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ABSTRACT
This paper analyzes several important features of trapped-particle

iﬁinstabilities. For trapped-electron modes, the complete two-dimensional
(2B) spatial structure, including the effects of magnetic shear, is numer-

'“:Elcally calculated within the framework of a differential formulation for

lohg radial wavelength modes. Growth rates obtained for representative
cases correlate reasonably well with the usual one-dimensional (1D) esti-
mates of shear stabilization. However, the spatial structure of the mode
differs markedly; e.g., it typically extends over several mode-rational
surfaces. At the shorter wavelengths, where the maximum growth rates of
the modes typically occur, it is necessary to introduce an integral equa-
tion formulation for calculating the radial dependence. Growth rates from
this 2D analysis are significantly smaller than 1D estimates, and the

- poloidal mode structure exhibits a pronounced localization at the magnetic

field minimum. Specific collisional mechanisms affecting the linear sta-
bility of these modes are also studied. Collisional scattering of low
energy electrons can reduce the nonadiabatic trapped-electron response,

and collisional broadening can strongly modify the resonant response of the
untrapped, electrons. The saturation of the usual form of the dissipative
trapped—lon 1nstab111ty by mode coupling is studied analytically and numer-
ically. The "solitary wave" or "multi-mode" equilibria of LaQuey, et al.
are found to be unstable and inaccessible. However, their "two- mode"
equilibria can be both stable and accessible and can lead to transport
levels well below the Kadomtsev-Pogutse estimates, provided wave dispersion
is small: and the; parameters considered are not far from marginal stability.
In addition to the standard trapped-ion modes, which are associated with.
the elec¢tron diamagnetic drift branch, it is found that ion diamagnetic
modes of thls-type can also be generated. This new branch is destabilized
by both resonant and nonresonant interactions with ions which have average
unfavorable magnetic drifts. If the ion temperature gradient parameter,

n; = '_ is either large (nj > 2/3) or negative (nj < 0),.
growth “Ydtes from the ion branch are dominant over the electron branch.




a__

Trapped-Electron Mode

The first type of trapped-particle instability predicted to be encoun-
tered in tokamak devices is the dissipative trapped-electron mode. Here we
investigate two important aspects of this instability, namely, (1) its two-
dimensional spatial structure and the effect of magnetic shear on modes ex-
tending over several mode-rational surfaces; and (2) the influence of col-
lisional scattering of low energy electrons and of collisional broadening
of the untrapped resonant electron response.

In order to properly identify the trapped-electron mode and assess its
effects, it is necessary to determine its spatial structure and to obtain
a realistic estimate of the stabilizing influence of magnetic shear. Pre-
vious investigations of these problems have generally been one-dimensional;
i.e., either the radial structure of the mode is ignored while solving for
the structure parallel to the magnetic field, or the parallel structure is
ignored while solving for the radial structure in the vicinity of a single
mode-rational surface {[1]. The present analysis deals with the complete
two-dimensional. (2D) structure of the mode over its full width, which may
extend over several rational surfaces. Recalling that this is basically an
electrostatic instability and that the appropriate frequency range lies
between the thermal. ion transit frequency, Eii, and the thermal electron ,
bounce frequency, Wper the ion and electron density responses are calculated
using standard procedures [l]. We then use the quasineutrality condition to
obtain the 2D, integro-differential equation for the fluctuating electro-
static potential, ¢(r,0,%7,t), where r is the minor radius and & and ¢z
are the poloidal and toroidal angles. Without.loss of generality, the slow
and fast 0- dependence can be separated by expressing ¢ as ‘

¢(r,0, c t) = ¢(0 r) exp (- iwt+imee- 12;) . (1)
where % and m° are the toroidal and poloidal mode numbers. Here m©
= 2q(r,) with q being the safety factor and r, designating the position
of a reference mode-rational surface around which the mode is localized.
The slow O-variation is contained in 5(6,r), which must be periodic in ©
and satisfy the condition |(8$/86)/$| << m®, Noting that the spacing of
mode rational surfaces [i.e.,; the distance(between the surfaces where
g=m/2 and g = (m*1)/2] is Arg = (&q' )~1, it is convenient to express
the radial distance from rg in terms of s(r) = 2Iq(r) -aq(xy)]
* (r-rg)/Axg. Equatlon (1) thus becomes

¢ = [$(8,5) eXP-(-iSB)] exp {—illc—q(r)e_]} exp (-iwt) . (2)

Since Arg is generally much smaller than typical equilibrium scale lengths
for realistic conditions with rq'/q ~ 1, the radial equilibrium gradients
can be treated as constant to a good approximation. Hence, oniy the ex-
plicit S-dependence is considered.

