

1) rawer 9"

GA-A14298 UC-77

HTGR FUELS AND CORE **DEVELOPMENT PROGRAM**

QUARTERLY PROGRESS REPORT FOR THE PERIOD ENDING FEBRUARY 28, 1977

NOTICE

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It has been reproduced from the best available copy to permit the broadest possible availability.

Prepared under Contract EY-76-C-03-0167 Project Agreement No. 17 for the San Francisco Operations Office U.S. Energy Research and Development Administration

DATE PUBLISHED: MARCH 1977 DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

NOTICE

This report was prepared as an account of work sponsored by the United States Government Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights,

> Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161 Price: Printed Copy \$9.00; Microfiche \$3.00

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

GA-A14298 UC-77

HTGR FUELS AND CORE DEVELOPMENT PROGRAM

QUARTERLY PROGRESS REPORT FOR THE PERIOD ENDING FEBRUARY 28, 1977

Prepared under Contract EY-76-C-03-0167 Project Agreement No. 17 for the San Francisco Operations Office U.S. Energy Research and Development Administration

GENERAL ATOMIC PROJECT 3224

DATE PUBLISHED: MARCH 1977

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

QUARTERLY REPORT SERIES GA-4072-December, 1962, through February, 1963 GA-4350-March, 1963, through May, 1963 GA-4569-June, 1963, through August, 1963 GA-4937-September, 1963, through November, 1963 GA-5104-December, 1963, through February, 1964 GA-5366-March, 1964, through May, 1964 GA-5618-June, 1964, through August, 1964 GA-5866-September, 1964, through November, 1964 GA-6113-December, 1964, through February, 1965 GA-6418-March, 1965, through May, 1965 GA-6671-June, 1965, through August, 1965 GA-6869-September, 1965, through November, 1965 GA-7010-December, 1965, through February, 1966 GA-7181-March, 1966, through May, 1966 GA-7396-June, 1966, through August, 1966 GA-7553-September, 1966, through November, 1966 GA-7801-December, 1966, through February, 1967 GA-7981-March, 1967, through May, 1967 GA-8200-June, 1967, through August, 1967 GA-8356-September, 1967, through November, 1967 GA-8530-December, 1967, through February, 1968 GA-8662-March, 1968, through May, 1968 GA-8860-June, 1968, through August, 1968 GA-9090-September, 1968, through November, 1968 GA-9227-December, 1968, through February, 1969 GA-9372-March, 1969, through May, 1969 GA-9660-June, 1969, through August, 1969 GA-9815-September, 1969, through November, 1969 GA-9944-December, 1969, through February, 1970 GA-10088-March, 1970, through May, 1970 GA-10288-June, 1970, through August, 1970 GA-10399-September, 1970, through November, 1970 GA-10501-December, 1970, through February, 1971 GA-10661-March, 1971, through May, 1971 Gulf-GA-A10784-June, 1971, through August, 1971 Gulf-GA-A10930-September, 1971, through November, 1971 Gulf-GA-A10999-December, 1971, through February, 1972 Gulf-GA-Al2150-March, 1972, through May, 1972 Gulf-GA-Al2222-June, 1972, through August, 1972 Gulf-GA-A12422-September, 1972, through November, 1972 Gulf-GA-Al2515-December, 1972, through February, 1973 Gulf-GA-12599-March, 1973, through May, 1973 Gulf-GA-Al2725-June, 1973, through August, 1973 Gulf-GA-Al2818-September, 1973, through November, 1973 GA-A12916-December, 1973, through February, 1974 GA-A13030-March, 1974, through May, 1974 GA-A13126-June, 1974, through August, 1974 GA-A13253-September, 1974, through November, 1974 GA-A13353-December, 1974, through February, 1975 GA-A13444-March, 1975, through May, 1975 GA-A13592-June, 1975, through August, 1975 GA-A13737-September, 1975, through November, 1975 GA-A13804-December, 1975, through February, 1976 GA-A13941-March, 1976, through May, 1976 GA-A14046-June, 1976, through August, 1976 GA-A14180-September, 1976, through November, 1976

ABSTRACT

This publication continues the quarterly report series on the HTGR Fuels and Core Development Program. The Program covers items of the base technology of the High-Temperature Gas-Cooled Reactor (HTGR) system. The development of the HTGR system will, in part, meet the greater national objective of more effective and efficient utilization of our national resources. The work reported here includes studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and, where appropriate, the data are presented in tables, graphs, and photographs. More detailed descriptions of experimental work are presented in topical reports; these are listed at the end of the report.

