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ABSTRACT

The nonlinear evolution of ideal MHD internal instabilities is
investigated in straight cylindrical geometry by means of a 3-D initial-
value computer code. These instabilities are characterized by pairs of
velocity vortex cells rolling off each other and helically twisted down
the plasma column. The cells persist until the poloidal velocity
saturates at a few tenths of the Alfven velocity.' The nonlinear phase
is characterized by convéction around these essentially fixed vortex
cells. For example, the initially centrally peaked temperature profile
is convected out and around to form an annulus of high temperature
surrounding a small region of lower temperature. Weak, centrally
localized instabilities do not alter the edge of the plasma. Strong,
large-scale instabilities, resulting from a stronger longitudinal equi-
librium current, drive the plasma against the wall. After three examples
of instability are analyzed in detail, the numerical methods and their

verification are discussed.



2:1,. INTRODUCTION -+ : .

Over the past. few ‘years, we have developed a serles of computer
, codes [1-12] designed to investigate large-scale internal 1nstab111ties
- by solving the ideal MHD . equatlons as an initial boundary-value problem.
Starting with an unstable equilibrium and an arbitrary initial pertur-
bation, the primitive variables (velocity,.magnetic field, _pressure, and
density) are.advanced in time uptil. the, fastest _growing, 1nstab111ty .
dominates over all,other motion The nonllnear evolution of the 1nsta—
- bility is then followed on a three—d1mens1onal grid until the plasma has
convected considerably and the .poloidal ve10c1ty fleld saturates _ In
this paper, the results of three examples and the veriflcatlon of the
numerical methods will be analyzed in detail.

This work is motivated by the fact that large-scale instabilities
are observed in all tokamaks [13,14]. Some level of unstable activity
is observed even during the normal operation of most tokamaks, as is
evidenced by the fact that fluctuations are routinely observed in the
poloidal magnetic field [15,16,17] and in soft x-rays [18,19]. Tokamaks
operating at such a low level of current density that they appear to be
completely free of instabilities [l4] are less interesting candidates
for thermonuclear fusion than tokamaks with some level of unstable
activity. The experimental evidence indicates that some helical struc-
tures, associated with large-scale instabilities, saturate at such a low
amplitude that they enhance transport, alter the profile, or have hardly
any effect at all. However, when the current and mass density are
varied beyond a limited range, a disruptive instability appears suddenly
and unpredictably [13,201, from which the plasma may or may not recover.
Given the dominant role which instabilities play in tokamaks, it is more
useful to study the effects of instabilities when they exist than to
continue the search for completely stable equilibria.

Sawtooth oscillations observed with the soft x-ray diagnostic occur
under conditions for which an ideal MHD m = 1 instability may be ex-
pected. The resistive form of the m = 1 instability has been studied by
Waddell et al. [21] in the limit of zero beta. The present paper is
devoted to the complementary problem of the ideal MHD m = 1 instability
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with finite beta. We have investigated these instabilities for a
variety of equilibfium profiles and shapes [1-12]. 1In this paper, three
examples will be studied in detail in order to represent our ;ypical
results. The equilibrium for these three examples is chéracterized’by a
sinusoidally peaked current profile, high‘beta, and straight cylindrical
 geometry. h

' 'Tﬁe'basic features of the model and computational method are
desqfiﬂéd in Seé£iod 2. The equilibrium used for the examples in this
.gépgr fsfdesﬁribedlin‘Section 3 féllowed by a review of the linear
_instaﬁilify"results in Section 4. Three examples of nonlinear instability
evélution’aréfan#lyzed in éectioﬁ 5. The numerical_methods and verifi-

cation tests are given in Section 6.



2. MODEL

We have simulated the nonlinear evolution of MHD instabilities by
solving the ideal MHD equations as an initial boundary-value problem.
The equations are advanced in time by using an explicit 1eapfrog'differ—
ence scheme on a 3-D rectangular Cartesian grid. Starting with an
unstable equ111br1um and’ addlng a small perturbatlon (usually the ' elgen—
functlon correspondlng to the fastest grow1ng linear instability obtained
from a 11near code) we follow “the’ evolut1on of the‘prlmltive ‘variables
'(velocity v, magnetlc field B, pressure p, and den51ty p) ‘for as long as
the numerical procedure is rellable For a glven equillbrium, the
results follow a consistent pattern regardless of the initial perturba-
tion, provided the pertarbation is sufficiently small.

