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Abstract

This paper is concerned with an analysis of strain lecalization in ductile
crystals deforming by single slip. The plastic flow is modelled as rate-in-
sensitive and localization, viewed as a bifurcation from a homogeneous deforma-
tion wode to one which is concentrated in a narrow "shear band”, is found to
be possible only when the plastic hardening modulus for the slip system has
fallen to a certain critical value, hﬂr , whare hcr is senzitive to the
precise form of the constitutive law governing incremental shear, We develop
the general form of this constitutive law, incorporating within it the
pessibility of deviations from the Schmid rule of a critical resclved shear
siress, and we show that hcr may in fact be positive when there are devlations
from the Schmid rule. It is suppested that micromechanical processes such as
Yeross-51ip" in crystals provide specific cases for which strasses other than
the Schmid stress may influence plastic response and, further, thare is an
experimental assoclation of localization with the onset of large amounts of
cross-slip. Thus we give the specific form of hcr for a constitutive model
that corresponds to the non-Schmid effects in cross-slip, and we develon a
tdislocation model of the process from which we estimate the magnirude of the
parameters involved. The work supports the notion that localization can occur
with positive strainhardening, hcr » 0 , and the often invoked notions of the
attainment of an ideally plastic or strain softening state for localizaticn

may be unnecessary.
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1. Intredustion

There are numerous examples in which plastic flow in crystals gives way
_from a more or less homogeneous mode of deformation to ohe that is heavily
¢oncentrated in a narrow shear band. This localization may occur either before
or after the onmset of necking in a tension test, and iz often a direct pre-
cursor to ductile rupture through profute void formation and growth within the
hand., Indsed, in crystals which do not cleave, it generally sesms that frac-
ture occurs either by necking dosm to a “chisel edge™ separation or by rupture
within such concentrated shear zones, In this articls wa explore the precise
conditionis that allow an assumed homogeneous pattern of plastic flow, in a
rate-insensitive crystal undergoing z2ingle 3lip, to develop bands of localized
plaztic deformation.

Cur results are given in Sectiom 3, to follow, and take the form of
expressions for the critical value, 11‘:r , of the plastis straln hardening
modulus h , in that locslizetion cccurs when b has fallen in magnitude to
h_ ., As revealed in z preliminary analysis of the problem by Rize (1976),

cr

h_ . iz dependent on constitutive parameters which correspond to deviationms
from the Schmid rule of a eritical resolved shear stressg, as a eriterion for
eontinued plastic shearing. Deviations from the Schmid rule are specific
examples of deviations from the "normality Flow rule® of continuum plasticity,
and it has recently been shown {Rudnicki and Bice, 1975; Rice, 1976} that
such deviations from normality allew the pessibility of a positive, versus

an essentially zero (l.e., non-hardening state) or negative {i.s., strain
softening state), value of hcr at lecalizaticn.

In the next sub-section we discuss some perspectives on localized flow

which explain our approach in light of existing empiricism and analyses, and
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follow, in Seetion 2, with a precise formularion of the incremental consti-
tutive law for single slip. This enables us ts caleulats no in Seetion 3,
and in Section 4 we introduce a dislocation model for non-Schmid effects at
the enset of cross slip in feor crystals, as a means of estimating some of the
continuum parameters on which k. is found to depend.

1.1 Perspectives on localized flow

Discussions of localized plastic deformation in the experimental
literature have generally aszociated shear locallizations with traction maxima,
whether brought on by strain softening (=.g., Argen, 1973, Hornbegen and Gahr,
1375), adiabatic heating effects (Chin, Hosford and Rackofan, L984) or the
attainpment of ideal or non-hardening plastic states {Argon, 1l-73;Lutjering and
WHeissman, 1970), There are many examples which suggest such associations,

For example, tha shearing of coharent precipitates in age hardened alloys of
aluminum (Calabrese and Laird, 1974}, iron (Hornbogen and Gahpy, 1975), nickel
{(Gell and Lewverant, 1988) and titanium (Blackburn and Williams, 1969) seems
to be greatly augmented within localized sghear bandz ag illustrated in the
micregraphs of Blackburn and Williams (1969), Radiation damaged materials
are observed to devalop soft "channels" with easy slip caused by the sweeping
up of point dafect debris by moving dislecations (e.,g2., Wechaler, 1973).
Unstable dislocation barriers, which are presumed to break up following an
increase in testing temperature, lead to flow localization as reported in the
classiec work of Cottpell and Stokes (1955). These examplas among many others
have besn interpreted to sugpest that localization is in faet caused by
degradations in material strength, in the form of a loss of the materdals

workhardening capacity,
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In related studies, Jackson and Basinski (1967} uncovered somse interesting
examples of localized flow in pure copper tested for latent hardening. When
the crystals were sheared on slip planes other than the primary plane of pre-
straining, the initial deformation was concentrated in intense shear bands
which cccasionally propagated as Luders bands. Although these subsequently
slipped planes were only rarely observed to straln soften, they uwere
characterized by low workhardening rates. Howe and Elbaum (1961} tested
aluminum crystals at elevated temperatures where the workhardening rates often
approached zere and observed that the flow was decidedly non-uniferm, con-
sisting of coarse shear bands. The fact that these shear bands are, in many
cases, pepsistent lehds support to their association with material changes on
imperfections which lower the strength level or workhardening capacity. But
vhether or not persistence is actuzlly a result of ensuing substructural
changes in the post lecalized stata, rather than a manifestation of pre-
existing imperfections, is usually uwnknown. Indeed, there are important
examples for which explanations based on an approach to ideal plasticity or
strain softening do not s=em appropriate.

For example, Elam (1925) and later Xarnopp and Sachs (1928) found that
age hardened alloys of aluminum displayed pronounced shear instabilities
fellowing uniform deformation, Beevers and Honeycombe (1962}, followed by
Price and Kelly (1964), made careful studies of thiz phenemena and found that
the hands, which sometimes formed within diffuse necks, lesad directly to a
ductile shear type fracture, But Price and Kelly observed that these
localizations sceurred with inereasing leoad {positive workhardening),
identically in tengion and compracsiem, and thus without attendant ideal

plastic or non-workhardening states. Furthermore, they pointed out that the




bands, just after forming, were not persistent, altheugh continued straining

would induce rupture within them, Indeed, unloading and pelishing away the
glip steps followed by relsading cansed subsequent localization, but "... the
bands never occupied the same place as hefore polishing ..."

The situation in pure face centered cubic crystals may be similar,
Saimoto et al. {1985) found that crystals of purs copper fractured, aftar soms
diffuge necking, along shear bands whose pattern closely resembled the ideally
plastic slip line field given by Onat and Frager (1954) with its velocity and,
henece, plastic strain discontinuity. However, as showun by hardness probes,
the shear zones centained material that continususly hardaned and thus, in
this case, there did net saem to exist an ideally plastic state,

In view of the above superimental observations, it seems prudent to
examine the possibility that localized plastic deformation may, in some ciroum-
stances, arise for reasons sther than worksoftening or related local degradations
in strength. Specifically, we axplore, as stated previously, the possibility
that localization is the result of a constitutive instability and is predictable
from the prelocalized constitutrive law relating stress inorements To ftrain ina
crements. The basic mechanics ef this appreach to loealization was developed in
the context of finite elasticity by Hadamard (1903) and extendad to elastic-
plastic solids, modelled as rate-insensitive, by Thoﬁas {1951), Bi1l (1962) and
Mandel {(1966), Further, the specific calculations by Rudnicki and Rice (1975)
for frictional sclids, and by Rice {1976) for a wide clagsz of ductile materizl
models, ineluding single crystals, reveal that localizations can occur with
positive hardening when there are deviations from the normality flow role.

In the present context, it is well to note that sxperimental observations

link the onset of localization to the ease of cross glip or similar micremechanical
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processes that allow microscopic cbstacles to glip to be overcome. This
association with cross slip was suggested by Price and Kelly (1964) in their
work on aluminum alley crystals, apnd profuse cross slip has long been asso-
¢iated with the onset of the so-called stage III deformation, during which
coarse shear bands develop in pure single crystals {Cahn, 1951). As Rice
{1976) noted, ths stress-state dependence of conditions for the onset of
cross-slip should, in general, entail deviations from the Schmid rule of
eritical resolved shear stress, and hence from the normality flow rule. In
this sense there is a'strung'thecretical basis for a wider exploration of
cross-slip and like processes as a basis for lu;alination, via the destabilizing
effect of non-normality. He:explorE'this_cnnﬁecti#n here.

Cur materlals are considered to be explicitly fata insensitive with
pi?cewise linear incremental stress strain relations, As such, we preclude
from the present study not only strain rate effects but alse the possibility
that new physical mechanisms of deformaticn set-in abruptly and degrade the
strength, ¢Clearly there apre éasas where unstakls flow L= influenced by imper-
fections or initial non~uniformities of material properties, but these are
al;o omittaed fron present considerations. The localization criteria are
worked cut for an assumed class of waterials that essentially obey Schmid's
rule but display modest departures from it,

. Standard notations are used throughout., Bold face symbols denote tensors
or dyads, the order of which is inﬂigate& by the text. The magnitude

of & vector, such a3 E', or any of its components, such as b, ,Iis denut;d

as b or h4 and similarly for the elements of higher order tensors. The

summation convention is used and comma's imply differentiation with respect to

the corresponding spatial variable, e.g., tij ; atijfaxl . For brevity we
L
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use dots and deuble dots to indicate the Following products:

Bop = Pygny o 9797 Q4505
alse

B = P =0, ,F.