۰.

¥

•

.

INTRODUCTION

This report covers the work performed by the General Atomic Company under U.S. Energy Research and Development Administration Contract EY-76-C-03-0167, Project Agreement No. 17. This Project Agreement calls for support of basic technology associated with the fuels and core of the gas-cooled, nuclear power reactor systems. The program is based on the concept of the High-Temperature Gas-Cooled Reactor (HTGR) developed by the General Atomic Company.

Characteristics of advanced large HTGR designs include:

- A single-phase gas coolant allowing generation of high-temperature, high-pressure steam with consequent high-efficiency energy conversion and low thermal discharge.
- A prestressed concrete reactor vessel (PCRV) offering advantages in field construction, primary system integrity, and stressed member inspectability.
- Graphite core material assuring high-temperature structural strength, large temperature safety margins, and good neutron economy.
- Thorium fuel cycle leading to U-233 fuel which allows good utilization of nuclear resources and minimum demands on separative work.

These basic features are incorporated into the 330-MW(e) prototype Fort St. Vrain reactor which is currently undergoing prestartup testing.

ν

*

CONTENTS

ABSTRACT	6 0	٠	٠	٠	iii
INTRODUCTION	۰ ۰	•	•	•	v
4. HTGR FISSION PRODUCT MECHANISMS, 189a NO. 00549	• •	٠	•	•	4-1
Task 100: Fission Product Transport	 s in	•	•	•	4-1
Graphite	• •	٠	•		4-1
Task 200: Fission Product Transport Codes	* *	٠	٠	•	4-10
Task 300: Fission Product Data Analysis	• •	•	•	•	4-10
Task 600: Coolant Impurity/Core Material Interaction	•••	•	•		4-63
Subtask 610: Reaction of Coolant Impurities wit	h Fu	el			
Material	• •	•	•	۰	4-63
Task 900: Fort St. Vrain Chemistry Surveillance Subtask 940: Fort St. Vrain Coolant Impurity	* •	۰	•	•	4-64
Surveillance	• •		•	٠	4-64
References	* *	۰	•	•	4-68
9. HTGR FUEL DEVELOPMENT AND ENGINEERING, 189a NO. 00551	* *	•	٠		9-1
Task 100: Fuel Product Specification	° °	•	٠	•	9-1
Task 200: Accelerated Irradiation Testing	6 0	٠	٠	٠	9-1
Subtask 210: Fresh Fuel Qualification	• •	•	٠	٠	9-1
Subtack 310. Peach Bottom Fuel Test Flements	* *	٠	•	٠	9-42
Subtask 320: FSV Fuel Test Elements	• •	•	•		9-61
Task 400: Out-Of-Pile Particle Testing and Evaluatio	n		•		9-62
References	• •	٠	•	•	9-62
11. GRAPHITE DEVELOPMENT, 189a NO. 00552	6 9	•	•	•	11-1
Task 100: Fabrication and Operation of Irradiation C	apsu	les	3.	•	11-2
Measurements for Capsule Irradiation	••• r	٠	٠	•	11-2
Properties and Purity			•	•	11-3
Task 400: Fracture Mechanics	• •	•	•	•	11-7
Task 500: Fatigue Behavior of Graphite	• •	٠	٠		11-7
Task 600: RDT and ASTM Graphite Standards	• •	•	٠	٠	11-8
Task /00: Irradiation-Induced Creep in Graphite	• •	٠	٠	٠	11-10
Task 900: Structural integrity of Graphile Blocks Task 900: Control Materials Development	• •	٠	•	•	11-10
Task 1000: Graphite Oxidation Studies	• •	•	•	•	11-17
References.		•	•	•	11-32
APPENDIX: TOPICAL REPORTS PUBLISHED DURING THE QUARTER	• •	•	÷	٠	A-1

٠

۶

B

.....