The ideal MHD equations are written in an almost conservative form

in Cartesian coordipates:
é'—-(£>\1"‘)‘-=' .2 *a:.— pv‘v-~+AB~B> —s(é7+’b B2). 8. . |« - .l,”..42-1)
ot i x. 0 B e 2 ijyo o c
)
sEB=-VXE , E=-yXxB @
. : ] . . nﬂ.. ‘ P ,,,’ . .
—a? P =- V - (pV) —(F - l)p v - Vv, I = 5/3 - P (2.4)

These equations apply throughout the domain — there is.no vacuum region.
The boundary conditions are chosen. to isolate the. system by globally.
' conserving energy, magnetic fluxes,:and total -mass. The. conditions .used

at the walls are: . - .-

E, =0 . (2..5)



vy =0 (2.6)
p =0 } | (2.7)'
B, =0 - (2.8)

These conditions are consistent with the finite difference form of the
equations uséd. The variables v", B“, and p are time advanced on the
boundary in a way which will be discussed in Section 6.

Equation (2.4) could be rewritten in conservative form by replacing

it with an equation for the evolution of the energy density:

(o3

ETs (%pvz + ;E—l-w& ‘432) =-V - [(%pvz ‘+.Y%> v+ E % B] (2.9)

. The kinetic and magnetic energy may be eliminated wheneVer.p is needed.
Equation (2.4) was used instead because it is simpler and it avoids
round-off error (the small difference between large numbers) when the
kinetic or magnetic energy is much larger than the pressure. Several
rearrangements of Eq. (2.4) were tried and had no noticeable effect on
the results. |

The equations are written in dimensionless form by normalizing

1) all lengths by the minor radius a,
2) density by the initial density at the magnetic axis po,
3) magnetic fields by the initial longitudinal vacuum magnetic

field at the center of the domain, BTo’

These three normalization parameters (a, po, ) are then used to

Ao = Br /(4np )'5

. = 2/ = 2 clate e
prersure, P = By, /4T Vio P, (mot ?clnted to the central plasma |
pressure); time, t, = a/vA ; current density, Jo = cBTo/Ana; and electric

field E_ =
o

define reference values for the Alf¢en veloc1ty, v

Ao To /c, using Gaussian units here., For example, the con-

version of growth rate and current density to practical units is given

by ‘ .



2.18 x 10° B[KG] Yy

ylusec™'] =

: (2.10)
alcm] (n{cﬁ'%]umi/mp)% ‘
J[Amp/cm 1= 795.8 B[KC] (2.11)

a [cm]

.
density.

where m, is the ion mass, mp is the proton mass, and n is the ion number

When using the MHD codes, our standard procedure is to first pre—
_pare an equilibrium,  then find the fastest growing instability using the
linearized MHD equations, and finally follow the evolution of the
instability. using the nonlinear ﬂHD equations.‘ We cqeld disbense with
the step of finding an instability from the linearized equations and
simply use an arbitrary initial perturbation added to the equilibrrum.

We could also dispense with the preparation of an equilibrium and start

. the nonlinear evolution w1th an arbitrary plasma state.

- We start with the sum of an equilibrlum and an elgenfunctlon of the
linearized equations for several reasons:

1) The eigenfunctions of the linearized equations are unique aﬁd.
independent of the initial perturbation. Hence, for any giveh equiIiB—
rium, we are assured of a unique nonlinear evolution if we start with a
perturbation which is initially so small that it evolves accourding to
the linearized equations long enough for the:fasresc growing eigenfunc-
tion to dominate over all other motion. If this procedure is to be
followed, it is economically advanrageous to use the linearized equarions
‘to determine the fastest growing eigenfunction. ’ . .' _

2) We routinely check the nonlinear code by comparing the evoiupion
at small levels of,the'perturbation.against the growth rates and eigen-
functions obtained from the linearized code. In order to minimize ahy
initial transient, the difference schemes used in the codes have been
,made.identical. It has been found that even when the equilibrium is not
perfect or the codes are not identical, the grqwth‘rate and form of the

eigenfunction agree to within several percent of the linear results.



3) Our intuition is based upon the linear results. We feel it
would be more useful to extend this body of knowledge into the realm of
nonlinear evolution than to develop a new and separate set of observa-
tions based on the nonlinear evolution of arbitrary finite perturbations.

A possible disadvantage of always starting with the fastest growing
eigenfunction of the linearized equations is that we might miss those
nonlinear effects which depend upon the coupling of two or more eigen-
functions or upon perturbations which cannot be represented as the sum
of those eigenfunctions which are available to us (on the grid we use).
In answer to these objections, we have tried some computer runs with
'Bizérre initial perturbations which excited a variety of MHD oscillations.
During'the nonlinear evolution, we observed that the fastest growing
insiability always emerges from the background motion before the typical
nonlinear effects take place. This happens even with unusually large
initial perturbations.

» We have chosen to advance the equations in time by using an explicit
leapfrog finite difference scheme [22,23] on a 3-D Cartesian grid because

 it is the simplest numerical method with second-order accuracy. The
numerical instability characterized by grid separation does not appear

as long as the variables are growihg in time. This will be discussed
further in Section 5.