'For radial wavelengths longer than the ion gyroradius (krp < l), Ky
is treated as a differential operator; i.e. k2 = -(Ar )'232/885
basic mode equation thus becomes
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where A contains the first-order radial finite ion gyroradius terms, B
includes the ion sound contribution “(mfi/m)z C is the sum of “he elec-
tron adiabatic, ion hydromagnetic, and poloidal finite ion gyroradius
terms, D includes the ion magnetic curvature drift terms, E contains
the second-order corrections to A, and K represents the contribution
from ion and untrapped electron Landau resonances. -In the trapped-electron
driving terms, wsg = keplv /2, > 0, T 2 T /T;, vy = (2T, /™)

rﬁl = -(d/dr) nn, kg = mO/r = Y.q(ro)/r, ng = d Q.n Te/d Ln n, —De is the
orblt-averaged electron magnetic drift frequency, v_ = Ve/€, € = /R, and
F = {$ ao* $(s,0') exp [iS(B- 0')]/v (AR VAN de/vl(e)] This equation can
be converted into a matrix equatlon by expanding $(6,S) in complete sets
of poloidal and radial basis functions, specifically,

[

‘2: 2 ¢ n 95000 (5) (4)

n=0 J=—w ‘

where 95 (9) = (2m)~1/2 exp (ij8), h,(S) = M;l/zﬁn(ol/zs) exp (-0s2/2),

M, = (ﬂ/o) /22nn1, H_ denotes a Hermite polynomial, and 0 is a parameter
{with Re(ad) > 0] which is adjusted to minimize the required number of radial
basis tunctions. Poloidal periodicity is clearly satisfied, and the radial
boundary condition, ¢ - 0 as S * t®», is also satisfied for Re(a) > O.
The latter corresponds to "globally" localized modes which can spread over
a number of moae—rotational curfaoea. Subotltutlng Eq. (1) into Eq. (3),
miltiplying hy g (ﬁ)h .(Q), and inquraf1nq nver B and S gives the
basic matrix equaélon, whlch is solved by standard numerical procedures.

To check the 2D code against'grevious 1D analytic calculations of the
radial structure {11, the poloida17HependenCe as well as terms D, E, and K
are suppressed in Eq. (3), and a t?plcal very long wavelength mode (k6p
~ 0.04) is analyzed. In the same splrit, the radial structure and terms
A, B, D, E, and ¥ are cupprecced to compare with previcue analytic calcula-
tions of the radially-local p0101da1 structure [1]. The comparisons indicate
good agrecment in both cases. We then proceed to study the proper 2D func-
t ional dependence with all terms kept in Eq (1) . Growth rates calculated
for kgpy = 0.2 and rq'/g=l are found to be quite close to the results from
the 1D radial analysis [2]. This seems to indicate that the 1D radial
estimate of shear stabilization may be more accurate than expected. " How-
ever, it should be emphasized that the actual mode structure, .as shown_in
Fig. 1(a), is very different from the simple 1D result. Hence, the basis
of comparison with experimentally measured mode structure, as well as the
usual assumptions regarding the radial wave spectrum introduced in non-
linear theory, could be significantly altered.
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The most scrious limitation of the analysis described is the constraint,
kepj < 1, which is required to ensure the validity of the differentia} for-
mulation for calculating the radial dependence. Typically, this condition
is found to be violated for kgp; 2 0.3. Since the radially local results
indicate that the maximum growth rates lie in the range kgf. 21, a refor-
mulation of the analysis of the radial dependence is necessaxry. The term
which primarily governs the radial structure comes from the finite ion
gyroradius factor in the perturbed ion density response and can be Fx-

pressed as _ . ¥
1 (7 . 2 2 2172, [ e
> I dkr'exP [lkr(r—ro)]Jo[(v*/g)(k6+kr) ] J dr exp [ 1kr(r ro)%¢(0,r) .