LB = Logiafax > 270 7 %3574k

2, Constitutive Relation for a Crystal Undergoing Single Slip

The constitutive relation governing an increment of deformation is
formulated in accord with the general analysis of crystalline slip by Hill
and Rige (1272), Hith reference te fig. 1, in the increm=at of time 4t an ;
element of the crystal deforms from the configuration at the lower left of
the figure te that at the upper right. The infinitesimal strain and rotation
of the element are ] dt and §g 8t , respectively, where [ is the symmatric
rate of stretching tensor and § the antisymmetric spin tensor. We observe

that the corresponding change of a line element &3 that connects matsrial

points of the crystal is
d{éx) = (DAt + Ddrkig {2.1)

and, further, that in terms of gradients of the velocity vector ¥ |

= « = ¥, - ¥, -
5 F Vi Y Y s Wy TV T Y9 2.2)

Mow, as illustrated in fig, ), the stpain D 4t and retation g dt ean
be realized by the following sequence: (i)} The material is given a plastic
shear relative to the lattice of amount dy under conditions for which lattice
orientations and spacings are heid fixed., This shear takes place on a Family
of crystal planes having the unit normal m , and has the direction of a unit

Hagn

vector & lying in one of the slip planes, so that the alteration of the
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material line element &x is
d{éx) = (dvami-dx . (2.3}

(ii} Mext, the lattice and materizl deform as one with the infiniteszimal strain

* %
I dt and rotation £ dt , accomplishing the further alteraticn
& 2
diéx) = (D dt + § dtl-dx {2.4}

of the line element. We refer to Qé and ﬂ* as the rates of lattice stretching
and spln, resgectively. In general, they are non-compatible and hence not
derivable from a velocity field.

Observing that deformation {2.1) is equivalent to the sum of (2.3} and

{2.4), 2nd defining ¥ by dy/dt , we have Taylor's (1938) relations

e .
B +Py , where 2B =4m+ms ,

am-m

{2.5)

a3 .
p=8 + 4y , where 2M

¥e assume that elastic response properties, phrased relative to divections em-
bedded in the latiice, are unaffected by slip. Then, following Hill and Rice

L]
{1972), the stress rate is related to ] by an expression of the kind

- * it
N + o tr[Q y = L=E . {2-5]

=]

#
Here g 1is the Cauchy {or "true"} stress tensor whereas E is its corotationai,

or Jaumann, rate formed on axes which spin with the lattice, Specifically,

g e & %

g =9 -2 g% R (2.7)
where @ is the ordinary time-rate of g following the material elevent, and

%
the Cartesian components of E dre tha ordinary time-rates of the components

f
¢f g on axes that rotate rigidiy at the lattice spin rate R . The trace
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operator tr{D’} gives D . . The tensor L (= Liiki} of incremental elastic

moduli is symmetric in the indices i,) amd %,% and, further, has the
symmetry

Lijkl = Lkiij (z2.8)

vhen a strain energy function exists for elastic responza,

We note in passing that the left side of (2,6) is the lattice-corotational rate
of Kirchhoff stress, defined as gpnfp (where p is mass density and Py its
walue in some reference state), when the reference state Is chosen 1o coincide
instantaneously with the current state.

i .
1 in terms of 2,1 and y by (2.5), the constitutive

%
Exprassing D

relatien {2.6) takes the form

..E +gtr{(R) =L :(D - ,I:,th (2.9)
where
' -1
P =P +L “:(igrge) (2.10)

. ¥ . . .l s
In this, g is the corotational stress rate formed on axes spinning with

the matarial (i.e., it is defined by the right side of (2.7) with £ replacing
E*], and [ "l is the inverse of L and has the same symnmetries in its indices
as does L irself,

The distinction between g' and P , pointed out sarlier by Hill and Rice
(1972}, is small and involves Ofg/ L) terms (where o andl are representative
values of stress and elastie moduluz) in comparisen to 0O(1l) . Hevertheless,
it i necessary to retain accuracy of the representation te this order if the
eritical hardening rate for leocalization is te be determined to within terms of

order g .,
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2.1 Plastic shearing with non-5chmid effects

The constitutive description is completed by specification of an expression
For v . MWe start with less than the necessary precizion in observing that
the usual deseription of the incremental slip relatiom, in accord with the

Schmid concept of a critical resclved sheer stress, is in the form

dy = ar /b ’ (2.11)

(when the slip system is at yield and subjected to an increment of stress
causing further yielding} where ar . is the imcrement of resolved shear
gtress and h  is the strain hardening medulus. This expression for dy must
be pefined and generalized in the following ways: (i) It is necessary to state

o
precisely how dtma iz to be related to a stress increment like E dt .

Different ways of computing &y {e.g., as an increment of "trus" or of
"nominal" or of some other kind of shear stress) lead to differences in the
0(a/ L} terms, in comparison to the 0{1l) terms, in this relation (Hill and
Rice, 1972); {ii) Next, as remarked in the Introduction, there are gocd reascns
te suspect that small departures from the Schmid description, in the sense that

stress increment components other than dr affect the shear dy , may Le

)
important to the explanation of critical conditions for localization as observed
experimentally.

We start with the non-Schmid effects and, letting £ be a unit vector

perpendicular to 4 and M in fig, ! sc that 4.m,2 form a right handed

triad, we write in place of (2.11)

¢

_1
dy = E-Eétmﬁ + u.&&-:l'rJM + umndfmm + nzzdfzz + Eu&zdtdz + Eumzdrmz} o (2,12}

Here esach « gives the decrement in the Schmid stress required for flow per unit



increase of the corresponding non-Schmid stress, and we will discuss in
Section 4 the physical origin of . and Sz in relation to the process
of cross-slip. TFurther, the relation of the dr's to E*dt that we shall
adopt will be given shortly, after considering some of the different possible
ways of specifying the Schmid increment dTm& .

In 311 of these ways we will take T in the form

-,[m = E-E-é’ (2.13}

where m and 4 are unit vectors at the current instant, put different vesulis
Fop dTma will arise acecording te how we choose the vectors édt and Eﬂt
identified in Fig. ¥. The most direct manner «of choosing these is parhaps to
reguire that 4 and B remain orthogonal unit vectors in the deformationm,

with & remaining in the slip plane as the plane rotates. It is then ele=

mentary to show that

32D + 88 - 805078 , (2.282)
ﬁ 5 -ﬂ-{gﬁ * ﬁ#] * E{E'Q#'m} » {z.1ub)
and the Schmid stress rate ;métidrm&fdt] is

-t
1

ma - TGRS+ MRQed v MRS

i * 13
mLE - D g+ gD

-1 f
+ E{E‘H ‘E - ﬁlp‘ tg}]ai . (2.14c)

A second alternative in defining the Schmid rate iz to esnvect the vector
4 with the lattice slip plane, so that its length does not remain constant,

and to choose M as the "peciprocal baze vector” normal to the deformed slip




plane:
. * & - ﬁ &
4=(p +8)s , m=-m(D +83} . {2.1%a,b}
This gives
- i i &
Tos = m{g -D g+ gL 3 (2.15¢)

for the Schmid rate and, following the discussion of an analcgous case by Mill
and Rice (1972), we observe that dtmdll can then be written ﬂu: where uz

is a mixed component of the tensor ¢ on convected coordinates which deform
with the lattice. A third cheice is to again convect 4 with the lattice
and to choose m s=o that it is normal to the deformed =slip plane, but of a

length which increases in proportion to glip plane area. Then

* & i + L 1 * .
4=(0 +2)4 , m=-m(D +8 }+mte(D) {2.16a,b)

and

g © pIgt 4 gte(@) - Pog + g0 )4 (2.16e)

In this case dr iz the increment in the product of nominal shead stress on

s
the 3lip plane and lattice strateh ratio in the slip direction., The case is of
special interest because it is this very interpretation of the Schmid stress
increment dTm& which Rice (2971) has shown to lead precisaly‘EE normality in
work conjugate stress and strain variables. Also, as remarked by Hill and

Rice (1972), this eupression for drt canp alternatively be interpreted as

na
the increment in a mixed component of Kirchhoff stress on convected coordinates,
GI'I'I
4
There are unlimited further generalizations of the Schmid stress, aml as

analogous to d shove.

a fourth and final illustration we again require 4 and m to be orthogonal
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unit vectors hut simply rotate them rigidly at the lattica spin rate:

. i
A=24 ,

o
=2 -m . {21.7a,b)

(e 4

In thiz ease

Tos = mgs . (2.17¢)

All tha above axprassions for the Schmid rate have in common the feature

that

. T o o
Ty = M°[3 ¢+ g tr(D )14 + g:ifiD (2,18

where H iz some fourth-rank tensor that depends on the precise way In which
tha base vectors 4 and M deform with the lattice, and which has components

that are 0O(l). By inverting (2,8), all such rates T can be written in

ms
tha form
- - I+
Ty = (87 + gilicf Y08+ g toip 13
= (B + gtH: LIS # g te (D) (2.18)

where, in the last version of the expression, we have obgerved that the bracksted
tern iz gymmetric and have therefore replaced 4m by the plasztic flow direction
tenser P of (2.5).