We must avoid equilibria with values of beta lower than a few
percenﬁ for three reasons:

1) Low beta instabilities tend to be spatially discontinuous or
localized. For example, the radial velocity for the m = 1 internal kink
mode in a circular cylinder looks like a step function at the radius of
the mode-rational surface and the m 2 2 modes are localized near the
radii of their respective mode-rational surfaces in the limit of very
low beta and conditions near marginal stability [24]. With high beta
and finite growth rates, the instabilities are smoother and broader and
therefore better approximated by a discrete grid.

2) Low beta internal instabilities grow very slowly on the Alf¥en
transit time scale. Hence the lower the beta, the longer our code would
need to run in order to follow an instability for several e-folding

times.



3) Finally, low beta instabilities are driven by a small difference
between 1arge forces. Not only would they take longer to grow but they

would need more numerical accuracy to approximate.



3. EQUILIBRIUM

A wide variety of equilibrium shapes and profiles has been inves-
tigated with both the 1iﬁéar and nonlinear MHD instability codes.
However, a standard analytic equilibrium will be used for the three
examples considered in this paper..

The static equilibrium filling a straight cylinder with square

cross section (Fig. 1) is specified by

pT(W) = I, W, = - Vi (3.12)
BT (x,y) = 1° : (3.13)
p(x,y) =1 (3.14)

where Y is the stream function, proportional to poloidal flux, from

which the poloidal magnetic field is determined such that

B=9x (V2 + B, 2 (3.15)

and where wc and JC are the central value of ¥ and the longitudinal

current density (along Z). The wall is a flux surface on which ¢ = 0

poloidal =D.
The analytic solution for this equilibrium is given by

and p = 0. There are no poloidal currents (B

.w = wc cos (mx/2a) cos(my/2b) ' (3.16)

where a and b are the half-width and half-height of the rectangular
walls (a = b = 1 here) and

Ve = e /[(g—a>2_+<g—b)2] . Gan



p(x,y) = % Je w2<x,y>/wc ‘ S : . (3.18)

'The current profile, JT(x,y)'= Jc'w/wé, is'ésséntially'paraboliCu
A longitudinal periodicity length is specified for the cylinder in
the 3-D4nonlinearucode gatghing ;he wavelength of tbe linear instability
used as the initial perfurbation;v Tﬂe prodﬁct form of the terms'in ?he
nonlinear equations assures that only subharmonics of this wavelength-
will be generated (nk, n = 0, 1, 2, ... where k is the wavenumber of the
initial perturbation) so that periodic end conditions remain consistent.
The g-value per unit wavelength at the magnetic axis is given
by [24]

B
nq = — Ie. T - e (3.19)
L x \BBZ‘ 9Bx|\}
9x ||dy '
" where X is the wéveléhéfh divided by 27 (X = 1/k). When the flux
" surfaces at the magnetic axis are c¢ircular, this reduces to
"2 .B:
_ Tc ) <
nq, = x JC . , o : o oo (3.20)

The q-value at the edge is infinite because the poloidal magnetic field
has stagnation points in the corners of the rectangular walls. Plots 6f
q-value as a function of the radius along the midplane of the cyliﬁder
cross section are shown in Fig. 2 for the three cases to be studied in

this paper. The q-value at an arbitrary point is given by

ERIS

W) = q T K [1- (w/wc)zl (3.21)

where K is a complete elliptic integral of the first kind [26].

The maximum value of beta, using the definition

8 P ‘ (3.22)
(x,y) P+ 4 B2
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is the value at the center given by
max

B . = [1+ (a% + b?)n2B, 2/4a?b23 2]7} (3.23)

For comparison with experiments, it is useful to quote the average

toroidal beta

<p > pmax ‘
B . =¥ =4 (3.24)
ave L 32 Bz
c * PTe Tc

which is roughly a quarter of Bmax for this equilibrium in the low;B
limit,

A short cylinder, X = 1, and low central q-values, nq = 0.6, 0.95,
and 1.6, are used for the results presented in this paper. See Table 1
for a full list of conditions. The nonlinear ihstébility code produces
the most accurate and reliable results under these conditions of high B
short wavelength and broad current profile., Only qualitative agreément
can be expected with tokamak or shock heated experiments. Results for

longer wavelengths, lower B, more peaked profiles, B # 1, and

poloidal
different geometries will be presented in future reports.
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4. REVIEW OF LINEAR RESULTS . = . .. .

What follows is a brief review of the results for linear fixed—
boundary instabilities in a straight cylinder [l] ' _‘

These instabilities are characterized by pairs of velocity vortex
cells rolling off each other and helically twisted down the cylinder.f
.The number of vortex cells arranged azimuthally around the magnetic axis
:(the azimuthal mode number m) depends upon the equilibrium parameters
and the wavelength along the cylinder.‘ In the case of a circular cyl—-
inder, it is a theorem [27] that modes with two or more vortices ar-
ranged radially from the magnetic axis always grow more slowly than the
_mode w1th only one radial vortex cell for any given azimuthal mode'
number. We have observed only the fastest growing modes in the square
cylinder and each of the modes observed has only one radial vortex cell.

