EXPERIMENT DATA REPORT FOR SEMISCALE MOD-1
TEST S-05-5
(ALTERNATE ECC INJECTION TEST)

BRENT L. COLLINS MORRIS L. PATTON, JR.
KENNETH E. SACKETT

NOTICE
PORTIONS OF THIS REPORT ARE ILLEGIBLE. IT has been reproduced from the best available copy to permit the broadest possible availability.

April 1977

EG&G Idaho, Inc.

IDAHO NATIONAL ENGINEERING LABORATORY
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
"The NRC will make available data tapes and operational computer codes on research programs dealing with postulated loss-of-coolant accidents in light water reactors. Persons requesting this information must reimburse the NRC contractors for their expenses in preparing copies of the data tapes and the operational computer codes. Requests should be submitted to the Research Applications Branch, Office of Nuclear Regulatory Research, Nuclear Regulatory Commission, Washington, D.C. 20555."

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration, nor the Nuclear Regulatory Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
TREE-NUREG-1054

EXPERIMENT DATA REPORT FOR SEMISCALE MOD-1

TEST S-05-5

(ALTERNATE ECC INJECTION TEST)

Approved:

[Signature]

P. J. Olson, Manager
Semiscale Program

[Signature]

J. O. Zane, Deputy Director
Water Reactor Research

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither
the United States nor the United States Energy
Research and Development Administration, nor any of
their employees, nor any of their contractors,
subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
EXPERIMENT DATA REPORT FOR SEMISCALE MOD-1

TEST S-05-5

(ALTERNATE ECC INJECTION TEST)

by

Brent L. Collins
Morris L. Patton, Jr.
Kenneth F. Sackett

EG&G IDAHO, INC.

April 1977

PREPARED FOR THE
U. S. NUCLEAR REGULATORY COMMISSION
AND
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
IDAHO OPERATIONS OFFICE
UNDER CONTRACT NO. EY-76-C-07-1570
ABSTRACT

Recorded test data are presented for Test S-05-5 of the Semiscale Mod-1 alternate ECC Injection test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system.

Test S-05-5 was conducted from initial conditions of 2263 psia and 537°F to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the cold leg broken loop piping. During the test, cooling water was injected into the cold leg of the intact and broken loops to simulate emergency core coolant injection in a PWR. The upper plenum was vented through a reflood bypass line interconnecting the hot and cold legs of the broken loop.

The purpose of this report is to make available the uninterpreted data from Test S-05-5 for future data analysis and test results reporting activities. The data, presented in the form of graphs in engineering units, have been analyzed only to the extent necessary to assure that they are reasonable and consistent.
SUMMARY

Test S-05-5 was performed as part of the Semiscale Mod-I portion of the Semiscale Program conducted by EG&G Idaho, Inc. for the United States Government. This test was part of the alternate ECC injection test series (Test Series 5) performed to investigate the response of the Mod-I system to specific variations in coolant injection location. The test objective specific to Test S-05-5 was to provide data which can be used to assess the influence of an added flow path, provided by a reflood bypass line interconnecting the hot and cold legs of the broken loop, on core heat transfer during blowdown and reflood. Hardware configuration and test parameters were selected to yield a system response that simulates the response of a pressurized water reactor to a hypothesized loss-of-coolant accident (LOCA) with subsequent refill and reflood.

Test S-05-5 utilized the Semiscale Mod-I system equipped with a pressure vessel with a 40-rod electrically heated core; an intact loop with pump, steam generator, and pressurizer; a broken loop with simulated pump, simulated steam generator, and rupture assemblies; and a pressure suppression system with header, pressure suppression tank, and a heated steam supply system. Low pressure coolant injection pumps and a coolant injection accumulator were provided for each system loop. For Test S-05-5, four heater rods were intentionally unpowered to simulate the effects of control rod guide tubes and the power in three heater rods was increased to produce a slightly peaked profile. In addition, a reflood bypass line interconnecting the hot and cold legs of the broken loop was used to equalize the pressure between the vessel upper plenum and downcomer annulus during blowdown and reflood.

The test was conducted from initial conditions of 2263 psia and 537°F (at the intact loop cold leg vessel inlet) with a simulated full size (200%) double-ended offset shear of the cold leg broken loop piping at an initial core power level of 1.48 MW, and an initial core inlet flow rate of 140 gpm. The instantaneous offset shear of the broken loop cold leg piping was simulated by simultaneous (within 10 msec) actuation of the rupture assemblies. After initiation of blowdown, power to the heated core was reduced to simulate the predicted heat flux response of nuclear fuel rods during a LOCA. Blowdown was accompanied by simulated emergency core coolant injection into the cold leg piping of both the intact and broken loops.

Test S-05-5 was generally conducted as specified. Conditions which did not conform to the specified test configuration were considered acceptable for analysis purposes within the test objectives. The instrumentation used generally functioned as intended. Of 219 measurements taken, 213 produced usable data.
CONTENTS

ABSTRACT .. ii
SUMMARY .. iii
I. INTRODUCTION ... 1
II. SYSTEM, PROCEDURES, CONDITIONS, AND EVENTS FOR TEST S-05-5 2
 1. SYSTEM CONFIGURATION AND TEST PROCEDURES 2
 2. INITIAL TEST CONDITIONS AND SEQUENCE OF EVENTS 6
III. DATA PRESENTATION ... 11
IV. REFERENCE ... 197
APPENDIX A – POSTTEST ADJUSTMENTS TO DATA FROM SEMISCALE MOD-1 TEST S-05-5 .. 199
 1. PRESSURE MEASUREMENTS .. 201
 2. DIFFERENTIAL PRESSURE MEASUREMENTS ... 202
 3. MOMENTUM FLUX MEASUREMENTS ... 205
 4. DENSITY MEASUREMENTS .. 206
 5. VOLUMETRIC FLOW MEASUREMENTS ... 210
 6. PRIMARY PUMP MEASUREMENTS ... 210

FIGURES

1. Semiscale Mod-1 system for cold leg break configuration – schematic 3
2. Cross section of vessel with lower plenum filler ... 4
3. Three-in. broken loop reflood bypass line ... 5
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Semiscale Mod-1 system and instrumentation for cold leg break configuration – isometric</td>
<td>12</td>
</tr>
<tr>
<td>5.</td>
<td>Semiscale Mod-1 system and instrumentation for cold leg break configuration – schematic</td>
<td>13</td>
</tr>
<tr>
<td>6.</td>
<td>Semiscale Mod-1 pressure vessel – cross section showing instrumentation</td>
<td>14</td>
</tr>
<tr>
<td>7.</td>
<td>Semiscale Mod-1 pressure vessel – isometric showing instrumentation</td>
<td>15</td>
</tr>
<tr>
<td>8.</td>
<td>Semiscale Mod-1 pressure vessel – penetrations and instrumentation</td>
<td>16</td>
</tr>
<tr>
<td>9.</td>
<td>Semiscale Mod-1 heated core – plan view</td>
<td>17</td>
</tr>
<tr>
<td>10.</td>
<td>Fluid temperature in intact loop hot leg (RBU-2), from -20 to 300 sec</td>
<td>29</td>
</tr>
<tr>
<td>11.</td>
<td>Fluid temperature in intact loop hot leg (RBU-2), from -6 to 42 sec</td>
<td>29</td>
</tr>
<tr>
<td>12.</td>
<td>Fluid temperature in intact loop cold leg (TSU-7, TFU-10, and RBU-14A), from -20 to 300 sec</td>
<td>30</td>
</tr>
<tr>
<td>13.</td>
<td>Fluid temperature in intact loop cold leg (TSU-7, TFU-10, and RBU-14A), from -6 to 42 sec</td>
<td>30</td>
</tr>
<tr>
<td>14.</td>
<td>Fluid temperature in broken loop, vessel side (TFB-20 and TFB-23), from -20 to 300 sec</td>
<td>31</td>
</tr>
<tr>
<td>15.</td>
<td>Fluid temperature in broken loop, vessel side (TFB-20 and TFB-23), from -6 to 42 sec</td>
<td>31</td>
</tr>
<tr>
<td>16.</td>
<td>Fluid temperature in broken loop, pump side (TFB-30, TFB-37, and TFB-42), from -20 to 300 sec</td>
<td>32</td>
</tr>
<tr>
<td>17.</td>
<td>Fluid temperature in broken loop, pump side (TFB-30, TFB-37, and TFB-42), from -6 to 42 sec</td>
<td>32</td>
</tr>
<tr>
<td>18.</td>
<td>Fluid temperature in broken loop, reflood bypass line (TFB-RFB), from -20 to 300 sec</td>
<td>33</td>
</tr>
<tr>
<td>19.</td>
<td>Fluid temperature in broken loop, reflood bypass line (TFB-RFB), from -6 to 42 sec</td>
<td>33</td>
</tr>
</tbody>
</table>
20. Fluid temperature in inlet annulus (TFV-ANN-4A and TFV-ANN-4M), from -20 to 300 sec

21. Fluid temperature in inlet annulus (TFV-ANN-4A and TFV-ANN-4M), from -6 to 42 sec

24. Fluid temperature in upper plenum (TFV-UP+13), from -20 to 300 sec

25. Fluid temperature in upper plenum (TFV-UP+13), from -6 to 42 sec

26. Fluid temperature in lower plenum (TFV-LP-2 and TFV-LP-7), from -20 to 300 sec

27. Fluid temperature in lower plenum (TFV-LP-2 and TFV-LP-7), from -6 to 42 sec

28. Fluid temperature in core inlet (TFV-CORE-IN), from -20 to 300 sec

29. Fluid temperature in core inlet (TFV-CORE-IN), from -6 to 42 sec

30. Fluid temperature in core, Grid Spacer 5 (TFG-5CD-45), from -20 to 300 sec

31. Fluid temperature in core, Grid Spacer 5 (TFG-5CD-45), from -6 to 42 sec

32. Fluid temperature in core, Grid Spacer 6 (TFG-6CD-45), from -20 to 300 sec

33. Fluid temperature in core, Grid Spacer 6 (TFG-6CD-45), from -6 to 42 sec

34. Fluid temperature in core barrel insulation gap (TFV-CIG-70A), from -20 to 300 sec
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Fluid temperature in core barrel insulation gap (TFV-CIG-70A), from -6 to 42 sec</td>
<td>41</td>
</tr>
<tr>
<td>36</td>
<td>Fluid temperature in vessel filler insulation gap (TFV-FIG-156A), from -20 to 300 sec</td>
<td>42</td>
</tr>
<tr>
<td>37</td>
<td>Fluid temperature in vessel filler insulation gap (TFV-FIG-156A), from -6 to 42 sec</td>
<td>42</td>
</tr>
<tr>
<td>38</td>
<td>Fluid temperature in intact loop coolant injection line (TFU-ECC-14), from -20 to 300 sec</td>
<td>43</td>
</tr>
<tr>
<td>39</td>
<td>Fluid temperature in intact loop coolant injection line (TFU-ECC-14), from -6 to 42 sec</td>
<td>43</td>
</tr>
<tr>
<td>40</td>
<td>Fluid temperature in broken loop coolant injection line (TFB-ECC-42), from -20 to 300 sec</td>
<td>44</td>
</tr>
<tr>
<td>41</td>
<td>Fluid temperature in broken loop coolant injection line (TFB-ECC-42), from -6 to 42 sec</td>
<td>44</td>
</tr>
<tr>
<td>42</td>
<td>Fluid temperature in steam generator feedwater line (TFU-SGFW), from -20 to 300 sec</td>
<td>45</td>
</tr>
<tr>
<td>43</td>
<td>Fluid temperature in steam generator feedwater line (TFU-SGFW), from -6 to 42 sec</td>
<td>45</td>
</tr>
<tr>
<td>44</td>
<td>Fluid temperature in steam generator, secondary side (TFU-SG1 and TFU-SG3), from -20 to 300 sec</td>
<td>46</td>
</tr>
<tr>
<td>45</td>
<td>Fluid temperature in steam generator, secondary side (TFU-SG1 and TFU-SG3), from -6 to 42 sec</td>
<td>46</td>
</tr>
<tr>
<td>46</td>
<td>Fluid temperature in pressurizer surge line (TFU-PRIZE), from -20 to 300 sec</td>
<td>47</td>
</tr>
<tr>
<td>47</td>
<td>Fluid temperature in pressurizer surge line (TFU-PRIZE), from -6 to 42 sec</td>
<td>47</td>
</tr>
<tr>
<td>48</td>
<td>Fluid temperature in pressure suppression tank (TF-PSS-33 and TF-PSS-130), from -20 to 300 sec</td>
<td>48</td>
</tr>
<tr>
<td>49</td>
<td>Fluid temperature in pressure suppression tank (TF-PSS-33 and TF-PSS-130), from -6 to 42 sec</td>
<td>48</td>
</tr>
</tbody>
</table>
50: Material temperature in intact loop (TMU-1T16;
and TMU-1S116), from -20 to 300 sec: 49°

51: Material temperature in intact loop (TMU-1T16;
and TMU-1S116), from -6 to 42 sec: 49°

52: Material temperature in broken loop (TMB-20B16);
from -20 to 300 sec: 50°

53: Material temperature in broken loop (TMB-20B16);
from -6 to 42 sec: 50°

54: Material temperature in reflood bypass line (TMB-RFB);
from -20 to 300 sec: 51°

55: Material temperature in reflood bypass line (TMB-RFB);
from -6 to 42 sec: 51°

56: Material temperature in vessel filler (TMV-FI-4M,
TMV-FI-15A, and TMV-FI-35A), from -20 to 300 sec: 52°

57: Material temperature in vessel filler (TMV-FI-4M,
TMV-FI-15A, and TMV-FI-35A), from -6 to 42 sec: 52°

58: Material temperature in vessel filler (TMV-FI-115A
and TMV-FI-156A), from -20 to 300 sec: 53°

59: Material temperature in vessel filler (TMV-FI-115A
and TMV-FI-156A), from -6 to 42 sec: 53°

60: Material temperature in vessel filler (TMV-FO-156A),
from -20 to 300 sec: 54°

61: Material temperature in vessel filler (TMV-FO-156A),
from -6 to 42 sec: 54°

62: Material temperature in vessel filler insulator
(TMV-FO-35A, TMV-FO-35M, TMV-FO-70A, and
TMV-FO-115A), from -20 to 300 sec: 55°

63: Material temperature in vessel filler insulator
(TMV-FO-35A, TMV-FO-35M, TMV-FO-70A, and
TMV-FO-115A), from -6 to 42 sec: 55°

64: Material temperature in core barrel inner diameter
(TMV-CI-70A and TMV-CI-115A), from -20 to 300 sec: 56°
65. Material temperature in core barrel inner diameter (TMV-CI-70A and TMV-CI-115A), from -6 to 42 sec 56
66. Material temperature in core barrel outer diameter (TMV-CO-70A and TMV-CO-115A), from -20 to 300 sec 57
67. Material temperature in core barrel outer diameter (TMV-CO-70A and TMV-CO-115A), from -6 to 42 sec 57
68. Material temperature on core housing filler (TMV-HF-115W and TMV-HF-138W), from -20 to 300 sec 58
69. Material temperature on core housing filler (TMV-HF-115W and TMV-HF-138W), from -6 to 42 sec 58
70. Material temperature in steam generator (TMU-SG1, TMU-SG2, and TMU-SG3), from -20 to 300 sec 59
71. Material temperature in steam generator (TMU-SG1, TMU-SG2, and TMU-SG3), from -6 to 42 sec 59
72. Core heater temperature, Rod D-4 (TH-D4-14 and TH-D4-29), from -20 to 300 sec .. 60
73. Core heater temperature, Rod D-4 (TH-D4-14 and TH-D4-29), from -6 to 42 sec .. 60
74. Core heater temperature, Rod D-5 (TH-D5-29), from -20 to 300 sec .. 61
75. Core heater temperature, Rod D-5 (TH-D5-29), from -6 to 42 sec .. 61
76. Core heater temperature, Rod E-4 (TH-E4-09, TH-E4-28, and TH-E4-55), from -20 to 300 sec .. 62
77. Core heater temperature, Rod E-4 (TH-E4-09, TH-E4-28, and TH-E4-55), from -6 to 42 sec .. 62
78. Core heater temperature, Rod E-5 (TH-E5-25), from -20 to 300 sec .. 63
79. Core heater temperature, Rod E-5 (TH-E5-25), from -6 to 42 sec .. 63
80. Core heater temperature, Rod A-4 (TH-A4-09, TH-A4-29, and TH-A4-39), from -20 to 300 sec 64.

81. Core heater temperature, Rod A-4 (TH-A4-09, TH-A4-29, and TH-A4-39), from -6 to 42 sec 64.

82. Core heater temperature, Rod A-5 (TH-A5-29 and TH-A5-45), from -20 to 300 sec 65.

83. Core heater temperature, Rod A-5 (TH-A5-29 and TH-A5-45), from -6 to 42 sec 65.

84. Core heater temperature, Rod B-3 (TH-B3-32), from -20 to 300 sec 66.

85. Core heater temperature, Rod B-3 (TH-B3-32), from -6 to 42 sec 66.

86. Core heater temperature, Rod B-5 (TH-B5-29 and TH-B5-33), from -20 to 300 sec 67.

87. Core heater temperature, Rod B-5 (TH-B5-29 and TH-B5-33), from -6 to 42 sec 67.

88. Core heater temperature, Rod B-6 (TH-B6-29), from -20 to 300 sec 68.

89. Core heater temperature, Rod B-6 (TH-B6-29), from -6 to 42 sec 68.

90. Core heater temperature, Rod C-2 (TH-C2-38), from -20 to 300 sec 69.

91. Core heater temperature, Rod C-2 (TH-C2-38), from -6 to 42 sec 69.

92. Core heater temperature, Rod C-4 (TH-C4-26 and TH-C4-53), from -20 to 300 sec 70.

93. Core heater temperature, Rod C-4 (TH-C4-26 and TH-C4-53), from -6 to 42 sec 70.

94. Core heater temperature, Rod C-5 (TH-C5-28), from -20 to 300 sec 71.
95. Core heater temperature, Rod C-5 (TH-C5-28), from -6 to 42 sec 71
96. Core heater temperature, Rod C-7 (TH-C7-07 and TH-C7-15), from -20 to 300 sec 72
97. Core heater temperature, Rod C-7 (TH-C7-07 and TH-C7-15), from 6 to 42 sec 72
98. Core heater temperature, Rod D-1 (TH-D1-21), from -20 to 300 sec 73
99. Core heater temperature, Rod D-1 (TH-D1-21), from -6 to 42 sec 73
100. Core heater temperature, Rod D-2 (TH-D2-14 and TH-D2-61), from -20 to 300 sec 74
101. Core heater temperature, Rod D-2 (TH-D2-14 and TH-D2-61), from -6 to 42 sec 74
102. Core heater temperature, Rod D-3 (TH-D3-29 and TH-D3-39), from -20 to 300 sec 75
103. Core heater temperature, Rod D-3 (TH-D3-29 and TH-D3-39), from -6 to 42 sec 75
104. Core heater temperature, Rod D-6 (TH-D6-15 and TH-D6-25), from -20 to 300 sec 76
105. Core heater temperature, Rod D-6 (TH-D6-15 and TH-D6-25), from -6 to 42 sec 76
106. Core heater temperature, Rod D-7 (TH-D7-20), from -20 to 42 sec 77
107. Core heater temperature, Rod D-7 (TH-D7-20), from -6 to 42 sec 77
108. Core heater temperature, Rod D-8 (TH-D8-27 and TH-D8-57), from -20 to 300 sec 78
109. Core heater temperature, Rod D-8 (TH-D8-27 and TH-D8-57), from -6 to 42 sec 78
110. Core heater temperature, Rod E-1 (TH-E1-33),
from -20 to 300 sec ... 79