We examine now the specifisation of the -various non-Schmid stress incre-
ments of (2.12). Each of thess incrementz is multiplied by an o . If the
a's ara small fractions of unity, there will be contributions of negligibly
small size, of O(ag/l) in comparison to terms of O(L) or 0(a) or
Ole/L ) , made to the bracketed term of (2.12)} by spacifying precisely (e.g.,
at the lLevel of choosing a specific H iIn {2.19))the meaning te be given to the

rates of pon~Schmid strasses like Tys * Tom o oS On the other hand, looking
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ahead to cur final result for h

., at lecalization, if the a'z are not
crit —

small the correction due to retention of the 0{a/] ) term= in the non-Schmid
stress rates would be negligible anyway. This is a fortupate circumstance,
because cur current physical understanding of erystalline slip barely enables
a definitive choice of the a's , much less a precise specification of the
non-Schmid stress rates.- Indeed, even the precise form of the Schmid rate
;mﬁ cannat be specified, according to our present understanding of crystalline
siip, although in this case we are helped by the remarkable fact that our
result for hr:rit s to the order of accuracy that we determine it, turns out
to be independent of how we choose } .

In view of the above remarks it suffices to write expressions of the

type ; z - EIEE# + g tr{ﬂ%}]'i . ;ﬁﬁ - Q'EE* +g tr{gﬁ}]'i , atc. for the

"
&
non=5¢chmid stress increments, since precision of the O{oD ) terms is

unnecessary. Thus, using (2.19}, the plastic shear rate of (2.12) can be

written
» E b
y=2q:d +gtr)] (2.20)
where
-1
Q=F ol 48 {2.21)

and where the tensor o of non-Schmid effects, chosen without loss of generality
to be symmetric, has the matrix of components on axes alipned with the triagd

5, it, £ and ordered in the same sense,

F iy
; u-ﬁﬂ 0 u&z
m= 0 u.m uII'IZ f 2.22)
%z Omz P2z
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The slastic constitutive relation {2.68) and the first of {2.5) may now

be called upon to rewpite {2.20) es

*

Y

1 -
= Q:4 BBV
and from this we may solve for ; as
. 1l
Y = W Qt_!r:E . {2.23)

Finally, by substituting this into (2.9} we obtain the form of the constitutive

rate relation needed for the localization analysis,

:D , {2,29)

. ¢ P 0L )
g +gtr(D)=|L-
h+ g:L:P

T

where P 1s given by (2.10), P by (2.5}, and Q by (2.21). &Also, as
suggested above, whan the tensor g of non-Schmid effects is chosen as zero
and when H of (2.18) iz chesen to give agreement with (2,16c), one may
varify that 0 = E‘ g0 that the bracketed tensor of constitutive moduli in

{(2.24) is then said to exhibit "normality."

a, tonditions for Localization

Hill (1962) has presentad the gensral theory of hifurcation of a homogeneous
elastic-plastic flow field into a band of localized deformation {or, in Bada-
mard's (1903) terminclogy, into a "stationary discontinuity")}., There is first
the kinematical restrictlon that for localization in a thin planar band of unit
normal p (see fig. 2) the velocity gradient field vi o inside the band

can differ from that outside, hamely vg 5 onmly by an expression of the form
L]

T gD, . (3.1)
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In addition, there is the regquirement of continuing equilibrium that

- Ll =] -
nidij - niaij = 0 . (3.2}

at incipient localizatjon, where g is the stress rate within the band and
éﬂ that outside it (Hill(19€2) actuslly writes this equation in terms of a
noeminal stress rate but, as remarked by Rudnicki and Rice (19575}, the above
form is equivalent, given the kinematic restriction which must apply simul-

tanecusiy).

If the constitutive rate relation is imagined to have the form

uij = cijklvk,l {4.3)

and if the same set of constitutive coefficients ¢ apply both inside and out-

side the band at incipient localizatiomn, then (2.1) and (3.?} will be satisfied

simultaneocusly if
{nici_jklnt}gk = D . {3-4}

Thus the critical condition for localizaticon on a plane of normal n iz first

mat when
det{p+Crn) =0 , {3.5)

where pn+C+*n is considered to be a 2nd rank matrix, Of course, once the
eritical value of some constitutive parameter, say h , for localizatien is
known as a functien of n from {3,5), it is then necessary to determine the
orientation 1 at which the critical state is first achieved,

Te carry the locakization calculation out for our single-slip constitutive

reiation of (2,24}, we first identify C by rewriting the relation
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(LB )Q:L)
= L - B+ 8'g - g+ - g te(D) (3.8)
h+g:L:P

and pecognizing that D and § <an be expressed in terms of the velocity
b1
gradient. Indeed, to form the expression analogous to (3.4) we multiply (3.8}

from the left with n* and write

i ] 1
E—(gg + EE} and E'{EE - EE)

in place of D and @ , respectively, to obtain

(z-L:2 )@:Lnl]

¢ = |{n'l*n} - Rt Ag (3.7)
- Pomt P e h+£:.l;:£ J .E- - ﬁ-
whera
1
A= 3l - g - (gl - 2lgep)) (3.8)
and where I is the 2nd rank unit tensor, {Elij = ﬁii ]

Rather than attempt to set directly the determinant of coefficiants ts
zero in the above equation, we follow a general procedure outlined by Rice {1976,
pp. 214-215) which leads more directly to a solution, We let (g'£'51_1
denote the 2nd rank tensor having elements which are the matrix inverss of
those of (n*L+n) ; this inverse may be assumed to exist since, for all cases of
present interest, the elastic response properties are remote from any ¢ritical
values for localization. MNultiplying {3.7) by the inverse,

ClnLon) Veipe L ENICQL )

0 =401+ (Q'L-n}'l*ﬁl - oL ‘g . (3,9)
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Mow, since A of (3.8} has elements which are of order o , the bracketed

tansor

[f + (mel-p) -4)

differs from the unit tensor only by ©{c/L} terms whi:h, in representative
cases, are minute fractions of unity. Thus we may assume that this tensor has

an inverse and calculate it to any desired degre= of accuracy by the series
1+ Qi)™ = 1 - Gbp)
+ E(E.L.E} iﬁ]l[(EiLiE} -ﬂ] . {3'1'})

Thus, when (3.9} is multiplied by this inverse, we have an expressicn in the

form

a
I- meg:Lip |E =0 (3.11)

where the vectors a3 and p are given by
- - - 1
3 (el 0 et @Le )

ard b= Q:f'n , (32.12)

Upon multiplying (2.11) on the left by Lb* , we obtain

bra
[1 " gL gt o {3.13)

Yow, in view of (2.23), the term b'g cannot vanish for non-zere g unless the
bifurcation mode g involves no plastic strain. Thus the only relevant condi-

tion allowing a non-zere g is that the coefficient of b.g vanish in (3.13),



which gives the gritical h at localization as

h + Q:LiP = hea | {3.14)

It iz easy to verify from (3.11) that the sorresponding hifurcation mode has
the form g« a .

Thus, when we use the exXpressions for p and & of {3.12}, the ¢ritical

value of h For localization on a plane of normal 3 is
h = - '.L" [ i-Li - ale -li ]*l. ‘-Li -1 H !
Q:L:B + (Q:Len)[I+{p-L-g)} "4A {n-L'p) "{n-L:P) {3.15}

3.1 Expansion to order of o

Te review the origin of the terms appearing in (3.15), P is 0(1) and is
the plastie flow direction tensor of (2.5). £1 is defined by (2.10) and differs
from P by terms of 0(¢fl) which involve the plastic spin directicn tensor
¥ of (2.5}, A 1is defined by (3.8} and is O(¢) . § is defined by (2.21) and
invelves the term P , of 0(1} , a term of 0(¢/L} involving the Lth rank
tensor H introduced in {2.18} to account for lattice deformation effacts on
the Selmid stress rate, and the term a of (2.12) and {2.22) which accounts
for non-Sehmid stress effeets on yilelding. We recall that our specification of
Q mneglected terms of 0C{a¢/L) , which, in any event, one would be hard-pressed
to specify. TFor this reason we should delete from the right side of (3.15) all

terms af the orders
ag , agl/l acdsL? s -+s 5 and offL ad/L2 ¥ s

L}
When this is dome, with the help of (3.10) and the expressions for P and 9

just mentioned, there results
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h= (BB + (Belopde(mebem) e (kiR
# {egileP # Casbonde (uelop)™te (peLiBR}

{~g:H:P + [g:ﬂ-n)*{n'k'n)ﬁl'{Q'L:E}

+

{E:Lan}t (E.L'E}-l‘tﬂi [EJE - E.E}]

+

f£=.‘='n'-"'fn‘l-.‘n}'l'é*{n',L'n}'l*{n'.Lr.EH . (3.16)

and in thisz arrangement the first bracket containg terms of O(L) |, the szecond
of O(al) , and the third of 0(s)} . Indaed, it is convenient to reprasent

thesa bracketed awpressionz as the three terms on the right side of

h = LPQ{Q] + alf {n) + oF,{pn) . {3.17)

Here the functions F are all 0(1) and L , a , and o are_representative
members of the esrresponding tensors.

