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ABSTRACT 

This paper analyzes several important features of trapped-particle 
_·:·instabilities. Fqr. trapped-electron modes, the complete two-dimensional 

, ;: ( 2'@) S;p'atial StruC,ture 1 including the effeCtS Of magnetiC Shear 1 is numer-
.,;: ic(£lly calculated within the framework of a differential formulation for 

lohg radial wavelength modes. Growth rates obtained for representative 
cases correlate reasonably well with the usual one-dimensional (lD) esti­
mates of shear stabilization. However, the spatial structure of the mode 
differs markedly; e.g., it typically extends over several mode-rational 
surfaces. At the shorter wavelengths, where the maximum growth rates of 
the modes typically occur, it is necessary to introduce an integral equa­
tiqn formulation for calculating the radial dependence. Growth rates from 
this 2U c?-nulysis are significantly smaller than 10 estimates, and the 
P,Oloidal mode structure exhibits a pronounced localization at the magnetic 
field minimum. Specific collisional mechanisms affecting the linear sta­
bility of these modes are also studied. Collisional scattering of low 
energy electrons can reduce the nonadiabatic trapped-electron response, 
and colli~ional broadening can strongly modify the resonant response of the 
untrapped~electrons. The saturation of the usual form of the dissipative 
trapped-i;on instability by mode coupling is studied analytically and numer­
ically. The "solitary wave" or "multi-mode" equilibria of LaQuey, et al. 
are found· to be unstable and inaccessible. However, their "two-mode"· 
equilibr~a can b~ both stable and accessible and can lead to transport 
levels well bel.ow the Kadomtsev-Pogutse estimates, provided wave dispersion 
is srilai:jJ ~'nd. the:; parameters considered are not far from marginal stability. 
In addition to the standard trapped-ion modes, which are associated with. 
the ele·ct,:ron d'i~agnetic drift branch, it is found that ion diamagnetic 
modes -of .:this '-b:ype can also· be generated. This new branch is destabilized 
by both.·res~nant and nonresonant interactions with ions which have average 
unfav.e:r;:;~_,le magnetic drifts. If the ion temperature gradient parameter, 
ni = e:<:§,;~_,;·'ti/d R.n n , is either la,rge <ni >. 2/3) or negative (ni < 0),. 
growth' 'rates from the ion branch are dominant over the electron branch. 
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Trapped-Electron Mode 

The first type of trapped-particle instability predicted to be encoun­
tered in tokamak devi~es is the dissipative trapped-electron mode. Here we 
investigate two important aspects of this instability, namely, (1) its two­
dimensional spatial structure and the effect of magnetic shear on modes ex­
tending· over several mode-rational surfaces; and (2) the influ~nce of. col­
lisional scat.tering of low energy electrons and of collisional broadening 
of the untrapped resonant electron response. 

In order to properly identify the trapped-electron mode and assess its 
effects, it is necessary to determine its spatial structure and to obtain 
a realistic estimate of the stabilizing influence of magnetic shear. Pre­
vious investigations of these problems have generally been one-dimensional; 
i.e., either the radial structure of the .mode is ignored while solving for 
the structure parallel to the magnetic field, or the parallel structure is 
ignored while solving for the radial structure in the vicinity of a single 
mode-rational surface [1). The present analysis deals with the complete 
two-dimensional. (20) structure of the mode over its full width, which may 
extend over several rational surfaces. Recalling that this is basically an 
electrostatic instability and that the appropriate frequency range lies 
betwe~n the thermal. ion transit frequency, wti' and the thermal electron . 
bounce frequency, wbe• the ion and electron density responses are calculated 
using standard procedures [l). We then use the quasineutrality condition to 
obtain the 20, integra-differential equation for the fluctuating electro­
static potential, cj>(r,a,r,;,t), .where r is the minor radius and a and I;; 

are the peloidal and toroidal angles. Without.loss of generality, the slow 
and. fast a-dependence can be separated by expressing cj> as 

cj>(r,a,r,;,t) "'~(a,r) exp (-iwt+im0 a-H.r,;) (1) 

