plastic yield

functions.

The flow direction predicted (via normality) by the actual yield locus

should obey the following symmetry conditions.  For zero biaxial stress (T  =0),YY

there should be no dilatation  (E  =0) , and for an axisymmetric stress state, the
YY

flow should also be axisymmetric.  (In plane strain,n, the latter corresponds  to
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T    = 0. See eqn. 3.21.) These two conditions on the yield loci are satisfied
eqv

by the fully plastic model, but not by the inherently asymmetric wedge model.             1

Therefore, if the approximate fully plastic yield function dominates (is closer

to the origin) at T = 0  and at T = 0 , the models gain credibility.
YY eqv

This is indeed the case over the entire range of  f  when the yield locus

which resulted from the refined fully plastic flow field (eqn. 3.19) is used,

but is not the case for the unrefined yield locus (eqn. 3.18).  The importance

of a refinement procedure is thus underscored.  Note that the wedge flow field

was also refined by varying the angle of the rigid-plastic boundary.

As noted previously, no functional form for the yield locus emerges from

calculations using the wedge flow field.  However, some success has been

achieved in fitting the following empirical form to the data:

0=0= T2qv - [BO + BlTGH + 82T H] ' TGH E 3. TY¥ (3.32)

The coefficients  B  B   and B2 are constant for a given  f . They were determined0' 1'

by fitting eqn. 3.32 to three numerical data points, spaced as evenly as possible

over the computed yield locus.  See figure 9a.

For vhlues of  f  between those for which numerical data is available,

approximate yield curves can be obtained by interpolation of the  B   over  f.i

Figure 9b shows the camputed values of  B ,Bl'  and  82  as functions of  f , with

solid lines showing the linear interpolation.

In a paper by Nagpal, McClintock, Berg, and Subhuti [13], plane strain slip

line solutions for bands of evenly spaced cylindrical cavities (long axis in the

plane strain direction) are developed.  The cross sections of the cavities con-

sidered included slits at various angles, and circular holes.  The bands have
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zero extension in the transverse direction, a result of a fracture criterion being

investigated there.  For their cylindrical cavities with circular cross sections,

an analogy can be made to the cylindrical cavity models developed here.  The

slip line solutions are done for various ratios of shear traction to normal

traction (on the band), so with a bit of manipulation, the results generated here

can be compared directly with theirs.  The counterclockwise rotation from prin-

ciple axes to axes in which  E  =0  is given by11

tan2   (e)   =   -   11
. (3.33)

22

Then, where the superscript * denotes quantities in coordinates reached by that

rotation, and subscripts  "n" and "S" denote "normal" and "shear",

+               2                         2
E =E = sin (0)I   + cos (e)En 22 11           22

(3.34)

*
E =E = sin (0) cos (0) (E  -E  )
s 21 11  22

Any comparison of results require an interpretation of the geometric para-

meters in ref. [13] in terms of void volume fraction  f .  Their parameters are

P , the void radius, and  L , half the intervoid spacing.  Extending their one

dimensional void array into a two dimensional square array, and considering the

two most likely band directions (horizontal and diagonal directions in the

square array), one can say that

4  ff   S    1         f   -   1  „    (P) 2 . (3.35)2' 8L
4L        2L

The intermediate value is used in the comparisons.

There are three types of data sets in fig. 10.  The points connected by

solid lines and denoted by values of  P/L  are from the slip line model.  The

dashed lines and the unconnected points represent fully plastic and wedge yield
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functions respectively, transformed via eqns. 3.34.  Note that

.  . 0.123, .38 1r (PL·) 2
= 0.0178

(3.36)

"   0.208       "     0.051 = 0.05

"   0.50 " 0.294 = 0.30

As   can   be   seen   from   fig.    10, the wedge yield - locus    is   a much better »match

than the fully plastic yield locus to the results of the slip line model,

particularly in slope. (Note that the interpretation of  f  in terms of  P/L

is rather arbitrary, 'and could be changed considerably.) The slbpe is the most

important factor, because the direction   of      £ is determined via normality.