oo —co 3

?
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If krpi < 1, the Bessel function term, Jg, can be expanded in tn??usual
manner, and the integrals here are trivially performed to yield t@e-fa—
miliar differential form. For the general case of arbitrary k.7 'we can
still carry out the r-integration analytically, but the k,.-integration must
be calculated numerically. However, thHe basic structure of the matrix
equation remains unchanged. Hence, the numerical procedures used fior
solving the long radial wavelength (differential) problem can be employed
fnr the integral formulation as well. The influence of ion collisions and

" waricus corrections to lowest-order effects have also been incorporated in .

the analysis. After confirming that the new 2D code accurately reproduces
the results from the previous 2D treatment of long wavelength modes, a case
with kgp; = 1.4 is studied. Here we find that the growth rate is roughly
a factor of two below the 1D radial estimate [2], and that the poloidal
structure, as shown on Fig. 1l(b), exhibits a strong localization at the
magnetic field minimum (where the trapped particles are most strongly con-
centrated). This indicates that the usual assumption of a flute-like
poloidal structure is quite inaccurate for short wavelength modes.’ As

kbpi is further increased, thé trend toward smaller growth rates (compared
to 1D results) and poloidal localization is found to persist. This is
likely related to the fact that the trapped-electron driving term in Eq. (3)
is reduced. Specifically, since § « kg (r-ry), the phase, iS(6-6'), in ¢
can become quite large at short wavelengths. '
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Fig. 1. Real part of the perturbed electfostatic

) - potential eigen-
function ¢(0,S) for kgpy = 0.2 [Fig. 1(a)] and kgp; = 1.4 [Fig. 1(b)].

Note that the poloidal angle 0 is zero at the outside
t?aththe radlal‘varlable S is 8§ = (r-ro)/Ars . where r, 1is the radius
? the mode-rational surface around which the mode is centered and Ar

. - ’
is the §pa01nq of mode-rational surfaces. Only posgitive values of S are
shown since the eigenfunction is symmetric in .(S0). .. (PPPL 762223)

of‘the torus, and



Two basic collisional mechanisms, which affect the linear stability
of trapped-electron modes, are the collisional scattering of low energy
clectrons and the collisional broadening of the resonant response Qf the
untrapped electrons. ' To a good approximation the trapped electrons satisfy
the conditions, vy < el/2y ana v > vl l’ve , where the collisionality
parameter, vx = v_/u_ , is egual Lo unity at the transition from the pléteéu
to the banana regime. The latter constraint, which is ignored in most cal-

culations, can lead to a significant reduction in the nonadiabatic trapped-
electron response. ‘

. For the untrapped electrons, the nonadiabatic response is modified by
the collisional broadening of the resonant interaction. In studying this
effect we follow the familiar 1D radial eigenmode analysis [l1] but include
electron magnetic curvature drifts [2] and untrapped electron Landau reso-
nances [3]. The radial dependence of the latter effect is treated per-
turbatively [3] and leads to an additional term in the i1sual eigenvalue
equation. For the lowest (wost unstable) radial eigenmode, this term is
proportional to f dxexp(-uxz/Z)ﬁUT,.where X is the radial variabhle,

u = (R3/w) [kg/Lg|™ Lg! = (e/q)d #ng/dr, and hjp is tie nonadiabatic un-
trapped electron density response, To include the re:onance broadening
effect in n r, We use an approximate Lorentz collision operator,
ve(v)vzaz/avg , in the drift kinetic equation determining the perturbed
distribution funcétion for the untrapped electrons. This is solved by a
Fourier transform method which leads to the result

m -

\Y 3V2
P

LT

. w-w
~ 3 2, 2 . . w
nU‘]‘ o« J d v — exp (—V /\’e) J dp exp -1p (V“ lk“ l

|y |

(5)