where ~ and m0 are the toroidal and peloidal mode numbers. Here mO 
= ~q (r0 ) with q being the safety factor and r 0 designating the position 
of a reference mode-rational surface around which the mode is localized. 
The slow a-variation is contained in $(a, r), which must be periodic in a 
and satisfy the condition I (a~;aa)/~l <<mo. Noting that the spacing of 
mode rational surfaces [i.e.; the distance between the surfaces where 
q ,; m/~ and q = (m ± 1)/~] is I::J.rs ~ (~q' ):.... 1 , it is convenient to express 
the radial distance from r 0 in terms of' s (r) =· ~ [q (r) - q (r

0
) ] 

~ (r- r 0 )/I::J.r5 • Eqqation (l} thus becomes · 

cj> = [~(a,s) exp.(-iSa)] exp{-i~[l;;-q(r)a]} exp (-iwt) • (2) 

Since I::J.rs is generally much smaller than typical equilibrium scale lengths 
for realistic bondi.tions with rq'/q ~ 1, the radial equilibrium gradients 
can be treated as constant to a good approximation. Hence, only the ex­
plicit S-dependence is considered. 

·For radial wavelengths longer than the ion gyro~adius (.krPi < 1), kr 
is treated as a differential operator; .. i.e. ·k~ = - (!::J.rs) -2a 2;as2. The 
basic mode equation thus becomes 
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B(ae- 1S) + C + ()4 ) -

D(El) + E ~ ~(9,S) 
as 

f 
M ( W- W* [1 + n (E/T -3/2)) ) _ 

F e . e e $ 
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+ K<jl = 0 (3) 

T 

where A contains the first-order radial' finite ion gyroradius terms, B 

includes the ion sound contribution a: (lifti/w) 2 , C is the sum cf '.:.:1e elec­
tron adiabatic, ion hydromagnetic, and peloidal finite ion gyroradius 
terms, D includes the ion magnetic curvature drift terms, E contains 
the second-order corrections to A, and K represents the contribution 
fr~m.ion and untrapped electron Landau resonances. In the trapped-electron 
drl.Vl.ng terms, W*e = kep 1·V·T/2r > 0, T: T /T·, V· = (2T·/m·)1/2 ·- 1 _ _ 1 . n e 1 1 J. J. 
r n = - (d/dr) inn, ke =. mo;r = iq (r0 ) /r, ne : d ln Te/d ln n, w

0 
is the 

~rbit-avera2ed electron magnetic drift fre<Juency, v_ : ve/E, t.e= r/R, and 
q; = {~ de 1 

<P (S, e 1
) exp [iS (6-9 1

) ]/v
11 

(9 1
) }/ [1 d6/v

11 
(6)]. This eq1,1ation can 

be converted into a matrix equation by expanding ~(e,s) in complete sets 
of peloidal and radial basis functions, specifically, 

00 00 -¢>(6,S) ~ E l: ~. g,(O)h (S) 
n=O j~-oo . ]n J n 

(4) 

where gj (6) = (21T)-l/2 exp (ije), hn(S) = ~l/2Hn<o 1 12s) exp (-as2/2), 

Mn = (1T/a) 112 2nn!, Hn denotes a Hermite polynomial, and a is a parameter 
[with Re (0) > 0] which is adjusted to minimize the required number of radial 
bas1.s tunctions. Peloidal periodicity is clearly satisfied, and the radial 
boundary condition, ~ ~ 0 as S ~ ±co , is ·also satisfied for Re (r~) > 0. 

The latter corresponds to "globally" localized modes which can spread over 
s ~umber of mode-rotational Gurf~oco. Subotituting Eq. (1) into Eq. (3), 
mul tiplyinq hy g~. (A)h

11
• (S) ~ r~nr'l i~tpgr~tinl] mrPr A ;mn s 1Ji"Pc:; thP 

basic matrix equafion, which is solved by standard numerical procedures. 