111. Core heater temperature, Rod E-1 (TH-E1-33),
from -6 to 42 sec ... 79

112. Core heater temperature, Rod E-2 (TH-E2-20
and TH-E2-33), from -20 to 300 sec 80

113. Core heater temperature, Rod E-2 (TH-E2-20
and TH-E2-33), from -6 to 42 sec 80

114. Core heater temperature, Rod E-3 (TH-E3-05, TH-E3-20,
and TH-E3-24), from -20 to 300 sec 81

115. Core heater temperature, Rod E-3 (TH-E3-05, TH-E3-20,
and TH-E3-24), from -6 to 42 sec 81

116. Core heater temperature, Rod E-6 (TH-E6-08, TH-E6-28,
and TH-E6-37), from -20 to 300 sec 82

117. Core heater temperature, Rod E-6 (TH-E6-08, TH-E6-28,
and TH-E6-37), from -6 to 42 sec 82

118. Core heater temperature, Rod E-7 (TH-E7-44),
from -20 to 300 sec ... 83

119. Core heater temperature, Rod E-7 (TH-E7-44),
from -6 to 42 sec .. 83

120. Core heater temperature, Rod E-8 (TH-E8-14, TH-E8-29,
and TH-E8-45), from -20 to 300 sec 84

121. Core heater temperature, Rod E-8 (TH-E8-14, TH-E8-29,
and TH-E8-45), from -6 to 42 sec 84

122. Core heater temperature, Rod F-2 (TH-F2-07, TH-F2-22,
and TH-F2-25), from -20 to 300 sec 85

123. Core heater temperature, Rod F-2 (TH-F2-07, TH-F2-22,
and TH-F2-25), from -6 to 42 sec 85

124. Core heater temperature, Rod F-4 (TH-F4-14, TH-F4-29,
and TH-F4-44), from -20 to 300 sec 86
125. Core heater temperature, Rod F-4 (TH-F4-14, TH-F4-29, and TH-F4-44), from -6 to 42 sec

126. Core heater temperature, Rod F-5 (TH-F5-20, TH-F5-26, TH-F5-33, and TH-F5-53), from -20 to 300 sec

127. Core heater temperature, Rod F-5 (TH-F5-20, TH-F5-26, TH-F5-33, and TH-F5-53), from -6 to 42 sec

128. Core heater temperature, Rod G-3 (TH-G3-13), from -20 to 300 sec

129. Core heater temperature, Rod G-3 (TH-G3-13), from -6 to 42 sec

130. Core heater temperature, Rod G-4 (TH-G4-29, TH-G4-33, and TH-G4-38), from -20 to 300 sec

131. Core heater temperature, Rod G-4 (TH-G4-29, TH-G4-33, and TH-G4-38), from -6 to 42 sec

132. Core heater temperature, Rod G-5 (TH-G5-14 and TH-G5-24), from -20 to 300 sec

133. Core heater temperature, Rod G-5 (TH-G5-14 and TH-G5-24), from -6 to 42 sec

134. Core heater temperature, Rod H-5, (TH-H5-32), from -20 to 300 sec

135. Core heater temperature, Rod H-5, (TH-H5-32), from -6 to 42 sec

136. Pressure in intact loop (PU-13 and PU-15L), from -20 to 300 sec

137. Pressure in intact loop (PU-13 and PU-15L), from -6 to 42 sec

138. Pressure in broken loop, vessel side, Spool 23 (PB-23), from -20 to 300 sec

139. Pressure in broken loop, vessel side, Spool 23 (PB-23), from -6 to 42 sec
140. Pressure in broken loop, pump side (PB-37 and PB-42), from -20 to 300 sec 94

141. Pressure in broken loop, pump side (PB-37 and PB-42), from -6 to 42 sec 94

142. Pressure in broken loop, pump-side nozzle (PB-HN1), from -20 to 300 sec 95

143. Pressure in broken loop, pump-side nozzle (PB-HN1), from -6 to 42 sec 95

144. Pressure in broken loop, vessel-side nozzle (PB-CN1), from -20 to 300 sec 96

145. Pressure in broken loop, vessel-side nozzle (PB-CN1), from -6 to 42 sec 96

146. Pressure in vessel (PV-UP+10 and PV-LP-166), from -20 to 300 sec 97

147. Pressure in vessel (PV-UP+10 and PV-LP-166), from -6 to 42 sec 97

148. Pressure in intact loop accumulator (PU-ACC), from -20 to 300 sec 98

149. Pressure in intact loop accumulator (PU-ACC) from -6 to 42 sec 98

150. Pressure in broken loop accumulator (PB-ACC), from -20 to 300 sec 99

151. Pressure in broken loop accumulator (PB-ACC), from -6 to 42 sec 99

152. Pressure in steam generator, secondary side (PU-SGSD), from -20 to 300 sec 100

153. Pressure in steam generator, secondary side (PU-SGSD), from -6 to 42 sec 100

154. Pressure in pressurizer (PU-PRIZE), from -20 to 300 sec 101
155. Pressure in pressurizer (PU-PRIZE),
from -6 to 42 sec ... 101

156. Pressure in pressure suppression tank
(P-PSS), from -20 to 300 sec 102

157. Pressure in pressure suppression tank
(P-PSS), from -6 to 42 sec 102

158. Differential pressure in intact loop
(DPU-3-7), from -20 to 300 sec 103

159. Differential pressure in intact loop
(DPU-3-7), from -6 to 42 sec 103

160. Differential pressure in intact loop
(DPU-7-10), from -20 to 300 sec 104

161. Differential pressure in intact loop
(DPU-7-10), from -6 to 42 sec 104

162. Differential pressure in intact loop
(DPU-12-10), from -20 to 300 sec 105

163. Differential pressure in intact loop
(DPU-12-10), from -6 to 42 sec 105

164. Differential pressure in intact loop, low range
(DPU-12-10L), from -20 to 300 sec 106

165. Differential pressure in intact loop, low range
(DPU-12-10L), from -6 to 42 sec 106

166. Differential pressure in intact loop
(DPU-12-15), from -20 to 300 sec 107

167. Differential pressure in intact loop
(DPU-12-15), from -6 to 42 sec 107

168. Differential pressure in intact loop
(DPU-15-1), from -20 to 300 sec 108

169. Differential pressure in intact loop
(DPU-15-1), from -6 to 42 sec 108
170. Differential pressure in intact loop, low range
(DPU-15-1L), from -20 to 300 sec 109

171. Differential pressure in intact loop, low range
(DPU-15-1L), from -6 to 42 sec 109

172. Differential pressure in intact loop
(DPU-15-IANN), from -20 to 300 sec 110

173. Differential pressure in intact loop
(DPU-15-IANN), from -6 to 42 sec 110

174. Differential pressure in intact loop
(DPU-PRESLL), from -20 to 300 sec 111

175. Differential pressure in intact loop
(DPU-PRESLL), from -6 to 42 sec 111

176. Differential pressure in intact loop
(DPU-PR-4), from -20 to 300 sec 112

177. Differential pressure in intact loop
(DPU-PR-4), from -6 to 42 sec 112

178. Differential pressure in broken loop
(DPB-UP-30), from -20 to 300 sec 113

179. Differential pressure in broken loop
(DPB-UP-30), from -6 to 42 sec 113

180. Differential pressure in broken loop
(DPB-21-IANN), from -20 to 300 sec 114

181. Differential pressure in broken loop
(DPB-21-IANN), from -6 to 42 sec 114

182. Differential pressure in broken loop
(DPB-30-21), from -20 to 300 sec 115

183. Differential pressure in broken loop
(DPB-30-21), from -6 to 42 sec 115

184. Differential pressure in broken loop
(DPB-30-36L), from -20 to 300 sec 116
185. Differential pressure in broken loop (DPB-30-36L), from -6 to 42 sec

186. Differential pressure in broken loop (DPB-32U-36L), from -20 to 300 sec

187. Differential pressure in broken loop (DPU-32U-36L), from -6 to 42 sec

188. Differential pressure in broken loop (DPB-36L-37), from -6 to 42 sec

189. Differential pressure in broken loop (DPB-36L-37), from -20 to 300 sec

190. Differential pressure in broken loop (DPB-37-38), from -20 to 300 sec

191. Differential pressure in broken loop (DPB-37-38), from -6 to 42 sec

192. Differential pressure in broken loop (DPB-38-40), from -20 to 300 sec

193. Differential pressure in broken loop (DPB-38-40), from -6 to 42 sec

194. Differential pressure in broken loop (DPB-40-42), from -20 to 300 sec

195. Differential pressure in broken loop (DPB-40-42), from -6 to 42 sec

196. Differential pressure in broken loop, reflood bypass (DPB-RFB-FT), from -20 to 300 sec

197. Differential pressure in broken loop, reflood bypass (DPB-RFB-FT), from -6 to 42 sec

198. Differential pressure in vessel (DPV-UP-IANN), from -20 to 300 sec

199. Differential pressure in vessel (DPV-UP-IANN), from -6 to 42 sec
200. Differential pressure in vessel (DPV-0-9GQ), from -20 to 300 sec .. 124
201. Differential pressure in vessel (DPV-0-9GQ), from -6 to 42 sec .. 124
202. Differential pressure in vessel (DPV-9-26QQ), from -20 to 300 sec .. 125
203. Differential pressure in vessel (DPV-9-26QQ), from -6 to 42 sec .. 125
204. Differential pressure in vessel (DPV-9-166QQ), from -20 to 300 sec .. 126
205. Differential pressure in vessel (DPV-9-166QQ), from -6 to 42 sec .. 126
206. Differential pressure in vessel (DPV-26-55QM), from -20 to 300 sec .. 127
207. Differential pressure in vessel (DPV-26-55QM), from -6 to 42 sec .. 127
208. Differential pressure in vessel (DPV-55-110MM), from -20 to 300 sec .. 128
209. Differential pressure in vessel (DPV-55-110MM), from -6 to 42 sec .. 128
210. Differential pressure in vessel (DPV-110-156MQ), from -20 to 300 sec .. 129
211. Differential pressure in vessel (DPV-110-156MQ), from -6 to 42 sec .. 129
212. Differential pressure in vessel (DPV-166-173QQ), from -20 to 300 sec .. 130
213. Differential pressure in vessel (DPV-166-173QQ), from -6 to 42 sec .. 130
214. Differential pressure in vessel (DPV-166Q-UP), from -20 to 300 sec .. 131
215. Differential pressure in vessel (DPV-166Q-UP), from -6 to 42 sec 131

216. Differential pressure in intact loop accumulator (DPU-ACC-TB), from -20 to 300 sec 132

217. Differential pressure in intact loop accumulator (DPU-ACC-TB), from -6 to 42 sec 132

218. Differential pressure in broken loop accumulator (DPB-ACC-TB), from -20 to 300 sec 133

219. Differential pressure in broken loop accumulator (DPB-ACC-TB), from -6 to 42 sec 133

220. Differential pressure across steam generator outlet orifice (DPU-SG-DISC), from -20 to 300 sec 134

221. Differential pressure across steam generator outlet orifice (DPU-SG-DISC), from -6 to 42 sec 134

222. Volumetric flow in intact loop (FTU-1 and FTU-9), from -20 to 300 sec 135

223. Volumetric flow in intact loop (FTU-1 and FTU-9), from -6 to 42 sec 135

224. Volumetric flow in intact loop (FTU-13 and FTU-15), from -20 to 300 sec 136

225. Volumetric flow in intact loop (FTU-13 and FTU-15), from -6 to 42 sec 136

226. Volumetric flow in broken loop (FTB-21), from -20 to 300 sec 137

227. Volumetric flow in broken loop (FTB-21), from -6 to 42 sec 137

228. Volumetric flow in broken loop (FTB-30 and FTB-37), from -20 to 300 sec 138

229. Volumetric flow in broken loop (FTB-30 and FTB-37), from -6 to 42 sec 138
230. Volumetric flow in broken loop; reflood bypass (FTB-RFB), from -20 to 300 sec .. 139
231. Volumetric flow in broken loop; reflood bypass (FTB-RFB), from -6 to 42 sec .. 139
232. Volumetric flow in core entrance (FTV-CORE-IN), from -20 to 300 sec ... 140
233. Volumetric flow in core entrance (FTV-CORE-IN), from -6 to 42 sec ... 140
234. Volumetric flow in intact loop low pressure injection line (FTU-LPIS), from -20 to 300 sec 141
235. Volumetric flow in intact loop low pressure injection line (FTU-LPIS), from -6 to 42 sec 141
236. Volumetric flow in broken loop low pressure injection line (FTB-LPIS), from -6 to 42 sec 142
237. Volumetric flow in broken loop low pressure injection line (FTB-LPIS), from -20 to 300 sec 142
238. Volumetric flow in intact loop accumulator discharge line (FTU-ACC), from -20 to 300 sec 143
239. Volumetric flow in intact loop accumulator discharge line (FTU-ACC), from -6 to 42 sec 143
240. Volumetric flow in broken loop accumulator discharge line (FTB-ACC), from -20 to 300 sec 144
241. Volumetric flow in broken loop accumulator discharge line (FTB-ACC), from -6 to 42 sec 144
242. Fluid velocity in vessel (FTV-40A and FTV-40M), from -20 to 300 sec .. 145
243. Fluid velocity in vessel (FTV-40A and FTV-40M), from -6 to 42 sec .. 145
244. Momentum flux in intact loop (FDU-I), from -20 to 300 sec ... 146
245. Momentum flux in intact loop (FDU-1),
 from -6 to 42 sec .. 146

246. Momentum flux in intact loop (FDU-5),
 from -20 to 300 sec .. 147

247. Momentum flux in intact loop (FDU-5),
 from -6 to 42 sec .. 147

248. Momentum flux in intact loop (FDU-10),
 from -20 to 300 sec .. 148

249. Momentum flux in intact loop (FDU-10),
 from -6 to 42 sec .. 148

250. Momentum flux in intact loop (FDU-13),
 from -20 to 300 sec .. 149

251. Momentum flux in intact loop (FDU-13),
 from -6 to 42 sec .. 149

252. Momentum flux in intact loop (FDU-15),
 from -20 to 300 sec .. 150

253. Momentum flux in intact loop (FDU-15),
 from -6 to 42 sec .. 150

254. Momentum flux in broken loop (FDB-21),
 from -20 to 300 sec .. 151

255. Momentum flux in broken loop (FDB-21),
 from -6 to 42 sec .. 151

256. Momentum flux in broken loop (FDB-30),
 from -20 to 300 sec .. 152

257. Momentum flux in broken loop (FDB-30),
 from -6 to 42 sec .. 152

258. Momentum flux in broken loop (FDB-37),
 from -20 to 300 sec .. 153

259. Momentum flux in broken loop (FDB-37),
 from -6 to 42 sec .. 153
260. Momentum flux in broken loop (FDB-42),
 from -20 to 300 sec .. 154

261. Momentum flux in broken loop (FDB-42),
 from -6 to 42 sec .. 154

262. Momentum flux in broken loop, reflood bypass
 (FDB-RFB), from -20 to 300 sec 155

263. Momentum flux in broken loop, reflood bypass
 (FDB-RFB), from -6 to 42 sec 155

264. Momentum flux in core entrance (FDV-CORE-IN),
 from -20 to 300 sec .. 156

265. Momentum flux in core entrance (FDV-CORE-IN),
 from -6 to 42 sec .. 156

266. Density in intact loop (GU-1VR and GU-1HZ), from -20 to 300 sec 157

267. Density in intact loop (GU-1VR and GU-1HZ), from -6 to 42 sec 157

268. Density in intact loop (GU-5VR and GU-10VR), from -20 to 300 sec 158

269. Density in intact loop (GU-5VR and GU-10VR), from -6 to 42 sec 158

270. Density in intact loop (GU-13VR),
 from -20 to 300 sec .. 159

271. Density in intact loop (GU-13VR),
 from -6 to 42 sec .. 159

272. Density in intact loop (GU-15VR and GU-15HZ), from -20 to 300 sec 160

273. Density in intact loop (GU-15VR and GU-15HZ), from -6 to 42 sec 160

274. Density in broken loop (GB-21T),
 from -20 to 300 sec .. 161
275. Density in broken loop (GB-21T),
 from -6 to 42 sec ... 161

276. Density in broken loop (GB-21B),
 from -20 to 300 sec .. 162

277. Density in broken loop (GB-21B),
 from -6 to 42 sec ... 162

278. Density in broken loop (GB-21C),
 from -20 to 300 sec .. 163

279. Density in broken loop (GB-21C),
 from -6 to 42 sec ... 163

280. Density in broken loop (GB-23VR),
 from -20 to 300 sec .. 164

281. Density in broken loop (GB-23VR),
 from -6 to 42 sec ... 164

282. Density in broken loop (GB-30T),
 from -20 to 300 sec .. 165

283. Density in broken loop (GB-30T),
 from -6 to 42 sec ... 165

284. Density in broken loop (GB-30B),
 from -20 to 300 sec .. 166

285. Density in broken loop (GB-30B),
 from -6 to 42 sec ... 166

286. Density in broken loop (GB-30C),
 from -20 to 300 sec .. 167

287. Density in broken loop (GB-30C),
 from -6 to 42 sec ... 167

288. Density in broken loop (GB-42VR),
 from -20 to 300 sec .. 168

289. Density in broken loop (GB-42VR),
 from -6 to 42 sec ... 168
290. Density in broken loop, reflood bypass (GB-RFB-T), from -20 to 300 sec .. 169
291. Density in broken loop, reflood bypass (GB-RFB-T), from -6 to 42 sec .. 169
292. Density in broken loop, reflood bypass (GB-RFB-B), from -20 to 300 sec .. 170
293. Density in broken loop, reflood bypass (GB-RFB-B), from -6 to 42 sec .. 170
294. Density in vessel (GV-COR-150HZ), from -20 to 300 sec ... 171
295. Density in vessel (GV-COR-150HZ), from -6 to 42 sec .. 171
296. Density in vessel (GVLP-165HZ and GVLP-172HZ), from -20 to 300 sec 172
297. Density in vessel (GVLP-165HZ and GVLP-172HZ), from -6 to 42 sec ... 172
298. Density in pressurizer (GU-PRIZE), from -20 to 300 sec .. 173
299. Density in pressurizer (GU-PRIZE), from -6 to 42 sec .. 173
300. Mass flow in intact loop (FDU-1 and GU-1VR), from -20 to 300 sec .. 174
301. Mass flow in intact loop (FDU-1 and GU-1VR), from -6 to 42 sec ... 174
302. Mass flow in intact loop (FTU-1 and GU-1VR), from -20 to 300 sec ... 175
303. Mass flow in intact loop (FTU-1 and GU-1VR), from -6 to 42 sec ... 175
304. Mass flow in intact loop (FDU-5 and GU-5VR), from -20 to 300 sec ... 176
305. Mass flow in intact loop (FDU-5 and GU-5VR), from -6 to 42 sec ... 176