where p is the transform veriable associated with v, ky = kex/Ls , and

oF = w1 [(v/v)?-3/2]}. For lo+i(v/3p2v2|ng|ul /2| /kgv,) << 1,

we can analytically perform the x, p, and v integrations in the nonadia-

bati¢ untrapped elec¢tron contribution to the usval eigenvalue equation (2.
The influence of this term for Vi S 1 is generally found to be weak. It

should also be noted that even if v, > 1, the collisional broa@ening tends
to strongly reduce the Landau damping for v, /w > 3, However, nonresonant

callisional cFfrrts from the nopadiahatic unfrapped electrnns may he signi-
ficant in tihis regime.

Operating conditions .n present toroidal systems, such as PLT and T-10,
as well as those in futurc larger tokamaks are expected to reach the high
temperature regime where the trapped-ion instability is predicted to appear.
Here we preseﬁt (1) a comprehensive analysis of the nonlinear saturation of
these denyerous modes by mode coupling; and (2) a calculation showing that
a new branch of trapped-ion modes, which rotate in the ion-, rathcr than the
usual electron-diamagnetic direction, can also appear.

In studying the saturation of the usual dissipative trapped-ion insta-
bility, we consider the two-dimensional Kadomtsev-Pogutse fluid equations
modified by essential kinetic effects [4]. The basic mechanism considered .
is the process whereby energy in long wavelength unstable modes is non-
linearly coupled via E xB convection to short wavelength modes stabilizgﬁ_
by ion Landau damping. The fundamental nonlinear equation for the potential,
& = e¢/T, in the absence of kinetic modifications can be expressed as

7
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_ = A = — 1/2 ‘l —1
where % << 1, Tg = Ty 2T, Vs = wo/k, = (€ /2) (cT/eB)rp~, rp

= -(d/dx) &nng, V4 = v;/e, and the slab coordinates, x=r and y=x(6-t/q)
are employed. Since w/V. << 1, it is relevant to analyze the radially-
local, one-dimensional problem which results when the last term in Eq. (6)
is ignored. As noted in previous work (4], linear kinetic theory indicates
that Landau damping by both trapped and circulating ions provides an energy
sink at short wavelengths for sufficiently weak temperature gradients.
Saturation results when the wave steepening due to the 8¢2/Dy term in Eq.
(6) moves energy from the unstable long wavelength modes to the damped modes
at short wavelength. Ion Landau damping is added to Eq. (6) in a perturba-
tive fashion, and the resultant expression is then transformed to the drlft
frame moving with speed vi to yield

2
W, b :
o ———-+v¢+- =0 (7)
3T 352 ael aF,

where §& = (y-v,ty/y, ¥ = (v_/wo)(Q/el/z), v = v+v_/mg. T = m%t/v_,
o = A'(l-—l.Sni)(v_/ﬁbi)(mo/&bi)z, A' ~ 40, nj £ d%nTj/d &nn,, and
whi 1is the thermal ion bounce frequency.

LaQuey, ct al. [4] obtained two types of steady-state analytic solu-
tions to Eq. (7); namely, "two-mode" equilibria and "multi-mode"™ or
"solitary wave" equilibria. The question of the stability of the multi-
mode equilibria to linear perturbations can be cast in the form of an
eigenvalue problem. Using a Nyquist analysis we find that such equilibria
are always unstable. Equation (7) has' also been numerically integrated
in -time with the initial conditions being random noise in one case and the
actual multi-mode equilibria in another case. 1In both situations the in-
accessibility of such equilibria is clearly demonstrated, and the con-
clusions of the Nyquist analysis are confirmed.