To check the 20 code against ·previous lD analytic calculations of the 
radial structure [1], the peloidal ··"dependence as well as terms D, E, and K 

are suppressed in Eq. (3), ~nd a typic~l verv lonq wavelength mode (kePi 
~ 0.04) is analyzed. In the same spir~t, the radial structure and terms 
~. B, D, E, ~nd Y. are EUpproEEed to compare with proviou~ anaiyti~ rnlr.Jil~-
L ions of the racli_ally-local poloisJ.al ::itructure [ l] . 'J'he comparisons indicate 
good agreement in both cases. W~:. then proceed to study the proper 20 fum:­
t.i.onill dcpenrlcncf.~ with all t;erms 'k.ept ·in E:Ci. (l). Growth rates calculated 
fnr koPi "'0.2 and rq'/q=l are fou.nd to be quite clos<> t.o the results from 
t.hP. lD radial analysis [21. Thi's seems to indicate that the lD radial 
estimate of shear stabilization may be more accurate than expected. How­
ever, it should be emphasized that the actual mode structure, .as ~hown in 
Fig. l(a), is very different from.the simple lD result. Hence, the basis 
of comparison with experimentally measured mode structure, as well as the 
usual assumptions regarding th~ radial wave spectrum introduced in non­
linear tneory, could be significantly altered. 
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The most serious :limitation of the analysis described is the con~;Lr.1int, 
krf.!i < 1, which is required to ensure the validity of the differential for­
mulation for calculating the radial dependence. Typically, this condition 
is found to be violated for kePi ~ 0.3. Since the radially local results 
indicate that the maximum growth rates lie in the range keP:i. ~ l, a refor­
mulation of the analysis of the radial dependence is necessary. The.term 
~1ich primarily governs the radial structure comes from the finite ion 
gyroradius factor in the perturbed ion density response and can be 'ex-

r 
pressed as f 

,. •· 1 ; 

J

co . 
1 2 2 2 1/2 

-- dk exp [ik (r-r ) ]J [ (v.L/st) (ke+k ) J 
2·rr r r o o . r f.., drexp [-ik (r-r )j;'cj>(O,r) 

r o ·~ 
' ,, 

If krPi < 1, the Bessel function term, JJ, can be expanded in ~Q~i usual 
manner, and the integrals here are trivially performed to yield tlj'e'· fa­
miliar dif~erential form. For the general case of arbitrary kr~ ;~e can 
still carry out the r-integration analytically, but the kr-integration must 
be calculated numerically. However, the basic structure of the matrix 
equation remains unchanged. Hence, the numerical procedures used Hor 
solving the long radial wavelength (differential) problem can be employed 
~0r the integral formulation as well. The influence of ion collisions and 
.,_,~~rious corrections to lowest~order effects have also been incorporated in . 
the analysis. After confirming that the new 20 code accurately reproduces 
the results from the previous 20 treatment of long wavelength modes, a case 
with kePi "' 1.4 is studied. Here we find that the growth rate is roughly 
a factor of two below the 10 radial estimate [2], and that the poloidal 
structure, as shown on Fig·. ], (b) , exhibits a strong localization at the 
magnetic field minimum (where the trapped particles are most strongly con­
centrated). This indicates that the usual assumption of a flute-like 
poloidal str1Jc·ture is quite ~naccurate for short wavelength modes.' As 
kl,:-'i 1:..> .further increased, the trend toward smaller growth rates (compared 
to lD results) and poloidal localization is· fourid to persist. This is 
likely related to the fdct that the trapped-electron driving term in Eq. (3) 
is reduced. Specifically, since S « k0 Cr-r0 ), the phase, is(e-e•), in $ 
can become quite large at short wavelepgths. 