306. Mass flow in intact loop (FTU-9 and GU-10VR), from -20 to 300 sec .. 177

307. Mass flow in intact loop (FTU-9 and GU-10VR), from -6 to 42 sec .. 177

308. Mass flow in intact loop (FDU-10 and GU-10VR), from -20 to 300 sec .. 178

309. Mass flow in intact loop (FDU-10 and GU-10VR), from -6 to 42 sec .. 178

310. Mass flow in intact loop (FDU-13 and GU-13VR), from -20 to 300 sec .. 179

311. Mass flow in intact loop (FDU-13 and GU-13VR), from -6 to 42 sec .. 179

312. Mass flow in intact loop (FTU-13 and GU-13VR), from -20 to 300 sec .. 180

313. Mass flow in intact loop (FTU-13 and GU-13VR), from -6 to 42 sec .. 180

314. Mass flow in intact loop (FDU-15 and GU-15VR), from -20 to 300 sec .. 181

315. Mass flow in intact loop (FDU-15 and GU-15VR), from -6 to 42 sec .. 181

316. Mass flow in intact loop (FTU-15 and GU-15VR), from -20 to 300 sec .. 182

317. Mass flow in intact loop (FTU-15 and GU-15VR), from -6 to 42 sec .. 182

318. Mass flow in broken loop (FDB-21 and GB-21C), from -20 to 300 sec 183

319. Mass flow in broken loop (FDB-21 and GB-21C), from -6 to 42 sec .. 183
320. Mass flow in broken loop (FTB-21 and GB-21C), from -20 to 300 sec .. 184
321. Mass flow in broken loop (FTB-21 and GB-21C), from -6 to 42 sec .. 184
322. Mass flow in broken loop (FDB-30 and GB-30C), from -20 to 300 sec .. 185
323. Mass flow in broken loop (FDB-30 and GB-30C), from -6 to 42 sec .. 185
324. Mass flow in broken loop (FTB-30 and GB-30C), from -20 to 300 sec .. 186
325. Mass flow in broken loop (FTB-30 and GB-30C), from -6 to 42 sec .. 186
326. Mass flow in broken loop (FDB-42 and GB-42VR), from -20 to 300 sec .. 187
327. Mass flow in broken loop (FDB-42 and GB-42VR), from -6 to 42 sec .. 187
328. Mass flow in broken loop, reflood bypass (FDB-RFB and GB-RFB-B), from -20 to 300 sec 188
329. Mass flow in broken loop, reflood bypass (FDB-RFB and GB-RFB-B), from -6 to 42 sec 188
330. Mass flow in broken loop, reflood bypass (FTB-RFB and GB-RFB-B), from -20 to 300 sec 189
331. Mass flow in broken loop, reflood bypass (FTB-RFB and GB-RFB-B), from -6 to 42 sec 189
332. Mass flow in vessel (FDV-CORE-IN and GV-COR-150HZ), from -20 to 300 sec 190
333. Mass flow in vessel (FDV-CORE-IN and GV-COR-150HZ), from -6 to 42 sec 190
334. Mass flow in vessel (FTV-CORE-IN and GV-COR-150HZ), from -20 to 300 sec 191
335. Mass flow in vessel (FTV-CORE-IN and GV-COR-150HZ), from -6 to 42 sec .. 191

336. Core heater pin total power (PWRCOR T-1 and PWRCOR T-2), from -20 to 300 sec 192

337. Core heater pin total power (PWRCOR T-1 and PWRCOR T-2), from -6 to 42 sec 192

338. Core heater voltage (VOLTCOR-T), from -20 to 300 sec .. 193

339. Core heater voltage (VOLTCOR-T), from -6 to 42 sec .. 193

340. Core heater total current (AMPCOR-T), from -20 to 300 sec ... 194

341. Core heater total current (AMPCOR-T), from -6 to 42 sec ... 194

342. Primary pump speed (PUMPU-RPM), from -20 to 300 sec ... 195

343. Primary pump speed (PUMPU-RPM), from -6 to 42 sec ... 195

344. Primary pump current (PUMPU-CUR), from -20 to 300 sec .. 196

345. Primary pump current (PUMPU-CUR), from -6 to 42 sec .. 196

A-1. Geometry used for processing of density data obtained from two-beam gamma densitometers 208

TABLES

I. Conditions at Blowdown Initiation ... 7

II. Primary Coolant Temperature Distribution
Prior to Rupture ... 8
III. Water Chemistry Prior to Blowdown .. 9

IV. Sequence of Events During Test S-05-5 ... 10

V. Data Presentation for Semiscale Mod-1 Test S-05-5 18

A-I. Constants for Pressure Measurement Corrections (Test S-05-5) 202

A-II. Constants for Differential Pressure Measurement Corrections (Test S-05-5) .. 204

A-III. Constants for Momentum Flux Measurement Corrections (Test S-05-5) .. 206

A-IV. Constants for Density Measurement Conversions to Engineering Units (Test S-05-5) .. 207
I. INTRODUCTION

The Semiscale Mod-1 experiments represent the current phase of the Semiscale Program conducted by EG&G Idaho, Inc. for the United States Government. The program, which is sponsored by the Nuclear Regulatory Commission through the Energy Research and Development Administration, is part of the overall program designed to investigate the response of a pressurized water reactor system to a hypothesized loss-of-coolant accident (LOCA). The underlying objectives of the Semiscale program are to quantify the physical processes controlling system behavior during a LOCA and to provide an experimental data base for assessing reactor safety evaluation models. The Semiscale Mod-1 program has the further objective of providing support to other experimental programs in the form of instrumentation assessment, optimization of test series, selection of test parameters, and evaluation of test results.

Test S-05-5 was conducted January 11, 1977, in the Semiscale Mod-1 system as part of the alternate ECC injection test series (Test Series 5), which was designed to obtain thermal-hydraulic response data from blowdown, refill, and reflood transients in a simulated nuclear reactor with a heated core to study system response to changes in ECC injection location.

The purpose of this report is to present the test data in an uninterpreted but readily usable form for use by the nuclear community in advance of detailed analysis and interpretation. Section II briefly describes the system configuration, procedures, initial test conditions, and events that are applicable to Test S-05-5; Section III presents the data graphs and provides comments and supporting information necessary for interpretation of the data. A description of the overall Semiscale Program and test series, a more detailed description of the Semiscale Mod-1 system, and a description of the measurement and data processing techniques and uncertainties can be found in Reference 1.
II. SYSTEM, PROCEDURES, CONDITIONS, AND EVENTS FOR TEST S-05-5

The following system configuration, procedures, initial test conditions, and events are specific to Test S-05-5 as indicated.

1. SYSTEM CONFIGURATION AND TEST PROCEDURES

The Semiscale Mod-1 system used for this test consisted of a pressure vessel with internals, including a 40-rod core with 36 electrically heated rods; an intact loop with steam generator, pump, and pressurizer; a broken loop with simulated steam generator, simulated pump, and two rupture assemblies; coolant injection accumulators for both the intact and broken loops; low pressure coolant injection pumps for both the intact and broken loops; and a pressure suppression system with a suppression tank, header, and a steam supply system. For Test S-05-5, the volume of the lower plenum was reduced to \(0.529 \text{ ft}^3\) by the addition of a metal filler piece. Also, a 3-in. (Schedule 160 Grade 316 stainless steel) reflood bypass line with a control valve and a check valve (allowing flow from the hot leg to the cold leg only) was installed interconnecting the hot and cold legs of the broken loop. Semiscale Mod-1 experimental system configuration information is provided in Reference 1. Figures 1, 2, and 3 provide the system configuration for Test S-05-5.

For Test S-05-5, 33 rods of the 40-rod electrically heated core were operated at a peak power density of approximately 11.5 kW/ft, three rods (Rods D-4, E-4, and E-5) were operated at a peak power density of approximately 12.1 kW/ft to yield a slightly peaked power profile, and four rods (Rods C-3, D-5, F-3, and F-6) were unpowered to simulate the effect of control rod guide tubes. The resulting total core power was approximately 1.48 MW.

In preparation for the test, the accumulators were filled with treated demineralized water, drained to the specified initial level, and pressurized with nitrogen to 600 psig. The system was filled with treated demineralized water and vented at strategic points to assure a liquid full system. Prior to warmup the system was pressurized to check for leakage, system instrumentation was checked, and transducer readings were initialized. Warmup to initial test conditions was accomplished with the heaters in the vessel core. Heatup of the broken loop piping was accomplished with bypass lines which served to allow circulation through the broken loop. During warmup, the purification and sampling systems were valved into the primary system to maintain water chemistry requirements and to provide a water sample at system conditions for subsequent analysis. At 100°F temperature intervals during warmup, detector readings were sampled to allow the integrity of the measurement instrumentation and the operability of the data acquisition system to be checked.

Prior to the initial core power level being established, the pressure suppression system was pressurized to 35 psia with saturated steam from the steam supply system. After the
Fig. 1 Semiscale Mod-1 system for cold leg break configuration — schematic.
Fig. 2 Cross section of vessel with lower plenum filler.
Fig. 3 Three-in. broken loop reflood bypass line.
core power was increased to 1.48 MW, initial test conditions were held for 10 minutes to establish equilibrium in the system. At the end of this period all auxiliary systems including the bypass lines were isolated to prevent blowdown through those systems.

The system was successfully subjected to a simulated double-ended cold leg break through two rupture assemblies and two blowdown nozzles, each having a break area of 0.00262 ft². Pressure to operate the rupture assemblies and initiate blowdown was taken from an accumulator system filled with water and pressurized to 2250 psig with gaseous nitrogen. Immediately (within 0.02 sec) after initiation of blowdown, the lines to the accumulator were again isolated. The effluent from the primary system was ejected into the pressure suppression system which was vented to maintain a constant pressure of 35 psia. However, a faulty drain valve allowed the water to begin to drain from the pressure suppression tank prior to blowdown. This lack of total fluid to absorb the energy released during blowdown caused the pressure and temperature within the pressure suppression system to vary from the anticipated values. At blowdown, power to the primary coolant circulation pump was reduced and the pump was allowed to coast down to a speed of 1680 rpm which was maintained for the duration of the test. During the blowdown transient, power to the electrically heated core was automatically controlled to simulate the thermal response of nuclear heated fuel rods.

For Test S-05-5, the coolant injection systems were arranged to discharge into both system loops at the cold leg injection points (Spool 14 and Spool 42). Coolant injection was initiated from the intact and broken loop accumulators after the system was depressurized to 600 psig and continued until depletion. At approximately 150 psig, the low pressure injection pumps were also started. Coolant injection from the low pressure injection pumps continued until the test was terminated at 300 sec after initiation of blowdown.

2. INITIAL TEST CONDITIONS AND SEQUENCE OF EVENTS

Conditions in the Semiscale Mod-1 system at initiation of blowdown are given in Tables I and II; the primary system water chemistry prior to blowdown is given in Table III; and the sequence of events relative to rupture is given in Table IV.
<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDITIONS AT BLOWDOWN INITIATION</td>
</tr>
<tr>
<td>-----------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Test S-05-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured[a]</td>
</tr>
<tr>
<td>Core power (MW)</td>
<td>1.481</td>
</tr>
<tr>
<td>Intact loop cold leg fluid temperature (°F)</td>
<td>537</td>
</tr>
<tr>
<td>Hot leg to cold leg temperature differential (°F)</td>
<td>72</td>
</tr>
<tr>
<td>Pressurizer pressure (psia)</td>
<td>2263</td>
</tr>
<tr>
<td>Pressurizer water level (in.)[b]</td>
<td>24.2[c]</td>
</tr>
<tr>
<td>Steam generator feedwater temperature (°F)</td>
<td>445</td>
</tr>
<tr>
<td>Steam generator liquid level (from bottom of tube sheet) (in.)</td>
<td>117</td>
</tr>
<tr>
<td>Fluid temperature in broken loop (pump side) (°F)</td>
<td>561</td>
</tr>
<tr>
<td>Fluid temperature in broken loop (vessel side) (°F)</td>
<td>538</td>
</tr>
<tr>
<td>Intact loop cold leg flow (gpm)</td>
<td>140</td>
</tr>
<tr>
<td>Pressure suppression tank water level (in.)</td>
<td>47.5[e]</td>
</tr>
<tr>
<td>Pressure suppression tank pressure (psia)</td>
<td>35</td>
</tr>
<tr>
<td>Pressure suppression tank water temperature (°F)[f]</td>
<td>62</td>
</tr>
</tbody>
</table>

[a] Measured initial conditions are taken from process instrumentation read just prior to blowdown. Those measured conditions which did not meet the specified initial conditions were considered acceptable for analysis purposes within the test objectives.

[b] Pressurizer water level measured down from inside of top head. Level was specified in terms of differential pressure in the liquid level measuring system.

[c] Level shown corresponds to a pressurizer system liquid volume of 0.60 ft³ (including surge line).

[d] Flow is not specified, since it must be adjusted to achieve the required differential temperature across the core.

[e] Data are questionable due to slow leak in pressure suppression tank.

[f] Process instrumentation not used. Data taken from last digital scan 360 sec prior to blowdown initiation.
<table>
<thead>
<tr>
<th>Detector</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFV-LP-7</td>
<td>544</td>
</tr>
<tr>
<td>RBU-2</td>
<td>607</td>
</tr>
<tr>
<td>TFU-10</td>
<td>544</td>
</tr>
<tr>
<td>RBU-14A</td>
<td>542</td>
</tr>
<tr>
<td>TFB-23</td>
<td>538</td>
</tr>
<tr>
<td>TFB-30</td>
<td>606</td>
</tr>
<tr>
<td>TFB-42</td>
<td>585</td>
</tr>
<tr>
<td>TFB-RFB</td>
<td>529</td>
</tr>
</tbody>
</table>

[a] Data taken from final digital scan 360 sec before blowdown.
<table>
<thead>
<tr>
<th></th>
<th>Test S-05-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>10.80</td>
</tr>
<tr>
<td>Conductivity (μmho/cm)</td>
<td>172.0</td>
</tr>
<tr>
<td>Lithium (ppm)</td>
<td>5.1</td>
</tr>
<tr>
<td>Chlorides (ppm)</td>
<td><0.1</td>
</tr>
<tr>
<td>Fluorides (ppm)[b]</td>
<td><0.4</td>
</tr>
<tr>
<td>Oxygen (ppm)</td>
<td>0.05</td>
</tr>
<tr>
<td>Total Gas (cc/l)</td>
<td>161.0</td>
</tr>
<tr>
<td>Suspended solids (ppm)</td>
<td>1.45</td>
</tr>
</tbody>
</table>

[a] Water sample taken at a system pressure of approximately 2263 psia and a system temperature of approximately 540°F (cold leg).

[b] Present analytical methods prevent accurate determination of fluorides at concentrations of less than 0.4 ppm.
TABLE IV

SEQUENCE OF EVENTS DURING TEST S-05-5[a]

<table>
<thead>
<tr>
<th>Event</th>
<th>Time Relative To Rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core power level established (min)</td>
<td>-10</td>
</tr>
<tr>
<td>Bypass lines valved out of system (sec)</td>
<td>-2.5</td>
</tr>
<tr>
<td>Blowdown initiated (sec)</td>
<td>0</td>
</tr>
<tr>
<td>Pump power reduced (sec)</td>
<td>0</td>
</tr>
<tr>
<td>High pressure injection system pumps started (sec)[b]</td>
<td>0</td>
</tr>
<tr>
<td>ECC accumulators valved in (sec)</td>
<td>0</td>
</tr>
<tr>
<td>Steam generator feedwater and discharge valves closed (sec)</td>
<td>1</td>
</tr>
<tr>
<td>Core power decay transient started (sec)</td>
<td>2.7</td>
</tr>
<tr>
<td>Low pressure injection system pumps started (sec)[b]</td>
<td>30</td>
</tr>
<tr>
<td>Core power tripped off (sec)[c]</td>
<td>300</td>
</tr>
</tbody>
</table>

[a] A time-controlled sequencer was used to control critical events during the test.

[b] Injection from ECC accumulators and high and low pressure injection system pumps does not start until system pressure drops below accumulator or pump pressure, respectively.

[c] Core power tripped manually at termination of test.
III. DATA PRESENTATION

The data from Semiscale Mod-1 Test S-05-5 are presented with brief comment. Processing analysis has been performed only to the extent necessary to obtain appropriate engineering units and to assure that the data are reasonable and consistent. In all cases, in converting transducer output to engineering units, a homogeneous fluid was assumed. Further interpretation and analysis should consider that sudden decompression processes such as those occurring during blowdown may have subjected the measurement devices to nonhomogeneous fluid conditions.

The performance of the system during Test S-05-5 was monitored by 219 detectors. The data obtained were recorded on both digital and analog data acquisition systems. The digital system was used to process the data presented in this report. The digital data were recorded at a sample rate of 57.5 points per second. Long term plots (-20 to 300 sec) were compressed at a 20 to 1 ratio giving an effective sample rate of 2.875 points per sec. Short term plots (-6 to 42 sec) were compressed at a 3 to 1 ratio giving an effective sample rate of 19.17 points per sec. The analog system was used to provide better resolution capability (needed as input to various data analysis codes) and to provide redundancy.

The data are presented, in some instances, in the form of composite graphs to facilitate comparison of the values of given variables at several locations. The scales selected for the graphs do not reflect the obtainable resolution of the data. (The data processing techniques are described further in Reference 1.)

Figures 4 through 9 and Table V provide supporting information for interpretation of the data graphs shown in Figures 10 through 345, and provide relative locations of all detectors used during Test S-05-5. Table V groups the measurements according to measurement type; identifies the specific measurement location and range of the detector and actual recording range of the data acquisition system; provides brief comments regarding the data; and references the measurements and comments to the corresponding figure. Figures 10 through 345 present all the blowdown and reflood data obtained. Time zero on the graphs is the time of rupture initiation. Appendix A provides information explaining posttest data processing for data conversion into engineering units and data adjustments.
Fig. 4 Semiscale Mod-1 system and instrumentation for cold leg break configuration --- isometric,
Fig. 5 Semiscalc Mod-1 system and instrumentation for cold leg break configuration -- schematic.
Fig. 6 Semiscale Mod-1 pressure vessel -- cross section showing instrumentation.
Fig. 7 Semiscale Mod-1 pressure vessel -- isometric showing instrumentation.
Fig. 8 Semiscale Mod-1 pressure vessel -- penetrations and instrumentation.
Fig. 9 Semiscale Mod-1 heated core -- plan view.
TABLE V

DATA PRESENTATION FOR SEMIScale MOD-1 TEST S-05-5

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Location and Comments[a]</th>
<th>Detector</th>
<th>Data Acquisition System</th>
<th>Figure[b]</th>
<th>Measurement Comment[c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLUID TEMPERATURE</td>
<td>Chromel-Alumel thermocouples unless specified otherwise.</td>
<td>0 to 2300°F</td>
<td>0 to 591°F</td>
<td>10, 11</td>
<td></td>
</tr>
<tr>
<td>Intact Loop</td>
<td>Hot leg, Spool 7, 24 in. from vessel center, (shielded).</td>
<td>0 to 1000°F</td>
<td>0 to 1000°F</td>
<td>12, 13</td>
<td></td>
</tr>
<tr>
<td>RBU-16A</td>
<td>Cold leg, Spool 14, 43 in. from vessel center, upstream of cold leg injection port (platinum resistance bulb).</td>
<td>0 to 1000°F</td>
<td>0 to 1000°F</td>
<td>12, 13</td>
<td></td>
</tr>
<tr>
<td>Broken Loop</td>
<td>Cold leg, Spool 20, 21 in. from vessel center.</td>
<td>0 to 2300°F</td>
<td>0 to 101°F</td>
<td>11, 15</td>
<td></td>
</tr>
<tr>
<td>TFB-30</td>
<td>Hot leg, Spool 30, 16 in. from vessel center.</td>
<td>0 to 1000°F</td>
<td>0 to 1000°F</td>
<td>16, 17</td>
<td></td>
</tr>
<tr>
<td>TFB-37</td>
<td>Cold leg, Spool 37, 270 in. from vessel center along hot leg, discharge of simulated steam generator.</td>
<td>0 to 1000°F</td>
<td>0 to 1000°F</td>
<td>16, 17</td>
<td></td>
</tr>
<tr>
<td>TFB-64</td>
<td>Cold leg, Spool 64, 414 in. from vessel center along hot leg, upstream of pump-side nozzle.</td>
<td>0 to 1000°F</td>
<td>0 to 1000°F</td>
<td>16, 17</td>
<td></td>
</tr>
<tr>
<td>TFV-64A</td>
<td>Reflood bypass line, hot leg to cold leg, 64 in. from vessel center along hot leg.</td>
<td>0 to 1000°F</td>
<td>0 to 1000°F</td>
<td>18, 19</td>
<td></td>
</tr>
<tr>
<td>Intact Annulus</td>
<td>4 in. below cold leg centerline.</td>
<td>0 to 1000°F</td>
<td>0 to 80°F</td>
<td>20, 21</td>
<td></td>
</tr>
<tr>
<td>TFV-ANN-4A</td>
<td>0°.</td>
<td>0 to 1000°F</td>
<td>0 to 80°F</td>
<td>20, 21</td>
<td></td>
</tr>
<tr>
<td>TFV-ANN-4H</td>
<td>100°.</td>
<td>0 to 1000°F</td>
<td>0 to 80°F</td>
<td>20, 21</td>
<td></td>
</tr>
<tr>
<td>Downcomer Annulus</td>
<td>Centered in annulus, Type J iron-constantan thermocouples.</td>
<td>0 to 1000°F</td>
<td>0 to 80°F</td>
<td>20, 21</td>
<td></td>
</tr>
<tr>
<td>TFV-ANN-25A</td>
<td>25 in. below cold leg centerline, 0°.</td>
<td>0 to 1000°F</td>
<td>0 to 80°F</td>
<td>22, 23</td>
<td></td>
</tr>
<tr>
<td>TFV-ANN-76A</td>
<td>76 in. below cold leg centerline, 0°.</td>
<td>0 to 1000°F</td>
<td>0 to 80°F</td>
<td>22, 23</td>
<td></td>
</tr>
<tr>
<td>TFV-ANN-156A</td>
<td>156 in. below cold leg centerline, 0°.</td>
<td>0 to 1000°F</td>
<td>0 to 80°F</td>
<td>22, 23</td>
<td></td>
</tr>
<tr>
<td>Upper Plenum</td>
<td>In upper plenum, 13.5 in. above cold leg centerline at 180°.</td>
<td>0 to 1000°F</td>
<td>0 to 80°F</td>
<td>20, 25</td>
<td></td>
</tr>
<tr>
<td>Lower Plenum</td>
<td>On fluid thermocouple rack, 1 in. from vessel center, 45°.</td>
<td>0 to 1000°F</td>
<td>0 to 80°F</td>
<td>20, 25</td>
<td></td>
</tr>
</tbody>
</table>