The spat1a1 extent of the velocity pattern depends upon the breadth
of the profile and .the strength of the instability. For centrally
peaked current profiles, the instability concentrates near the magnetic
axis as the current is reduced to the low-current marginal point and it
concentrates near the wall as the current is increased to the high-
current marginal point. Roughly speaking, the instability is strongest
inside and near the mode rational surface. Between the marginal points
and near the maximum growth rate, the instability has a broad spatial
extent completely filling the cylinder and there is a strong longitudinal
velocity which is maximum at the outer edges of the vortex cells. This
velocity is driven by the gradient of the perturbed pressure parallel to
the magnetic field lines wherever the helicity of a line of constant
pressure does not match the helicity of the local field lines.

" The perturbed pressure responds to the velocity field by forming
m-positive maxima and m-negative minima arranged azimuthally around the
magnetic axis and helically twisted down the plasma column.

The perturbed magnetic field and perturbed current density consist
of 2-m helically twisted vortex cells, with regions of longitudinal
component near the center of each vortex cell, +90/m° and -90/m° respec-

tively, out of phase with the velocity vortex cells.
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Growth rate curves as a function of central q-value are shown in
Fig. 3 for the m = 0, 1, 2, and 3 modes with wavelengths 1, 2, and 3 in
units of 2ma, Corresponding growth rate curves for a circular cylinder
with parabolic current density are also shown for comparison. These
circular cylinder curves were obtained from a shooting code similar to
those used in Refs. [27 and 28]. The remérkably close agreement of the
curves indicates that the details of the geometry have littlé effect on
these large-scale instabilities. The fact that the curves differ at the
low-current (high q-value) marginal points is probably indicative of the
inaccuracy of the initial-value code (the one used for the square
cylinder) as the mode concentrates near the magnetic axis. This is
especially true for the higher mode numbers. In Fig. 3, arrows point to
the three cases whose nonlinear behavior is studied in this paper.. The
: linéaf growth rates for these three cases agree well with the circular

cylinder results.
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5. NONLINEAR RESULTS

" We find that' the nonlinear evolution of large-scale internal
instabilities is.charactetiaed by:convection around essentially;fixed;
velocity vortex cells. The poloidal velocity field established by the
linear instability continues to grow long into the nonlinear phase
without appreciably changing structure or wandering. The form of the
linear instabilityvis indicative of the nonlinear behavior, in this
sense. The effects of convection can then be seen in the evolution of
temnerature, pressure, density, magnetic field, and current density.
Compression and other driving terms also contribute to the evolution,of
these quantities.4 In each case,,the physical quantities grow exponen-,
tially at first, consistent with the linear MHD results. As the maximum
p0101dal velocities grow to a few tenths of the Alfﬁen veloc1ty and »
appreciable convection occurs, the growth rates decrease to zero and the
instability appears to saturate. o . e

It is useful to draw a distinction between instabilities  which-are
concentrated near. the center of ‘the plasma and those which extend over
most of the cross section. The extent of the poloidal veloc1ty field is
a good indicator of this localization. Under conditions where the
instability is centrally localized i.e., conditions near ‘the low-
current marginal p01nt the resultlng non11near convectlon is ‘also
centrally localized leaving the edge of the plasma essentially untouched
Extreme cases of localization are difficult to simulate accurately
because a fine grid is needed to support the detail. A mildly localized
m = 1 instability, for which the central q-value is 0.95, is illustrated
by the time sequences in Fig. 4 corresponding to Case I in Table 1.

An instability with broad spatial extent drives the plasma into the
wall. Nothing actually passes through the wall in this model but the
hot core of the plasma is squeezed up so close to the wall that transport
effects, which are not included in the MHD model, are likely to be
large. An example of a broad m = 1 instability leading up to this
state, for which the central equilibrium g-value is 0.6, is illustrated

by the time sequences in Fig. 5, corresponding to Case II in Table 1.
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TOR max

Table 1
Case Ia Case II Case TIT
nq central 0.95 0.60 1.60
J, 2.105 3.333 1.25
0.47 0.69 0.24
max . A
o Lo ‘
Bave ' <P>/»§BTC 0.22 0.56 0.079
m 1 1 2
Ylinear 0.240 0.535 0.117
Poloidal saturation velocity 0.14 >0.5 0.095
Radius of mode-rational _
surface : 0.29 0.8 0.57
Radius of vortex center 0.29 0.51 0.29 (x/ 2)
Radius where )
v =kLv 0.35 0.58 0.52
y y max
: . 1 .
Radius of Prax 0.29 0.33 0,36
Radius of B} 0.29 0.46 0.38