FIGURES

••

~

*

4-1.	Time dependence of cumulative permeation of cesium in char-loaded graphite	.9
4-2.	Release rate coefficients for intact particles as a function of temperature	2
4-3.	Release rate coefficients for failed particles as a function of temperature	3
4-4.	Temperature dependence of release rate coefficients for iodine release from failed BISO particles 4-1	8
4-5.	Temperature dependence of release rate coefficients for iodine release from failed TRISO particles 4-2	22
4-6.	Extrapolation of release data for iodine release from intact particles	27
4-7.	Release rate coefficient - temperature curves for iodine release from intact particles	:8
4-8.	Release rate coefficient - temperature curves for xenon release from "failed" particles	0
4-9.	Release rate coefficient - temperature curves for xenon release from intact particles	4
4-10.	Comparison of mean curves for krypton release from failed particles	6
4-11.	Release rate coefficient - temperature curves for krypton release from intact particles 4-3	8
4-12.	Release rate coefficient - temperature curves for cesium release from failed particles	.1
4-13.	Release rate coefficient - temperature curves for cesium release from intact particles	3
4-14.	Release rate coefficient - temperature curves for strontium release from BISO particles 4-4	8
4-15.	Release rate coefficient - temperature curves for strontium release from intact TRISO particles 4-5	1
4-16.	Release rate coefficient - temperature curves for cerium release from intact BISO particles	4
4-17.	Release rate coefficient - temperature curves for barium release from intact BISO particles	7
4-18.	Release rate coefficient - temperature curves for barium release from TRISO particles	9
9-1.	Diametral dimensional change in P13T fuel rods versus fast fluence	-4
9-2.	Axial dimensional change in P13T fuel rods versus fast fluence	-5

.

FIGURES (Continued)

9-3.	Bulk volume change in P13T fuel rods versus fast fluence	9-6
9-4.	Strain anisotropy versus fast fluence in P13T fuel rods	9-8
9-5.	Metallographic cross section of VSM fissile particle (batch 6151-17-025) in fuel rod 1C1	9-12
9-6.	Metallographic cross section depicting fission product attack in a fissile particle (batch 6151-17-025) in fuel rod 1C1	9–13
9-7.	Metallographic cross section depicting morphology of WAR kernels $(U \cdot C_{2.9} \cdot O_{0.6})$ in fuel rod 2C2 (batch 6157-02-015)	9-15
9-8.	Metallographic cross section depicting fission product distribution in WAR fissile particle $(U \cdot C_{2.9} \cdot O_{0.6})$ located in fuel rod 2C2 (batch 6157-02-015)	9-16
9-9.	Metallographic cross section of BISO coated fertile particle in fuel rod 1C4 (batch 6542-27-015	9-17
9-10.	Metallographic cross section of fuel rod 1C4 (batch 6151-17-025)	9-19
9-11.	Metallographic cross section of fuel rod 4C4 (batch 6157-02-015)	9-20
9-12.	Metallographic cross section of fuel rod 1C4 (batch 6351-01-020)	9-21
9-13.	Metallographic cross sections depicting porosity in preirradiated OPyC layers on TRISO coated fissile particles	9-22
9-14.	EOL fast and thermal fluences for capsule P13T	9-26
9-15.	Dimensional change of H-451 graphite in the radial direc- tional as a function of fast fluence - capsule P13T	9-27
9-16.	Dimensional change of H-451 graphite in the axial direction as a function of fast fluence - capsule P13T	9-28
9-17.	Dimensional change of TS-1240 graphite as a function of fast neutron fluence - P13T capsule	9-29
9-18.	Total coating failure of BISO ThO ₂ samples irradiated in capsule HT-33 as a function of fluence	9-43
9-19.	Total coating failure of BISO ThO_2 samples irradiated in capsule HT-33 as a function of anisotropy	9-44
9-20.	FTE-5 strip 5-2-1-1 heatup experiment	9-47
9-21.	FTE-5 thin strip heatup experiment, differential deflection versus furnace temperature.	9-49

.