[a] Range
[b] Data
[c] Comments

18
<table>
<thead>
<tr>
<th>Measurement</th>
<th>Location and Comments[a]</th>
<th>Detector</th>
<th>Data Acquisition System</th>
<th>Figure[a]</th>
<th>Measurement Comment[b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>In core flow mixer box, 150 in. below cold leg centerline (a part of FDV-CORE-IN).</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>20, 29</td>
<td></td>
</tr>
<tr>
<td>Core-Gird Spacers</td>
<td>55 in. below cold leg centerline, 21.5 in. above top of heated length.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>30, 31</td>
<td></td>
</tr>
<tr>
<td>Grid Spacer 6</td>
<td>Thermocouple in space defined by Columns C and D, rows 4 and 5.</td>
<td>0.5 in. above top of heated length.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Barrel</td>
<td>Core Spacer 6</td>
<td>76 in. below cold leg centerline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>Ga2</td>
<td>TFV-C1G-70A</td>
<td>70 in. below cold leg centerline, 0°.</td>
<td>0 to 1400°F</td>
<td>0 to 1017°F</td>
</tr>
<tr>
<td>Vessel Filler</td>
<td>Insulation Gap</td>
<td>TFV-FIG-156A</td>
<td>156 in. below cold leg centerline, 0°.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
</tr>
<tr>
<td>ECC System</td>
<td>On centerline of CF6 line at junction with Spool 14.</td>
<td>0 to 2300°F</td>
<td>0 to 997°F</td>
<td>38, 39</td>
<td></td>
</tr>
<tr>
<td>ECC System</td>
<td>In line leading to broken loop Spool 42.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>40, 41</td>
<td></td>
</tr>
<tr>
<td>Steam Generator</td>
<td>In feedwater line leading to steam generator.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>42, 43</td>
<td></td>
</tr>
<tr>
<td>Steam Generator</td>
<td>Secondary side, 12 in. above bottom of tube sheet.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>44, 45</td>
<td></td>
</tr>
<tr>
<td>Steam Generator</td>
<td>Secondary side, 24 in. above bottom of tube sheet.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>46, 47</td>
<td></td>
</tr>
<tr>
<td>Presurizer</td>
<td>In surge line, near pressurizer exit, between turbine flowmeter and presurizer.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>48, 49</td>
<td></td>
</tr>
<tr>
<td>Pressure Suppression System</td>
<td>33 in. from bottom of tank.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>50, 51</td>
<td></td>
</tr>
<tr>
<td>MATERIAL TEMPERATURE</td>
<td>130 in. from bottom of tank.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>52, 53</td>
<td></td>
</tr>
<tr>
<td>Inter Loop</td>
<td>Chromel-Alumel thermocouples unless specified otherwise.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>54, 55</td>
<td></td>
</tr>
<tr>
<td>Inter Loop</td>
<td>Nut leg, Spool 1, top, 1/16 in. from pipe ID, 29 in. from vessel center.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>56, 57</td>
<td></td>
</tr>
<tr>
<td>Inter Loop</td>
<td>Cold leg, Spool 15, top, 1/16 in. from pipe ID, 17 in. from vessel center.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>58, 59</td>
<td></td>
</tr>
<tr>
<td>Broken Loop</td>
<td>Cold leg, Spool 20, bottom, 1/16 in. from pipe ID, 21 in. from vessel center.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>60, 61</td>
<td></td>
</tr>
<tr>
<td>Broken Loop</td>
<td>Reflood bypass line, top, 1/16 in. from pipe ID, 67 in. from vessel center along hot leg.</td>
<td>0 to 2300°F</td>
<td>0 to 1017°F</td>
<td>62, 63</td>
<td></td>
</tr>
<tr>
<td>Vessel Filler</td>
<td>Type J iron-constantan.</td>
<td>0 to 1400°F</td>
<td>0 to 803°F</td>
<td>64, 65</td>
<td></td>
</tr>
<tr>
<td>Vessel Filler</td>
<td>4 in. below cold leg centerline, 1/16 in. from filter ID, 180°.</td>
<td>66, 67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vessel Filler</td>
<td>15 in. below cold leg centerline, 1/16 in. from filter ID, 0°.</td>
<td>68, 69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement</td>
<td>Location and Comment(s)</td>
<td>Detector</td>
<td>Data Acquisition System</td>
<td>Range(s)</td>
<td>Measurement Comments(s)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Vessel Filler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMF-Fl-35A</td>
<td>35 in. below cold leg centerline, 1/16 in. from filler OD, 0°</td>
<td></td>
<td></td>
<td>65, 57</td>
<td></td>
</tr>
<tr>
<td>TMF-Fl-115A</td>
<td>115 in. below cold leg centerline, 1/16 in. from filler OD, 0°</td>
<td></td>
<td></td>
<td>65, 59</td>
<td></td>
</tr>
<tr>
<td>TMF-Fl-156A</td>
<td>156 in. below cold leg centerline, 1/16 in. from filler OD, 0°</td>
<td></td>
<td></td>
<td>50, 59</td>
<td>External junction formed; reading low.</td>
</tr>
<tr>
<td>TMF-Fl-156A</td>
<td>156 in. below cold leg centerline, 0.65 in. from filler OD, 0°</td>
<td></td>
<td></td>
<td>60, 61</td>
<td></td>
</tr>
<tr>
<td>Vessel Filler</td>
<td>Int. Header</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TVF-F0-35A</td>
<td>35 in. below cold leg centerline, 0°</td>
<td></td>
<td></td>
<td>62, 63</td>
<td></td>
</tr>
<tr>
<td>TVF-F0-70A</td>
<td>70 in. below cold leg centerline, 0°</td>
<td></td>
<td></td>
<td>62, 63</td>
<td></td>
</tr>
<tr>
<td>TVF-F0-115A</td>
<td>115 in. below cold leg centerline, 0°</td>
<td></td>
<td></td>
<td>62, 63</td>
<td></td>
</tr>
<tr>
<td>Core Barrel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMH-CI-70A</td>
<td>70 in. below cold leg centerline, 7/16 in. from core barrel OD, 0°</td>
<td></td>
<td></td>
<td>64, 65</td>
<td></td>
</tr>
<tr>
<td>TMH-CI-115A</td>
<td>115 in. below cold leg centerline, 7/16 in. from core barrel OD, 0°</td>
<td></td>
<td></td>
<td>64, 65</td>
<td></td>
</tr>
<tr>
<td>TMH-CO-70A</td>
<td>70 in. below cold leg centerline, 7/16 in. from core barrel OD, 0°</td>
<td></td>
<td></td>
<td>62, 67</td>
<td></td>
</tr>
<tr>
<td>TMH-CO-115A</td>
<td>115 in. below cold leg centerline, 7/16 in. from core barrel OD, 0°</td>
<td></td>
<td></td>
<td>62, 67</td>
<td></td>
</tr>
<tr>
<td>Core Housing Filler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THF-MF-115A</td>
<td>115 in. below cold leg centerline, 0.20 in. from outer surface, 315°</td>
<td></td>
<td></td>
<td>68, 69</td>
<td></td>
</tr>
<tr>
<td>THF-MF-130K</td>
<td>130 in. below cold leg centerline, 0.20 in. from outer surface, 315°</td>
<td></td>
<td></td>
<td>68, 69</td>
<td></td>
</tr>
<tr>
<td>Steam Generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMG-51</td>
<td>On steam generator tubes, 12 in. above bottom of tube sheet, an U of tube.</td>
<td></td>
<td></td>
<td>70, 77</td>
<td></td>
</tr>
<tr>
<td>THG-51</td>
<td>On steam generator tubes, 41 in. above bottom of tube sheet, on OD of tube.</td>
<td></td>
<td></td>
<td>70, 77</td>
<td></td>
</tr>
<tr>
<td>TMG-51</td>
<td>On steam generator tubes, 48 for above bottom of tube sheet, on OD of tube.</td>
<td></td>
<td></td>
<td>70, 77</td>
<td></td>
</tr>
<tr>
<td>CORE HEATER CLASING TEMPERATURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Power Heaters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-05-14</td>
<td>Heaters at Column A, Row 4, Thermocouple 34 in. (70°F) and 74 in. (125°F) above bottom of core.</td>
<td></td>
<td></td>
<td>72, 73</td>
<td></td>
</tr>
<tr>
<td>TH-05-29</td>
<td>Heaters at Column A, Row 5, Thermocouple 29 in. (225°F) above bottom of core.</td>
<td></td>
<td></td>
<td>74, 75</td>
<td></td>
</tr>
<tr>
<td>TH-05-29</td>
<td>Heaters at Column A, Row 5, Thermocouple 34 in. (70°F) and 74 in. (125°F) above bottom of core.</td>
<td></td>
<td></td>
<td>76, 77</td>
<td></td>
</tr>
<tr>
<td>TH-05-29</td>
<td>Heaters at Column A, Row 5, Thermocouple 29 in. (225°F) above bottom of core.</td>
<td></td>
<td></td>
<td>78, 79</td>
<td></td>
</tr>
<tr>
<td>Low Power Heaters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-45-28</td>
<td>Heaters at Column A, Row 4, Thermocouple 8 in. (10°F), 28 in. (240°F) and 38 in. (300°F) above bottom of core.</td>
<td></td>
<td></td>
<td>62, 63</td>
<td></td>
</tr>
<tr>
<td>Measurement Location and Comments[a]</td>
<td>Detector Data Acquisition System</td>
<td>Figure[b]</td>
<td>Measurement Comments[c]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------------------------</td>
<td>-----------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-A5-29 Heaters at Column A, Row 5. Thermocouples 29 in. (100\textdegree) and 45 in. (255\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>82, 83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-A5-85 Heaters at Column A, Row 5. Thermocouples 29 in. (100\textdegree) and 45 in. (255\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>84, 85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-A5-32 Heaters at Column A, Row 3. Thermocouples 32 in. (135\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>86, 87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-A5-29 Heaters at Column A, Row 5. Thermocouples 29 in. (100\textdegree) and 45 in. (255\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>88, 89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-E2-38 Heaters at Column C, Row 2. Thermocouples 38 in. (125\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>90, 91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-E4-26 Heaters at Column C, Row 4. Thermocouples 26 in. (75\textdegree) and 53 in. (300\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>92, 93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-E6-33 Heaters at Column C, Row 5. Thermocouples 33 in. (115\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>94, 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-C7-15 Heaters at Column C, Row 7. Thermocouples 15 in. (105\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>96, 97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-D2-21 Heaters at Column D, Row 1. Thermocouples 21 in. (345\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>98, 99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-D2-14 Heaters at Column D, Row 2. Thermocouples 14 in. (0\textdegree) and 81 in. (270\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>100, 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-D2-29 Heaters at Column D, Row 3. Thermocouples 29 in. (150\textdegree) and 30 in. (75\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>102, 103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-D6-15 Heaters at Column D, Row 6. Thermocouples 15 in. (90\textdegree) and 25 in. (225\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>104, 105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-D7-20 Heaters at Column D, Row 7. Thermocouples 20 in. (60\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>106, 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-D8-27 Heaters at Column D, Row 8. Thermocouples 27 in. (180\textdegree) and 57 in. (15\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>108, 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-F1-31 Heaters at Column E, Row 1. Thermocouples 31 in. (60\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>110, 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-E2-20 Heaters at Column E, Row 2. Thermocouples 20 in. (90\textdegree) and 33 in. (315\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>112, 113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-E2-32 Heaters at Column E, Row 3. Thermocouples 32 in. (135\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>114, 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-D2-20 Heaters at Column E, Row 3. Thermocouples 20 in. (150\textdegree) and 26 in. (33\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>116, 117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-E3-28 Heaters at Column E, Row 6. Thermocouples 28 in. (105\textdegree), 20 in. (150\textdegree), and 24 in. (225\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>118, 119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-E3-24 Heaters at Column E, Row 7. Thermocouples 24 in. (165\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>120, 121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-E3-20 Heaters at Column E, Row 8. Thermocouples 20 in. (105\textdegree), 26 in. (150\textdegree), and 45 in. (300\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>122, 123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-E3-05 Heaters at Column F, Row 2. Thermocouples 5 in. (180\textdegree), 22 in. (105\textdegree), and 25 in. (18\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>124, 125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-E3-20 Heaters at Column F, Row 3. Thermocouples 14 in. (90\textdegree), 29 in. (255\textdegree), and 44 in. (110\textdegree) above bottom of core.</td>
<td></td>
<td></td>
<td>126, 127</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE V (continued)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Location and Comments[a]</th>
<th>Range(s)</th>
<th>Data Acquisition System</th>
<th>Figure(s)</th>
<th>Measurement Comments[b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Power Heaters (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-FS-20</td>
<td>Heater at Column F, Row 5, Thermocouples 20, 25(15°), 26 in. (155°), 23 in. (30°) above bottom of core.</td>
<td>0 to 2300°F</td>
<td>0 to 2382°F</td>
<td>126, 127</td>
<td></td>
</tr>
<tr>
<td>TH-FS-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-FS-32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-FS-53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-G3-13</td>
<td>Heater at Column G, Row 3, Thermocouples 13 in. (150°) above bottom of core.</td>
<td>120, 129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-G4-29</td>
<td>Heater at Column G, Row 4, Thermocouples 29 in. (300°), 33 in. (225°), and 38 in. (10°) above bottom of core.</td>
<td>130, 131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-G4-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-G4-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-GS-14</td>
<td>Heater at Column G, Row 5, Thermocouples 14 in. (45°) and 24 in. (330°) above bottom of core.</td>
<td>132, 133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-GS-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-GS-32</td>
<td>Heater at Column H, Row 9, Thermocouples 32 in. (45°) above bottom of core.</td>
<td>134, 135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESSURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact Loop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PU-13</td>
<td>Cold leg, Spool 13, 54 in. from vessel center.</td>
<td>0 to 3000 psi</td>
<td>0 to 4590 psi</td>
<td>136, 137</td>
<td></td>
</tr>
<tr>
<td>PU-15L</td>
<td>Cold leg, Spool 15, 16 in. from vessel center, to atmosphere (low range).</td>
<td>0 to 500 psi</td>
<td>0 to 557 psi</td>
<td>136, 137</td>
<td></td>
</tr>
<tr>
<td>Broken Loop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB-23</td>
<td>Cold leg, Spool 23, 92 in. from vessel center, upstream of nozzle (sin-off OP leg).</td>
<td>0 to 3000 psi</td>
<td>0 to 4310 psi</td>
<td>130, 129</td>
<td></td>
</tr>
<tr>
<td>PB-37</td>
<td>Cold leg, Spool 37, 302 in. from vessel center, upstream of hot leg.</td>
<td>0 to 3000 psi</td>
<td>0 to 4356 psi</td>
<td>140, 141</td>
<td></td>
</tr>
<tr>
<td>PB-42</td>
<td>Cold leg, Spool 42, 415 in. from vessel center, upstream of pump-side nozzle (tee off DP tap).</td>
<td>0 to 4378 psi</td>
<td>140, 141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB-HN1</td>
<td>Pump-side nozzle, nozzle throat, 419 in. from vessel center, upstream of pump-side nozzle (tee off DP tap).</td>
<td>0 to 4623 psi</td>
<td>142, 143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB-CN1</td>
<td>Pump-side nozzle, nozzle throat, 96 in. from vessel center, along cold leg, 42°.</td>
<td>0 to 2100 psi</td>
<td>0 to 3180 psi</td>
<td>144, 145</td>
<td></td>
</tr>
<tr>
<td>Vessel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV-HN18</td>
<td>In upper plenum, 10 in. above cold leg centerline, mounted on standoff, 30°.</td>
<td>0 to 4950 psi</td>
<td>146, 147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV-LP-165</td>
<td>In upper part of lower plenum, 166 in. below cold leg centerline, mounted on standoffs, 225°.</td>
<td>0 to 2952 psi</td>
<td>146, 247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECC System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PU-ACC</td>
<td>In intact loop accumulator</td>
<td>0 to 710 psi</td>
<td>0 to 773 psi</td>
<td>148, 149</td>
<td></td>
</tr>
<tr>
<td>PB-ACC</td>
<td>In broken loop accumulator</td>
<td>0 to 710 psi</td>
<td>0 to 741 psi</td>
<td>148, 151</td>
<td></td>
</tr>
<tr>
<td>Steam Generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PU-SC12</td>
<td>Secondary side steam drain.</td>
<td>0 to 4300 psi</td>
<td>0 to 2024 psi</td>
<td>160, 163</td>
<td></td>
</tr>
<tr>
<td>P-PID1X</td>
<td>Pressurizer steam drain.</td>
<td>0 to 2400 psi</td>
<td>0 to 1910 psi</td>
<td>164, 166</td>
<td></td>
</tr>
<tr>
<td>Pressure Suppression System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-FSS</td>
<td>Suppression tank tap.</td>
<td>0 to 250 psi</td>
<td>0 to 247 psi</td>
<td>156, 157</td>
<td></td>
</tr>
</tbody>
</table>
TABLE V (continued)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Location and Comments[a]</th>
<th>Range[b]</th>
<th>Data Acquisition System</th>
<th>Figure[c]</th>
<th>Measurement Comments[d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Pressure</td>
<td>Elevation difference between transducer tap is zero unless otherwise specified.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detector</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 in.</td>
<td>14 psi</td>
<td></td>
<td>Detector failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 in.</td>
<td>25 psi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>190, 159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 psi</td>
<td></td>
<td></td>
<td>Questionable data, Spool 12 sense line leak.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>170, 171</td>
<td></td>
<td></td>
<td>Detector saturated prior to t=0 and intermittently from t=100 to t=10 sec.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>174, 173</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>170, 173</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>172, 173</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>174, 175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>176, 177</td>
<td></td>
<td></td>
<td>Questionable data, Spool 4 sense line leak.</td>
</tr>
</tbody>
</table>