%For all cases, ka = 1. Grid is 27 x 27 x 16 including

poloidal ghost points.
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‘ The'nonlinear'consequences'of an m'='2hinstability are illustrated
in Fig. 6, corresponding 'to Case III in Table 1. A fine grid is needed
to support the detailed structure of anm = 2 instability The‘grounds
for confidence in the particular example chosen (nq = l.6)zare optimal
in the sense that the square cylinder growth rate agrees very well with
the circular cylinder result (see Fig. 3) and the structure is moderately
broad, in‘addition-to the fact that much the same behavior is observed
when a different grid is used (e.g., 24 x 24 x 20 rather than 27 X
27°x 16). - -
Relevant parameters for all three cases are presented in Table 1.
Note that the values of beta and current density are high because a’
short wavelength is being used (A = 2na) The last four radii given in
the table characterize the spatial extent of the instability. Pertur-
bation quantities are indicated by the superscript 1 while equilibrium
quantities are indicated by the superscript 0. '
Figures 4, 5, and 6 show time sequences for a cross section of
velocity, pressure, perturbed magnetic field (B - B° ), perturbed poloidal
current denSity [(J - J ) ], rate of change of veloc1ty (av/at),
.divergence of velocity (V . v), longitudinal current dens1ty (J ), and
mass den81ty (p). Each frame represents a snapshot for the time given
at the top of each illustration (in units of ‘the reference Alfven

time). The structure shown in these plots is helically twisted down the
cylinder in the sense of a right—handed screw along the positive z—-axis
(out of the page) . 'For the m = 1 modes, the plots should be turned 90
counterclockwise for a representation of each successive quarter—wave-
length cross section. For the m=2 mode, they should be turned 90°
counterclockw13e for each half-wavelength cross section. To a good
approx1mation, any structure near the center can be rotated continuously
to obtain intermediate cross sections. ‘

‘ See Appendix I for the information needed to interpret these contour

plots 'and arrow plots. -

In all ‘three cases it is clear that the evolution of the pressure
contours is dominated by ‘convection around the velocity vortex patterns.

The effects'of convection are also evident as the structure of the
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perturbed magnetic field and current density evolve in time while their
magnitudes grow exponentially. The poloidal velocity continues to grow
in magnitude but the structure and the position of the vortex cells do
not change appreciably until a considerable amount of convection has
occurred.

Since the spatial form of the poloidal velocity field does not
change substantially during most of the evolution, it is useful to
measure the magnitude of the poloidal velocity at a fixed point in
space. Figures 7, 8, and 9 show log-linear plots of the maximum value
of vy along the vertical midplane as a function of time for the three
cases under consideration. Also shown are plots of the kinetic energy
integrated over the total volume andvthe decrement in the total energy
(kinetic plus magnetic plus thermodynamic) es a function of time.

Arrows indicate the instants in time which are illustrated in Figs. 4,
5, and 6.

In all three cases, the poloidal velocity shows signs of saturating
at a few tenths of the reference Alfven velocity. The stronger the
instability, the larger the saturation velocity. The kinetic energy
continues to rise after the growth of the poloidal velocity has saturated.
Evidently the additional kinetic energy comes from longitudinal velocity
which, in turn, appears to be due to gradients of pressure which build
up along magnetic field lines.

The fact that the energy decrement, which is purely a numerical
artifact, is typically an order of magnitude smaller than the kinetic
energy adds confidence to the results. This decrement is several orders
of magnitude smaller than the total energy.

Returning to Tigs. 4, 5, and 6, we note that the maximum pressure
does not change drastically during the evolution. However, the effects
of local compression and expansion (V ¢ v # 0, which is shown in the
sixth row of each sequence) are enough to change the topology of the
isobars, especially when a narrow ridge forms. This can be estimated by
noting that the pressure (or any quantity) is constant in a fluid element
under the effect of convection alone. It is sufficient to integrate

V * v over time to estimate the change in magnitude due to expansion.
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More -than a 20% change, for example, would be expected for the bridge
‘connecting the 'two pressure maxima in the last frame shown in Case I
(Fig. 4).

“ . In order to-understand the evolution of the magnetic field as a
‘whole, first consider the evolution of ‘the total perturbation of' the-
magnetic field from equilibrium — B! = B - B°. As shown in Figs. 4, 5,
and 6, the perturbed magnetic field consists of pairs.of longitudinal:
bundles each surrounded with a roughly vortex-like structure, oriented
in the direction of the left-hand rule, all helically twisted down the
cylinder. The perturbed current density has a corresponding vortex and
bundle-like structure. The perturbed magnetic field grows in magnitude
and convects. As a result, the total longitudinal field increases near
the center and decreases near the edge. The net poloidal magnetic field
profile is flattened at the mode rational surface, being increased
somewhat near the center .and decreased near the edge.  The new poloidal
‘current is paramagnetic-while the additional. longitudinal current is
diamagnetic near the center:.