To calculate the most critical orientation p , we begin with consideratisn
of the casg for which both & and /L are sufficiently small that we approxi-

mate {3.16) and {3,17) by
ho= IF (n} . (3.18)
Upon rewriting the first bracketed tevm of (23.16}, we have

LPQIE} z -P:H:P {3.19)

where the tth rank tensor N is defined by
Bk~ GegdeGedon) - (and) {3.20)

and we cbserve that N has the zame symmetry of indices as dees | and,

further, that
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pN=Nn=0 . (3.21)

o

In order to draw conclusions from (3.13), we show now that N is mersly

the tenscr of incremental elastic moduli governing plane stress states in a

plane parpendicular to n . Specifically, we let the unit vectors g , v

and n form a right-handed triad and we make the definitions

d=2> u + 20 ¥ +D n (3.22)

{no sum on repeated indices of formu , v , or 1) , and

B =D,8a+D (ayrvn) + D vy _ {3.33)

where Dij(i,jru,v,n] are components of an arbitrary rate of stretching tenser
D on the directions of the corresponding wnit vectors., Further, we ohserve
that
] 1]
D =D + {pdedn)/z . (3.24)

For an increment of elastic plang stress deformation In the u-¥ plane, in
the sense that the corotational increment of Kirchhoff stress has no components

associated with the normal g5 to that plane, it is evidently necessary that
g = E'L:E = E-L:g * {E.L.E)'E . . {3.25)
and hence that
'-l ‘ -
d = -(p*Ln) "+(g-L:iD ) . (3.26)

Thus the corotational Kirchhoff rate can he written in terms of the stretching

. .
rates ]} in the plane of stressing as

f+gto(p)=Lip=Lin's (Lop)d

s[4 - (LeprGpelen) el l1:p =MD (3.27)




where (3,20) for M has been used. This astablishes the int&rprathtian of N
as the plana stress elastic moduli tensor and we note that since lattice dis-

tortions are small in all cases that we considar, the quadratie Fform
Vv =p MND {3.28)

1
may bz assumed to bhe pogitive definite in D .

On the other hand
Bep s MR+ (emded s MR
by'ta.zl}, and thus the quadratic form V c¢an alse be written
v o= p:ND . (3,29}

1
We see, thersfore, that V iz a pogitive definite function of D but a

positive semi-definite function of D . In particular,
1
VaD:N:D=0 if andonly if D =40 . {3.30)
Haking application of these results in {3,18) and {3.19), we see that the

- epitical value of h Ffor localization on a plane of normal n must be either

nepative or zere, the latter occurring when n is chosen ac that P , defined

in {2.5}, has no components in the plane perpendicular to g . It is straight-
forward to show that there are two, and only twe, orientations p which allow

this cendition of h = ¢ , and these are given by:
case {i): p=m , and case (ii}: n=4 . {3.31)

Thus, to summarige, when we approximate (3.17) by (3.1B) we find that the

epitical plagtic hardening modulus at the inception of localization is

h 0 {3.32)

erit



and the plane of localization iz eithar the 2lip plane (i.s., cass (i} of
n = m) or a plane that we shall pefer to as the kink plane {case (ii) , p=§).

3.2 Perturbations about =slip and kink plans arientaticns

Now, to study the influance of the terms of order ol and o in (3.17),
we will begin by expanding (3.17) in 4 serles in g , first about p =M and
later about p = 4§ . In.carrying out the work, we wish t¢ be mindful of the
Fact that o/L is of the order 1072 or smaller in representative cases, but
that the a's , which we estimate in the next section based on a medel for
cross slip, may be appreciably larger, perhapsz of the order lu_l.

For the perturbation about n = #® we write
p=M+te (2.33)

where ¢ is understood to be small and te be chosen so that pn , like m ,

iz a unit vector. Also, we define the 2nd rank tensors

H=tlem ,E=m-L-g , H=pg-LE (3.34)

and we¢ observe that by the representation of {2.3) for P ,
E:brp = 4 (WE) , BiLiR = £-H-4 {3.35)
Further,

i te@erner ot

T 1

s [T+ N e(g + 2" + 11w (3,25)

where ET iz the transpose of E and we note that the inverse of a matrix
product iz the product of matrix inverses, but in inverted order. Since g
i3 small, so also are E and H and the inverse of the bracketed matrix can

be expanded in a series to give
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(L™ = 8
t u'l-(Eng}-ﬂ'l-{§+5T}-ﬂ'1 ¥ oaue (3.37}

whers the deleted faﬁms are of 3rd and higher powers in g .
By using thesse several results and reading off the various terms of the
first bracket of (3,16}, comprising LFD{E} y we find after“some.algebra that

=g - BT

I.Fo{_n}

ey ¢ o(le?) (3,38)

Mext, by using (3,34} for ¥ , E , and H .and writing n-g for g . we can

write

LF (p) = = {p-m)ela-Mea) (pem) + 0(L]p-al®) (3.39)
where the 4th rank tensor M is

H T '.l:.‘ - {L‘E}'(E‘L‘ﬂ}-l’(ﬂm—'é} " {3.“0}

Bl

and corrssponds to the tensor N of (3.20) when n is set equal to # .
Since p-m can have no component in the direction of M to the order considered
(p and p are unit vectors), we ohserve from the properties discugsed earlier

for M that (3.39) for I.Fn(_u} is 2 negative definite quadratic form.

Hext consider the term uLFlf]]_]' of {(3.17}, which is defined by the

second set of bracketed terms in (3.16)., We cap write, with ¢3.20) and (2.5}
olF, {n) = -g:M:p = ~(g:N-m)vg (2.41)

and we.observe that _Pl{m} = ) sihce M+ = 0 . By expanding the expression

for uLFl{g} with the help of (3.20), (3.33), (3.34) and (3.37), we obtain

elf (p) = (g:fl*4)*(n-m) + Otol[p-p[?) - (3.42)
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Finally, oFE(EJ of (3.17) is given by the last set of bhracketed terms

in (3.16), We first calculate Fjﬂﬂﬂ, noting that
-1_ - '-1_
(m-Lem) “o(mL:R) = (@elem) "e(mLemra = 4 (3.43)
8o that the terms comprising the last bracketed set of (3.14) give

OF(m) = ~gzH:l¥(maram)] & (g:Hsmes

+ ge{meE(am-ms)eq - ¥gs (am-ms)]}

- 4o GL(mgemL - g « (Il - Ma-m)ea (3.34)

Obsarving that the two terms invelving H cancel one ancther, since HijkE
is symmetric in its last two indices, and simplifying the remaining tarms, we

some to the pemarkabla conclusion
oF,(m) = 0, (3.45)

whiclr applies Irrespective of the several different genaralizations of the Schmid
stress rate that we have considered (i.e., the result is inﬂependent of H ). We

observe, therefore, that for any cheice of H ,
aF, () = ofe|p-m]) . (3.45)

By combining (3.39), (3.42) and (3.46)}, the formula (3.17) for the value

of h at localization on a plane having normal j way now be written

b= =(gem)e (4eloa)e (n-m) + (@rd8)+ (p-m)

+ O(L[p=m[? , aLl|g-1|2 , oln-m| , a0 , o2/L) (3.47)

where the order terms include those of (3.39), (3.42), and (3.46) as well as those
deleted in writing (2.16) from (3.15). HNow, since n-m has no component in the

direction of B, to the order considered, and since (with reference to fig. 2)
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the mm , 4m , and 2m components of 4+M+4 vanish, because
me(57M+4) = (g-Meg)m = 9 (3.48)

by {3.20), we shall henceforth understand the notation 4-+tl*4 to represent a
plane 2nd rank tensor. Specifically, this is a tensor which has only components
wWith the indices 44 , 4z , 2§ and zZZ , and which components agree with those
of its 2-dimensional counterpart. The inverse operation to (j-ﬂ*g}'ﬂ=g is
defined only for vectors p and 4 lying in the g-7 plane of fig. 2. In

this sense, the inverse fé*ﬂ'é)-l exists as a plane tensor, and

{i'ﬂ'ij'ﬂ =p implies g = {ivHv&}- o {3.49)

for assoclated vectors p and g 1lying in the 4-Z plane.
In terme of this inverse, the orientation pn which maximizes the right
gide of (3.47) is
DEp+ %-(é'ﬂ'g)hl'(g'ﬂ:g) + 0(e?,0/L) (3.50)
and when this expression is inserted inte {3.47) we find that the critical

hardening rate at the onset of lecalization is

b =%m”1r%ﬁ&f“@ﬁm}+Mmmwuﬁu {3.51)

Ll

A parallel calculation can be carried out for case (ii}, in which we
perturb about the kink plane n = 4 . How the presults are given in terms of a

tensor

S f - (Learlaeles) el - (3.52)
The critical orientation is given by

=4tz MSmhenSia) ¢ 0ta?,o/L) (3.53)
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and
-1
Berit T %‘<5=§‘ﬂ]*{m'§'ml (m3:g) + Olac,0?/L,a3L}) . (2.5%)

Here {(m-3+m} dis understood as a 2nd rank plane tensor with components in the

plene of m and 2z , in a sense analogous to that for (4-M-4) above.
It is interesting tc mote from (3.51) and from the result that

m+M = 0 , that only the components of a in the slip plane {specifically,

=a_, ,and o _)} affect the value for b for localization, at

T80 az T %z
least to quadratic order in the a's . Similarly, from {(3,548), only components

2L

of g in the kink plane affect the result. Also, we see that the critical
value of h for the onset of localization is indeed positive when the non-
Schmid effects, represented by the o's , are present.