Inlet Loop

<table>
<thead>
<tr>
<th>Location</th>
<th>Comments</th>
<th>Range</th>
<th>Data Acquisition System</th>
<th>Figure</th>
<th>Measurement Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper plenum 10.5 in. above cold leg centerline at 30° to hot leg</td>
<td>Spool 3, 62 in. from vessel center, Upper plenum tap is approximately 2 in. above Spool 3 tap.</td>
<td>50 in.</td>
<td>Water</td>
<td>24 psi</td>
<td></td>
</tr>
<tr>
<td>Across steam generator, hot leg Spool 3, 62 in. from vessel center</td>
<td>Cold leg Spool 7, 231 in. from vessel center, Spool 3 tap is approximately 18 in. above Spool 7 tap.</td>
<td>500 in.</td>
<td>Water</td>
<td>25 psi</td>
<td>150, 159</td>
</tr>
<tr>
<td>Sleeve generator outlet to pump inlet</td>
<td>Cold leg Spool 10, 141 in. from vessel center.</td>
<td>50 in.</td>
<td>Water</td>
<td>40 psi</td>
<td>160, 161</td>
</tr>
<tr>
<td>Pump outlet to pump inlet, Cold leg Spool 12, 75 in. from vessel center, to cold leg Spool 10, 141 in. from vessel center.</td>
<td>Spool 10 tap is 10 in. below Spool 12 tap.</td>
<td>50 psi</td>
<td>Water</td>
<td>50 psi</td>
<td>162, 163</td>
</tr>
<tr>
<td>Pump outlet to pump inlet, Cold leg Spool 12, 75 in. from vessel center, to cold leg Spool 10, 141 in. from vessel center.</td>
<td>Spool 10 tap is 10 in. below Spool 12 tap (low range).</td>
<td>50 psi</td>
<td>Water</td>
<td>49 psi</td>
<td>164, 165</td>
</tr>
<tr>
<td>Across cold leg injection point, Cold leg Spool 12, 75 in. from vessel center</td>
<td>to cold leg Spool 13, 16 in. from vessel center.</td>
<td>100 in.</td>
<td>Water</td>
<td>50 psi</td>
<td>166, 167</td>
</tr>
<tr>
<td>Cold leg to hot leg, Cold leg Spool 13, 16 in. from vessel center, to hot leg Spool 1, 31 in. from vessel center.</td>
<td>Spool 1 tap is 8.5 in. below Spool 1 tap.</td>
<td>240 in.</td>
<td>Water</td>
<td>29.5 psi</td>
<td>160, 169</td>
</tr>
<tr>
<td>Cold leg to hot leg, Cold leg Spool 13, 16 in. from vessel center, to hot leg Spool 1, 31 in. from vessel center.</td>
<td>Spool 1 tap is 8.5 in. below Spool 1 tap (low range).</td>
<td>100 in.</td>
<td>Water</td>
<td>24 psi</td>
<td>170, 171</td>
</tr>
<tr>
<td>Cold leg Spool 13, 16 in. from vessel center, to injector manifold, 9 in. below Cold leg centerline at 225°.</td>
<td>Spool 15 tap is 9 in. above injector manifold tap.</td>
<td>100 in.</td>
<td>Water</td>
<td>49 psi</td>
<td>172, 173</td>
</tr>
<tr>
<td>Pressurizer water level. Elevation difference between taps is 53 in.</td>
<td>Lower tap is 3.5 in. above pressurizer exit.</td>
<td>50 in.</td>
<td>Water</td>
<td>55 psi</td>
<td>174, 175</td>
</tr>
<tr>
<td>Pressurizer bottom to Spool 4. Elevation difference between taps is 62 in.</td>
<td>Spool 4 tap is 55 in. below pressurizer exit.</td>
<td>1200 psi</td>
<td>Water</td>
<td>1339 psi</td>
<td>176, 177</td>
</tr>
</tbody>
</table>

Suction Loop

<table>
<thead>
<tr>
<th>Location</th>
<th>Comments</th>
<th>Range</th>
<th>Data Acquisition System</th>
<th>Figure</th>
<th>Measurement Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suction plenum 10.5 in. above cold leg centerline at 30°,</td>
<td>Spool 30, 18 in. from vessel center, Upper plenum tap is 2 in. above Spool 30 tap.</td>
<td>1000 in.</td>
<td>Water</td>
<td>40 psi</td>
<td>178, 179</td>
</tr>
<tr>
<td>Cold leg Spool 21, 19 in. from vessel center, to vessel inlet annulus.</td>
<td>8 in. below Cold leg Centerline at 225°, Inlet annulus tap is 9 in. below Spool 21 tap.</td>
<td>100 in.</td>
<td>Water</td>
<td>40 psi</td>
<td>180, 181</td>
</tr>
<tr>
<td>Hot leg, Spool 30, 18 in. from vessel center, to cold leg Spool 21, 19 in. from vessel center.</td>
<td>Spool 30 tap is 8 in. above Spool 21 tap.</td>
<td>50 psi</td>
<td>Water</td>
<td>50 psi</td>
<td>182, 183</td>
</tr>
<tr>
<td>Across entire simulated steam generator assembly, hot leg Spool 30, 18 in. from vessel center, to cold leg Spool 36 lower tap, 242 in. from vessel center.</td>
<td>Spool 30 tap is 19 in. below Spool 36 lower tap.</td>
<td>500 psi</td>
<td>Water</td>
<td>500 psi</td>
<td>184, 185</td>
</tr>
</tbody>
</table>
TABLE V (continued)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Location and Comments(s)</th>
<th>Detector</th>
<th>Data Acquisition System</th>
<th>Figure(s)</th>
<th>Measurement Comments(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPV-32E-36L</td>
<td>Across simulated steam generator orifice assembly, hot leg Spool 32 upper tap, 13 in. from vessel center, to Spool 36 lower tap, 202 in. from vessel center. Spool 32 upper tap is 18 in. above Spool 36 lower tap.</td>
<td>300 psi</td>
<td>300 psi</td>
<td>106, 107</td>
<td></td>
</tr>
<tr>
<td>OPV-36L-37</td>
<td>Across nozzle assembly, Spool 36 lower tap, 202 in. from vessel center along hot leg, to Spool 37, 202 in. from vessel center along hot leg. Spool 37 tap is 40 in. below Spool 36 lower tap.</td>
<td>50 psi</td>
<td>50 psi</td>
<td>108, 109</td>
<td></td>
</tr>
<tr>
<td>OPV-37-36</td>
<td>Across turbine flowmeter and drain disc, cold leg Spool 37, 202 in. from vessel center along hot leg, to cold leg Spool 38, 205 in. from vessel center along hot leg. Spool 37 tap is 23 in. above Spool 38 tap.</td>
<td>30 in.</td>
<td>5 psi</td>
<td>100, 101</td>
<td></td>
</tr>
<tr>
<td>OPV-40-40</td>
<td>Across elbow leading to simulated steam generator orifice assembly, cold leg Spool 40, 365 in. from vessel center along hot leg.</td>
<td>1000 psi</td>
<td>1000 psi</td>
<td>101, 102</td>
<td></td>
</tr>
<tr>
<td>OPV-40-42</td>
<td>Across elbow leading to simulated steam generator orifice assembly, cold leg Spool 42, 365 in. from vessel center along hot leg, to Spool 42, 615 in. from vessel center along hot leg. Spool 40 tap is 40 in. below Spool 42 tap.</td>
<td>5 psi</td>
<td>5 psi</td>
<td>104, 105</td>
<td></td>
</tr>
<tr>
<td>OPV-50-51</td>
<td>Across manifold bypass turbine flowmeter, 95 in. to 91 in. from vessel center along hot leg.</td>
<td>300 psi</td>
<td>5.5 psi</td>
<td>106, 107</td>
<td></td>
</tr>
<tr>
<td>Vessel</td>
<td>OPV-7-198H</td>
<td>Upper plenum, 10.5 in. above cold leg centerline at 30 in. to inlet annulus, 9 in. below cold leg centerline at 225°. Elevation difference between taps is 19 in.</td>
<td>200 in.</td>
<td>Water</td>
<td>108, 109</td>
</tr>
<tr>
<td>OPV-8-250</td>
<td>Inlet annulus cold leg centerline at 30°, to 9 in. below cold leg centerline at 225°. Elevation difference between taps is 9 in.</td>
<td>5 psi</td>
<td>Water</td>
<td>104, 105</td>
<td></td>
</tr>
<tr>
<td>OPV-9-2500</td>
<td>Inlet annulus, 9 in. below cold leg centerline at 225°. Elevation difference between taps is 77 in.</td>
<td>10 in.</td>
<td>Water</td>
<td>107, 108</td>
<td></td>
</tr>
<tr>
<td>OPV-10-1660</td>
<td>Inlet annulus, 6 in. below cold leg centerline at 225°, to lower plenum, 100 in. below cold leg centerline at 225°. Elevation difference between taps is 57 in.</td>
<td>300 in.</td>
<td>Water</td>
<td>106, 107</td>
<td></td>
</tr>
<tr>
<td>OPV-26-550H</td>
<td>Across part of downcomer, 26 in. (225°), to 55 in. (180°), below cold leg centerline. Elevation difference between taps is 29 in.</td>
<td>50 psi</td>
<td>Water</td>
<td>106, 107</td>
<td></td>
</tr>
<tr>
<td>OPV-55-110H</td>
<td>Across part of downcomer, 55 in. (180°), to 110 in. (180°), below cold leg centerline. Elevation difference between taps is 55 in.</td>
<td>100 in.</td>
<td>Water</td>
<td>106, 107</td>
<td></td>
</tr>
<tr>
<td>OPV 110 150</td>
<td>Across part of downcomer, 110 in. (180°), to 150 in. (225°), below cold leg centerline. Elevation difference between taps is 40 in.</td>
<td>1000 psi</td>
<td>1000 psi</td>
<td>210, 211</td>
<td></td>
</tr>
<tr>
<td>OPV-166-1700</td>
<td>Across part of lower plenum, 166 in. (225°), to 173 in. (225°), below cold leg centerline. Elevation difference between taps is 7 in.</td>
<td>20 psi</td>
<td>Water</td>
<td>212, 213</td>
<td></td>
</tr>
<tr>
<td>OPV-160-115</td>
<td>Lower plenum, 166 in. below cold leg centerline at 225°, to upper plenum, 10.5 in. above cold leg centerline at 225°. Elevation difference between taps is 127 in.</td>
<td>300 psi</td>
<td>Water</td>
<td>214, 215</td>
<td></td>
</tr>
<tr>
<td>Location and Spool</td>
<td>Cold Leg Centerline at (\text{ft}) from Bottom of Vessel Center</td>
<td>Elevation Difference between Taps in (\text{in.})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spool 1</td>
<td>18 in. from Spool 1</td>
<td>158 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spool 2</td>
<td>49 in. from Spool 1</td>
<td>244 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spool 3</td>
<td>62 in. from Spool 1</td>
<td>108 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spool 4</td>
<td>58 in. from Spool 3, 21 in.</td>
<td>55 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spool 5</td>
<td>18 in. from Spool 3, 42 in.</td>
<td>37 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spool 6</td>
<td>18 in. from Spool 3, 78 in.</td>
<td>62 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spool 7</td>
<td>18 in. from Spool 3, 142 in.</td>
<td>127 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spool 8</td>
<td>21 in. from Spool 4</td>
<td>2nd order</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spool 9</td>
<td>244 in. from Spool 1</td>
<td>2nd order</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Elevation differences are measured from the top to bottom of the vessel.
- Cold leg centerline is the reference point for all measurements.
- The cold leg centerline is located along the hot leg piping.
<table>
<thead>
<tr>
<th>Measurement</th>
<th>Location and Comment</th>
<th>Range [ft/sec]</th>
<th>Data Acquisition System [lbfm/ft-sec²]</th>
<th>Figure [lbm/ft-sec²]</th>
<th>Measurement Comment [b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>1-1/2 in. burette.</td>
<td>+5 to +50</td>
<td>+100 gpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDU-PRIZE</td>
<td>Surge line.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid Velocity</td>
<td>Turbine flowmeter, bidirectional.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downcomer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTV-10A</td>
<td>40 in. below cold leg centerline.</td>
<td>+2.5 to +50</td>
<td></td>
<td>242, 243</td>
<td></td>
</tr>
<tr>
<td>FTV-40M</td>
<td>40 in. below cold leg centerline.</td>
<td>+2.5 to +50</td>
<td></td>
<td>242, 243</td>
<td></td>
</tr>
<tr>
<td>Momentum Flux</td>
<td>Drag disc, bidirectional.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact Loop</td>
<td>3-in. pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDU-1</td>
<td>Hot leg, Spool 1, 29 in. from vessel center; target size 0.875 in.</td>
<td>+200 to +300</td>
<td>10,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDU-5</td>
<td>Hot leg, Spool 5, 100 in. from vessel center; target size 1.0 in.</td>
<td>+5 to +2000</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDU-10</td>
<td>Cold leg, Spool 10, 107 in. from vessel center; target size 0.875 in.</td>
<td>+200 to +1000</td>
<td>200, 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDU-13</td>
<td>Cold leg, Spool 13, 54 in. from vessel center; target size 0.875 in.</td>
<td>+1000 to +5000</td>
<td>100, 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDU-15</td>
<td>Cold leg, Spool 15, 18 in. from vessel center; target size 0.875 in.</td>
<td>+200 to +1000</td>
<td>100, 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broken Loop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDU-23</td>
<td>Cold leg, Spool 23, 83 in. from vessel center, upstream from vessel side nozzles, 2.0-in. pipe; target size 0.400 in.</td>
<td>+500 to +150,000</td>
<td>100 ft-sec²</td>
<td>100</td>
<td>Detector failed.</td>
</tr>
<tr>
<td>FDU-30</td>
<td>Hot leg, Spool 30, 21 in. from vessel center; target size 0.656 in.</td>
<td>+200 to +90,000</td>
<td>100 ft-sec²</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>FDU-37</td>
<td>Cold leg, Spool 27, 284 in. from vessel center along hot leg, steam generator outlet, vertical pipe, 3-in. pipe; target size 0.600 in.</td>
<td>+500 to +121,000</td>
<td>100 ft-sec²</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>FDU-67</td>
<td>Cold leg, Spool 62, 616 in. from vessel center along hot leg, upstream of auto-side nozzles, downstream of injection points, 2-in. pipe; target size 0.400 in.</td>
<td>+500 to +116,000</td>
<td>100 ft-sec²</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>FDU-80F</td>
<td>Return loop line, 65 in. from vessel center along hot leg, 2-in. pipe; target size 0.400 in.</td>
<td>+500 to +100,000</td>
<td>100 ft-sec²</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Vessel</td>
<td>cold loop outlet box 150 in. below cold leg centerline; target size 1.0 in.</td>
<td>+500 to +2000</td>
<td>100 ft-sec²</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact Loop</td>
<td></td>
<td>+0.1 to +100</td>
<td>0 to 100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>GU-118</td>
<td>Hot leg, Spool 1, 24 in. from vessel center, vertical.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GU-142</td>
<td>Hot leg, Spool 1, 26 in. from vessel center, horizontal.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GU-5VR</td>
<td>Hot leg, Spool 5, 96 in. from vessel center, vertical.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GU-10 VR</td>
<td>Cold leg, Spool 10, 141 in. from vessel center, vertical.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GU-13VR</td>
<td>Cold leg, Spool 13, 59 in. from vessel center, vertical.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GU-15VR</td>
<td>Cold leg, Spool 15, 23 in. from vessel center, vertical.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GU-15H2</td>
<td>Cold leg, Spool 15, 20 in. from vessel center, horizontal.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE V (continued)

Note: Data values where 62 ± 100 lbm/ft³
- Detecto-r saturated prior to test.
- Data not reflect actual system density and were the result of detector photomultiplier tube non-linearity.
TABLE V (continued)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Location and Comments[a]</th>
<th>Detector</th>
<th>Data Acquisition System</th>
<th>Figure[b]</th>
<th>Measurement Comments[c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broken Loop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB-21T</td>
<td>Cold leg, Spool 21, 69 in. from vessel center. T(top) ranges 270 to 360 degrees. B(bottom) ranges 30 to 330 degrees. C, mathematical composite of T and B.</td>
<td>GB-216</td>
<td></td>
<td>274, 275</td>
<td></td>
</tr>
<tr>
<td>GB-21B</td>
<td></td>
<td>GB-21C</td>
<td></td>
<td>274, 279</td>
<td></td>
</tr>
<tr>
<td>GB-21C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GV-23VR</td>
<td>Cold leg, Spool 23, 92 in. from vessel center, vertical.</td>
<td></td>
<td></td>
<td>280, 281</td>
<td></td>
</tr>
<tr>
<td>GB-30T</td>
<td>Hot leg, Spool 30, 18 in. from vessel center. T(top) ranges 270 to 360 degrees. B(bottom) ranges 30 to 330 degrees. C, mathematical composite of T and B.</td>
<td>GB-30B</td>
<td></td>
<td>282, 283</td>
<td></td>
</tr>
<tr>
<td>GB-30C</td>
<td></td>
<td>GB-30C</td>
<td></td>
<td>284, 285</td>
<td></td>
</tr>
<tr>
<td>GB-42VR</td>
<td>Cold leg, Spool 42, 415 in. from vessel center along hot leg, vertical.</td>
<td></td>
<td></td>
<td>286, 289</td>
<td></td>
</tr>
<tr>
<td>GB-Rf6-T</td>
<td>Reflood bypass line 60 in. from vessel center along hot leg.</td>
<td></td>
<td></td>
<td>292, 293</td>
<td></td>
</tr>
<tr>
<td>GB-Rf6-B</td>
<td></td>
<td></td>
<td></td>
<td>292, 293</td>
<td></td>
</tr>
<tr>
<td>G6-PRIZE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA$!; now MTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G6-21C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F06-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F06-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F06-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F06-42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOU-1, GU-lVR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTU-1, GU-lVR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOU-5, GU-5VR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTU-9, GU-lOVR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOU-10,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTU-15,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTU-13,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTU-12,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTU-15,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTU-15,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vessel

<table>
<thead>
<tr>
<th>Location and Comments[a]</th>
<th>Detector</th>
<th>Data Acquisition System</th>
<th>Figure[b]</th>
<th>Measurement Comments[c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core flow mixer box, 152 in. below cold leg centerline, horizontal. 0 to 180°.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper part of lower plenum, 155 in. below cold leg centerline, 1.724 in. below downcomer exit, horizontal, 0 to 180°.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower plenum, 172 in. below cold leg centerline, 8.229 in. below downcomer exit, horizontal, 90 to 270°.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pressurizer

<table>
<thead>
<tr>
<th>Location and Comments[a]</th>
<th>Detector</th>
<th>Data Acquisition System</th>
<th>Figure[b]</th>
<th>Measurement Comments[c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surge line.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mass Flow Rate

<table>
<thead>
<tr>
<th>Location and Comments[a]</th>
<th>Detector</th>
<th>Data Acquisition System</th>
<th>Figure[b]</th>
<th>Measurement Comments[c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow rate obtained by combining density (gamma attenuation technique) with volumetric flow rate (turbine flowmeter) or momentum flux (drag disc).</td>
<td></td>
<td></td>
<td></td>
<td>Range for mass flow is documented from range of individual detectors used in calculation.</td>
</tr>
</tbody>
</table>
TABLE V (continued)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Location and Comments[a]</th>
<th>Detector</th>
<th>Data Acquisition System</th>
<th>Figure[s]</th>
<th>Measurement Comment[b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tossel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDV-CORE-In, G-CDR-150HZ</td>
<td>Entrance to core.</td>
<td></td>
<td></td>
<td>332, 333</td>
<td></td>
</tr>
<tr>
<td>FTV-CORE-In, G-CDR-150HZ</td>
<td>Entrance to core.</td>
<td></td>
<td></td>
<td>334, 335</td>
<td></td>
</tr>
<tr>
<td>Pressurizer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUL-PRIZE</td>
<td>Pressurizer surge line.</td>
<td></td>
<td></td>
<td></td>
<td>FUL-PRIZE failed</td>
</tr>
<tr>
<td>CORE CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWMCOR T-1</td>
<td>Core power.</td>
<td>1600 kW</td>
<td>336, 337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWMCOR T-2</td>
<td>Core power.</td>
<td>1600 kW</td>
<td>336, 337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOLTCOR-T</td>
<td>Core voltage.</td>
<td>0 to 200 Vac</td>
<td>338, 339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XHMCOR-T</td>
<td>Core current.</td>
<td>0 to 10,000 A</td>
<td>360, 361</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUMP CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUMP-OHM</td>
<td>Pump speed.</td>
<td>0 to 3600 rpm</td>
<td>342, 343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUMP-CUR</td>
<td>Pump current.</td>
<td>0 to 25 A</td>
<td>340, 345</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[a] Statements at the beginning of a measurement category regarding location and comments, range, and figure apply to all subsequent measurements within the given category unless specified otherwise.