. For the purpose of gaining physical intuition, it is useful to

write Faraday's law in the following form
S =-y+VB+B+Vy-BV-.v , '(5.25)

(only the conservative form of this equation is used in. the computer .
~code). - The. first. term on the right represents convection and the third
term gives the effect of compression or expansion.
Consider 'an m = 1 mode. The equation for the poloidal component

(B;) at the center of the domain is

X _y (41° - kR ) - v - VR! - B}V . Y .26
5t vy O R -y - VR - BV .~y . (5.26)
The condition %J; > kB; at the center is just the condition q < 1.
Hence, B! continues to grow with its original form until the nonlinear

terms become important. Of the three nonlinear terms on the right of
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Eq. (5.25), the convection term dominates over the compression term ‘
because the'perturbed magnetic field has a great deal of spatial struc-
ture. For the second term on the right of Eq. (5.25), we note that the
total magnetic field does not appear to change in structure; its com-
ponents change only in magnitude. Since the velocity field also changes
little in structure, this term takes the same form as the linear con-
tributions to the evolution of B;. However, since the magnitude Bz
increases at the center, the growth of Bi decreases and ultimately re-
verses there.

Now .consider the effect of an m = 1 mode on the longitudinal
‘magnetic field at the center. The middle term in Eq. (5.25) makes no
contribution [vz(0,0) = 0], but compression tends to increase Bz below
the center and convection carries this increased longitudinal field into
the center of the domain.

Consider now the time rate of change of the velocity field (fifth
row in Figs. 4, 5, and 6). This is a sensitive indicator of changes in
the velocity field. It represents the acceleration at fixed points in
space. - Significant changes take place just before and after the last
frame shown in each time sequence. The computer runs continue after
this time but the results are less certain in the sense that fine-scale
structure rapidly appears (which might bewa numerical artifact). The
blargest component of this structure is al&ays longitudinal.

Moderately large increases in longitudinal current density (seventh
row in Figs. 4, 5, and 6) reflect the growth of perturbed poloidal
magnetic field components to values comparable to the poloidal equilib-
rium fields but with finer structure. ‘

Finally, the evolution of the mass density is illustrated (eighth
row in Figs. 4, 5, and 6). A uniform equilibrium density was used in
order to chow the cvolution of a ccaler ficld dominated by comprecooion.
Other computer runs have indicated that all the other results are

essentially unaffected by the choice of a mildiy peaked density profile.
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6. NUMERICAL METHODS

. The computer code used in .this report time advances the velocity,
magnetic field, density, and pressure at each point on a 3-D Cartesian
grid using an Eulerian explicit leapfrog difference scheme. The equa-
tions are written in c¢onservative form (except for the pressure equation,
as explained in Section -2) and the derivatives are centered in time and
space to enhance convergence. At any given point, the variables are
known at one instant in time, but that time is different by half a
timestep between adjacent grid points. In principle, the evolution is
followed until the effects under consideration have run their .course.

In practice, the timestep is calculated for each step of the iteration
and the evolution must be terminated when the timestep begins to change
noticeably.. A simple leapfrog scheme. without. added diffusion is suitable
while the variables -are growing in time, but it breaks down (due to grid
separation) when the variables start to decay.

The difference scheme in the 1inear MHD code, which is used to
prepare the eigenfunction perturbation to initialize the nonlinear code,
is almost identical to the difference scheme in the nonlinear code. . The
variables in the linear code represent one Fourier harmonic along the
ignorable coordinate, Z, of the equilibrium. The real and imaginary
parts of this harmonic represent the variables on planes a quarter of a
wavelength apart. The two other quarter-wavelength planes follow by
periodicity. A derivative of a linearized variable in the Z direction
is equivalent to a finite difference over four planes with 2 DZ = 1/k,
.where k.is the wavenumber of the Fourier harmonic. - Because the linear
and nonlinear codes are so much alike, there is a continuity of growth
rate and symmetry for as long as the eigenfunction is a small pertur-
bation of the equilibrium. A transient fluctuation in the growth rate
occurs, as illustrated in Fig. 10, for two reasons: there is a finite
difference error in the z-derivative depending upon the number of planes
used in the nonlinear code; and the equilibrium used is not an exact .,
solution of force balance in finite difference form. This makes the

equilibrium expand or compress toward the center, changing the pressure
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and current profiles and thereby changing the instantaneous growth rate.
It is clear from Fig. 10 that the transient becomes negligible as the
grid is made finer. Only the finest grid (27 x 27 x 16) was used in
preparing the results shown in Section 5.