*

FIGURES (Continued)

9-22.	FTE-6 thin strip heatup experiment, differential deflection versus furnace temperature
11-1.	Fatigue test data for PGX graphite, axial orientation, end - one-third radius location, in air at ambient temperature 11-9 $$
11-2.	Finite element model of six-hole teledial fuel body under diametral compression loading
11-3.	Finite element model of eight-hole teledial fuel body under diametral compression loading
11-4.	Finite element model of eight-hole teledial fuel body under diametral compression after pressure burst tests
11-5.	Load-deflection curve for six-hole teledial disk under diametral compression
11-6.	Load-deflection curves for eight-hole teledial disks under diametral compression
11-7.	Stresses along the fracture surface of teledial disks under diametral compression
11-8.	Stackpole 2020 graphite
11-9.	Coring diagram, Stackpole 2020, slab 1, tensile and compression radial samples
11-10.	Coring diagram, Stackpole 2020, slab 1, tensile and compression axial samples
11-11.	Coring diagram, Stackpole 2020, slab 3, tensile and compression radial samples
11-12.	Coring diagram, Stackpole 2020, slab 3, tensile and compression axial samples
11-13.	Coring diagram, Stackpole 2020, slab 5, tensile and compression radial samples
11-14.	Coring diagram, Stackpole 2020, slab 5, tensile and compression axial samples
11-15.	Average and range of reaction rates of each section versus distance from top of log
11-16.	Average and range of densities of each section versus distance from top of log
11-17.	Reaction rate versus position in log for slab 1
11-18.	Fe contamination versus position in log

TABLES

-

.

.

4-1.	Results of cesium permeation tests	4-6
4-2.	Release rate coefficients (R) for iodine release from failed BISO particles	4-17
4-3.	Release rate coefficients (R) for iodine release from failed TRISO particles	4-21
4-4.	Release rate coefficients (R) for iodine release from intact particles	4-26
4-5.	Release rate coefficients (R) for xenon release from "failed" (uncoated) particles of (Th,U)C ₂	4-29
4-6.	Release rate coefficients (R) for xenon release from intact particles	4-33
4-7.	Release rate coefficients (R) for krypton release from intact particles	4-37
4-8.	Release rate coefficients (R) for cesium release from failed particles	4-40
4-9.	Release rate coefficients (R) for cesium release from intact particles	4-42
4-10.	Release rate coefficients (R) for strontium release	4-46
4-11.	Release rate coefficients (R) for strontium release from intact TRISO particles	4-50
4-12.	Release rate coefficients (R) for cerium release from intact BISO particles	4-53
4-13.	Release rate coefficients (R) for barium release from intact BISO particles	4-56
4-14.	Release rate coefficients (R) for barium release from intact TRISO particles	4-58
4-15.	Parameters in the equation for release rate coefficients as a function of temperature	4-61
4-16.	Standard deviation factors (S $_{ m F}$) for the release rate coefficients	4-62
4-17.	Measured and calculated gas compositions during Fort St. Vrain startup	4-67
9-1.	Summary of P13T metallographic results on TRISO coated fissile and inert particles	9-10
9-2.	Summary of P13T metallographic results on BISO coated fertile particles	9-11
9-3.	P13T dosimetry coefficients for Eq. 9-3 coefficients	9-24
9-4.	P13T fuel rod fast and thermal fluxes and fluences	9-25

TABLES (Continued)