For this reason, the similarity in slope of the slip line and wedge yield loci

is particularly satisfying, and helps to justify the development of the wedge

model.
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4a.  Spherical Voids, Fully Plastic Flow

This void geometry, shown   in   fig.  3  ., is meant to represent a' limit  of  void

shape different from the long circular cylinder.  Voids of spheroidal shape can

result from decohesion or breakage of similarly shaped second phases during de-

formation [1-6].  Nucleation without second phases has also been seen to occur at

grain boundary misfits due to straining [18].  Sintered compacts of metal powder

can be specially prepared so that they contain approximately equiaxed voids [19,20].

Voids can also be present by accident, through faulty processing.

Many parts of this analysis are similar to parts of section 3a.  The spherical

geometry is simpler to work with than the cylindrical geometry because there are no

preferred axes.  A refinement procedure analogous to that carried out for the cyl-

inder was carried out for the sphere; in contrast, little change in the calculated

yield loci resulted.  For this reason, a refinement procedure will not be discussed

here.

Because there are no preferred directions, the approximate microscopic velocity

field will be broken up into two parts (as in ref. [9]); shape change at constant

volume  (vs) , and volume change at constant shape  (xv) .  The total field is then
N

S V
V  =  V +V (4.1)
r\* -       N

The  £ field calculated from  X  must, as before, be incompressible, and  X must

meet external boundary conditions put in terms of the  E.. .1]

v. 1 E..x.| (cartesi-an words.) (412)

  S  11 1  S

This is the same type of boundary condition used for the fully plastic cylindrical

model.  It can be met by a simple incompressible flow field which relates  ss  to

 '     (the   deviatoric   part   of   £)   and         to      Ekk    :
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vi     i:.x. 4
:s.

i: . ,         vy          ..5k 2                v            
  v

1 1 1    11       il         r      3   2  '   v
e     V*     Or

(4.3)

+A v  = -1 (b·)3f       .v      •v       liv  =   v= :v 0= -26 = -26
rr 3  r kk 00      00

' re   r$    00

Adding the two components of  E  gives4

  ,       f h (4.4)5    is + iv  , iii ij   3  kkij

In spherical coordinates,

3

h       -2( )      -2h
-2h h..|        0  ,       (4.5)rr                   00        00

'
1] 1

litj

and in cartesian coordinates,

3b          2      222
h.. (6.. - 3n.n.)(-) r X  +X  +X
11        11      1]  r                   1    2     3

(4.6)X.
1

n. cartesian components of unit normal to
1 r

sphere of radius  r

Carrying out eqn. 2.15 for this simple  £  field, and separating into devia-

toric and hydrostatic components gives

lf
r.·   fvsii(i)dV , r -  I   s     (E)h-    dV . (4.7)
11 nn V I  kf - -1<2

'V

Using  s   =0  and eqn. 4.5, one can writenn

E                 (£)h  dV . (4.7)11 3
nn           V  J v  2  Srr  -    rr

Equations 4.7 can be solved approximately in a manner very similar to that used

for the fully plastic cylindrical model.  As before, a   is presumed constant with

respect to geometry.

The calculations are done in detail in ref. [17], and were originally suggested

in ref. [22].  Some of the intermediate expressions which are similar to those in

the cylindrical example are
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J.. I..= f :.f:. -21f ]j' (b)3 + 2 f£2 (b·)6 -  A= ( )3 ,  x= A-1
11 13 13 1] nn rr r 3  nn r   '

1 f 1  f  fldV =, r2sin($)d$dedr  E  r2dndr  ,    -I d V. = -    I dkdn (4.8)V JV 4/  J n  J f
1

.'    f2   . 1    . '   1-2
P=E   1-E  E  Irrl3  ki kij    '     nudn  =  0  .n i s a solid angle.

As before, the integrands are expanded into polynomials in  E ; the multiple

integrals can then be carried out approximately.  Equations similar to 5.18 and

3.19 are the result.  To first order in  p , the yield function for the spherical

geometry and this simple flow field is

2                         1                         2                    ·
5     T    + 2f cosh(- T ) -1-f      0                 (4.9)

eqv 2  nn

This yield function is shown in fig. 11, along with a solution to second order

in  E  and some data points resulting from numerical solution of the stress inte-

grals.  It can be seen that the first order solution is very close to the second

order solution.  Unlike the case of the cylinder, this yield function appears

rather·insensitive to the direction of  5 ·  Given the geometric. isotropy of the

model, this is not unexpected.
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4b.  Spherical Voids - Flow with Rigid Section

The model used here is a spherical analog of the model used in section 3b,

and is limited to axisymmetric deformation.  The rigid sections are idealized as

truncated circular cones capped with spherical sections, whose axes coincide with

the tensile axis.  4  is the angle between the tensile axis and the cone wall,

and is used to optimize the flow field via minimization of  W .  See fig. 4.

