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MAXIMUM ENTROPY EDDINGTON FACTORS

by

Gerald N. Minerbo

ABSTRACT

A technique from statistical mechanics is ap-
plied L. the problem of determining the most prob-
able value of the Eddington tensor given the zeroth
znd first moment of the intensity. The result is
applicable to two- and three-dimensional configura-
tions and is intended for use in large radiation hy-
drodynamics calculations.

I. INTRODUCTION

As a technique for solving the equations of radiative transfer, the variable

’

Eddington approximation is more accurate than the diffusion approximati~n and

much faster than transport calculations. It has received considerable atten-
tion 3-5 and is being used in an increasing number of applications.f"11 The
transfer equation for the intensity Iv(ﬁ) in a material in local thermodynamic

equilibrium is!?

[%_5§,+ §.V}1v(§) = k! [B-1, ()] + S (1) (1.1)

where Bv is the Planck function, K; is the absorption opacity (including the in-

duced emission factor), and S represents the scattering terms. By taking mo-

. : ;.. 12,13
ments of this equation one obtains™ ™
aE N NOTICE
This jeport was prepated a< an awount ol work
+ VeF = k! [4TTB-CE] sponsored by the United States Government Neither
at a the #'anc’ States nor the United States | nergy
Reseannh and Development Admunsttation, not any of
then  empluyees, nur any of ther  conlractoss, 1 2
> sohcantractors,  or  ther  employees, makes  any ( A4 )
,; > > Y > warranty, express or ampled, or assumes any legal
B F + V . P - K ' F + S Lahusty o7 sespongibibity fns the accusary, compleieness
— — C = - 1 ’ or usefulness of any information, apparatus, product or
c ot a 1 peocess disclused, or represents that ity use would not
wmfnnge pavately owned rights




-
where the energy density E, flux ﬁ;and pressure tensor P are defined as

E - %fdzsz @ . (1.3)
?=fdzsz§1(§) , (1.4)

3:%_[:!2935351(9) , (1.5)

> - -
and S1 is the first moiment of the scattering term S (the zeroth moment vanishes

under fairly general conditions), The Eddington factor is defined as

-

= P/E. (1.6)

o

-

An equation similar in complexity to the diffusion equation is obtained if ¥ can
be expressed in terms of ¥ and E. The usual approach to the variable Eddington
factor approximation is to postulate a simple mode' for the o dependence of the
intensity. In order to obtain closure with this approach it is also necessary to
approximate the scattering term §1 so that it couples only to the three moments of
the intensity in Eqs. (1.3)-(1.5) (see Ref. 2). A variety of moc:lelsl"4 have been
proposed for one-dimensional systems (slab or spherical geometry). No satisfac-
tory treatment has been found for two- or three-dimensional geometries.

Here we consider a probabilistic formulation of the problem: given a mono-
chromatic ensemble of photons where the zeroth and first moments of I(ﬁ) are spec-
ified by Eqs. (1.3), (1.4), what is the most prcbable form of the distribution

14,15

1(5)? Problems of this type occur in statistical mechanics and communication

theory. 16,17 The proceduie used is to maximize the entropy functional, which is

proportional to the logarithm of the probaiility W of the distribution
H=k £n W, (1.7)

Here k is the Boltzmann constant. Since photons obey Bose-Einstein statistics,

the appropriate form for H 1514

1

n{i)

H = kdeQ { [1+n(§)]£n[1+ ] + &n n(ﬁ)} s (1.3)

where the occupation numver density n is related to the iatensity by



3
1@ = 2‘“’ n@).

C

Since we are considering a monochromatic ensemble of photons, the frequency v will
be a constant in the present problem. In communication theory, it is shown that
the information content is the negative of the entropy of the distribution. Thus,
by using the maximum entropy criterion, one avoids introducing information that

is not available. This approach is conceptually superior to the use of an ad hoc

model for the intensity. Also it is easily generalized to two- or three-dimen-

sional geometries,
I1, MAXIMUM ENTROPY SOLUTION

To describe § we use polar coordinates €, ¢ ,
G = (sin 6 cos ¢, sin O sin ¢, cos 8) , (2.1)
with the polar axis along the direction of f, so that
?-5 = F cos 6, where F = IEI. (2.2)