The boundary conditions in a finite difference scheme require
special attention. We impose the conditions given by Eqs. (2.5)-(2.8).
These conditions are self-consistent in both analytic and finite dif-
ference form. However, they represent conditions for only five out of
11 scalar variables (including the components of E); the mass density,
perpendicular E-field, and parallel components of v and B are still"
free. Analytically, these follow by continuity as they evolve within
the domain. But in finite difference form a choice of extrapolation
techniques must be made. We have made a special choice, called "marching

' in which these nonzero variables are advanced in

boundary conditions,’
time and only those variables which are zero on the boundary are extrap-
olated in order to find their derivatives perpendicular to the boundary.
These boundary equations are derived in the following way.

Consider one form of the equation‘for the parallel component of the

velocity at the wall, v

v, :
W, '
el TR T LR €.27)

Since p = 0, its parallel gradient is zero on the wall. Since v o= 0,
only parallel derivatives appear in v * V M Finally, since B, =0,
only gl X §" appears, and 51 is computed using only derivatives parallel

to the wall. The resulting equation is

&

P Tty VY v g | (6.28)

~1l

and every term is known at the wall. It is surprising that a current

density must pass into the wall in order to drive any velocity there.
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For another example, consider the equation of continuity

P v

——

e =" 0 ey -9 (ey)) (629
If we use a linear extrapolation of‘pgl through zero at the wall, we
determine Vl . (pgl). The other derivatives involve only quantities
known at the wall.

In. the same way, §" is advanced on the wall using a linear extrap-
olation of g" through zero at the wall.

The essential idea of marching boundary conditions is to rearrange
the equations analytically until only those quantiﬁies which are zero at
the wall appear under perpendicular derivatives.

_ Another special feature of the difference scheme concerns the
initial and final timesteps. A time-centered leapfrog scheme gives a
convergence error of order (Af)z. However; in order to start the time
integpation with all:quantities given at the samevtimes;ep, or to stop
the integration leaving all the data at the same timestep, a noncentered
timestep is required on at least one of the two 1eapfrog grids. We have
found that if the first timestep is nAt, the second (1 + n) At, and all
subsequent timesteps are 2At, the choice of n = 1/V/2 distributes the
error evenly between the two grids. The derivation follows by examining

the second-order term in the noncentral Taylor series expansion
f(t+a) = f(t) +a £7(t +b) + (432 - ab) £77(£) + ... (6.30)

.which may be used to evaluate.df/dt with various combinations of non-
centered finite differences.

A variety of methods have been used to verify the results of the
3-D nonlinear evolution code presented here: convergence tests; conser—
vation of mass, magnetic flux, and energy; repeated time reversal;
continuity of growth rate and symmetry; running single and double pre-

cision; and checking linear growth rates against other computations.
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One example of a convergence test is illustrated in Fig. 10, for an
m = 1 instability corresponding to Case II. As the number of grid
points is increased from 12 x 12 x 8 to 27 x 27 x 16, for example, both
the time evolution and profiles of the variables exhibit the same
behavior. By checking a number of cases, it has been found that an
18 x 18 x 12 grid is‘adequaté for most m = 1 instabilities at high beta.
A 27 x 27 x 16 grid was used in all the results presented in Section 5.
Note that these numbers include ghost points around the poloidal cross
seétion, so this gria corresponds to 24 x 24 x 16 intervals within the
domain.

The differehée scheme conserves magnetic flux and mass identically.
Local éonservétion of magnetic flux (V B = 0) follows from Faraday's
law provided finite differences in orthogonal directions commute, which
is trﬁe for the spatial difference scheme used here. Due to computer
rouﬁd 6ff érfor, it is observed that V - B wanders from zero by about one
part in 10" during the computation.

Conservation of energy is a useful diagnostic since energy is not
conserved exactly by the finite difference equations, as explained in
Section 2. Referring to Figs. 7, 8, and 9, the change in total energy
is observed‘to be about 10% or less of the kinetic energy, growing at
the same rate'until there is a sudden reversal at the end, and is orders
of magnitude smaller than the total enérgy, Different forms of the
pressuré equation have been used with no apparent Change in the results.

A sudden time reversal at the end of a computer run produces a re-
markable result as the instability retraces its steps for a length of
time which depends upon the grid size. If time is then reversed again,
the instability evolves to the same final stage. These results will be
reported in more detail elsewhere by H. R. Hicks.

The continuity of growth rate between the linear and nonlinear
computations is illustrated in Fig. 10. This is routinely checked for
all runs. The kinetic energy and other variables are observed to grow
at correspondingly correct rates. Also, all the spatial symmetries of

the linear eigenfunctions are preserved during the nonlinear computation.
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No difference is observed when the computation is carried out in
double precision (using an 8-byte word as opposed to the usual 4- byte
word length on the IBM 360/91 computer) A nominal seven dec1mal digits
of accuracy appears to be adequate. '

More tests and diagnostics of the computation are in progress and
will be reported in future papers. On the basis of tests made to date,

we have considerable confidence in the results presented here.
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7. CONCLUSIONS

On the basis of computer simulation, it is observed that internal
ideal MHD instabilities ih a straight cylinder are characterized by
pairs of velocity vortex cells rolling off each other ana helically
twisting down the plasma column. Pressure, temperature, dénsity,
perturbed magnetic field, and perturbed durrent density convect around
these essentially fixed velocity vortex cells. Compression and other
effects are also observed. Spatial localization is the most important .
quality affecting the nonlinear evolution. After a significant amount
of convection, - the vglocity vortex cells stop growing and begin to
wander.