The form of the calculations for this model is very similar to that in sec-

tion 3a, as are the solutions.  Again, the calculations do not lead to a derived

functional form, but there is some success in fitting the numerical results to an

equation similar in form to eqn. 3.32.

In the model, the (3) axis is the tensile direction, and the (1) and (2)

axes are the transverse directions which are equivalent due to symmetry. Figure 7

can  therefore  be  used to illustrate important quantities,  once the index  "3"  re-

places the index  "2".

Because the similarities are so great, the reader should refer to section 3b

(or ref. [17])for details of the calculation.  Some differences with the cylindri-

cal model should, however, be noted.  These include the incompressibility equation

for the spherical geometry (with axial symmetry):

rv + [2v  -v  tan(a) +v   ]  =  0 . (4.10)
r,r r a a,Ot

When eqns. 3.22 are inserted, the terms  sin(n a) tan(a)  appear.  Nontrivialm

equations result only for special values of  nm ; where trigonometric identities

SUch as
(4.11)

sin(Oa) tan(a) =1- cos(2a) ,   sin(4a) tan(a) = -1+2 cos(2a) - cos(#a)

aoply.  (In the calculations, nm  is taken no larger than 4.)  Because of this, v

takes on a slightly different form than in the cylindrical case.
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As before, the  T  field is calculated via eqn. 2.21.  The yield function is

assumed to have the form

0     T2   + 7(f,TH )     0  ,                  (4.12)eqv

where, due to axial symmetry,

11
T   |T  T |
eqv 33 -  11' ' TH  ET Tkk  =  3 (2Tll + T33) (4.13)

Values of  T     vs.  TH  for several values of  f  are shown in fig. 12, and com-
eqv

pared with yield functions derived from fully plastic flow fields.  It should be

noted that the symmetry arguments cited in section 3b do not apply in the spherical

case.  It is therefore not expected that the fully plastic yield function will dom-

inate at  TH = 0  for all values of  f .  (It does dominate, however, for very

small values of  f ;  this is to be expected.)  Also note that the yield loci which

result from the "rigid cone" model are convex.

The yield loci derived from the rigid cone model can also be fit to eqn. 3.32.

Calfulated values of  B  , Bl , and  82  are shown in fig. 13.
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Summary

A method has been developed for calculating approximate yield loci via an

upper bound approach for porous ductile materials.  This method was applied to

material models with simplified matrix and void geometries, and with two different

types of matrix flow field approximations.  The results were two different types

of upper bound yield functions.  Comparison with somewhat similar work by other

authors was encouraging.

The approximate yield functions developed here show the important property of

plastic dilatation; a property not evident in ordinary incompressible plasticity

formulations.  Because the dilatancy increases with the hydrostatic component of

stress, the yield functions (and flow rules) developed here could lead to better

understanding of plastic behavior in regions of high hydrostatic stress (e.g.,

necks in sheets and bars, and near the tips of cracks and notches).

As examined here, plastic dilatation requires that some porosity be present.

When this is not initially the case, porosity can sometimes be nucleated during

straining at second phases in a ductile matrix or at grain boundary misfits.

Nucleation at second phases is examined in ref. [17], and will be discussed in

the next paper of this series.

kl
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Appendix - The Normal Flow Rule and Convexity

The normal flow rule arises from the definition .of  E  (eqn. 2.15) and, the

fact that the dissipation  W  is homogeneous of degree one in S  (eqn. 2.14).

These lead to

6I..E.. = 0 (A.1)
1] 1J

for  6f  emanating from  S  on the yield surface, and directed along the yield

surface.  This means that the components of E  are proportional to the com-

ponents of the normal to the yield surface in stress·space, i.e.,

3*E..=A-  - (A.2)
11     3 E..