The constraint equations (1.3}, (1.4) can thus be expressed as

2hv3 .o
E = f j dd) n(u,) ’(2.3)
and
F = 2hy f [ dé u n(u,d) (2.4)

where u = cos 0. Following a standard procedure from the calculus of variations

we introduce Lagrange multipliers n, A for Eqs. (2.3), (2.4), respectively, and ex-

tremize the expression

e =fdufd¢{[1+ncu,¢)1£:—[1+1/n(u,¢)1 - 2n n(u,qn}

(2.5)
e fau fao nwer - r faufar uwntn.
Variation with respect to n yields
Ln [1+1/n(u,$)] +n + Au =0 (2.6)



or

1
n(u,$) = ———— . (2.7)
e-n-Au -1

The two constants n and A must be determined by imposing conditions (2.3), (2.4).
The fact ttat n is independent of ¢ simplifies the expressions for the mo-

ments. If we define

me = Zn'lfdu uz nw,¢), £=0,1, . .. , (2.8)

=1
then Eqs. (1.3) - (1.5) become

o
3 o

Cc

2hv’

2
c

3 >

B =M m)T + (3mym ) BT
C

Y
]

ml(?/F) , (2.9)

and the Eddington factor
> m * m o
t-la-3H1+3062- 0. (2.10)
) o

We will consider explicitly only the case where the occupation numbers are

small

n<<1 (2.11)
or equivalently
E < < 41 hv/c>, (2.12)

This case is the interesting one physically; in radiation hydrodynamics problems,
when Eq. (2.11) is violated, the intensity is usually close to isotropic and the

Eddington approximation holds. With this assumption Eq. (2.7) becomes



n(u,$) = Cexu s where C = e . (2.13)

This form could also have been obtained directly by assuming Boltzmann statistics

for the photons. With this form for n it is easy to evaluate the quantities

m, = (4nC/X)sinh A ,

m, = (4WC/A2)(A cosh A-sinh A) (2.14)
and

m,=m - (Z/X)ml.

We will use the abbreviations

R, =m /m = F/cE
and 11 (2.15)

~
|

Y
= mz/mo = (Fe

From Eq. (2.14) one obtains

coth A - 1/) (2.16)

~
1]

and

~
]

1- ZRI/A . (2.17)

To obtain R2 from Rl’ the transcendental equation (2,16) must be solved for
A and R2 then computed from (2.17). Only nonnegative values of A are of interest

since R, > 0 from Eq. (2.15). The A = 0 limit corresponds to an isotropic inten-

1
sity
Ry v 3 h-ge )
A0 (2.18)
1 2.2
R, ~ =+ =R
2,,,3 571

Streaming is obtained in the large A limit,



R. v 1 - 1/A

1
A (2.19)
R, v 1-2R + R? .
2 5 1 1

A plot of R2 Vs R1 is shown in Fig., 1 (solid curve). The following rational ap-

proximation to this function was obtained by a computer fit to data generated from
Eqs. (2.16), (2.17).
0.01932R, + 0.2694R:

R, = 3+ = . (2.20)
1 - 0.5953R1 + 0.02625R1

The absolute error produced by this approximation is less than 0.004 on the inter-

val 0 <R <1,

1
I1I. LINEAR APPROXIMATION

In this section we consider a linear approximation to the exponential solu-

tion in Eq. (2.13),
Au
n(u) = Ce ~ = C(1+Au). (3.1)
Since n is nonnegative, we use the form

n(u) = max {0, A(u-b)} , (3.2)

where A and b are constants. The first three moments in Eq. (2.8) are easily

computed
2
A (1-b) 2, -1<b<1
m0=
-4mAb b < -1
%-A(l-b)2(2+b) , -1<b<1
m1 = (3.3)
=a, b < -1
'%-A(l-b)2(3+2b+b2), -1<b <1
m2=
-ﬁg-Ab, b< -1,



The relation between R, and R, is found to be

2 1
1 1
Ry =3 0<Ry <3
(3.4)
1 3.2 1
= = - = = <
R2 > R1 + > R1 s 3 f-Rl <1l.

This function is shown as the dashed curve in Fig. 1. Compared to the rational
approximation in Eq. (2.20), Eq. (3.4) is a rather crude approximation, but this
approach is attractive because of its simplicity and should be adequate in many
applications, The use of the linear approximation (3.2) also simplifies the cal-

culation of the scattering term §1 in Eq. (1.2).
IV, CONCLUSIONS

It may be objected that the prescription in Sec. II has limited applicability
since an intensity with the angular dependence in Eq. (2.7) or Eq. (2.13) is not
often encountered in radiation transfer problems. It is important to interpret
Eq. (2.13) not as a model for a s3pecific system but as representative of an ensem-
ble of systems. Relative to an ensgmble of systems, one can state that the pre-
scription in Sec. 1l for computing F will be correct more often than any other

prescription which uses the local values of F and E as the only input information,
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Fig. 1.

Functional relation betwzen R2 and Rl for the maximum

entropy solution of Sec. II (solid curve) and the
lirnear approximation of Sec. III (dashed curve),