[b] Detectors which were subjected to overrange conditions during portions of the test were capable of withstandin those conditions without change in operating or measuring characteristics when the physical conditions were again within the detector range.
Fig. 10 Fluid temperature in intact loop hot leg (RBU-2), from -20 to 300 sec.

Fig. 11 Fluid temperature in intact loop hot leg (RBU-2), from -6 to 42 sec.
Fig. 12 Fluid temperature in intact loop cold leg (TSU-7, TFU-10, and RBU-14A), from -20 to 300 sec.

Fig. 13 Fluid temperature in intact loop cold leg (TSU-7, TFU-10, and RBU-14A), from -6 to 42 sec.
Fig. 14 Fluid temperature in broken loop, vessel side (TFB-20 and TFB-23), from -20 to 300 sec.

Fig. 15 Fluid temperature in broken loop, vessel side (TFB-20 and TFB-23), from -6 to 42 sec.
Fig. 16 Fluid temperature in broken loop, pump side (TFB-30, TFB-37, and TFB-42), from -20 to 300 sec.

Fig. 17 Fluid temperature in broken loop, pump side (TFB-30, TFB-37, and TFB-42), from -6 to 42 sec.
Fig. 18 Fluid temperature in broken loop, reflood bypass line (TFB-RFB), from -20 to 300 sec.

Fig. 19 Fluid temperature in broken loop, reflood bypass line (TFB-RFB), from -6 to 42 sec.
Fig. 20 Fluid temperature in inlet annulus (TFV-ANN-4A and TFV-ANN-4M), from -20 to 300 sec.

Fig. 21 Fluid temperature in inlet annulus (TFV-ANN-4A and TFV-ANN-4M), from -6 to 42 sec.
Fig. 22 Fluid temperature in downcomer annulus (TFV-ANN-35A, TFV-ANN-70A, TFV-ANN-115A, and TFV-ANN-156A), from -20 to 300 sec.

Fig. 23 Fluid temperature in downcomer annulus (TFV-ANN-35A, TFV-ANN-70A, TFV-ANN-115A, and TFV-ANN-156A), from -6 to 42 sec.
Fig. 24 Fluid temperature in upper plenum (TFV-UP+13), from -20 to 300 sec.

Fig. 25 Fluid temperature in upper plenum (TFV-UP+13), from -6 to 42 sec.
Fig. 26 Fluid temperature in lower plenum (TFV-LP-2 and TFV-LP-7), from -20 to 300 sec.

Fig. 27 Fluid temperature in lower plenum (TFV-LP-2 and TFV-LP-7), from -6 to 42 sec.
Fig. 28 Fluid temperature in core inlet (TFV-CORE-IN), from -20 to 300 sec.

Fig. 29 Fluid temperature in core inlet (TFV-CORE-IN), from -6 to 42 sec.
Fig. 30 Fluid temperature in core, Grid Spacer 5 (TFG-5CD-45), from -20 to 300 sec.

Fig. 31 Fluid temperature in core, Grid Spacer 5 (TFG-5CD-45), from -6 to 42 sec.
Fig. 32 Fluid temperature in core, Grid Spacer 6 (TFG-6CD-45), from -20 to 300 sec.

Fig. 33 Fluid temperature in core, Grid Spacer 6 (TFG-6CD-45), from -6 to 42 sec.
Fig. 34 Fluid temperature in core barrel insulation gap (TFV-CIG-70A), from -20 to 300 sec.

Fig. 35 Fluid temperature in core barrel insulation gap (TFV-CIG-70A), from -6 to 42 sec.
Fig. 36 Fluid temperature in vessel filler insulation gap (TFV-FIG-156A), from -20 to 300 sec.

Fig. 37 Fluid temperature in vessel filler insulation gap (TFV-FIG-156A), from -6 to 42 sec.
Fig. 38 Fluid temperature in intact loop coolant injection line (TFU-ECC-14), from -20 to 300 sec.

Fig. 39 Fluid temperature in intact loop coolant injection line (TFU-ECC-14), from -6 to 42 sec.
Fig. 40 Fluid temperature in broken loop coolant injection line (TFB-ECC-42), from -20 to 300 sec.

Fig. 41 Fluid temperature in broken loop coolant injection line (TFB-ECC-42), from -6 to 42 sec.
Fig. 42 Fluid temperature in steam generator feedwater line (TFU-SGFW), from -20 to 300 sec.

Fig. 43 Fluid temperature in steam generator feedwater line (TFU-SGFW), from -6 to 42 sec.
Fig. 44 Fluid temperature in steam generator, secondary side (TFU-SG1 and TFU-SG3), from -20 to 300 sec.

Fig. 45 Fluid temperature in steam generator, secondary side (TFU-SG1 and TFU-SG3), from -6 to 42 sec.
Fig. 46 Fluid temperature in pressurizer surge line (TFU-PRIZE), from -20 to 300 sec.

Fig. 47 Fluid temperature in pressurizer surge line (TFU-PRIZE), from -6 to 42 sec.
Fig. 48 Fluid temperature in pressure suppression tank (TF-PSS-33 and TF-PSS-130), from -20 to 300 sec.

Fig. 49 Fluid temperature in pressure suppression tank (TF-PSS-33 and TF-PSS-130), from -6 to 42 sec.
Fig. 50 Material temperature in intact loop (TMU-1T16 and TMU-15T16), from -20 to 300 sec.

Fig. 51 Material temperature in intact loop (TMU-1T16 and TMU-15T16), from -6 to 42 sec.
Fig. 52 Material temperature in broken loop (TMB-20B16), from -20 to 300 sec.

Fig. 53 Material temperature in broken loop (TMB-20B16), from -6 to 42 sec.
Fig. 54 Material temperature in reflood bypass line (TMB-RFB), from -20 to 300 sec.

Fig. 55 Material temperature in reflood bypass line (TMB-RFB), from -6 to 42 sec.
Fig. 56 Material temperature in vessel filler (TMV-FI-4M, TMV-FI-15A, and TMV-FI-35A), from -20 to 300 sec.

Fig. 57 Material temperature in vessel filler (TMV-FI-4M, TMV-FI-15A, and TMV-FI-35A), from -6 to 42 sec.
Fig. 58 Material temperature in vessel filler (TMV-FI-115A and TMV-FI-156A), from -20 to 300 sec.

Fig. 59 Material temperature in vessel filler (TMV-FI-115A and TMV-FI-156A), from -6 to 42 sec.
Fig. 60 Material temperature in vessel filler (TMV-F0-156A), from -20 to 300 sec.

Fig. 61 Material temperature in vessel filler (TMV-F0-156A), from -6 to 42 sec.
Fig. 62 Material temperature in vessel filler insulator (TIV-FO-35A, TIV-FO-35M, TIV-FO-70A, and TIV-FO-115A), from -20 to 300 sec.

Fig. 63 Material temperature in vessel filler insulator (TIV-FO-35A, TIV-FO-35M, TIV-FO-70A, and TIV-FO-115A), from -6 to 42 sec.
Fig. 64 Material temperature in core barrel inner diameter (TMV-CI-70A and TMV-CI-115A), from -20 to 300 sec.

Fig. 65 Material temperature in core barrel inner diameter (TMV-CI-70A and TMV-CI-115A), from -6 to 42 sec.
Fig. 66 Material temperature in core barrel outer diameter (TMV-C0-70A and TMV-C0-115A), from -20 to 300 sec.

Fig. 67 Material temperature in core barrel outer diameter (TMV-C0-70A and TMV-C0-115A), from -6 to 42 sec.
Fig. 68 Material temperature on core housing filler (TMV-HF-115W and TMV-HF-138W), from -20 to 300 sec.

Fig. 69 Material temperature on core housing filler (TMV-HF-115W and TMV-HF-138W), from -6 to 42 sec.
Fig. 70 Material temperature in steam generator (TMU-SG1, TMU-SG2, and TMU-SG3), from -20 to 300 sec.

Fig. 71 Material temperature in steam generator (TMU-SG1, TMU-SG2, and TMU-SG3), from -6 to 42 sec.
Fig. 72 Core heater temperature, Rod D-4 (TH-D4-14 and TH-D4-29), from -20 to 300 sec.

Fig. 73 Core heater temperature, Rod D-4 (TH-D4-14 and TH-D4-29), from -6 to 42 sec.
Fig. 74 Core heater temperature, Rod D-5 (TH-D5-29), from -20 to 300 sec.

Fig. 75 Core heater temperature, Rod D-5 (TH-D5-29), from -6 to 42 sec.
Fig. 76 Core heater temperature, Rod E-4 (TH-E4-09, TH-E4-28, and TH-E4-55), from -20 to 300 sec.

Fig. 77 Core heater temperature, Rod E-4 (TH-E4-09, TH-E4-28, and TH-E4-55), from -6 to 42 sec.
Fig. 78 Core heater temperature, Rod E-5 (TH-E5-25), from -20 to 300 sec.

Fig. 79 Core heater temperature, Rod E-5 (TH-E5-25), from -6 to 42 sec.
Fig. 80 Core heater temperature, Rod A-4 (TH-A4-09, TH-A4-29, and TH-A4-39), from -20 to 300 sec.

Fig. 81 Core heater temperature, Rod A-4 (TH-A4-09, TH-A4-29, and TH-A4-39), from -6 to 42 sec.
Fig. 82 Core heater temperature, Rod A-5 (TH-A5-29 and TH-A5-45), from -20 to 300 sec.

Fig. 83 Core heater temperature, Rod A-5 (TH-A5-29 and TH-A5-45), from -6 to 42 sec.
Fig. 84 Core heater temperature, Rod B-3 (TH-B3-32), from -20 to 300 sec.

Fig. 85 Core heater temperature, Rod B-3 (TH-B3-32), from -6 to 42 sec.
Fig. 86 Core heater temperature, Rod B-5 (TH-B5-29 and TH-B5-33), from -20 to 300 sec.

Fig. 87 Core heater temperature, Rod B-5 (TH-B5-29 and TH-B5-33), from -6 to 42 sec.
Fig. 88 Core heater temperature, Rod B-6 (TH-B6-29), from -20 to 300 sec.

Fig. 89 Core heater temperature, Rod B-6 (TH-B6-29), from -6 to 42 sec.
Fig. 90 Core heater temperature, Rod C-2 (TH-C2-38), from -20 to 300 sec.

Fig. 91 Core heater temperature, Rod C-2 (TH-C2-38), from -6 to 42 sec.
Fig. 92 Core heater temperature, Rod C-4 (TH-C4-26 and TH-C4-53), from -20 to 300 sec.

Fig. 93 Core heater temperature, Rod C-4 (TH-C4-26 and TH-C4-53), from -6 to 42 sec.
Fig. 94 Core heater temperature, Rod C-5 (TH-C5-28), from -20 to 300 sec.

Fig. 95 Core heater temperature, Rod C-5 (TH-C5-28), from -6 to 42 sec.
Fig. 96 Core heater temperature, Rod C-7 (TH-C7-07 and TH-C7-15), from -20 to 300 sec.

Fig. 97 Core heater temperature, Rod C-7 (TH-C7-07 and TH-C7-15), from -6 to 42 sec.
Fig. 98 Core heater temperature, Rod D-1 (TH-D1-21), from -20 to 300 sec.

Fig. 99 Core heater temperature, Rod D-1 (TH-D1-21), from -6 to 42 sec.
Fig. 100 Core heater temperature, Rod D-2 (TH-D2-14 and TH-D2-61), from -20 to 300 sec.

Fig. 101 Core heater temperature, Rod D-2 (TH-D2-14 and TH-D2-61), from -6 to 42 sec.
Fig. 102 Core heater temperature, Rod D-3 (TH-D3-29 and TH-D3-39), from -20 to 300 sec.

Fig. 103 Core heater temperature, Rod D-3 (TH-D3-29 and TH-D3-39), from -6 to 42 sec.
Fig. 104 Core heater temperature, Rod D-6 (TH-D6-15 and TH-D6-25), from -20 to 300 sec.

Fig. 105 Core heater temperature, Rod D-6 (TH-D6-15 and TH-D6-25), from -6 to 42 sec.
Fig. 106 Core heater temperature, Rod D-7 (TH-D7-20), from -20 to 300 sec.

Fig. 107 Core heater temperature, Rod D-7 (TH-D7-20), from -6 to 42 sec.
Fig. 108 Core heater temperature, Rod D-8 (TH-D8-27 and TH-D8-57), from -20 to 300 sec.

Fig. 109 Core heater temperature, Rod D-8 (TH-D8-27 and TH-D8-57), from -6 to 42 sec.
Fig. 110 Core heater temperature, Rod E-1 (TH-E1-33), from -20 to 300 sec.

Fig. 111 Core heater temperature, Rod E-1 (TH-E1-33), from -6 to 42 sec.
Fig. 112 Core heater temperature, Rod E-2 (TH-E2-20 and TH-E2-33), from -20 to 300 sec.

Fig. 113 Core heater temperature, Rod E-2 (TH-E2-20 and TH-E2-33), from -6 to 42 sec.
Fig. 114 Core heater temperature, Rod E-3 (TH-E3-05, TH-E3-20, and TH-E3-24), from -20 to 300 sec.

Fig. 115 Core heater temperature, Rod E-3 (TH-E3-05, TH-E3-20, and TH-E3-24), from -6 to 42 sec.
Fig. 116 Core heater temperature, Rod E-6 (TH-E6-08, TH-E6-28, and TH-E6-37), from -20 to 300 sec.

Fig. 117 Core heater temperature, Rod E-6 (TH-E6-08, TH-E6-28, and TH-E6-37), from -6 to 42 sec.
Fig. 118 Core heater temperature, Rod E-7 (TH-E7-44), from -20 to 300 sec.

Fig. 119 Core heater temperature, Rod E-7 (TH-E7-44), from -6 to 42 sec.
Fig. 120 Core heater temperature, Rod E-8 (TH-E8-14, TH-E8-29, and TH-E8-45), from -20 to 300 sec.

Fig. 121 Core heater temperature, Rod E-8 (TH-E8-14, TH-E8-29, and TH-E8-45), from -6 to 42 sec.
Fig. 122 Core heater temperature, Rod F-2 (TH-F2-07, TH-F2-22, and TH-F2-25), from -20 to 300 sec.

Fig. 123 Core heater temperature, Rod F-2 (TH-F2-07, TH-F2-22, and TH-F2-25), from -6 to 42 sec.
Fig. 124 Core heater temperature, Rod F-4 (TH-F4-14, TH-F4-29, and TH-F4-44), from -20 to 300 sec.

Fig. 125 Core heater temperature, Rod F-4 (TH-F4-14, TH-F4-29, and TH-F4-44), from -6 to 42 sec.
Fig. 126 Core heater temperature, Rod F-5 (TH-F5-20, TH-F5-26, TH-F5-33, and TH-F5-53), from -20 to 300 sec.

Fig. 127 Core heater temperature, Rod F-5 (TH-F5-20, TH-F5-26, TH-F5-33, and TH-F5-53), from -6 to 42 sec.
Fig. 128 Core heater temperature, Rod G-3 (TH-G3-13), from -20 to 300 sec.

Fig. 129 Core heater temperature, Rod G-3 (TH-G3-13), from -6 to 42 sec.
Fig. 130 Core heater temperature, Rod G-4 (TH-64-29, TH-64-33, and TH-64-38), from -20 to 300 sec.

Fig. 131 Core heater temperature, Rod G-4 (TH-64-29, TH-64-33, and TH-64-38), from -6 to 42 sec.
Fig. 132 Core heater temperature, Rod G-5 (TH-G5-14 and TH-G5-24), from -20 to 300 sec.

Fig. 133 Core heater temperature, Rod G-5 (TH-G5-14 and TH-G5-24), from -6 to 42 sec.
Fig. 134 Core heater temperature, Rod H-5, (TH-H5-32), from -20 to 300 sec.

Fig. 135 Core heater temperature, Rod H-5, (TH-H5-32), from -6 to 42 sec.
Fig. 136 Pressure in intact loop (PU-13 and PU-15L), from -20 to 300 sec.

Fig. 137 Pressure in intact loop (PU-13 and PU-15L), from -6 to 42 sec.
Fig. 138 Pressure in broken loop, vessel side, Spool 23 (PB-23), from -20 to 300 sec.

Fig. 139 Pressure in broken loop, vessel side, Spool 23 (PB-23), from -6 to 42 sec.
Fig. 140 Pressure in broken loop, pump side (PB-37 and PB-42), from -20 to 300 sec.

Fig. 141 Pressure in broken loop, pump side (PB-37 and PB-42), from -6 to 42 sec.
Fig. 142 Pressure in broken loop, pump-side nozzle (PB-HN1), from -20 to 300 sec.

Fig. 143 Pressure in broken loop, pump-side nozzle (PB-HN1), from -6 to 42 sec.
Fig. 144 Pressure in broken loop, vessel-side nozzle (PB-CN1), from -20 to 300 sec.

Fig. 145 Pressure in broken loop, vessel-side nozzle (PB-CN1), from -6 to 42 sec.
Fig. 146 Pressure in vessel (PV-UP+10 and PV-LP-166), from -20 to 300 sec.

Fig. 147 Pressure in vessel (PV-UP+10 and PV-LP-166), from -6 to 42 sec.
Fig. 148 Pressure in intact loop accumulator (PU-ACC), from -20 to 300 sec.

Fig. 149 Pressure in intact loop accumulator (PU-ACC), from -6 to 42 sec.
Fig. 150 Pressure in broken loop accumulator (PB-ACC), from -20 to 300 sec.

Fig. 151 Pressure in broken loop accumulator (PB-ACC), from -6 to 42 sec.
Fig. 152 Pressure in steam generator, secondary side (PU-SGSD), from -20 to 300 sec.

Fig. 153 Pressure in steam generator, secondary side (PU-SGSD), from -6 to 42 sec.
Fig. 154 Pressure in pressurizer (PU-PRIZE), from -20 to 300 sec.

Fig. 155 Pressure in pressurizer (PU-PRIZE), from -6 to 42 sec.
Fig. 156 Pressure in pressure suppression tank (P-PSS), from -20 to 300 sec.

Fig. 157 Pressure in pressure suppression tank (P-PSS), from -6 to 42 sec.
Fig. 158 Differential pressure in intact loop (DPU-3-7), from -20 to 300 sec.

Fig. 159 Differential pressure in intact loop (DPU-3-7), from -6 to 42 sec.
Fig. 160 Differential pressure in intact loop (DPU-7-10), from -20 to 300 sec.

Fig. 161 Differential pressure in intact loop (DPU-7-10), from -6 to 42 sec.
Fig. 162 Differential pressure in intact loop (DPU-12-10), from -20 to 300 sec.

Fig. 163 Differential pressure in intact loop (DPU-12-10), from -6 to 42 sec.
Fig. 164 Differential pressure in intact loop, low range (DPU-12-10L), from -20 to 300 sec.

Fig. 165 Differential pressure in intact loop, low range (DPU-12-10L), from -6 to 42 sec.
Fig. 166 Differential pressure in intact loop (DPU-12-15), from -20 to 300 sec.

Fig. 167 Differential pressure in intact loop (DPU-12-15), from -6 to 42 sec.
Fig. 168 Differential pressure in intact loop (DPU-15-1), from -20 to 300 sec.

Fig. 169 Differential pressure in intact loop (DPU-15-1), from -6 to 42 sec.
Fig. 170 Differential pressure in intact loop, low range (DPU-15-1L), from -20 to 300 sec.