The two-mode equilibria, on the other hand, are found to be both stable
and accessible for a certain range of o, Considering the case where only
a linearly unstable mode, 2, and its stable harmonic, 28, are signifi-
cantly excited, one can obtain a steady-state solution to Eg. (7) which is
stationary in the drift frame and has the form

PE) = Z a, sin (L€) (8)
2=1 ’

with - al = +1(Y2|Y221) /2 ¢ Ang = —RYQ, and Yo = 22(1-a22)-v for
1/4 < al? < 1. Linear perturbations, 8ap exp (-iwt), on the basic mode-
coupling equation must satisfy

—iw&am Y Ga -m 2: a Ga (9)

g==co m-%



Since the higher harmonics are heavily damped, it is adequate to just con-
sider the perturbed modes m, 2*m, 28 tm, (£ being the fundamental mode
number) in solving this matrix equation. The results of this analytic pro-
cedure indicate that with v = 0, two-mode equilibria are stable to linear
perturbatjons for 0.6 < a22 < 0.7. Direct numerical integration of Eq. (7)
with random noise initial conditions confirms this conclusion and also
demonstrates the accessibility of this class of equilibria. '

Ion collisional effects are important in determining the linear sta-
bility threshold for the trapped-ion modes and also introduce an energy
sink at long wavelengths. However, their nonlinear influénce is relatively
weak because the dominant nonlinear wave steepening behavior (described
earlier) transfers energy to short wavelengths. Wave dispersion, on the
other hand, can be an important nonlinear effcct in that it can hinder mode
coupling and force the saturated amplitudes to significantly higher levels.
Kinetic effects, such as finite ion banana-width excur31ons, give rise to
dispersion and can be modeled by addlng the term, &3 W/3£3 to the left

side of Eq. (7) with § = (v. /mo)(p qz/erz) This leads to equilibria
with a finite group veloc1ty in the drift frame and with a structure
similar to the previously described two-mode equilibria. The group velocity,
u, is introduced in Eq. (7) by replacing 3/31 with -ud/3f, and is found
to scale as u « 8/a . The corresponding increase in energy content is
A((aw/ag)z) o« 62/a with () denoting  averaging over § . Hence, the
influence oi dispersive effects on the saturation of the trapped-ion in-
stability is negligible only if 82/a < 1.

Recalling that the radial transport is primarily driven by the E>B
drift and assuming that wave dispersion is small the diffusion coefficient

can be expressed as
o - e¥2 (9% [ cr 2/ [ay) 2 . (10)
v v reB 3E : '
- - €

We use Eg. (8) to find that ((aw/a£)2> « a~2 ., Comparison with the
Kadomtsev-Pogutse estimate then yields ~(with rp and R in cm)

-2 2 14 -3 -4 7
D/DK p ° 2><107rﬁ(e/qR)6(1-l.Sni) B (50 kG) n (10 cm ) T (kev) . (11)

This indicates that saturation via one-dimensional mode-coupling leads to
transport levels significantly more optimistic than those given by Kadomtsev
and Pogutse for parameters just above the instability threshold. For caon-
ditions well above threshold (i.e. at higher temperatures or lower densities),
D/Dg_p rapidly becomes very large. However, our basic mode; ceases to be
valid in such regimes. 1In fact, it should be emphasized that in order to
patisfy the varlous validity condltlons for the basic model (i.e., wg “< Wpj.
W << Vo vy S w /Zav , § <a 1/2y | we find that for typical FLT parametars
our analysis is only weaningful for situations close to marginal stability.

As a final point we note that the two-dimensional nonlinear mode struc-
ture is currently being investigated. We find that the inclusion of radial
perturbatlons via the last term in Ed. (6) can have a degtabxllzg_g>;ntlu—
ence on the one-dimensional equilibria given by Eq. (8), provided
Ikx n|(w/\)_) is sufficiently large. Since all kx modes will be nonlinearly
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generated, this result emphasizes the importance of studying radial fea-
tures such as magnetic shear and the stabilizing effects associated with
ion banana-~width_dispersion (together with ion collisions). Inclusion of
snch effects provides an energy sink at short radial wavelengths, thus
allowing the possible formation of two-dimensional saturated states.