(b) 

27T 

Re ~ (8,5) 

0 

n 

s 0 2 3 

Fig. ~- Real part of the perturbed electrostatic potential eigen­
function <P ce,s) for kePi = 0.2 [Fig. l(a)] and keP ..... 1.4 [Fig. 1 (b)]. 
Note that the peloidal angle e is zero at the outsid~ 
that the radial varl.able S is :s = (r-r )/A h of. the torus, and 

. . o urs • w ere r is the radius 
of the mode-rat1onal surface around which th d · 0 
. . e mo e 1s centered, and ~rs 
1s the ~pac1ng o£.rnode-rat~onal surfaces. Only positive values of s dt'e 

shown s1nce the e1genfunct1on is synunetric in ·(SO). ; .. (PPPL 762 22 3) 
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Two basic collisional mechanisms, which affect the linear· stability 
of trapped-electi-on modes, are the collisional scattering of low energy 
electrons and the collisional broadening of the resonant response Qf the 
untrapped electrons. · To a good approximation the trapped electrons satisfy 
the conditions, v11 < £ I/2v and v > v!14v , where. the collisiouality 
parameter, v* '= v_j;;;b , is equal to unity ~t the transition from the plateau 
to the banana regime.e The latter constraint, which is ignored in most cal­
culations, can lead to a significant reduction in the nonadiabatic trapped-
electron response. ' · ·• 

For the untrapped electrons, the nonadiabatic response is modified by 
the collisional broadening of the resonant interaction. In studying this 
effect we follow the familiar 10 radial eigenmode analysis [1] but include 
electron magnetic curvature drifts [2) and untrapped electron Landau reso­
nances [3). The radial dependence of the latter effect is treated per­
t.urbatively (3] and leads to an additional term in the hsual eigenvalue 
equation. For the lowest (lnost unstable) radial eigenrnode, this term is 
proportional to J: d~ exp (-ux2/2)nuT' .where ~ is the radial variilhle, 
u = (Qi/w) I ke/L5 I , L5 

1 = (£/q) d 5/,n q/dr, and n1J'I' is t.i1e nonadiabatic un­
trapped electron density rE;!~pQnse. To include the re:,:mance broadening 
effect in nu'l'' we use an approximate Lorentz collisi..m operator, 
ve (v) v 2 a2 ;av~ , in the drift kinetic equation determining the perturbed 
distribution function for the untrapped electrons. This is solved by d 

Fourier transform method which leads to the result 

J 
cl v 

T 
w-w* 

dp exp [ -ip ("'I , ( 5) 

0 

where p is t.he transform vr-riable associated with Yll , ku = kex/Ls , and 
wT:: ul* {1. t-q [(v/v ) 2 - 3/2)}. For lw +i(ve/3)p2v 2

1 (Lslu112 l/k8ve) « 1, 
e Q e f d · t' · th d. we can anaJ.ytJ.cally per orm the x, p, an "ll 1ntegra 1ons 1n ~ nona J.a-

batic unttai_)ped electron contribution to the usual eigenvalue eq.uat1on [!.]. 

The influence of this term for v* ~ 1 is generally found to be. weak. It 
should alsf) be noted that even if v* > 1, the collisional broadening tends 
to strongly E~_:Juce the Lanclau damping for Ve/W ~ 3. However, nonresonant 
r·nt l. is i.nnal !~l'fr,~tc; from du" nn.nnr:li.flhntir 1.1nt.:rn.pper.l p.] er.t.rnnc:; mAy he si fJni­

fican t .i11 tid.:..; r<:!qime. 

Trapped- _J ~.!.1 _f:1t>de 

Operating conditions 1.n present toroidal systems, such as PLT and T-10, 
as weil as those in future· larger tokamaks are expected to reach the high 
temperat,u.-e regime where the trapped-ion inF.tability is predicted to appear. 
Here we J.JJ:e!'len.t (1) a comprehensive analysis ·of the nonlinear: saturation of 
these dan•:Jer.r)us modes by mode coupling; and (2) a calculatiori showing that 
a nE:'w braur:h of trapped-ion modes, which rotate in the ion-, r·ather than the 
usual electron-cliamagneLic direction, can also appear. 

