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The design basis loss of coolant accident (LOCA) for light water nuclear
reactors postulates a major break in a coolant Tine., Both the response of the
reactor vessel and its mechanical system as well as the response of the pressure

suppression containment system exterior to the pressure vessel are of primary

interest following such an event. The ability to determine system response and
the suitability of particular mechanical and structural design features in both
cases is predicted on the completeness with which the dynamic environment created
in the various compartments is treated.

In January of 1976, the Lawrence Livermore Laboratory {LLL) began a program
for the NRC (RSR) [1] to provide a sample problem solution activity which treats
by numerical analysis the air-steam-water syster flow implied by a LOCA. As a

basis and focal point for modeling, the program addressed itself to the pressure

suppression pool dynamics representative of the Mark I BWR. A visual represen-
tation of the program activities to date is shown in Figure 1.
It has been made ciear by the RSR that the purpose of this sample probiem

activity is to improve understanding of pressure suppression pool dynamics at

early times. For the initiai air-water problem activity a Laboratory production
code, the Eulerian framed MAITAI, already on our time-shared CDC7600 [2] has
been used.

The MAITAI computer code is a two-dimensional, multi-material Eulerian

hydrodynamic code written in cylindrical coordinates. The code contains a

*This work was performed under the auspices of the U.S. Energy Reseairch and
Development Administration, under contract No. W-7405-Eng-48.
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variety of equations-of-state including air and water. In addition,
accompanying the code is an extensive package of graphics post-processers.
A summary of MAITAI is shown in Figure 2.

With this code; 1) effective bubble growth phenomenology has been
obtained in axisymmetric problems, (Figures 3-6) as well as in two-dimensional
models of the thvee-dimensional tarus with single and multiple downcomers
(Figures 7-12), and 2) an engineering estimation of the effects of dowricomer
fi11 level has been cbtained (Figures 13-16).

Recently we have undertaken to provide a benchmark experiment to provide
code authentication. The experiment, compared to the Peachbottom BWR, exhibits
a nominal scale factor of 38.4 and basically consist of a spherical flask
containing a single downcomer. This was an air-only test with bubble dynamics
photographed at 900 frames par second. The problem has a driving pressure (pa)
of two atmospheres and a wet well pressure (pi) of one atmosphere. Details
are givan in Figures 17 to 20. We are currently in the process of normalizing
the MAITAI code to this experiment.

In summary, substantial progress has been made into the understanding
and calculational representation of suppression pool dynamircs. With the

benchmark experiment complete, plant particular analyses is close at hend,
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[1] Mfuclear Regulatory Research Order No. 60-76-021, January 5, 1376.

(2] W. H. McMaster, "MAITAI: A Two-Dicensional fulerian Hydrodynamic Code,"”
I'CRL in preparation, LLL, 1976.
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Figure 2. THE MAITAI CODE PACKAGE

HAITAT
® TWO-DIMENSIONAL EULERIAN TN CYLINGRICAL COORDINATES.
® MOMENTUM, MASS, ENERGY CONSERVATION
® INVISCID
® CCMPRESSTBLE
® MULTIPLE MATERIAL {UP TO 5)

@ NUMEROUS EQUATIONS-OF-STATE
{INCLUDING AIR AND WATER)

GRAPHICS PQST-PROCESSING
® PRESSURE AND DENSITY DOT PLOTS
& PRESSURE CONTOUR PLOTS
® VELOCITY VECTOR PLOTS

@ POOL BOUMDARY LDAD SUMMARIES



Figure 3. Axisymmetric Cylindrical Tank Problem at @. ms

{Density Dot Plot)



Axisymmetric Cylindrical Tank Problem at 1. ms

Figure 4,

(Density Dot Plot)
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Figure 5.

Axisymmetric Cytindrical Tank Probiem at 2. ms

{Density Dot Plot)




Figure 6.
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Axisymmetric Cylindrical Tank Problem at 3.5 ms

(Density Dot Plot)
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Off - Axis Single Downcomer Problem at 0. ms

Figure 7.

{Density Dot Plot)




Figuve 8.
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0ff - Axis Single Dow.comer Problem at 1. ms

{Density Dot Plot)




Figure 9.

0ff - Axis Single Downcomer Problem at 2. ms

{Density Dot Plot}




0ff - Axis Double Downcomer Problem at 0. ms

Figure 10.

(Density Dot Plot)
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Figure 11. O0ff - Axjs Double Downcomer Problem at 1. ms

P (Density Dot Plot)
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. Figure 12, O0ff - Axis Double Downcomer Problem at 2. ms

(Density Dot Plot)

°
K
5
#
¥
t
)
H



'

i
1
i

Pelative
Downcomer
Clearina
Tine

Figure i3.

8l B
L 0] |
6] J

2L . 4
yd
s
N ; d
0 L l L : . Il L L L
#] 2 N B 9 1.0

Pelative F:ii (v

-
-t

Relative Downcomer Clearinn Tirme as a Function

of Fill Level



DowWN K‘.’OM ER
EMPTY
3
/3
[TINN

®
t
onngo

ORIGINAL HEIGHT

MAX . Poo L HEIGHT
=
1

RELATIVE TIME

Fiqure 14, Telt{ve Pnol Swell as & Function :€ 77 Lav-l



1.0 e ST T T T ’I’/}/ Full
L X .
- 2/3
,VY’ -7
81 N P -
Normalized ¥ -
Peak
Down- .6 - -
load
(F/Fm) b -
4 -
{ 2 - 4
- - :
‘f 0 ] i 1 1 ] I 11 !
: 0 2 4 .6 g 1.0 : ;

Relative Oowncomer Fill Level

Fiqure 15. Normalized Peak Download as a Function of Fill Level !




1.0 . T T T T T f /—‘Q Full
- /O 2/3 -
-
8| 015 i
= —_
® '
Relative Time .6k -
of Peak
Download ’_ 4
4 |
2 e
L i i 1 1 1 1 1 L
0 2 4 .6 8 1.0

Relative Downcomer Clear Time

Figure 16. Time of Peak Download Vs. Vent Clear Time
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