We note that the terms represented explicitly in {3.51) and {3.54) have
the order of ol . So long a5 a is much larger than ofL , the terms of
order ac and o/l represented by 0{...) in (3.51) and (3,5%) will indeed
be negligible by comparison to what is retained. On the other hand, the
neglected and retained terms are of the same order when the o's are of the
order of o/L . But In this case hcrit will be such a small fraction of o
{say, 10725 or less) that it is to be expected that local necking, setting in
when h {5 of the order of ¢ , will have long preceded the attainment of
conditions for localization. In any event, as we have emphasized in Secticn 2,
it does not seem possible at present to specify the constitutive relation with

enough precision to determine suitably the terms of order ac and o2/l that

we neglect in our expressions for h . .
cerit
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3.3 Izotropic elastic moduli

Suppose that L has the isotropic form

= G{ﬁikﬁ. (3.55)

) + ﬂitﬁjk] + A Gi.ﬁ

Liske 5%k

where G and A are "Lamé moduli", G baing the shear modulus. Then we note,
e.pg., that

gl 4 = g4 + M trig) ,

geLm

meLes

G(l +mm) + Amgm,

Gam + A ms

1

where I is the unit tensor, {;Jij = ﬁij » a2nd alsza that
(eLom)™t = 67l (-gm) , where £ = (A+C)/(A420) . (3.56)
With such expressions and {(3,40) for M we find
AMes = G(2Z2 + HE 88) , {3.5%)

ec that itz inver=e In the sente discussed earlier is

gyt = G'ltzz + 48/(uEYY {3.58)
and
giffes = W6le,, 2 ¢ [(28-Lda,, + 260,15} . (3.59)

Tirese last twe expressions snable us to carry out the perturbation about
p =M, in which case wa find from (3.50) that the orientation of the plana of

localization is

n-= E +

1 2
4:5 + e [(ﬂg-nuzz ¥ EEu&a]é + O(ac,a/G) , (3.80)
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and from (3.51)} the crirical hardening rate iz

h

1
epit © G{agz + 73 C(28-1)a,, + zzuahlzl + Olaa,02/G,a%2) . (3.61)

In a gimilar manner, tha perturbation about n = 4§ leads, from {3.53),

to the orientatien

Re4ta ze é%.[(?;-l)azz + 28,1 + 0(a2,0/G) (2.62)

and, From (3,54), to the critical hardening rate

= G {fa2_+ ﬁ% [(2k-1)a,, + zzummli} + 0fua,02/G,a%6) . {3,63) -

w

The results given thus far are for "small" gz . It is possible, hﬂw;ver, to
write out explicitly the entire expressions for LFQ{E} and uLFlfﬂJ in the
jisotropic case. Since such expressions are wanted only when the o's are
large, there is no need to retain the terms of erder o in {(3.17) and it .

suffices to write
h = LF_(n) + alF,{n) (3.64)
{note that since a enters linearly in (3.15), there is no truncation in a
in this expression}. By using (3.55) in (3.16}, and noting that
=1 =1
{g~L*p) ~ = G ~{I-Enn) . {3,653
{3.64) can be written as
hG s <L + (nem)? + (n+5)? = a€{n-m)2(n-4)?
+ 2[p pr(amemad-n - 2£(p-m)(p-8)in*e*n)

+ (26-1)(pem¥pea) to(a)d . (3.66)

Further, when we choese the coerdinate axes as in fig. 2 and use ngn, = i,




T » '30.

this becomes
- 2 2 2 z
bG = ~(ny thEn, “n, Yo+ HnlnﬂE[(l-nl }néi

-y 2 T -
+{1 n, Y, + (1 n, }“zz] 2n;n,a,,

2 2
tamgln, (1-4En  Dla, , + ny{1-4En, e ] (2.67)

and in general, the most ¢ritical orientation must be sought numerically when
dccuracy greater than that of {3.60) to (3.63) is required.

3,4 Some particular cases

Consider first the possibility of pressure sensitivity of the Schmid

stress for the onset of plastic fiow, Suppose for example, that

Tm%}onset =T, * %P {3.68)

(
where T, is the flow strength at zero pressure, p = -akkfa is the mean
pressure, and x is & dimensionless parameter. Then the Schmid stress incre-

ment dfm4 is replaced by

dﬁwa + {Kfﬁlidﬁ““ + dTMb + dez]

and comparing with (2.12),

O,. = xﬁijIS . {3.69)

i

This yields the same hcri value, either from (3,61} or {(3.63) — by takiug

T
E = 2/3 {corresponding to A = G) as representative, we have

2 k3G .7
hcrit = 0,12 k4G {3.70)

The parameter x is readily interpreted in terms of the difference betwsen yield

strengths In uniaxial tensicon, Gy and in uniaxial compression, =0,
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If the slip system is criented for a maximum resolved shear stress, i.e., at

45 to the tensile axis so that L a/2 , then {3.68) gives

(5,/2) - (5,/2) = x[{o /3) + {o/D)] ,
o

CHE {foﬂ)[{ucﬁ,c}fﬂ . {3.71}

The "strength differential™ is wk/3 times the mean strength, Hence, making

the definition &b = #/3 ,

h = .07 (30}2 G . {3.72)

crit

How, localization in erystals is generally cobserved to take place in the range

3G and if this is to be explained by

of hardening between 5x10 ' and Sx10~
a pressure sensitivity of yielding it would be necessary to have values of 5D

in the range of 0.085 to 0.27. Such values seem considerably largsr than most
observed strepgth differentials except perhaps in martensitic high strength steels
where 5D may approach 0.07 to 0.10 (Spitzig et al., 1975). However, in general,
we must surmise that it is unlikely that pressure-sensitivity of yielding has a
slgnificapt affect on the onset of localization In crystals.

Indeed,; az we have emphasized earlier, the experimental association of
localization with the onset of cross slip suggests that we examine this and
gimilar cases, in which non=-Schmid stresses can aid in "triggering" an increment
of plastic flow on the primary slip system, for deviations from normality which
may lead to localization. The detalls of the cross-slip process will be des-
cribed in the next section but, leooking teo fig. 3, an increment of the shear
stress T aids the ccalescence of the separated partial dislocations comprising

mZ

a screw dislocation segment, whereas the stress T ajde the driving of the

z4
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coalesced screw dislocation segment & small distance along the cross-slip
plane, s30 as to bypass a local obstacle and then continue the shearing of
the primary {m8} slip system.

We daescriba these effects by writing

“dy = % [de

mg * O dT&z + B dfmz] (3.73)

s¢ that o describes the effect of the stress on the ¢ross slip plane and B

the effect of the stress tending to coalesce the partial., Cemparing to {2.12),

B, "0, * a2 I B2 {3.7u)

and other components of g wvanish, Thus the solutions (3.680) and (3.61) for

localization in the neighborhood of the slip plane give
B=%+az/2 ~ (3.75)
and

hari

g * /e (3.75}
{(thus reducing to the reswlt of Rice (1976, eq. 30)) whersas the solutions (23.62)

and (3.63) for localization in the neiphborhood of the kink plane give

n=4+ 82/, {3.77}
and

= 2
hcrit = (B</u)5 ., (3.78)

Evidently, the largest of the two results for hcr is to be judged as that

it
marking the onset of localization, although the physics of finitely localized

deformation would seem to be very different for the slip versus the kink orien-

tation. To fit observations of h in the range of Sx10°°  to 'Eﬂ"flﬂl-3 G,

orit
it is necessary that the largest of o and B lie in the range from approxi-




mately 0.04 to 0.14. This range of values for hardening rate Iz chosen to
conform to the hardening rates prevailing at the end of stage II deforma-
tion in fce single crystal, h/G ~ 1/300 and early stage III,

Oup dislocation model of the next section suggests that these ranges
do indeed encompass reascnable walues for o and B when a crystal is
deformad to a state at which profuse amounts of cross slip become possible,

4, Estimate of Hon-Schmid Stress Parametsrs for Cross Slip

One approach to the development of detailed constitutive behavior in
metals rests on the premise that plastic micro-processes such as cross slip,
particle or forest cutting, etc., are thermally activated events. For pur-
poses of illustraticon, fig. 3 shows a process like cross slip. As depicted,
the critical event requires that extended dislocaticns first constrict over
a finite length and then bow to a critical radiuws on the cross slip plane,
5o that the segment can be driven the necessary bypassing distance by the
stress on that plane, Depending on the medium and dislocations involved,
cne of these two processes might dominate in the calculation of the rever-
sible work, &G , reguired to achieve this transition state; relevant
material properties would be lattice structure, stacking fauli energy, etc.
It is reasonable to assume that this reversible work depends upon all the

shearing stresses s and Tz since they all do work in reaching

“ma * Taz
the critical state. However, for the class of precesses we have in mind
the reversible work is characterized by a strong stress dependence. For
example, for particle cutting in the aluminum-copper alloys discussed
earlier, Byrne et al. (1961) found apparent activation volumes,

wi= kTatn;Iatmﬁl s of the order lﬂz-lﬂab: where b 1is the Burgers vector,
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In these cases plastic flow is observed, as is axpected From rate theory,
to be sensibly rate insensitive with a correspondingly weak temperature
dependence,