Fig. 171 Differential pressure in intact loop, low range (DPU-15-1L), from -6 to 42 sec.
Fig. 172 Differential pressure in intact loop (DPU-15-IANN), from -20 to 300 sec.

Fig. 173 Differential pressure in intact loop (DPU-15-IANN), from -6 to 42 sec.
Fig. 174 Differential pressure in intact loop (DPU-PRESLL), from -20 to 300 sec.

Fig. 175 Differential pressure in intact loop (DPU-PRESLL), from -6 to 42 sec.
Fig. 176 Differential pressure in intact loop (DPU-PR-4), from -20 to 300 sec.

Fig. 177 Differential pressure in intact loop (DPU-PR-4), from -6 to 42 sec.
Fig. 178 Differential pressure in broken loop (DPB-UP-30), from -20 to 300 sec.

Fig. 179 Differential pressure in broken loop (DPB-UP-30), from -6 to 42 sec.
Fig. 180 Differential pressure in broken loop (DPB-21-IANN), from -20 to 300 sec.

Fig. 181 Differential pressure in broken loop (DPB-21-IANN), from -6 to 42 sec.
Fig. 182 Differential pressure in broken loop (DPB-30-21), from -20 to 300 sec.

Fig. 183 Differential pressure in broken loop (DPB-30-21), from -6 to 42 sec.
Fig. 184 Differential pressure in broken loop (DPB-30-36L), from -20 to 300 sec.

Fig. 185 Differential pressure in broken loop (DPB-30-36L), from -6 to 42 sec.
Fig. 186 Differential pressure in broken loop (DPB-32U-36L), from -20 to 300 sec.

Fig. 187 Differential pressure in broken loop (DPB-32U-36L), from -6 to 42 sec.
Fig. 188 Differential pressure in broken loop (DPB-36L-37), from -20 to 300 sec.

Fig. 189 Differential pressure in broken loop (DPB-36L-37), from -6 to 42 sec.
Fig. 190 Differential pressure in broken loop (DPB-37-38), from -20 to 300 sec.

Fig. 191 Differential pressure in broken loop (DPB-37-38), from -6 to 42 sec.
Fig. 192 Differential pressure in broken loop (DPB-38-40), from -20 to 300 sec.

Fig. 193 Differential pressure in broken loop (DPB-38-40), from -6 to 42 sec.
Fig. 194 Differential pressure in broken loop (DPB-40-42), from -20 to 300 sec.

Fig. 195 Differential pressure in broken loop (DPB-40-42), from -6 to 42 sec.
Fig. 196 Differential pressure in broken loop, reflood bypass (DPB-RFB-FT), from -20 to 300 sec.

Fig. 197 Differential pressure in broken loop, reflood bypass (DPB-RFB-FT), from -6 to 42 sec.
Fig. 198 Differential pressure in vessel (DPV-UP-IANN), from -20 to 300 sec.

Fig. 199 Differential pressure in vessel (DPV-UP-IANN), from -6 to 42 sec.
Fig. 200 Differential pressure in vessel (DPV-0-9GQ), from -20 to 300 sec.

Fig. 201 Differential pressure in vessel (DPV-0-9GQ), from -6 to 42 sec.
Fig. 202 Differential pressure in vessel (DPV-9-26QQ), from -20 to 300 sec.

Fig. 203 Differential pressure in vessel (DPV-9-26QQ), from -6 to 42 sec.
Fig. 204 Differential pressure in vessel (DPV-9-166QQ), from -20 to 300 sec.

Fig. 205 Differential pressure in vessel (DPV-9-166QQ), from -6 to 42 sec.
Fig. 206 Differential pressure in vessel (DPV-26-55QM), from -20 to 300 sec.

Fig. 207 Differential pressure in vessel (DPV-26-55QM), from -6 to 42 sec.
Fig. 208 Differential pressure in vessel (DPV-55-110MM), from -20 to 300 sec.

Fig. 209 Differential pressure in vessel (DPV-55-110MM), from -6 to 42 sec.
Fig. 210 Differential pressure in vessel (DPV-110-156MQ), from -20 to 300 sec.

Fig. 211 Differential pressure in vessel (DPV-110-156MQ), from -6 to 42 sec.
Fig. 212 Differential pressure in vessel (DPV-166-173QQ), from -20 to 300 sec.

Fig. 213 Differential pressure in vessel (DPV-166-173QQ), from -6 to 42 sec.
Fig. 214 Differential pressure in vessel (DPV-166Q-UP), from -20 to 300 sec.

Fig. 215 Differential pressure in vessel (DPV-166Q-UP), from -6 to 42 sec.
Fig. 216 Differential pressure in intact loop accumulator (DPU-ACC-TB), from -20 to 300 sec.

Fig. 217 Differential pressure in intact loop accumulator (DPU-ACC-TB), from -6 to 42 sec.
Fig. 218 Differential pressure in broken loop accumulator (DPB-ACC-TB), from -20 to 300 sec.

Fig. 219 Differential pressure in broken loop accumulator (DPB-ACC-TB), from -6 to 42 sec.
Fig. 220 Differential pressure across steam generator outlet orifice (DPU-SG-DISC), from -20 to 300 sec.

Fig. 221 Differential pressure across steam generator outlet orifice (DPU-SG-DISC), from -6 to 42 sec.
Fig. 222 Volumetric flow in intact loop (FTU-1 and FTU-9), from -20 to 300 sec.

Fig. 223 Volumetric flow in intact loop (FTU-1 and FTU-9), from -6 to 42 sec.
Fig. 224 Volumetric flow in intact loop (FTU-13 and FTU-15), from -20 to 300 sec.

Fig. 225 Volumetric flow in intact loop (FTU-13 and FTU-15), from -6 to 42 sec.
Fig. 226 Volumetric flow in broken loop (FTB-21), from -20 to 300 sec.

Fig. 227 Volumetric flow in broken loop (FTB-21), from -6 to 42 sec.
Fig. 228 Volumetric flow in broken loop (FTB-30 and FTB-37), from -20 to 300 sec.

Fig. 229 Volumetric flow in broken loop (FTB-30 and FTB-37), from -6 to 42 sec.
Fig. 230 Volumetric flow in broken loop, reflood bypass (FTB-RFB), from -20 to 300 sec.

Fig. 231 Volumetric flow in broken loop, reflood bypass (FTB-RFB), from -6 to 42 sec.
Fig. 232 Volumetric flow in core entrance (FTV-CORE-IN), from -20 to 300 sec.

Fig. 233 Volumetric flow in core entrance (FTV-CORE-IN), from -6 to 42 sec.
Fig. 234 Volumetric flow in intact loop low pressure injection line (FTU-LPIS), from -20 to 300 sec.

Fig. 235 Volumetric flow in intact loop low pressure injection line (FTU-LPIS), from -6 to 42 sec.
Fig. 236 Volumetric flow in broken loop low pressure injection line (FTB-LPIS), from -20 to 300 sec.

Fig. 237 Volumetric flow in broken loop low pressure injection line (FTB-LPIS), from -6 to 42 sec.
Fig. 238 Volumetric flow in intact loop accumulator discharge line (FTU-ACC), from -20 to 300 sec.

Fig. 239 Volumetric flow in intact loop accumulator discharge line (FTU-ACC), from -6 to 42 sec.
Fig. 240 Volumetric flow in broken loop accumulator discharge line (FTB-ACC), from -20 to 300 sec.

Fig. 241 Volumetric flow in broken loop accumulator discharge line (FTB-ACC), from -6 to 42 sec.
Fig. 242 Fluid velocity in vessel (FTV-40A and FTV-40M), from -20 to 300 sec.

Fig. 243 Fluid velocity in vessel (FTV-40A and FTV-40M), from -6 to 42 sec.
Fig. 244 Momentum flux in intact loop (FDU-1), from -20 to 300 sec.

Fig. 245 Momentum flux in intact loop (FDU-1), from -6 to 42 sec.
Fig. 246 Momentum flux in intact loop (FDU-5), from -20 to 300 sec.

Fig. 247 Momentum flux in intact loop (FDU-5), from -6 to 42 sec.
Fig. 248 Momentum flux in intact loop (FDU-10), from -20 to 300 sec.

Fig. 249 Momentum flux in intact loop (FDU-10), from -6 to 42 sec.
Fig. 250 Momentum flux in intact loop (FDU-13), from -20 to 300 sec.

Fig. 251 Momentum flux in intact loop (FDU-13), from -6 to 42 sec.
Fig. 252 Momentum flux in intact loop (FDU-15), from -20 to 300 sec.

Fig. 253 Momentum flux in intact loop (FDU-15), from -6 to 42 sec.
Fig. 254 Momentum flux in broken loop (FDB-21), from -20 to 300 sec.

Fig. 255 Momentum flux in broken loop (FDB-21), from -6 to 42 sec.
Fig. 256 Momentum flux in broken loop (FDB-30), from -20 to 300 sec.

Fig. 257 Momentum flux in broken loop (FDB-30), from -6 to 42 sec.
Fig. 258 Momentum flux in broken loop (FDB-37), from -20 to 300 sec.

Fig. 259 Momentum flux in broken loop (FDB-37), from -6 to 42 sec.
Fig. 260 Momentum flux in broken loop (FDB-42), from -20 to 300 sec.

Fig. 261 Momentum flux in broken loop (FDB-42), from -6 to 42 sec.
Fig. 262 Momentum flux in broken loop, reflood bypass (FDB-RFB), from -20 to 300 sec.

Fig. 263 Momentum flux in broken loop, reflood bypass (FDB-RFB), from -6 to 42 sec.
Fig. 264 Momentum flux in core entrance (FDV-CORE-IN), from -20 to 300 sec.

Fig. 265 Momentum flux in core entrance (FDV-CORE-IN), from -6 to 42 sec.
Fig. 266 Density in intact loop (GU-1VR and GU-1HZ), from -20 to 300 sec.

Fig. 267 Density in intact loop (GU-1VR and GU-1HZ), from -6 to 42 sec.
Fig. 268 Density in intact loop (GU-5VR and GU-10VR), from -20 to 300 sec.

Fig. 269 Density in intact loop (GU-5VR and GU-10VR), from -6 to 42 sec.
Fig. 270 Density in intact loop (GU-13VR), from -20 to 300 sec.

Fig. 271 Density in intact loop (GU-13VR), from -6 to 42 sec.
Fig. 272 Density in intact loop (GU-15VR and GU-15HZ), from -20 to 300 sec.

Fig. 273 Density in intact loop (GU-15VR and GU-15HZ), from -6 to 42 sec.
Fig. 274 Density in broken loop (GB-21T), from -20 to 300 sec.

Fig. 275 Density in broken loop (GB-21T), from -6 to 42 sec.
Fig. 276 Density in broken loop (GB-21B), from -20 to 300 sec.

Fig. 277 Density in broken loop (GB-21B), from -6 to 42 sec.
Fig. 278 Density in broken loop (GB-21C), from -20 to 300 sec.

Fig. 279 Density in broken loop (GB-21C), from -6 to 42 sec.
Fig. 280 Density in broken loop (GB-23VR), from -20 to 300 sec.

Fig. 281 Density in broken loop (GB-23VR), from -6 to 42 sec.
Fig. 282 Density in broken loop (GB-30T), from -20 to 300 sec.

Fig. 283 Density in broken loop (GB-30T), from -6 to 42 sec.
Fig. 284 Density in broken loop (GB-30B), from -20 to 300 sec.

Fig. 285 Density in broken loop (GB-30B), from -6 to 42 sec.
Fig. 286 Density in broken loop (GB-30C), from -20 to 300 sec.

Fig. 287 Density in broken loop (GB-30C), from -6 to 42 sec.
Fig. 288 Density in broken loop (GB-42VR), from -20 to 300 sec.

Fig. 289 Density in broken loop (GB-42VR), from -6 to 42 sec.
Fig. 290 Density in broken loop, reflood bypass (GB-RFB-T), from -20 to 300 sec.

Fig. 291 Density in broken loop, reflood bypass (GB-RFB-T), from -6 to 42 sec.
Fig. 292 Density in broken loop, reflood bypass (GB-RFB-B), from -20 to 300 sec.

Fig. 293 Density in broken loop, reflood bypass (GB-RFB-B), from -6 to 42 sec.
Fig. 294 Density in vessel (GV-COR-150HZ), from -20 to 300 sec.

Fig. 295 Density in vessel (GV-COR-150HZ), from -6 to 42 sec.
Fig. 296 Density in vessel (GVLP-165HZ and GVLP-172HZ), from -20 to 300 sec.

Fig. 297 Density in vessel (GVLP-165HZ and GVLP-172HZ), from -6 to 42 sec.
Fig. 298 Density in pressurizer (GU-PRIZE), from -20 to 300 sec.

Fig. 299 Density in pressurizer (GU-PRIZE), from -6 to 42 sec.
Fig. 300 Mass flow in intact loop (FDU-1 and GU-IVR), from -20 to 300 sec.

Fig. 301 Mass flow in intact loop (FDU-1 and GU-IVR), from -6 to 42 sec.
Fig. 302 Mass flow in intact loop (FTU-1 and GU-1VR), from -20 to 300 sec.

Fig. 303 Mass flow in intact loop (FTU-1 and GU-1VR), from -6 to 42 sec.
Fig. 304 Mass flow in intact loop (FDU-5 and GU-5VR), from -20 to 300 sec.

Fig. 305 Mass flow in intact loop (FDU-5 and GU-5VR), from -6 to 42 sec.
Fig. 306 Mass flow in intact loop (FTU-9 and GU-10VR), from -20 to 300 sec.

Fig. 307 Mass flow in intact loop (FTU-9 and GU-10VR), from -6 to 42 sec.
Fig. 308 Mass flow in intact loop (FDU-10 and GU-10VR), from -20 to 300 sec.

Fig. 309 Mass flow in intact loop (FDU-10 and GU-10VR), from -6 to 42 sec.
Fig. 310 Mass flow in intact loop (FDU-13 and GU-13VR), from -20 to 300 sec.

Fig. 311 Mass flow in intact loop (FDU-13 and GU-13VR), from -6 to 42 sec.
Fig. 312 Mass flow in intact loop (FTU-13 and GU-13VR), from -20 to 300 sec.

Fig. 313 Mass flow in intact loop (FTU-13 and GU-13VR), from -6 to 42 sec.
Fig. 314 Mass flow in intact loop (FDU-15 and GU-15VR), from -20 to 300 sec.

Fig. 315 Mass flow in intact loop (FDU-15 and GU-15VR), from -6 to 42 sec.
Fig. 316 Mass flow in intact loop (FTU-15 and GU-15VR), from -20 to 300 sec.

Fig. 317 Mass flow in intact loop (FTU-15 and GU-15VR), from -6 to 42 sec.
Fig. 318 Mass flow in broken loop (FDB-21 and GB-21C), from -20 to 300 sec.

Fig. 319 Mass flow in broken loop (FDB-21 and GB-21C), from -6 to 42 sec.
Fig. 320 Mass flow in broken loop (FTB-21 and GB-21C), from -20 to 300 sec.

Fig. 321 Mass flow in broken loop (FTB-21 and GB-21C), from -6 to 42 sec.
Fig. 322 Mass flow in broken loop (FDB-30 and GB-30C), from -20 to 300 sec.

Fig. 323 Mass flow in broken loop (FDB-30 and GB-30C), from -6 to 42 sec.
Fig. 324 Mass flow in broken loop (FTB-30 and GB-30C), from -20 to 300 sec.

Fig. 325 Mass flow in broken loop (FTB-30 and GB-30C), from -6 to 42 sec.
Fig. 326 Mass flow in broken loop (FDB-42 and GB-42VR), from -20 to 300 sec.

Fig. 327 Mass flow in broken loop (FDB-42 and GB-42VR), from -6 to 42 sec.
Fig. 328 Mass flow in broken loop, reflood bypass (FDB-RFB and GB-RFB-B), from -20 to 300 sec.

Fig. 329 Mass flow in broken loop, reflood bypass (FDB-RFB and GB-RFB-B), from -6 to 42 sec.
Fig. 330 Mass flow in broken loop, reflood bypass (FTB-RFB and GB-RFB-B), from -20 to 300 sec.

Fig. 331 Mass flow in broken loop, reflood bypass (FTB-RFB and GB-RFB-B), from -6 to 42 sec.
Fig. 332 Mass flow in vessel (FDV-CORE-IN and GV-COR-150HZ), from -20 to 300 sec.

Fig. 333 Mass flow in vessel (FDV-CORE-IN and GV-COR-150HZ), from -6 to 42 sec.
Fig. 334 Mass flow in vessel (FTV-CORE-IN and GV-COR-150HZ), from -20 to 300 sec.

Fig. 335 Mass flow in vessel (FTV-CORE-IN and GV-COR-150HZ), from -6 to 42 sec.
Fig. 336 Core heater pin total power (PWRCOR T-1 and PWRCOR T-2), from -20 to 300 sec.

Fig. 337 Core heater pin total power (PWRCOR T-1 and PWRCOR T-2), from -6 to 42 sec.
Fig. 338 Core heater voltage (VOLTCOR-T), from -20 to 300 sec.

Fig. 339 Core heater voltage (VOLTCOR-T), from -6 to 42 sec.
Fig. 340 Core heater total current (AMPCOR-T), from -20 to 300 sec.

Fig. 341 Core heater total current (AMPCOR-T), from -6 to 42 sec.
Fig. 342 Primary pump speed (PUMPU-RPM), from -20 to 300 sec.

Fig. 343 Primary pump speed (PUMPU-RPM), from -6 to 42 sec.
Fig. 344 Primary pump current (PUMPU-CUR), from -20 to 300 sec.

Fig. 345 Primary pump current (PUMPU-CUR), from -6 to 42 sec.
IV. REFERENCE

APPENDIX A

POSTTEST ADJUSTMENTS TO DATA FROM SEMISCALE MOD-1 TEST S-05-5
THIS PAGE
WAS INTENTIONALLY
LEFT BLANK
APPENDIX A

POSTTEST ADJUSTMENTS TO DATA FROM SEMISCALE MOD-1 TEST S-05-5

Many of the transducers used in the Semiscale Mod-1 system exhibit significant sensitivity to one or more spurious inputs. Strain gage bridge circuits used in pressure transducers, differential pressure transducers, and drag discs are sensitive to changes in ambient temperature. Differential pressure cells are also sensitive to changes in system pressure. Photomultiplier tubes used as gamma ray detectors in the density transducers are sensitive to temperature changes, as well as to random variations in the locations of the radiation sources. Core power measurements depend on a calibrated resistor, which changes in value as a function of time and power level as it heats up.

Although the errors introduced into the data by spurious secondary inputs generally do not exceed the specified error ranges of the transducers, significant improvement in measurement accuracy can be achieved if the secondary sensitivity can be identified and removed. In the case of the drag discs, corrections are absolutely necessary since the signal due to temperature fluctuations can exceed that due to flow by several hundred percent. Since the exact values of the spurious inputs to which different transducers might be sensitive cannot often be easily predicted and are sometimes inconvenient to measure, secondary effects have been accounted for by correcting the data after the test rather than by using elaborate real time programs in the data acquisition system computer. The methods and results of the posttest data correction analysis for Test S-05-5 are presented in the following paragraphs and tables.

1. PRESSURE MEASUREMENTS

Corrections to pressure transducer measurements in the main system loop are based on data taken from the standard reference (Heise) gauge at Spool 4, taken 15 seconds before initiation of blowdown and at 300 sec after initiation of blowdown. The pressure readings are adjusted to account for pressure variations around the main loop, using the readings of nearby differential pressure cells. A linear correction is then applied to the pressure data to match the data to the calculated reference data at the two specified time points.

Correction of the steam generator secondary pressure (PU-SGSD) measurement is done in the same manner as for the main loop pressures using a Heise gauge installed expressly for this purpose. The data from the pressure transducer for the pressure suppression system (P-PSS) were corrected to match the process instrumentation at preblowdown conditions.