In addition to the usual dissipative trapped-ion instability, which
is basically an electron diamagnetic drift mode, we have found that ion
diamagnetic modes of this type can also be generated. This new branch
can be driven unstable by both resonant and nonresonant interactions with
ions which have average unfavorable magnetic drifts (i.e. ‘wpj; < 0). Un-
Aike the familiar trapped-ion modes, which can be stabilized in tokamak
systems with flat or reversed gradient profiles {2], these modes can per-
sist as residual instabilities. Moreover, for sufficently large ion tem-
perature gradients (”i > 2/3), the ion branch is usually dqminant even for
normal density profiles. To arrive at these conclusions, we analyze the
local form of the Kadomtsev-Pogutse trapped-ion mode dispersion relation,

) -1 -1 = _ -1, .-l =
1+1_1 _ Jz+(cTn2i +_(eT)i (E - 3/2) . Q/t (t—:Tn)e (eT)e (E-3/2) 12)
(25)1/2 3 Q+E+i\)+(E)_3/2 Q- 1E + i\)_(E)-:V2
where (a) = (2/71/2) [* dE E}/2 exp (-E)A, E = E/T5, T = Te/Ti, €py = Ipi/R,

rf! z -(d/dr) n T, ny = (rn/rT)j, and { = -w/Wp; - The Nyquist analysis
OEchis equation indicates the existence of two unstable branches over a
wide range of parameters. However, the actual numerical solutions;for Q2
indicate that only one branch is dominant. Specifically, if n; 1is either
large (n; > 2/3) or negative {(nj < 0), the growth rates from the ion branch
are usually larger than those from the electron branch and also persist at
much higher collision frequencies. With regard to the flat (n{l = 0) and
reversed (n; <0) density gradient cases, we find that these ion diamagnetic
"residual" modes generally have smaller growth rates than the standard type
of trapped-ion modes (e.g., with nyg = 1/2), especially at lower collision
frequencies.

The important features of the ion branch can be analytically derived
from Eg. (12) in relevant asymptotic limits. 1In particular, we consider (i)

"Vj = vg = 0 corresponding to the collisionless or interchange mode and (ii)

Vi 0 with v, = @ corresponding to the lowest-order limit of the dissi-
pative trapped-ion mode. In both cases we can express the energy integrals
of Eq. (12) in the form of plasma dispersion functions (2Z-functions). The
usual ,collisionless trapped-ion mode can be recovered by assuming IED/wl

<< 1 and expanding the equation to second order in this quantity. For large
Oor negative nj, it is necessary to carry the series to ?Eb/ml” before
truncation. 1In accordance with the numerical solutions to Eq. (12), this
algebraic equation yields two unstable réots with approximately equal growth
rates and equal but opposite real frequencies. For the lowest-order limit

of the dissipative trapped-ion mode, Eg. (12) can be expressed as

£ = G2--7\GJ . : (13)
where £ | (1 +'l‘_]),/('.2£;)1/2 = 110/ ceqd ], A C (3/2 - ”{])/(1.-5T),
Gy T 2[1+yZ(y)), Gy = [L+2y? +2y32(y)|, and y = -(-Q)1/2. writing



Q= Qr-+i§ and separating Eq. (13) into its real and imaginary parts, it

is easily demonstrated that this equation yields no unstable solutions if
AL0 andfor £ 2 1. Since €p << 1, the first condition is equivaient

to requiring 0 = ni 2 2/3, and the latter condition is just (252)1/2

> ep(l+17%). These conclusions are in complete agreement with the numeri-
cal solutions to Eq. (12) for all cases considered. Analytic estimates of
growth rates for these dissipative modes can again be obtained.by expanding
the Z-functions for |mb/w|’<<'1. For very weak density gradients, where
In}ll is of the same order or less than TETI + we find . '
Q= i((3/ep) (/22121 +1)"111/2 wien e, eg, €, << 1. This is a
purely growing (nonresonant) type instability that is very similar in
character to the familiar collisionless trapped-particle mode. For the
more general case we find

L o itae e 201/2
Q = -5/2 + (1/2c1)[ c2-f1(4clc C.)

3 5 ] (14)

where C; = [L+7171-(2)2/?21/(2e)1/2, ¢y = 3/2 - (eqny) ™}, and Cj

= (ET)’1(3/2-n11). Comparisons with numerical solutions to Eq. (12) in-
dicate that this analytic estimate is reasonably accurate, especially in
a qualitative sense.
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