We idealize the behavior as explicitly rate insensitive and treat

aG(

Ys? Tmz rzﬁ.p}_ as a yi=ld function, in the sense that olastic flow
occurs at measurable rate when this funcrion falls to a critical value
(essentially zero). This leads to a relation among the arguments of AG

of the form {cf, egs, (4.13), (4.26))
F{Tma’rmz'rza'ﬂ} =0 , (4.1}

Here p is a structure parameter which increases with straining due to

workhardening {(see fig. %), and we write

dp = pdy {4.2)

where u may depend not only on p but alsc on the stress state under
which the shear dy takes place so that eq. (4.2) is, in general, non-
integrable, During plastic flow, T must continucusly retain its non-zero

gritical value and thus we have the plastic "consistency" condition

aF aF - afF at
dar — dT _— % 4T eememaa = -4 e— d-lr {u.a}
md armb mZ Brmz 4 312¢ dp

and this has the gsame form as eq. (3.73) provided we make the identities

hE -y {arfap][arfarm]'l
a = [ar;aru][arfarm]'l
8 = (9F/21,, )(0F/31,, 170 (9.4)

Hote that if cross-slip resulted in measurable shear on the cross-slip
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plane, rather than just that involved in bypassiﬁg local obstacles, wa would
havg a de& in addition to dTm¢ (= dv)'. A relation like de& * ady
would be consistent with plastic pormality but this is far too restrictive
in general, and so we take de4 S I

Certainly, the approximate experdimental validity of Schmid's rule
suggests that the terms o and B in (3.73) and (4.%) should be small.
However, no estimates are yet available. In the following subsection we
make approximate estimates of a« and B based on more-or-less standard
techniques in dislecation theory as applied to the model illustrated in -
fig. 3. Before passing to this though, we must bring to mind the approxi-
mate nature of the linear elastic continuum theory of dislecations when
applied to problems that involve interactions among small segments or
closely spaced dislecations., These approximations in the analysis of
complex problems are, unfortunately, uwnaveldable at present.

4,1 A mechanism for cross slip

In face centered cubic crystals the slip ;ystems are nf the type
{111} (&4/2)<l106> , {e.g., Hirth and Lothe, 1368); a I3 the lattice
parameter., We consider a screw dislocation gliding om the (11l) plane
with Burgers vector b = {a/2)[101) . The two partial dislocations form in
the sequence

(1) . (are)(211)

]

k

and
b2} o (aserr1131 .

The $lip plane normal fs m = {1//3)[111] and the slip direction is

s = {1//2)1011 ; z , the direction of partial coalescence, is (1//6)0121) .

=
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Partial (1) is assumed to bhe rigidly pinned against a2 linear barrier and
blocks an entire "piled up" array of n such screw dislocations, thus pre-
venting further primary silip. Relaxation takes place by the cross slip
excursion of the lead dislocaticn onto the cross slip plane {whose normal
is ), 2llowing the bypass of the cbstacle lying in the primary plane.
Since movement of paréial (1) on the cross slip plane is energetically
prohibited (see Hirth and Lothe, p. 735 for an explanation), cross slip
is possible only if the lead dislocation is completely coalesced or if a
small dislocation loop with primary Burgers vector is created on the cross
slip plane near the tip of the pileup. The first possibility has been dis-
cussed by several authors {see Hirth and Lothe, 1868 for a biblicgraphy)
while the serond has been examined by Avery and Packofen (1963). As it
happens, if this secondary dislocation loop is nucleated near the pileup
tip our analysis will model both processes as we explain shortly.

Partial dislocation (2) moves to coalesce with (1) under the work
b (2 4 ¢ 2 .

ms 4 mi-z
5, = p @z ar2/DH ana 5, = P s 2B (e1g. . For

performing influence of the normal forces T

the perfect (a/2)[101) dislocation the elastic energy can be writtan as

(Asaro and Hirth, 1973)
Ez K. .b.b., In Rfn {4.5)
ij i3 o

where K is the energy factor matrix and R and r, are the =za~called
euter and inner cutoff radii respectively. The cutoff radii are ill-defined
within the continuum theory which makes abhsclute determinations of our
enargy terms difficult. K on the other hand, Is well defined and for

slastic isotropy has the diagonal form K = K = G/[er(l-v)] and
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K;d = G/ur . When the tuo partials are extended a distance 6 thus forming
an included intrinsie stacking fault the elastic energy is given by (Asaro

and Hirth, 1973) |

E ek by

= Kby bl an wyr 4 K p{20 (20, R, + K b0 20 rss. (u.6)

i3 i 73 ijiog

Since the stacking fault has an excess free energy T per unit area the
total anergy of the extended dislocation is augmented by a term F{E-rﬂ] .
thenn & = v, the disiocation is fully constricted and eq. (4,5) is regained

if we interpret the inner cutoff for both partials and constricted dislo-
caticn as all equal to r, - Hinimizing E by choice of & yields
= b,
& = 2B /T (t.7}
ok (2
2 = "i3P1 B3
Hext we consider the change in total energy as the dislocation extends

where El

and include the works done by {or against) the "appliad stresses" ,

- {2) £2)
4E = -2E,,%n 6Hr° + {tmﬁb& + tmzhz }{ﬁ-rﬂl + r{ﬁ-roi . {u.9)

Minimizing A8E by choice of & gives
g = EElsz ' (4.9

b:2}+ 1 bty (4.10)

FT=r+ {tm4 mzPz

The total reversible work to be done during constriction of unit length

would then Le

= = T 7 . (.11}
4G v, ZElzin {ZElzfrrne] + rro
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If the enly eritical step duping c¢ross slip were this constricticn process,

then Uc would ba the AG . Furthermore since we assume that there exists

< 3 (2

ma? “msPy should

an equilibrium pileup of n dislegations driven by =

be replaced for an isolated single ended pileup by n 1., and T set equal

ma
to T'+n tmapizi + tm:bgz} + B is now computed from its definition in
eq, {4.4) to be (maintaining n constant},
8= by 2/tn 552 = o.sern . (4.12)

The critericon for complete coalescence is obtained by setting 46 = 0 in

{4.11}). Taking r, = a5 suggested by Hirth and Lothe {1968) for fcoc

4 *
metals, and v = 1/3 the criterion is

n(tmafG} + D.58 {fmsz] = 1/(Bx) - EFf(GbA? ' (4.13)

For focc metals with intrinsic fault epergiez less than 150 ergsfcmz
2r/(Gb) ¢ L/(87); for copper for example [/Gb = 1/250 (Hirth and Lathe,

1968} and

nifm&fﬂ} + 0,58 (Tmzfcﬁ = .03 . (. 14)

Stresz ratios of 3 x 10_26 ara never attained in pure metals and ape
virtually unattainable with alloying either. If n & 10 then

Tog 1 x lﬂ-aﬁ would in principle be sufficient te induce coalescence and
theze stress values are only approached in, say, precipitation hardened
crystals at the onset of profuse cross slip. Thus we infer that coalescence
iz at most possible at the stresses prevalling at the latter stages of
deformation but probably only over segments restricted in Length and aided

by thermal activation. Of course, for metals such as pure aluminum where

o



PK(Gh&) 2z 1/50 we conclude that partial extensions are not probable or
are too small to be modelled in our continuum theory. In what follows we
assume that Llc y Wwhich may be driven to nearly vanishing values, iz the
reversible work required to spread the constriction along the linear harrier
as the sepment of secondary loop bows out on the orass slip plane.

Actually the "appliesd stregses" should not a priori be interpreted
as those applied externmally., Lattice frictional resistance should be sub-
tracted and if we are considering the motion of dislocations over distances
large compared with the spacing of zones in a zone hardsned erystal on the
dislocations in a dislocation forest we must account for their frictional
resistance as well. In the zluminum-alley crystals discussed sarlier these
resistive terms comprise a large fraction of the total flow stress ranging
upwards to 1/3. In writing n rm&bb for tha total resslved force on the
lzad dislocation in the array we have also ignored the Interactions ainong these
dislocations and those of nearby giide bands. To ineluds these latter effects
we could analyze an infinite sequence shown in fFig. {(5b) as well as the isclated
single pileup shown in Fig. (5a). Here p < £ and typically experiments
suggest that p ~ ,1% . If both cazaz are treatsd as though the dislocations
in the pileup were continucusly spread out as a freely slipping shear crack

wa find that tha near tip stress field has the well knownm form

[t 'Tza] = Ktzﬂp}“¥[cos $/2 , zin /2] (#.15)

where the s=tress intenszity factor K is

K% = 2C n TaaDy »vvoe Lsolated single ended pileup
K2 = 56 n t,b..... isolated double ended pileup

kK2 s Gn Tm$h$ erver infinite sequence of double andad pileups
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For the double ended pileup cases n is interpreted as the number of disloca-
tions of each sign in a length % in a slip line of length 2¢ . For the
three caseg respectively, n and the slip line langth, 2 , are related by
n = 'Tmalﬂ$h¢} »n= 2t 2/6b ) and n w5 tp, p/(Gb, ) If p/t is small.

