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MAXIMUM ENTROPY EDDINGTON FACTORS

by

Gerald N. Minerbo

ABSTRACT

A technique from statistical mechanics is ap-
plied t the problem of determining the most prob-
able value of the Eddington tensor given the zeroth
and first moment of the intensity. The result is
applicable to two- and three-dimensional configura-
tions and is intended for use in large radiation hy-
drodynamics calculations.

I. INTRODUCTION

As a technique for solving the equations of radiative transfer, the variable
1 2

Eddington approximation * is more accurate than the diffusion approximation and

It has received considerable atten-

and is being used in an increasing number of applications. " The

much faster than transport calculations
3-5

tion

transfer equation for the intensity

equilibrium is

in a material in local thermodynamic

where B is the Planck function, K1 is the absorption opacity (including the in-

duced emission factor), and 5 represents the scattering terms.
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ments of this equation one obtains '

By taking mo-

[4TTB-CE]

empltiyc
int rai tors,
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where the energy density E, flux F, and pressure tensor £ are defined as

= fd2 a ft I(fr) , (1.4)

fl fi $ 1(0) » (1.5)

Sand S is the first moment of the scattering term S (the zeroth moment vanishes

under fairly general conditions). The Eddington factor is defined as

•+• ->-

I = ?/E. (1.6)

An equation similar in complexity to the diffusion equation is obtained if r can

be expressed in terms of F and E. The usual approach to the variable Eddington

factor approximation is to postulate a simple mode1 for the U dependence of the

intensity. In order to obtain closure with this approach it is also necessary to
->

approximate the scattering term S. so that it couples only to the three moments of
1-4the intensity in Eqs. (1.3)-(1.5) (see Ref. 2). A variety of models have been

proposed for one-dimensional systems (slab or spherical geometry). No satisfac-

tory treatment has been found for two- or three-dimensional geometries.

Here we consider a probabilistic formulation of the problem: given a mono-

chromatic ensemble of photons where the zeroth and first moments of I(fi) are spec-

ified by Eqs. (1.3), (1.4), what is the most probable form of the distribution

I(J2)? Problems of this type occur in statistical mechanics ' and communication

theory. ' The procedure used is to maximize the entropy functional, which is

proportional to the logarithm of the probability W of the distribution

H = k in W. (1.7)

Here k is the Boltzmann constant. Since photons obey Bose-Einstein statistics,
14

the appropriate form for H is

H = k /Vfi i [l+n(^)]£n[l+ ~ — ] + In n$)l , (1.3)
J < n(fl) '

where the occupation number density n is related to the intensity by



c

Since we are considering a monochromatic ensemble of photons, the frequency v will

be a constant in the present problem. In communication theory, it is shown that

the information content is the negative of the entropy of the distribution. Thus>

by using the maximum entropy criterion, one avoids introducing information that

is not available. This approach is conceptually superior to the use of an ad hoc

model for the intensity. Also it is easily generalized to two- or three-dimen-

sional geometries.

II. MAXIMUM ENTROPY SOLUTION

To describe u we use polar coordinates 8, (j) ,

!$ = (sin 8 cos <J), sin 8 sin <f>, cos 8) , (2.1)

with the polar axis along the direction of ?, so that

F-tl = F cos 8, where F = |F|. (2.2)

The constraint equations (1.3), (1.4) can thus be expressed as

c 2 h v

E = —J
C

and T
F - 2 h v

3 -L -2TT

- / du / d(J> n(u,<fi) / (2.3)

J-\ Jo
A 2*
/ du / d<j> u n(u,(|>) (2.4)

where u = cos 8. Following a standard procedure from the calculus of variations

we introduce Lagrange multipliers n, X for Eqs. (2.3), (2.4), respectively, smd ex-

tremize the expression

H' = /*du f^i U+n(u,4>)]£-[l+l/n(u,4>)] + In n(u,(Ji)i
(2.5)

+ n / du / d(() n(u,c}>) + X / du / d<i> u n(u,c()).

Variation with respect to n yields

In [l+l/n(u,4>)] + n + Xu = o (2.6)



or

(2.7)

The two constants ri and X must be determined by imposing conditions (2.3), (2.4).

