
AN ANALYTIC ANGULAR INTEGRATION TECHNIQUE

FOR GENERATING MULTIGROUP TRANSFER MATRICES

J. A. Bucholz

Computer Sciences Division
dt Oak Ridge National Laboratory

Union Carbide Corporation, Nuclear Division

By acceptance of this article, the
publisher or recipient acknowledge'
the U.S. Government's right to
retain a nonexclusive, royalty-free
license in and to any copyright
covering the article.

This report was prepared as an account of woik
sponsored by the United Slates Government, Neither the
United Sutei nor the United States Department or
Energy, nor any or (heir employees, nor any or !heir
contractors, subcontractors., or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility fur the accuracy, completeness
or usefulness or any information, apparatus, product or
process disclosed, or represents that iu use would not
infringe privately owned rights.

*Operttted by Union Carbide Corporation under contract W-7405-eng-26
with the U. S. Department of Energy.

IHJS DOCUMENT. IS UNLIMITED



AN ANALYTIC ANGULAR INTEGRATION TECHNIQUE
FOR GENERATING MULTIGROUP TRANSFER MATRICES

J. A. Bucholz
Union Carbide Corporation Nuclear Division

at Oak Ridge National Laboratory
Oak Ridge, Tennessee USA

ABSTRACT

Many detailed multigroup transpo -alculations require
group-to-group Legendre transfer coef ents to represent
scattering processes in various nuclii These (fine group)
constants must first be generated from basic data. This
paper outlines an alternative technique : generating such
data, given the total scattering cross se tion of a parti-
cular nuclide on a pointwise energy basis, a(E'), and some
information regarding the angular scattering distribution
for each initial energy point.

The evaluation of generalized multigroup transfer
matrices for transport calculations requires a double
integration extending over the primary and secondary energy
groups where, for a given initial energy, the integration
over the secondary energy group Taay be replaced by an
integral over the possible scattering angles. In the pres-
ent work, analytic expressions for these angular integrals
are derived which are free of truncation error. Differ-
ences between the present method (as implemented in ROLAIDS)
and other methods (as implemented in MINX and NEWXLACS) will
be explored. Of particular interest is the fact that, for
hydrogen, the angular integration is shown to simplify to
the point that, for many weight functions, the integration
over the primary energy group might also be performed
analytically* This completely analytic treatment for
hydrogen has recently been implemented in NEWXLACS.

Given the Legendre coefficients of the scattering cross section on
a point-wise basis, a. (E'-*E), the group-to-group Legendre transfer
coefficients are defined as:

I ,(E'-»E) dE' dE (1)



where the spatial dependence of each term is understood and <j>?(E')
represents the Legendre coefficients of the angular flux distribution
at each spatial point. In practice, the higher order terms, <j> (Ef),
are replaced by an energy dependent weight function <j>(E'). In ROLAIDS1,
for example, this would be the (zone averaged) scalar flux resulting
from the solution of the integral slowing down equation on a point-
wise basis. In other codes, such as XLACS,2'3 the weight function may
be specified by the user. The Legendre coefficients of the point-to-
pcint angular scattering cross section are formally defined as

~ 2irC cr(E'->-E,uL) P (2)

In the fast and epithennal range, however, there is a unique relation-
ship between the initial and final energies, the exitation energy (Q),
the mass of the target nuclide (A), and the cosine of the angle of scatter
in the lab system:

,E,Q,A) - \ f ~ (A-l) ̂ /f (3)

Representing this as a delta function in Eq. (2) yields

= o(E'->E) (4)

and
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The accurate evaluation of this expression represents a severe computa-
tional burden which must be addressed by any cross section processing
code. The present method differs from previous approaches in that i t
yields an analytic solution for the integral on dE which is free of



truncation error when the scattering function is given by a Legendre
expansion in either the center-of-mass (C) or the lab (L) system.

The scattering function, a(E'-*E), represents a distribution over
the secondary energy (E) and hence over the scattering angle. Thus,

a(E'->E) dE = a(E') f(Ef,yc) 2irdyc (6)

where uc is the cosine of the scattering angle in the center-of-mass
system and f(E',yc) is the angular distribution function in that
system. A similar expression could certainly have been written for the
lab system. Because all scattering processes appear more isotropic in
the C system and because most scattering involving the formation of a
compound nucleus is in fact isotropic in the C system, the present
choice was made. While the present method can easily accomodate
anisotropic scattering, it is most easily introduced assuming isotropic
elastic scattering in the C system [f(E',yc) = l/4ir, Q = 0]. The
integral on dE can then be written as

J: dE =

yc(E',Eu,Q,A)

= |a(E') I Pjy (E',E(y ),Q,A)] dy
Jyc(E',EL,Q,A) * C

(7a)

7O(E') / Pjy (E',E,Q,A)]
-/yL(E',EL,Q,A) * L

dy
(7b)

2yT (7c)

where Ey and E^ depend on the location of the secondary energy group
relative to E1 as shown in Fig. 1, and the relationship between yc and
UL is given by
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Fig. 1. Possible Location of an Arbitrary Secondary Energy
Group Relative to the Range of Possible Secondary Energies E'-xxE'
and the Limits of Integration that Should be Used in Each Case.
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«. - 1*1 - 1 + ]L, = A2 - 1 (8)