In faet, the interactions of the infinite sequence tend to decrease, for a
given s£lip line length, the near tip stresses. MNow these inter-glide-band
interactions are just the sort that form a basis for most analyses of stage
II hapdering ir single cryatals {Habarro, Basinski and Helt, 1964)}. The
force on the lead dislocation t,b,  is given by K2/(2G) (see Rice, 1968,
P- 299) and for the infinite sequence case Is equal to n Tpaly /2 which has
cbvious implications for increased Tmé values in eq. {(4.13) for the
coalescence criterion. That is, to meet the condition of eq. (u4.13), T od
for the case of an infinite sequence of pileups would have to be a fastor
Y2rL/p times as large as it must be for an isolated single ended pileup.
The reducticns in force on the lead disleeation lead us further toward the
view that coalesence, in most cases, is not completed by the stresses but
through applied stress, and leocal fluctuations, sezurs only along segments
with finite size,

Now, with the above in mind, we assume that there exist locally, along
the partially constricted dislocation, minute segments that are “pinched" to
total constriction: the energy or reversible work invelved can he computed
in a fashion similar to that used by Stroh (1354). We note that this will
yield a work term, UP s Which depends upon the variables and parameters
Tos * Tmz and T . However, as we ghall see thiz term does not, in our
model, contribute to the yield funetion F or to the computations for o

or P and hence we wili not reproduce the derivation of it here.
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The final part of our analysis is concerned with the process of bowing
of the constricted {or free)} segment to critical conditions on the cress slip
plane. We assume that the dislocation takes on a roughly semi-circular form
with radius r . The resolved stresses that do work on the loop are composed
of thoze caused by the pileup and those due to external sources. From eq. {%.15)

this stress becomes (fig. 53)

T-= K(?ﬂp}-¥ cos /2 + 1., sin ¢ £4%,16)

o Td

How as a segment of the lead dislecation begins to move ocut cnto the cross
8lip plane we will be interested in how the stress field of the array is
affected. Figure (5¢c) illustrates owr argument in 2-dimensions for the casze
of straight dislocations. We assume the lead dislocation is discrete while
the rest of the array is continuously distributed. The value of the stress
at the end of the distributed array is dependent upen the

and the position of the dislocaticn at E¢{= relai

intensity Knet

applied stress, Ty
which, 28 shown, is able to move on the cross slip plane with orientation § .
Kot 18 allowed to relax completely, i.e., K op = O » and we seek the

valug for ps0, ,at whish a=0 , ¢ = 8 and thus for which nc further
movement of the continuous array is possible. The problem of a dislecation
near a single continucus array or slipping line has been ¢ensidered for
elastically isotropic media by Rice and Thomson (1974) and by Asaro (197%)

for penerally anisotropic media. From these results we may write for Koot

K = K - coz (08/2) ., (u.17})
net Jm-

In order tc astimate p. from eq. (4,17) we require an appropriate value for




T,

K; to obtain one, we leook ahead to ocur yield funetion, eq. (M.26), vhere

we find that, at yield,

Gbé

sac §/2

l...;i w
‘I
[ #]

when we lzave azida tha-minor contributions dus to the terms in Uc and
E . Alternatively, if 4 = n/2 , tlfG at yield iz ,032. Mow from eq.

(4,17} we may write

. G 2
Pa © 4171 b& costy/2

and, if again $ /2 ,p, ~ 1.3 b, .
- o - s

$=70° , T, /G = 024 and p & 2,25 .

(the cases of interest) this "eollapse™ distance is quite small. We then

If $4=0, Pe ™ & bé and wren

In other words, for & 2 70°

expect that In our actual bowing process that so long as the segments bow
out to distances comparable to or larger than 2h4 the trailing array will
essentially collapse te the blocking line, and we may then use gg. {%.15}
to represent the pileup tip stress field acting on the cress slipping dis~
locatien. The interaction of the loop expanding on the cross slip clane with
the plleup is modelled following an argument due to Rice and Thomsen {1974).
Singce a straight dislocation is attracted toward the tip of a slipping line
with a force given exactly by Eijhihjfp (Asare, 1975}, viz the "image
force", we assume that the forces exerted by the pileup on a2 segment has

an image form. Then the half loop is acted upen by an image half locp, and
this is taken inte account by choosing for the energy of loop expansion the

energy per unit length of a full circular loop, namely {Hirth and Lothe, 196B)



2 __2 Br | fy.18)

Noew the complete free energy change during the bow out is given by (taking

/e’ = 1),
) 3/2_3/2 22
U=%rin rfrﬂ B(r -r_ Y+ ?Uﬂr E(? -rﬂ)+ Up (y.12)
® = G2 (2-v)/[8(1-v)]
B=1.u¥k bécas »f2 , and
E=nrf2 Tzabasin $ .

Tha terms containing B and € account for the work of the applied stress of
{4.16%}; the terms with Uc and Up are the anergy of the constrieted segrment.
4s B and € are intreased the segment traverses configurations, say

r = r1{E,E] for which the free energy is a minimum -- this is diagrarmed in

fig. (6). 4G is defined in the figure as

AG = U(ri,ﬂ,E,UE,E] - u(rl,ﬁ,ﬁ,uc,E) {y.20)

whera Dl 2

we desire the derivatives of AZ when AG itself vanishes, we have both

is the stable loop radiug and r, corresponds to the barrier. As

the conditions

aufar = 0 {4,21)
and

32usapd = 0 {4.22]

when 71 = T, > the erirical radius.

Equations (4.21)} and (4.22) enable us to solve for the critical value of




B , corresponding te r = r_ . Given that Erﬂf¢ < < 1 for representative

atpress levels, we treat that quantity as a small pavameter and solve for

T, and B to appropriate orders in the parameter. Thus, defining

r) = er enp(-EUcf¢] %oer

the latter approximation being walid for representative values of LTc s WE

find for the critical value of B

B = (x6/3rf )1 - Er,/0) (4.24)
whereas the coérrezponding critical radius is

r, = r1{1-25r1f¢] BTy R er, . (4,25

Recognizing from {H.lﬁ} that 8 and E are functicns of the stresses;
the former wvia the stress intensity K , (4.24) may be regarded as a yield
gritericn and from it we may compute the non-Schmid factors o and 8 .
Indeed, to write this yleld function it is most convenient to square both
sides of (4.24), retaining only the same order of accuracy in the small
parameter Er1f¢ , and replacing the K2 which appears on the left in terms

of the stress 1, on the leading dislecation, writing E? = EGrlb& . In

1
this way we cbtaln the yield condition

T, = 0.0071

2 Gb gx{l-v)r_,r sind
1 (2-v) 3 ﬁ. z4 1 . (4.26)

{1-y)2 rlcu52E¢32} {Q-U}Gh&

Far represantative values in foe erystals, v = 173 and ¢ = 70° , and

wlith rl ] erﬂ ] Eba » this becomeas

= . 4.27
T) +0.6271,, = 0.0246G (4.27})




Thus recognizing that 1, is a funstion of the primary shear stress

and parameters describing the geometry of the pileups (2.g., the slip

T

s
line length &) we compute the non-Schmid parameter o as

a = ﬂ.EEf(HTlfarmd} . {u,29)

Hence, pile-up geometries that =fficiently concentrate the applied
primary shear stress have small non-5chmid effects and conversaly.

For the three pileup cases discussed earlier we have

= 2 2 2
T, = T, 4/Gb, nrmézfzsh5 ’ rmﬁpfzsb& (4.29)

respectively. Thus (4.28), simplified with the help of (4.27), vields
a = 1.1{b¢f5}% R 1.E{hﬁft}% . Q.be&fPJ% (4,307}

for the three cases of single and double ended isoclated pileups and sequences
af ¢losely spaced pileups.

Mow, & <tTypically ranges from IGHE to lﬂ_u om in stage II and early
stage III hardening amd hé = 2.7 lﬂ_Et cm. HWith 2 = 10_5 cm we find
& = 0.06 and 0.08 respectively for the model cases of isolated single
and double ended pileups whercas for sequential pileups, taking p = 0.5% ,
we find a = 0.21. ©Of course, for L = lﬂiu cm , all the mumbeprs are
smaller by approximately 1/3. We notd that # typically decrsases with
ongolng strain with the implication that the relative Importance of Ty
with respect to 1., , and hence the size of o , increases. Thus, since
horie © a?G/% , the critical hardening modulus, below which localization

occurs, increases with strain in stage II and early stage III hardening,

while h itself decreases with the onset of gtage III. This pattern
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copntinues until the localization condition is met,

For the case of a single ended pileup, it c¢ould also be appropriate
in certaln circumstances to regard the number of dislocatiens a , rather
than & , fixed in the differentiation of {4.28). Since T, %Nt for
the isclated single ended pileup, this leads to

a = 0.82/n = 2.3(5,/0)% (¥, 21)

which is approximately twice the value obtalned when £ Is instead
regarded as the fiked guantity [compare to the first member of (4.30)].
Alternatively, we may choose n = 10 as representative and this suggests
a = 0.06 in this case,

To conpare the predicfed eritical hardening rate Ga?/% with experi-
mental values we need only remsmber that near the stage [I-stage III
transition h/G is of the order 1/300 2 3 x lﬂ_a and, of course, falling
with increasing strain. If o ~ 0.1 on the other hand, which i3 repre-
sentative of our estimates, o2G/% is in the range 2.5 X lﬂ-aﬁ . Thus
the magnitudes of these non-Schmid effects we have calculated lead to
predicted critical hardening rates that are certainly consistent with
axperimentally measured rates in the later stages of deformation where
localization iIs ohserved. ‘