In studying the saturation of the usual dissipative trapped-ion insta­
bility, we consider the two-dimensional Ka<.lomtsev-Pogutse fluid equations 
modified by essential kinetic nffects [4]. The basic mechanism considered 
i.s lhe process whereby energy in long wavelength unstable modes is hoh-
1 inearly coupled via E x B convectio~ to short wavelength modes stabilize.d 
Ly ion Landau damping. 'l'he fundamental nonlinear equation for the pot.r~ndi.d., 
t :: e<P/T, in the absence of k.-i netic modifications can be expressed as 

. ~· 

'.~ 
l. 
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+ 
E 

V * ;)c~2 
--- + 

112 ay 0 (6) 

"'' where ·~ «.1, Te =_Ti:: '1', v*:: w0 /ky = (e: 1 /~/2)(cT/eB)r; 1 , rn
1 

:: - (d/dx) ~n n
0

, "+ = vi/e:, and the slab coord1nates, x,., r and y = r (8-1::/q) 
are employed. Since ui/V_ << 1, it is relevant to analyze the radially­
local, one-dimensional problem which results when the last term in Eq. (6) 
is ignored. As noted in previous work [4), linear kinetic theory indicates 
that Landau damping by both trapped and circulating ions provides an energy 
sink at short wavelengths for sufficiently weak temperature gradients. 
Saturation results when the wave stecpeninq due to the Clcf> 2/3y term in Eq. 
(6) moves energy from the unstable long wavelength modes to the damped modes 
at short wavelength. Ion Landau damping is added to Eq. (6) in a perturba­
tive fashion, and the resultant expression is then transformed to the drift 
frame moving with speed v* to yield 

.?1_ ~= 
4 + vlji + a~: 0 

at; ., 

where t; : (y-v*t)jr, ljJ :: (v_/w
0

) (4>/e: 112 ), v - v+v_/IIJ~, T :: bl~t/v __ , 
a= A' (1-l.Sni) (v_/wbi) (ru0 /wbi) 2 , A' - 40, ni = d ~nTi/d ~nn0 , and 
wbi is the thermal ion bounce frequency. 

( 7) 

LaQuey, ~t al. [4) obtained two types of steady-state analytic solu­
tions to Eq. (7); namely, "two-mode" equilibria and "multi-mode" or 
"solitary wave" equilibria. The question of the stability of the multi­
mode equilibria to linear perturbations can be cast in the form of an 
eigenvalue problem. Using a Nyquist analysis we find that such equilibria 
are always unstable. Equation (7) has' also been numerically integrated 
in-time with the initial conditions being random noise in one case and the 
actual multi-mode equilj_bria in another case. In both situations the in­
accessibility of such equilibria is ·clearly demonstrated, and the con­
clusions of the Nyquist analysis are confirmed. 

The two-mode equilibria, on the other hand, are found to be both stable 
and accessible for a certain range of a . Considering the case where only 
a linearly unstable mode, ~ , and its stable harmonic, 2t , an:! signifi­
cantly excited, one can obtain a steady-state solution to Eq. (7) which is 
stationary in the drift frame and has the form 

ljJ (t;) = L: at sin (~t;) 
t=l 

with· a~~= ±~(y~l~ 2tl> 1 1 2 , a 2 ~ = -ty1 , 
1/4 < al~ < 1. L1near perturbations, 
coupling equation must satisfy 

and y 1 = 1 2 (1- a~ 2 ) - v for 
Oam exp (-iwt), on the basic mode-

00 

-iwoa = y oa - m 
m m m 

( 8) 

(9) 



Since the higher harmonics are heavily damped, it is adequate to j,ust ·con­
sider the perturbed modes m, .t ± m, 2.2. ± m, u· being the fundamental mode 
number) in solving this matrix equation. The results of this analytic pro­
cedure indicate that with v = 0, two-mode equilibria are stable to linear 
perturbations for 0.6 ~ at2 ~ 0.7. Direct numerical integration of Eq. (7) 
with random noise initial conditions confirms this conclusion and also 
demonstrates the accessibility of this class of equilibria. 