Pressure measurement corrections are performed using the data acquisition system (DAS) computer using the following equation:
\[F'(t) = C_0 + C_1 [F(t)] \]

where,
\[F'(t) = \text{corrected data.} \]
\[F(t) = \text{raw data} \]
\[C_0 = \text{offset} \]
\[C_1 = \text{scaling factor} \]

The values of the offset and scaling factor are given in Table A-I.

<table>
<thead>
<tr>
<th>Detector Identification</th>
<th>(C_0)</th>
<th>(C_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU-15L</td>
<td>17.5</td>
<td>1</td>
</tr>
<tr>
<td>PU-SGSD</td>
<td>-74</td>
<td>1.0435</td>
</tr>
<tr>
<td>PV-UP+10</td>
<td>140</td>
<td>0.9202</td>
</tr>
<tr>
<td>PU-PRIZE</td>
<td>9.1</td>
<td>0.9975</td>
</tr>
<tr>
<td>PB-CN1</td>
<td>12</td>
<td>0.9943</td>
</tr>
<tr>
<td>PB-37</td>
<td>-9.1</td>
<td>1.0024</td>
</tr>
<tr>
<td>P-PSS</td>
<td>-2</td>
<td>1</td>
</tr>
</tbody>
</table>

2. DIFFERENTIAL PRESSURE MEASUREMENTS

Pressure sensitivity in the differential pressure cells in the main system loop is determined from the pretest system pressure check. Digital data are recorded for all measurements at ambient temperature, with no system flow, at pressures of ambient, 200, 500, 1000, 1500, 2000, and 2250 psig. The output of the differential pressure cells is plotted against system pressure, with the resulting plots used to describe the pressure response of the transducers.
The response of the differential pressure cells due to ambient temperature is determined from a digital data scan taken at 500°F and 1750 psig, with no system flow. The measured transducer outputs are corrected for pressure and compared with the values calculated due only to the density difference between the water inside the loop (500°F) and outside the loop in the sense lines (80 to 100°F).

The difference between the measured pressure corrected value and the calculated value is the thermal drift. After the data scan at 500°F is made, no more opportunities exist to obtain data with the pump stopped and the system full of liquid; therefore, for lack of later data, the thermal drift calculated from the 500°F data is assumed to be constant throughout the test.

In correcting differential pressure data for pressure sensitivity, the corrections are calculated for various times during the test by referring to nearby system pressure transducers. The thermal drift correction is then added to each pressure sensitivity correction and the combined value is added to the raw data using a computer program.

For some differential pressure measurements, the data scan at 500°F cannot be used as a reference for thermal drift; so other references are used. The liquid level measurements in the intact loop accumulator (DPU-ACC-TB) and the broken loop accumulator (DPB-ACC-TB) are referenced to calculated values based on geometrical considerations at the time when gas flow from the respective vessel is first noted. The reading from the steam generator discharge venturi (DPU-SG-DISC) is shifted to read zero after flow is stopped. For these detectors, and those having nonlinear pressure sensitivities, the corrections are performed according to the following equations:

\[
F'(t) = KF(t) + C_i \text{ for } t < t_1 \text{ or when no } t_i \text{ are listed}
\]

for time points \(t \), where \(t_1 \leq t \leq t_n \)

\[
F'(t) = KF(t) + C_i + \frac{t - t_i}{t_{i+1} - t_i} \left(C_{i+1} - C_i \right) \text{ for } t_i \leq t \leq t_{i+1}
\]

where \(i \) takes on values 1 to \(n-1 \)

\[
F'(t) = KF(t) + C_n \text{ for } t > t_n
\]

where

\[
\begin{align*}
t &= \text{ time} \\
F'(t) &= \text{ corrected data} \\
F(t) &= \text{ raw data}
\end{align*}
\]
K = scaling factor

\(C_i \) and \(t_i \) = corrections and time points.

The values of the constants are given in Table A-II.

TABLE A-II

CONSTANTS FOR DIFFERENTIAL PRESSURE MEASUREMENT CORRECTIONS (TEST S-05-5)

<table>
<thead>
<tr>
<th>Detector Identification</th>
<th>(K)</th>
<th>(C_1)</th>
<th>(t_1)</th>
<th>(C_2)</th>
<th>(t_2)</th>
<th>(C_3)</th>
<th>(t_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPB-ACC-TB</td>
<td>1</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPU-SG-DISC</td>
<td>-1</td>
<td>-0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPU-ACC-TB</td>
<td>1</td>
<td>-0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPV-166-173QQ</td>
<td>1</td>
<td>0.053</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPV-110-156MQ</td>
<td>1</td>
<td>0.3456</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPV-UP-IANN</td>
<td>1</td>
<td>0.061</td>
<td>0.01</td>
<td>-0.022</td>
<td>0.01</td>
<td>-0.028</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(C_1)</th>
<th>(C_0)</th>
<th>(P_1)</th>
<th>(P(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPV-9-26QQ</td>
<td>1</td>
<td>-0.002</td>
<td>-0.000029</td>
</tr>
<tr>
<td>DPV-26-55QM</td>
<td>1</td>
<td>0.184</td>
<td>0.000106</td>
</tr>
<tr>
<td>DPU-15-IANN</td>
<td>1</td>
<td>0.0065</td>
<td>-0.000024</td>
</tr>
<tr>
<td>DPU-7-10</td>
<td>1</td>
<td>0.058</td>
<td>-0.000014</td>
</tr>
<tr>
<td>DPU-9-166QQ</td>
<td>1</td>
<td>-0.0207</td>
<td>-0.000174</td>
</tr>
<tr>
<td>DPV-166Q-UP</td>
<td>1</td>
<td>-0.539</td>
<td>-0.000028</td>
</tr>
<tr>
<td>DPB-RFB-FT</td>
<td>1</td>
<td>0.496</td>
<td>-0.000034</td>
</tr>
<tr>
<td>DPU-12-15</td>
<td>1</td>
<td>0.188</td>
<td>0.000035</td>
</tr>
<tr>
<td>DPB-30-36L</td>
<td>1</td>
<td>-1.82</td>
<td>-0.001991</td>
</tr>
<tr>
<td>DPU-PRESLL</td>
<td>1</td>
<td>0</td>
<td>-0.000011</td>
</tr>
<tr>
<td>DPB-32U-36L</td>
<td>1</td>
<td>-2.92</td>
<td>-0.002577</td>
</tr>
<tr>
<td>DPB-37-38</td>
<td>1</td>
<td>0.140</td>
<td>0.000075</td>
</tr>
<tr>
<td>DPB-36L-37</td>
<td>1</td>
<td>-0.976</td>
<td>0.000104</td>
</tr>
<tr>
<td>DPU-15-1</td>
<td>1</td>
<td>0.059</td>
<td>0.000099</td>
</tr>
<tr>
<td>DPU-15-1L</td>
<td>1</td>
<td>0.120</td>
<td>0.000026</td>
</tr>
<tr>
<td>DPB-30-21</td>
<td>1</td>
<td>0.045</td>
<td>0.000367</td>
</tr>
<tr>
<td>DPB-40-42</td>
<td>1</td>
<td>0.123</td>
<td>0.000009</td>
</tr>
<tr>
<td>DPU-12-10L</td>
<td>1</td>
<td>0.128</td>
<td>0.000034</td>
</tr>
<tr>
<td>DPU-PR-4</td>
<td>-1</td>
<td>3.56</td>
<td>-0.002342</td>
</tr>
</tbody>
</table>

204
The other differential pressure data are initially corrected for errors in amplification and ambient offsets. The pressure sensitivity is then subtracted from these corrected data to arrive at the final values. Corrections were made using the following equations:

\[
F'(t) = C_1 \left[F(t) \right] + C_0 \\
F'(t) = F'(t) - P_1 \left[P(t) \right]
\]

where

- \(C_0 \) = ambient offset
- \(C_1 \) = amplification factor
- \(F(t) \) = raw data
- \(F'(t) \) = first data correction
- \(P(t) \) = pressure data
- \(P_1 \) = pressure sensitivity
- \(F''(t) \) = final result.

The values for \(C_0 \), \(C_1 \), and \(P_1 \) are given in Table A-II.

3. MOMENTUM FLUX MEASUREMENTS

The temperature sensitivity of drag discs is determined from pretest warmup data taken at 200 and 500°F with no system flow. The temperature sensitivity is removed before the data are converted to momentum flux. The temperature of each transducer is taken from the signal of a nearby fluid or metal temperature thermocouple. Slight corrections for errors in setting the transducer output to zero at ambient conditions are also made at this time. Corrections are made using the following equation:

\[
F'(t) = F(t) + D_0 - D_1 T(t)
\]

where

- \(F'(t) \) = corrected data
- \(F(t) \) = raw data

205
\[T(t) = \text{temperature data from the transducer used for temperature correction sensitivity} \]

\[D_0 = \text{ambient offset} \]

\[D_1 = \text{temperature sensitivity}. \]

Values of the constants are given in Table A-III.

TABLE A-III

CONSTANTS FOR MOMENTUM FLUX MEASUREMENT CORRECTIONS (TEST S-05-5)

<table>
<thead>
<tr>
<th>Detector Identification</th>
<th>(D_0)</th>
<th>(D_1)</th>
<th>(T(t)) [^a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDV-CORE-IN</td>
<td>-0.014</td>
<td>0.000077</td>
<td>TFV-CORE-IN</td>
</tr>
<tr>
<td>FDU-10</td>
<td>0.013</td>
<td>0.000198</td>
<td>TMU-1T16</td>
</tr>
<tr>
<td>FDU-13</td>
<td>-0.297</td>
<td>0.001749</td>
<td>TMU-1T16</td>
</tr>
<tr>
<td>FDB-21</td>
<td>0.025</td>
<td>-0.000553</td>
<td>TMB-20816</td>
</tr>
<tr>
<td>FDB-42</td>
<td>-0.115</td>
<td>-0.000791</td>
<td>TFR-42</td>
</tr>
<tr>
<td>FDB-30[b]</td>
<td>-0.165</td>
<td>-0.000816</td>
<td>TFB-30</td>
</tr>
<tr>
<td>FDB-37[b]</td>
<td>-0.086</td>
<td>0.000342</td>
<td>TFB-37</td>
</tr>
<tr>
<td>FDB-RFB</td>
<td>0.135</td>
<td>-0.001135</td>
<td>TMB-RFB</td>
</tr>
<tr>
<td>FDU-1</td>
<td>0.068</td>
<td>-0.000529</td>
<td>TMU-1T16</td>
</tr>
<tr>
<td>FDU-15</td>
<td>-0.172</td>
<td>-0.001259</td>
<td>TMU-1T16</td>
</tr>
<tr>
<td>FDU-5</td>
<td>-0.022</td>
<td>-0.000218</td>
<td>TMU-1T16</td>
</tr>
</tbody>
</table>

\[^a\] \(T(t) \) is the temperature data used for temperature sensitivity correction. The symbols listed identify the thermocouples from which the data were obtained.

\[^b\] FDB-30 and FDB-37 are mounted horizontally and during blowdown were partially filled with subcooled water which affected the temperature sensitivity.

4. **DENSITY MEASUREMENTS**

Density calculations are based on the voltage output of the photomultiplier tubes in the gamma-attenuation densitometer assemblies. The equation used for converting voltage to density is as follows:

\[
\rho = \frac{1}{C} \ln \left\{ \frac{D}{A F(t) + B} \right\}
\]
where

\[\rho = \text{the density in lbm/ft}^3 \]

\[C = \text{a constant based on the length of the gamma beam path} \]

\[D = \text{a theoretical voltage for zero attenuation inside the vessel} \]

\[A = \text{an amplification factor} \]

\[B = \text{a biasing factor} \]

\[F(t) = \text{the transducer voltage output}. \]

Constants A and B are adjusted to match the final data to density values calculated from measured pressure and temperature values at the preblowdown and postdrain conditions, effectively giving the data an in-place calibration. The values of the constants for various transducers are given in Table A-IV.

TABLE A-IV

CONSTANTS FOR DENSITY MEASUREMENT

CONVERSIONS TO ENGINEERING UNITS (TEST S-05-5)

<table>
<thead>
<tr>
<th>Detector Identification</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>GV-COR-150HZ</td>
<td>1.0005</td>
<td>0.0007</td>
<td>0.014</td>
<td>3.635</td>
</tr>
<tr>
<td>GB-42VR</td>
<td>0.7841</td>
<td>1.117</td>
<td>0.006</td>
<td>5.160</td>
</tr>
<tr>
<td>GU-1VR</td>
<td>1.0692</td>
<td>-0.2061</td>
<td>0.0095</td>
<td>3.100</td>
</tr>
<tr>
<td>GU-1HZ</td>
<td>1.0945</td>
<td>-0.8924</td>
<td>0.0095</td>
<td>9.530</td>
</tr>
<tr>
<td>GU-5VR</td>
<td>1.1102</td>
<td>-0.6341</td>
<td>0.0095</td>
<td>5.800</td>
</tr>
<tr>
<td>GU-10VR</td>
<td>1.0645</td>
<td>-0.4391</td>
<td>0.0095</td>
<td>6.980</td>
</tr>
<tr>
<td>GU-13VR</td>
<td>1.1515</td>
<td>-0.3733</td>
<td>0.0095</td>
<td>2.555</td>
</tr>
<tr>
<td>GU-15VR</td>
<td>1.1880</td>
<td>-1.870</td>
<td>0.0095</td>
<td>10.000</td>
</tr>
<tr>
<td>GU-15HZ</td>
<td>0.9640</td>
<td>0.1103</td>
<td>0.0095</td>
<td>2.688</td>
</tr>
<tr>
<td>GB-23VR</td>
<td>1.0016</td>
<td>-0.0033</td>
<td>0.0095</td>
<td>7.081</td>
</tr>
<tr>
<td>GU-PRIZE</td>
<td>1.0766</td>
<td>-0.0705</td>
<td>0.0095</td>
<td>1.207</td>
</tr>
<tr>
<td>GVLP-165HZ</td>
<td>1.0516</td>
<td>-0.3935</td>
<td>0.024</td>
<td>7.637</td>
</tr>
<tr>
<td>GB-RFB-B</td>
<td>0.9903</td>
<td>0.1625</td>
<td>0.008</td>
<td>8.09</td>
</tr>
<tr>
<td>GB-RFB-T</td>
<td>0.9612</td>
<td>0.2782</td>
<td>0.0057</td>
<td>7.00</td>
</tr>
<tr>
<td>GB-21-B</td>
<td>1.1101</td>
<td>-0.8762</td>
<td>0.008</td>
<td>8.04</td>
</tr>
<tr>
<td>GB-21-T</td>
<td>1.0213</td>
<td>-0.1327</td>
<td>0.0057</td>
<td>6.58</td>
</tr>
<tr>
<td>GB-30-B</td>
<td>1.0054</td>
<td>-0.0456</td>
<td>0.008</td>
<td>8.00</td>
</tr>
<tr>
<td>GB-30-T</td>
<td>1.1650</td>
<td>-1.1786</td>
<td>0.0057</td>
<td>7.19</td>
</tr>
</tbody>
</table>
The density measurement GVLP-172HZ uses an amplifier which precalculates the logarithm function, and hence has a simpler conversion formula:

\[\rho = -1.419 F(x) - 31.02 \]

Some density measurements are obtained using a two-beam gamma densitometer which operates on the same basic principle of gamma attenuation as does the single-beam gamma densitometer. Each beam originates from the same gamma source and is allowed to pass through separate portions of the piping cross-sectional flow area to obtain an average density measurement in that particular region. The geometrical relationship of the gamma beam path through the piping and geometrically related variables used for processing of data from a two-beam gamma densitometer are shown in Figure A-1.

![Figure A-1](image)

Fig. A-1 Geometry used for processing of density data obtained from two-beam gamma densitometers.
The average density measured by each individual gamma beam is obtained using the same equation as is used for the single-beam gamma densitometers:

$$\rho = \left(\frac{1}{C}\right) \ln \left\{ \frac{D}{[A F(t) + B]} \right\} .$$

Values for the constants for the single-beam density measurements obtained with the two-beam gamma densitometers are presented in Table A-IV along with the constants for single-beam gamma densitometers.

In the Semiscale Mod-I system, two-beam gamma densitometers provide added information which allows the calculation of a better average density than that obtained from a single beam. A mathematical model is used for processing the two-beam data to obtain the improved average density information. The processing method used is based on a froth-water model coupled with information from the two individual gamma beams and related beam path and piping cross-sectional geometry. The resulting information is recorded and reported under the density measurement identification ending with a “C”, for example, GB-21C.

The use of the froth-water model for obtaining average density from a two-beam gamma densitometer is based on observations indicating that flow regimes in the Semiscale Mod-I system can be modeled by a layer of water on the bottom of the pipe with a degree of froth on the surface. For homogeneous flow conditions such as all froth or all liquid the model remains valid. At any point in time slug flow is also modeled. The froth-water model does not model annular or inverted annular flows very well. However, these flows are not expected to exist for significant portions of a Semiscale Mod-I system blowdown in horizontal piping. Density gradients from the top to the bottom of the pipe may exist showing no distinct location change from water to froth. This flow is neither totally homogeneous nor stratified, but the froth-water model does provide an adequate approximation of the average density characteristic of this flow pattern.

The average density obtained by using the gamma beam geometry shown in Figure A-1 and by applying the froth-water model is given by

$$\bar{\rho} = \alpha_f \rho_l + (1-\alpha_f) \rho_w \quad \text{lbm/ft}^3$$

where

- $\bar{\rho} = \text{average cross-sectional density}$
- $\rho_l = \text{average density measured by the upper gamma beam (measures the froth density)}$
- $\rho_w = \text{density of liquid water (at local system conditions)}$
- $\alpha_f = 1 + (1/2\pi) (\sin\beta - \beta) = \text{froth fraction.}$
The angle which β represents is shown in Figure A-1. Values for β are obtained as follows:

$$\beta = 2 \cos^{-1} (1-2h)$$

where

$$h = \frac{H}{D} = \cos^2 \theta \left(\frac{\rho_w \cdot \rho_1}{\rho_2 \cdot \rho_1} \right)$$

where:

- $H = \ell_w \cos \theta$, ℓ_w, and θ are defined in Figure A-1
- $D =$ piping inside diameter
- $\rho_2 =$ the average density measured by the lower gamma beam.

Average density is not calculated using the two-beam froth-water model when the angle θ is not favorable due to system hardware restrictions in positioning the source. The froth-water model requires separate density sampling in both the upper and lower portions of the piping cross section.

5. **VOLUMETRIC FLOW MEASUREMENTS**

The data obtained from the turbine flowmeter in Spool 30 (FTB-30) was opposite in magnitude to the known direction of flow. These data were corrected using the same formula as was used for the pressure measurements (Section 1), where $C_O = 0$ and $C_1 = -1.0$.

6. **PRIMARY PUMP MEASUREMENTS**

Posttest, the amplifier gain setting for the pump current (PUMPU-CUR) was found to be in error. The data were corrected using the same formula as was used for the pressure measurements (Section 1), where $C_O = 0$ and $C_1 = 100$.

210
DISTRIBUTION RECORD FOR TREE-NUREG-1054

Internal Distribution

1 - Chicago Patent Group - ERDA
 9800 South Cass Avenue
 Argonne, Illinois 60439

2-4 - A. T. Morphew
 Classification and Technical Information Officer
 Idaho Operations Office - ERDA
 Idaho Falls, ID 83401

5 - R. J. Beers, ID

6 - P. E. Litteneker, ID

7 - R. E. Tiller, ID

8 - R. E. Wood, ID

9 - H. P. Pearson, Supervisor
 Technical Information

10-19 - INEL Technical Library

20-39 - Authors

40-94 - Special Internal

External Distribution

95-96 - Saul Levine, Director
 Office of Nuclear Regulatory Research, NRC
 Washington, D.C. 20555

97-400 - Distribution under NRC-2, Water Reactor Safety Research
 Systems Engineering