Since P£(VL) is simply a polynomial in y,, it is necessary only to eval-
uate integrals of the form:

fn(x) dx n=l,2,3,4,5, ..., Ot+1) (9)

gn(
2+x2(x) = xn Va^-hc dx n=0,l,2,3,4, ..., (10)

hn(x) = dx n=2,4,5,6,7, ..., (Jl+2) (ID

The integrals represented by gn(x) and hn(x) are less obvious than those
represented by fn(x). They can, however, be evaluated analytically by
setting x = a tan 9 = a/sec26 — 1, using the Binomial theorem to expand
integer powers of (sec26 — 1), and applying a standard reduction formula
no integrate powers of (sec 6). Defining r = /a2 + x2 and letting m = n/2
for n = even and m = (n — l)/2 for n = odd, the results may be written
as:

gn(x) = a
n+2

i=0
(;) P2(m-i)+3 n=0,2,4, ..., (12)

= a

m r i -\ / \

V\ ™ 1 H frl
L 2^-i)+3 lil [aj
i=0 L J

2(m-i)+3
11=1,3,5, ..., (13)



hn(x) = a n=2,4,6, ..., (14)

i=0

n-3,5,7, ..., (15)

where

(16)

and I . (17a,b)

Despite their appearance, these expressions are generally quite simple.
For example:

(l-a2)£n(x+r)]
4
i

(18)
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Note that these analytic expressions are in closed form, and do not
simply represent the first few terms of an infinite series. It is for
this reason that the present method has been incorporated in the
ROLAIBS crosji section processing code.1

For anisotropic scattering in the C-system, the angular distribu-
tion function f(E1,pc) would look like:

ISCT(CM)
(20)

and P^u^) in Eq. (7c) would be replaced by the product ^ ^ ^ ^
Using Eq. (8) to represent each power of p c in Pjc(yc) , Eq. (7c) could
still be written in terms of fn(x), gn(x) and hn(x). Thus, the
resulting expressions could again be written in closed form with no
truncation error.

The present method as described above is to be advocated whenever
the angular scattering function is known in the C-system. If, on the
other hand, it is specified as an expansion in the L-system such that

ISCT(IAB)

k=0
(21)

it would be more expedient to write the scattering function as

a(E'-s-E) dE = a(E') 27rdyL (22)



and substitute Eqs. (21) and (22) directly into Eq. (5) where the
integration in the L-system would involve only the product
Such terms represent simple polynominals in UL and are easily inte-
grated.1* To take advantage of this simplicity, the MINX code5 uses
Amster's transformation6 to convert C-system expansions to L-system
expansions prior to performing the integration. Note, however, that
even the simplist function in the C-system [f(E',pc) = l/4ir] requires
an infinite number of Legendre terms in the L-system. In practice,
the L-system expansion must be truncated, leaving some residual error
not found in the present method.

For comparison purposes, it should be noted that NEWXLACS uses
a numerical quadrature to perform the angular integration in the evalu-
ation of ff&(g'-*-g). 8'9'10 To be more precise, it calculates â (g'-*-g)
as

T N
) y w P (y )
n=l n n

V'g'-g)

j: a(E') (23)

where e
EgI < E

(uLn)o= 1 if PLCE'.ELIQ.A) 1 U L n £ nL(E
t,Eu,Q,A) for

' ^ E " ' " 1 , and E(VT ) = 0 otherwise. The xntegratio:ntegration over E' is
L n

then done semi-analytically. The power of the method is that it is
extremely fast and reasonably accurate in most cases. It is, however,
an approximate method. Its chief weakness is that one must use higher
order quadratures to obtain fairly accurate results as the group
structure becomes finer. For light nuclides this method may also leave
holes in the multigroup transfer matrices which should physically not
be present. Numerical experiments do, however, indicate the approxima-
tion to be quite good for heavy nuclides. and adequate for all nuclides
but hydrogen. In all cases, the accuracy of the approximation may be
increased by increasing N.

To be perfectly rigorous in the case of hydrogen, one should
account for the fact that the atomic mass ratio (A) is less than unity.
The radicals in Eq. (7c) would then become -VW — .b* where b 2 = 1 — A2.
A substitution of the form u^ = b sec 6 would then allow Eq. (7c) to be
written in terms of p.(x). This exact treatment, however, would
represent an unnecessary degree of accuracy in most cases.

A most interesting and extremely useful simplification of Eq. (7c)
results in the case of hydrogen where one is willing to make the A = 1
approximation. In that case,the bracketted quantity in Eq. (7c)
simplifies to 4 ^ , Eq. (3) simplifies to u^ = VE/E1, and Eq. (5) becomes

dE1 (24)



Defining a^ n as the coefficients of u
n in

to describe'a^Cg'^-g) asas

, it becomes convenient

2^
n=0

The terms a^ n(g'^-g) can then be written as

(25)

(g'+g) = for g'<g (26)

for g' =g (27)

where p = (n+2)/2 and

• • / •

g ' - l

<KE')a(E')[ETp dE1

(28)

In the case of hydrogen, the piecewise continuous ENDF specification
for a(E') is always of the form

a(E ' ) = a [ E ' ] b
(29)

for 10 ev £ E1 _< 20 Mev. As long as <j>(E') is represented in a
piecewise continuous fashion by one of the five ENDF interpolation
formulas, the integral in Eq. (28) may be evaluated analytically.
Assuming, for example, that the weight function is 1/E' , Eq. (28)
yields

[E1]b-p (30)



This completely analytic treatment for hydrogen has recently been
implemented in NEWXLACS.11 Because of the analytic treatment and the
A = 1 approximation, a full down-scattering matrix is generated with no
holes.
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