Ion collisional effects are important in determining the linear sta­
bility threshold for the trapped-ion modes and also introduce an energy 
sink at long wavelengths. However, their nonlinear influence is relatively 
weak because the dominant nonlinear wave steepening behavior (described 
earlier) transfers energy to short wavelengths. Wave dispersion, on the 
other hand, can be an important nonlinear effect in that it can hinder mode 
coupling and force the saturated amplitudes to significantly higher levels. 
Kinetic effects, such .as finite ion banana-width excursions, give rise to 
dispersion and can be .modeled by adding the term, cSa 31)1;a~ 3 , to the left 
side of Eq. (7) with cS = <v-/w0 ) Cpfq2/e:~2 ). This leads to equilibria 
with a finite group velocity in the drift f'rame all\1 with a ~tructure 
similar to the previo~sly described two-mode equilibria. The group velocity, 
u, is introduced in Eq. (7) by replacing Cl/h with -ua;a~ , and is found 
to scale as u a: cS/a • The corresponding increase in energy content i!? 
!l((Clljl/3~)2)£ a: cS 2/a with ( }~ denoting·averaging over ~. Hence, thf! 

influence of dispersive effects on the saturation of the trapped-ion in­
stability is negligible only if cS 2/a. < 1. 

Recalling that the radial transport is primarily driven by the E >" B 

drift and assuming that wave dispersion is small, the diffusion coefficient 
can be expressed as 

We use Eq. (8) to find that ((Clljl/(}~) 2 )~ a: a.-2 
Kadomt:sev-Pogl)tse estimate then yields (with 

Comparison with the 
rn and R in em) 

7 4 6 -2 2 14 -3 -4 7 
D/DK-P ::: 2 x 10 r

11 
(e:/qR) (1- 1. Sni) B (50 kG) n (10 em ) T (keV) . 

(10) 

( ll) 

This indicates that saturation via one-dimensional mode-coupling leads to 
transport levels significantly more optimistic than those given by Kad0mtsev 
and Pogutse for par~meters just above the instability threshold. For con­
ditions well above thre::;hold (i.e~ at higher temperatures or lower densities), 
D/DK-P rapidly becomes very large. However, our basic model ceases to be 
valid in such regimes. In fact, it should be emphasized that in order to 
catisfy t.he various validity conditions for the basic model (i.e., w0 ~< wbi• 
w << v , v+ < w2/2a.v , cS < a.l/2), we find that for typical FL'l' paramet·n-.s 
o~r analysis is ~nly ~eaningful for situations close to marginal stability. 

.•. 

•• 

As a final point we note that the two-dimensional nonlinear mode st.ruc- '(. 
ture is currently being investigated. We find that the inclusl.on of radial 
perturbations via the last term in Eq. (6) can have a destabilizing influ- { 
ence on the one-dimensional equilibria given by Eq. (8), provided •/ 
lkxrnl (w/v_) is sufficiently large. Since all kx modes will be nonlinearly 
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g~~ner-ated, this n!sult emphasizes the importance of studying radial fea­
t-ures sucl1 as magnetic shear and the stabilizing effects associated with 
iott bananarwidth dispersion (together with ion collisions). Inclusion of 
S;ltch effects proJides an eneryy sink at short radial wavelengths, thus 
allowing the possible formation of two-dimensional saturated states. 

ln addition t:o the usual dissipative trapped-ion instability, wltir:IJ 
is basically an electron diamagnetic drift mode, we have found that _i?.!l. 
diamagnetic mod~s of this type can also be generated. This new branch 
can be driven unstable by both resonant and nonresonant interactions with 
Tons which have average unfavorable magnetic drifts (i.e. ·w0 i < O). Un­
~ike the familiar trapped-ion modes, which can be stabilized in tokamak 
~systems with flat or reversed gradient profiles [2), these modes can per­
sist as residual instabilities. Moreover, for sufficently larye ion tem­
~erature gradients (ni > 2/3), the ion branch is usually dominant even for 
normal density profiles. To arrive at these conclusions, we analyze the 
local form of the Kadomtsev-Pogutse trapped-ion mode dispersion re.lation, 

-1. 
1+1 

(2e:)l/2 

(r: nl ~l +.(e:, )·~ 1 (E- 3/2)) <Q/T- (e:Tnl -l- (t: ) -l (E- 3/2)) . 
T---~ r~ + e Te (l 2 ) 

- - -3/2 - ~ - - -3/2 
Q+E+iv (E) · Q-TE+iv (E) + , . 