The fact tl at n is independent of <f) simplifies the expressions for the mo-

ments. If we define

rr / du u n(u,<J>), t = 0, 1, . . . ,
-'-1

m. = 2TT # du u n(u,<f>), I = 0, 1, . . . , (2.8)
*• J-l

then Eqs. (1.3) - (1.5) become

c3 °

^ m^F/F) . (2.9)
c

-»• 3 -»•

$ = ~ [(mo-m2)T + (3m2-mo)(FF/F2)] ,
c

and the Eddington factor

^ = I ( 1 " m3 X + 1 ( 3 m " D t W - ) . (2.10)
O 0

We will consider explicitly only the case where the occupation numbers are

small

n < < 1 (2.11)

or equivalently

E < < 4TT hv3/c3. (2.12)

This case is the interesting one physically; in radiation hydrodynamics problems,

when Eq. (2.11) is violated, the intensity is usually close to isotropic and the

Eddington approximation holds. With this assumption Eq. (2.7) becomes



n(u,c|>) = Ce X u , where C = en . (2.13)

This form could also have been obtained directly by assuming Boltzmann statistics

for the photons. With this form for n it is easy to evaluate the quantities

mQ = (4TrC/X)sinh A ,

m1 = (4TTC/X2)(X cosh A-sinh X) , (2.14)
and

n>2 = m - (2/X)m .

We will use the abbreviations

R = m /m = F/cE
and ^ (2.15)

R2 = m2/mo = (F'^'H/F2-

From Eq, (2.14) one obtains

Rx = coth X - l/X (2,16)

and

R2 = 1 - 2R:/X . (2.17)

To obtain R from R , the transcendental equation (2.16) must be solved for

X and R2 then computed from (2.17). Only nonnegative values of X are of interest

since R _>_ 0 from Eq. (2.15). The X = 0 limit corresponds to an isotropic inten-

sity

I 45"
* 4b (2.18)

2 x-o 3 5 ~x

Streaming is obtained in the large X limit,



R.
1

(2.19)

- 2R + 2R,

A plot of R vs R is shown in Fig. 1 (solid curve). The following rational ap-

proximation to this function was obtained by a computer fit to data generated from

Eqs. (2.16), (2.17).

(2.20)
1 0.01932R, + 0.2694R

R2" 3 : — 2 •
. - 0.5953R1 + 0.02625Rj

The absolute error produced by this approximation is less than 0.004 on the inter-

val 0 <_ R <_ 1.

III. LINEAR APPROXIMATION

In this section we consider a linear approximation to the exponential solu-

tion in Eq. (2.13) .

n(u) = Ce A u - C(l+Au). (3.1)

Since n is nonnegative, we use the form

n(u) = max {0, A(u-b)} , (3.2)

where A and b are constants. The first three moments in Eq. (2.8) are easily

computed

TrA(l-b) , -1 _< b <_ 1

-4TTAb , b < -1

m. (3.3)

' ̂ A(l-b)2(3+2b+b
2),

4TT .,

b < -1

-1 <_ b <_ I

b < -1



The relation between R and R is found to be

(3.4)

This function is shown as the dashed curve in Fig. 1. Compared to the rational

approximation in Eq. (2.20), Eq. (3.4) is a rather crude approximation, but this

approach is attractive because of its simplicity and should be adequate in many

applications. The use of the linear approximation (3.2) also simplifies the cal-

culation of the scattering term S in Eq. (1.2).

IV. CONCLUSIONS

It may be objected that the prescription in Sec. II has limited applicability

since an intensity with the angular dependence in Eq. (2.7) or Eq. (2.13) is not

often encountered in radiation transfer problems. It is important to interpret

Eq. (2.13) not as a model for a specific system but as representative of an ensem-

ble of systems. Relative to an ensemble of systems, one can state that the pre-

scription in Sec. II for computing r will be correct more often than any other

prescription which uses the local values of F and E as the only input information.
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Fig. 1.
Functional relation between R2 and for the maximum

entropy solution of Sec. II (solid curve) and the
linear approximation of Sec. Ill (dashed curve).