From eqs. {4.26,27) it Is easily seen that thg yield criterion will
not generally require stress levels exceeding those involved in the coal-
escence criterion, eqs. (4.13,14}. %e have already seen this for ¢ ~ 70°
in the discussion immediately following eq. {(4,17)}. Thus cur assumption

of incomplete congtriction is not violated by our derived yield function,
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In fact we may alsé examine our assumption regarding the magnitude of Uc
by uﬁing the yield critericn and eq. (4,11}, For ¢opperlwith
r/(Gb,) % 1/250 we find that zucﬁi ~ ,04 and thus was justifiably
neglected in eq. (4.23). Our critical path then, is one for which &G
vanishes while U‘: remains positive.
Some fipal commenta on the model are worth making before closing

this section, We have seen that the model predicts a vanishing &G with
positive Uc « This in turn required that some mechanism operate to
initiate a local constriction and we summarized that thaﬂmﬁl fluctuations
were important. Dot if thermal activation were Involved, the model would
of course predict some degree of rate sensitivity that, in the present
case, we wish to preclude., We could avocid this by realizing that the
perfectly linear barrier heretofore envisioned in ocur analysis is simplistic
and should be replaced Ly one having irregularities {e.g., forest disloca-
tions} that ensble local constrictions to develop before complete constric-
tion., For the present we will not include such refinements since thers is
no ¢lear way in which to accufately model such details and overly specu-
lative attempts to do so would only detract from tEe main intent of our
calculations. The only further observation we make is that since Uc is
positive both the a and P effect exist together wheresas if Uc ware to
vanish, only £ would remain, unless some extranecus barrier were pressant,
such as the dislecation forest, restricting the free segment length bowing
cnto the éresz slip plane.

In the case where Llc » 0 we may recompute B from eq. (4.26), using




{4,23), (u.ll1), and {4.10) to obtain

=u.3E{6-r°}(b£2}fb¢} sec #/2

i1
f!wlrﬂ
or (2)
o.3(é-r }[bz fba} sec ¢/2 .
4= 2 . . : {4.32)

i

Here £ =1 or ¥2 for the isclated single or double ended piléup respacs
fiuely. If we assume nearly comﬁlete éansfricfinn {§ ~ QPO]. and use the
zame numerology that followed eq. (4,30}, we find B ~ ,01 for, as an example,
the isulaféd double ended pileup. This can be comparad to eq. (4.12) by taking
n~10 as a typical number to ohserve that A , as ohtained from eg. {4.32),
iz substantially lower than the value .058. ¥alues of B may be computed from
aqs., (4,11) = (4,14} for the other cases we have considered and the general

conclusion follows that £ is smaller than e when both effects coexist.
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5. Discussion

The particular mode of localized deformation considered here seems to he
a "liniting" one in the sense that experimentally it is often preceded by other
mades, such as necking. In thelr experiments on underaged alumimm-copper
alloys, Beavers and Honeycombe (1362) clearly demenstrated the two modes of
inhomogenecus flow, Hecking usually preceded localized shearing but the results
of these workers taken together with those of Price and Kelly (1964} suppest
that i1t is often localized shearing that occurs first. The two medes seem
Independent of each other and which occurs first may well be a matter of
specimen shape (see, e.g., Hill and Hutchinson, 1975). A thorough analysis of
the bifurcation modes coupled with a complimentary experimental study on ;his
system should be most helpful in developing a Tuller understanding of inhomo-
genasous deformation in general. However, Lt seems to be the localized shearing
that leads toc rapid failure of these crystals, and we have demonstrated that

this is possible with positive workhardening and without worksoftening or

nen-hardening plastic states.

Thare are several other important aspects of shear lecalization that require
further understanding. We have explicitly considered the effects of non-normality
with a shooth vield surface, in the context of zlight deviations from Schmid's
law for yielding., We recall that with &« in the range .1, hcrfG jz predicted
to be of the order, 2 = lu_a, and this corraspan&s quite reasconably with what
is expected for the hardening rate shortly after the stage II-stage III transition
in face centered cubic crystals (Habarro et al., 196%}. Related studles of
localized deformation in polycrystalline sheets (Stdren and Rice, 1275) and
general solids (Rudnicki and Rice, 1973} have demonstrated the Importance of

"vertex" structures on yield surfaces, S$Single erystal yield surfaces contain
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vertex like structure at points where the yield surfaces for various slip
systems intersect. Indeed, in following the rotaticns of the tensile axis
during straining, Price and Kelly (1964} noted that it “...usvally reached onr
overshot the [001]=[111] boundary ..., and the slip bands {shear bands)
belonged to the cocnjugate system." In all cases the shear bands were closely
alligned with the active slip system -— a result we reproduce in cur analysis.
But whethsr lecalization iz prefarred on the conjugats aystam bacausa of vartew
effects in the constitutive law or for the non-5Schmid effecta explorasd heres, is
not as yet c¢lear. Localization is favered by low hardening rates and, If the
latent hardening trends decumented for pure face centered cubic orystals
(Jackson and Basinski, 1967} also apply to these zone hardened erystals, it

is ewpected that the workhardening on the conjugate planes would be corresponding-
ly low. Again, full resolution of thiz question awaits further study.

Future experiments on shaar fracture in single crystals, and notably
precipitation hardenad single erystals, should prove invaluable for developing
more complate analyszes of the localization phenomena. Our results suggest that
the valuez of workhardening ratesz when localization gecurs as wall ag stress
level should be determined. The experiments to date, that we have mentioned,
have noted that the resolved shear stress, but not shear strain, correlates
reasonably waell with the appearance of localized shearing, however thare may
well provae to be an equally goed correlation with h |, the slip plans hardening
rate. Furthermora, the persistence of the zhear bandz is important in evaluating
the role of strain softening. Price and Kelly (1964) seem to be among the few
workers who have posed this question and, for the case of zone-hardened erystals,
they found no evidence for strain softening. However, there iz the possibility

that inp their aluminum-copper alleys room temperature aging during unleading and



repalishing can complicate the interpretatiops. Evidently, the peint is
significant and must be explored further.

Finally, we wish to call attention te the symmetry of our predictions
regarding the orientation of the plane for localization: both planes that
are nearly coincident with the slip plare and with what we have called the
kink plane {(pnormal in the slip direction, §) are predicted, It has, of
courge, ccourred to us that a finite localization of the kink type iz
kinematically analegous to the phencmenon of "deformation kinking®, in which
a crystal lattice Is obgerved to bend about an axis aleng 2 in a planar
band with normal 4 {Cahn, 1951). The mechanisms for forming such kinks
are not well established and have usually been assoeiated with asymmetries
in loading. However, cur analysis suggests that a rather different expla-
nation may be possible in certain cases, in that some observed kinking may
ke axplainabla as a leocalization instability.

To conclude thiz article, we racall itz intentiong zet forth in Sgetion
1. There are nunercus examples of hiphly localized plastic deformation in
ductile single crystals that are not easily explaineq in terms of strain
softening or ideal plasticity. We have instead put forth a rather detailed
and (we hope} sufficiently precise analysis of the problem in initially
hamogeneous rate insensitive crystals, which dees seem to provide a suitable
description of the prﬂcéss. He have given formulas for the criticallparameters,
and have discussed in detail how they could be related to the micromechanics
of slip. Cleariy oupr procedures of section U could be applied to other types
of "tripgered” slip processes. Analytical extensiocns of ocur model are
appealing, but whether or net our daseription, or some other, is the cerresct
one in any partjcular case will probably be determined only by careful experi-

ment of the kind we have suggested.
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The total deformation D dt of a crystalline material in the time
interval dt can Be kinematically decomposed Into: (i} 4 plastic
shear dy , imposed on the material under conditions for which the
lattice is rigidly fixed relative to the background reference axes,
and {ii) A lattice deformation Qﬁdt s imposed under conditions for
which the material and lattice deform and rotate idenmtically. The
total infinitesimal rotation of the material is 2 dt , but the
correspehding lattice rotation is g*dt N

Cartesian coordinates aligned with unit vectors of crystal slip
system, Surface of localization iz ghowm with unit nmormal p ,

v .
having components o, 0, s 0,

Cress slip model. Local cbstacle is bypassed by partial ssgments
of a screw dislocation on the primary plane constricting, and mov-
ing a small distange on the cross slip plane, hafore continuing
primary slippage.

The surface AG 5 0 , in the space of stresses s Tz& » and

T
Toy ¢ ©3R be taken as a yield surface. Differen?dyield surfaces
correspond to different values of the structure parameter p .
Arrays of discrete dislocations "piled up™ at a barrier at the
origin, ¢ is the angle of inclination of the cross slip plane.
The dots represent discrete dislocations and the surrcunding sclid
lines the continucus smearing of these dislocations zlong the slip
linz for the (a) isolated array, and (b} an infinite sequence of
arrays, cach separated by a distance p., 5c shows an idealization
of an array where the lsad dislocation is discrete while the

remaining dislocations are continuously distributed.

Schematic form of the activation harrier for cross slip.