A wide variety of different conditions has been investigated with
the same model, including the effects of different profiles, elongated
cross sections and wavelengths, Bp different from one, and toroidicity.
These will be reported in future papers. Qualitative aspects of the
results shown here hold for the wide range of cases studied to date. 1In
addition, a number of projects are under way to include transport and
source terms, different boundary conditions, and improved diagnostics.
Initial value MHD codes will continue to provide a very flexible tool

for studying large-scale phenomena.
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Figure Captions

Fig. 1. Geometry and coordinate systems for the stréight rectan-
gular cylinder with sides 2a X 2b x X, The cylinder has rigid, perfectly

conducting walls at the sides and periodic conditions at the ends.

Fig. 2. The g-value as a function of x along the midplane of a
square cylinder for the equilibrium specified by Eqs. (3.12) and (3.13).
The three curves correspond to central q-values of 1.6, 0.95, and 0.6.

The radius of the mode-rational surface (rs) is indicated in each case.

Fig. 3. Growth rate as a function of central gq-value for m = 0, 1,
2, and 3 modes of wavelengths 1, 2, and 3 in units of 2ma. Solid curves-
refer to a cylinder with square cross section and equilibrium specified
by Eqs. (3.12) and (3.13). Dashed curves refer to a circular cylinder

with parabolic current profile.

Fig. 4.'.Time sequénces for a cross section of velocity, pressure,
pertﬁrbed magnefic field, poloidal current density, rate of change of '~
velocity V * v, longitudinal current density and mass density for an
.m = 1 instability with nq, = 0.95, ka = 1, vy = 0.24, Case I in Table 1,
run 1087. Time is in units of the reference AlfVen transit time.
Minimum and maximum values appear under each frame. See Appendix I for

the interpretation of the graphs.

Fig. 5. Time sequences as in Fig. 4 for an m = 1 instability with

nq = 0.6, ka = 1, y = 0.535, Case II in Table 1, run 1088.
c

Fig. 6. Time sequences as in Figs. 4 and 5 for an m = 2 instability
with nq, = 1.6, ka =1, y = 0.117, Case III in Table 1, runs 1086 and
1107. The small longitudinal components near the corners in the first

frame of Jdv/dt are a numerical artifact of unknown origin.
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Fig. 7. Maximum poloidal velocity, kinetic energy, and decrement
in total energy as a function of time for an m = 1 mode corresponding to
Case I, run 1087. Total energy is 0.779. Arrows point to instants in

time illustrated in Fig. 4.

Fig. 8. Maximum poloidal velocity, kinetic energy, and energy
_ decrement ‘as a function of time for Case II, run 1088. Total energy is

1.20. Arrows point to instants in time illustrated in Fig. 5.

Fig. 9. Maximum poloidal velocity, kinectic energy, and energy
decrement as.a function of time for the m = 2 mode, Case III, runs 1086
and. 1107. Total energy is 0.598. Arrows indicate last two instants in
time illustrated in Fig. 6; the first instant is off the graph to ;pe
left.

Fig. 10. Instantaneous growth rate of the.central poloidal velocity,
-vy(t), as a function of time during the nonlinear evolution of an m = 1
instability with nq, = 0.6 corresponding to Case I in Section 5. The
results are shown for three different grids. Lines with arrows indicate

results of time reversal.
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APPENDIX I

Interpretation of Graphs

Data aré presented on cross sections of the plasma cylinder in the
form of contour plots and arrow plots. Information needed to interpret
these plots is presented here.

The contour plots are composed of five fields of numbers, each
representing an interval of values logarithmically distributed over each
decade. The interval 7.85 < x < 10.00 is represented by 5's, 4.83 < x
< 6.16 by 4's, 2,98 < x < 3,79 by 3's, 1.83 < x < 2.34 by 2's and
1.13 < x'< 1.44 by 1's. The cycle repeats over the other decades — for
example, the interval 78,50 < x < 100.00 is again represented by 5's.
Space between the intervals is left blank. Negative numbers are repre-
sented by the letters A to E corresponding to the positive intervals
labeled 1 to 5, respectively.

The arrow plots are used to represeﬁt vector fields over a cross
section. Arrows represent pdloidal components while closed and open
circles represent components into and out of the paper. The length of
each arrow and the diameter of each circle represent the magnitudes of
the respective components. The lengths are normalized so that the
maximum value of the diameter or the x~ or y-component of any arrow is

nine-tenths of the spacing between grid points.
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