.,._,~ere {A):= (2/nl/2) f~ dE E'1/ 2 exp (-E)A, _E :::: _:!Tj, 1 :::: Te/Ti~ t:Tj :::: rT/R, 
r, j :::.- (d/dr) _~n Tj, ~j = (rn/rT) j: and Q = -w/woi . The Nyqu~st analys~s 
of.. th~s equat~on ~nd~cates the ex~stence of two unstable branches over a 
wide range of parameters. Hm.,rever, the actual numerical soluti,ons;for n 
indicate that only one branch is dominant. Specifically, if ni is either 
large (ni > 2/3) or negative (ni < 0), the growth rates from the ibn branch 
are usually larger than those from the electron branch and also persist at 
much higher collision frequencies. Wi t.h .r.egar.d t.o the flat <ni 1 = 0) and 
reversed (ni < 0) density gradient cases, we find that these ion diamagnetic 
"residual" modes generally have smaller growth rates than the standard type 
of trapped-ion modes (e.g., with ni = l/2), especially at lower collision 
frequencies. 

The important features of the ion branch can be analytically derived 
from Eq. (12) in relevant asymptotic limits. In particular, we consider (i) 
vi = ve = 0 corresponding to the collisionless or interchange mode and (ii) 
Vj = 0 with ve = "' corresponding to the lowest-order l-imit of the dissi­
pative trapped-ion mode. In both cases we can express the energy integrals 
of Eq. (12) in the form of plasma dispersion functions (Z-functions). The 
usua.l,,co.llisionless trapped-ion mode can be recovered by assuming jw0 ;wj 
<< l an~ expand~g ~he_equation to second order in this 9uantity. For large 
or negat1ve ni, 1t 1s necessary to carry the series to jw0;wj 4 before 
truncation. In accordance with the numerical solutions to Eq. (12), this 
algebraic equation yields two unstable roots with approximately equal growth 
rates ·and equal b.ut opposite real frequencies. For the lowest-order limit 
of the dissipative trapped-ion mode, Eq. (12) can be expressed as 

E;, = G
2 

- 7\G 
- 1 

(13) 

whPr"P ~ J(.l+T-l)/(JE:)l/2 - 1][1;'1'/(l·c,l')l, A- (?/2- 11i 1_)/(l-€.T), 
Gl: 2[l+yZ(y)], G2: [1+2y 2 +2y 3Z(y)j, and y:::: -(-52)1/2. Writing 



~2 = rlr+iy and separating Eq. (13) into its real and imaginary parts, it 
is easily demonstrated that this equation yields no unstable solutions if 
A ~ 0 and/or ~ ~ 1. Since e:T << 1, the first condition is equiva~ent 
to requiring 0 ~ ni ~ 2/3, and the latter condition is just (2£) 112 

cT ( .l + T-
1·). These conclusions are in complete agreement with the numeri­

cal solutions to Eq. (12) for all cases considered. Analytic estimates of 
growth rates for these dissipative modes can again be obtained,~ expanding 
the Z-functions for lur0 /w 11 << ·1. For very weak density gradients, where 
l11i 1 I is of the same order or less than I e:T I , we find . 
II"' i[(3/ET)(e:/2) 1f 2 (l+T- 1 )- 1 ] 1/ 2 with £, £T' £n « 1.· This is a 
purely growing (nonresonant) type instability that is very similar in 
character to the familiar collisionless trapped-particle mode. For the 
more general case we find 

(14) 

where c1 = [l+T- 1 - (2£) 112 ]/(2£) 1/ 2 , C2- 3/2- (e:Tni)- 1 , and C3 
::= (e:T) -1 ( 3/2- n-:-1). Comparisons with numerical solutions to Eq. (12) in-

1 . 
dicate that this analytic estimate is reasonably accurate, especially in 
a qualitative sense. 
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