1J

A  is a macroscopic scalar, determined either by boundary conditions in

E    ,   or     dE     and the hardening behavior  o f the aggregate.      See   fig.   14a.

Convexity as well as normality can be proven when a maximum plastic work

principle (eqns. 2.8, 2.17 and 2.18) exists.  The proof is illustrated in

fig. 14b,where a concavity in the yield surface is shown to violate the principle.

Now; consider the yield functions shown in figs. 5,6,8,9,11, and 12,

where the axes are functions of stress other than the tensor components.  The

questions to be discussed below are when and how the principles of convexity

and normality apply to yield functions expressed in terms of those functions

of stress.

In the general case, the answer lies in the proofs of convexity and nor-

mality in chapter 2.  They will work for any strain rate measure in which  W

is homogeneous of degree one, when the stress measures are work conjugates to

those strain rate measures.  Acceptible stress and strain rate measures can be

found by manipulating the expression for  W .  For example:



„

- 37.-

1    •W= E..E.. = (I' +l E 6 ) (E  +l E 6..) = .E:.E: + -I E (A.3)
1] 1] ij  3 kk ij ij  3 nn 11 11 ij   3  kk nn

For the special case of axially symmetric distributions of the principle values

of  I  and  E , this becomes-

W=E E +  1- I    E     .  where  E         =   (- E' -E ) (A.4)
2 •. ·  1/2

eqv  eqv       3     kk nn' eqv 3  ij ij

The normal flow rule then gives

fi    - A
35

tn = A ,(1,   ) .               (A. 5)eqv 3/     '
eqv 3  kk

The flow rule is also valid in terms of I , with the factor  a   taken account0

of in  A :
»

E    = A  31   , etc. (A.6)
eqv     3T

-                                 eqv

Referring to figs. 11 and 12, the ratios of the strain rate measures is equal

to the slope of the normal to the yield function:

i      dT
eqv - eqv (A.7)

1
dT ,  TH  E  3 Tkkf        H   normal tonn

1=0

A very simple interpretation of normality thus results for the spherical void

model  when     E     and    5     are  axisymmetric.

Suppose that the yield function is constrained to be a function of the

first two stress invariants, as in eqns. 3.18, 3.19, and 3.32 (the approximate

yield function for the spherical model):

F = F (T .   T      .f)   = 0 (A.8)
eqv' kk'



- 38 -

Applying the normal flow rule then gives

A. .   =  A         3      1 Tii_  +  --N-  6
11 13T 2 T 3T    ij

l eqv eqv     kk

(A.9)

+i = A 3* E   = A 30
eqv     3T     ' nn 3T    o

eqv              H

The simple interpretation is thus invariant to E when eqn. A.8 is true.

The approximate yield functions derived for the cylindrical model are

expressed in terms of T and  T ;T is used in place of T because
eqv YY YY kk

it is a more logical choice as the driving force for dilation in the cylindrical

geometry.  Equation A.3 can apply in this situation when the stress is con-

strained such that T is expressible in terms of T . such as for plane
YY                              kk '

stress (T = 0, i = 1, 3).  When the yield function takes the formi3

* = *(T ,  T     ,f)  = 0 (A.10)
eqv YY

plane strain is also in this category because by normality ,

1E   =0+T'  =0+ T   =-T    T   =3 (A.11)33        33        33   2  Ty'  kk   2 Try  '

Equation A.3 can then be written as follows, when  T >T and  E  >E
22 11 22 11

W=a   FT    (E    -E) +A T E  1
o   eqv    22       11       2   yy rs'

where  (E       -  E     )  =   (22       _  1 f  1/2 (A.12)
22 11 L eqv 9 YYJ

so,    2      -  1 E2   1/2 =A   30     E   =A    35
L eqv 9         YYJ                                    3 T •ry 3(1 T   )eqv

2  YY
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These results can also be obtained from eqn. A.10 using the normal flow rule

(as in eqns. A.8 and A.9), provided that it is recognized that

3T
_Il = O (A.13)3T

33
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SPHERICAL VOID MODEL
FLOW WITH RIGID SECTION
COEFFICIENTS IN YIELD FUNCTION
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