9-5.	R/B values for individual fuel rods irradiated in capsule P13T
9-6.	R/B temperature dependence for P13T cell 1 fuel rods 9-33
9-7.	Comparison of in-pile and TRIGA R/B measurements 9-35
9-8.	Comparison between final in-pile and crucible TRIGA R/B measurements
9-9.	Comparison of P13T preirradiation and postirradiation fuel rod shear stress as a function of graphite type, fuel rod/ fuel hole gap, and matrix type
9-10.	Particle description and comparison of results of TRISO ThO ₂ samples of capsules HT-31 and HT-33
9-11.	Description and results of visual examination of BISO ThO ₂ samples in capsule HT-33
9-12.	Comparison of predicted and measured differential CTE across strip in FTE-5 and FTE-6 heatup experiment $9-57$
9-13.	FTE-5 and FTE-6 stress assessment for inversely bowed strips at hottest fiber
11-1.	GA-GLCC round-robin flexural tests: data summary (corrected for nonlinearity)
11-2.	GA-GLCC round-robin tensile tests: data summary 11-35
11-3.	GA-GLCC round-robin strength tests: conclusions 11-36
11-4.	Round-robin tensile data: cylindrical specimens (GA data)
11-5.	Round-robin tensile data: cylindrical specimens (GLCC data)
11-6.	Round-robin tensile data: square dogbone specimens (GLCC data)
11-7.	Round-robin flexural data: cylindrical specimens (GA data)
11-8.	Round-robin flexural data: cylindrical specimens (GLCC data)
11-9.	Round-robin flexural data: square cross section specimens (GA data)
11-10.	Round-robin flexural data: square cross section specimens (GLCC data)
11-11.	Summary of flexural strengths of PGX graphite
11-12.	Flexural strength of PGX graphite
11-13.	Summary of density, strength, and elastic modulus data for H-440N graphite, log 6484-81

,

TABLES (Continued)

*

.....

.

.

11-14.	Tensile strength and modulus of elasticity data for
	grade H-440N
11-15.	Flexural strength data for grade H-440N
11-16.	Compressive strength and modulus of elasticity for
	grade H-440N
11-17.	Fatigue tests on PGX graphite
11-18.	Uniaxial fatigue endurance limits for PGX graphite , 11-104 $$
11-19.	Average and range of steam oxidation reaction rates
	of Stackpole 2020 graphite
11-20.	Reaction rate and density of samples, grouped according
	to section
11-21.	Impurities found in Stackpole 2020 graphite

4. HTGR FISSION PRODUCT MECHANISMS 189a NO. 00549

TASK 100: FISSION PRODUCT TRANSPORT

Subtask 140: Diffusion of Fission Product Metals in Graphite

Diffusion of Cesium in Graphite

Introduction and Summary. The work reported here concludes the reporting on a study of cesium transport through H-451 graphite using a permeation method. This study was discontinued in September 1976 due to lack of funds. The main purpose of this study was to reduce the uncertainty of data relating to cesium diffusivity in graphite. The AIPA study (Ref. 4-1) found that uncertainty in cesium diffusivity in graphite was the largest contributor to the uncertainty in cesium release predictions.

The work reported here covers mainly the analysis of an in-pile experiment conducted under conditions which permitted close comparison with outof-pile results. The analysis shows that much less cesium left the source under irradiation that would have out-of-pile and that much more of what left the source was stopped in the H-451 graphite sleeve, with the result that the amount reaching the sink was drastically reduced. These results can be best understood in terms of other (out-of-pile) findings of this study showing that the presence and level of oxidizing impurities is a primary determinant of the rate at which cesium permeates through graphite. Presumably, these impurities displace the cesium from highly active adsorption centers (traps) on the surface and permit it to diffuse rapidly over the less active surface of pores and defects. Under irradiation conditions many such centers are formed which in the absence of impurities are very effective in immobilizing the cesium. Thus permeation under in-pile conditions was found to be 100 times slower than in the laboratory when air

is carefully excluded and at least 1000 times slower than when oxidizing impurities are present in minute amounts.

The work reported here also includes an extended experiment on highly sorptive char-loaded graphite.

<u>In-Pile (Capsule) Experiment</u>. One purpose of out-of-pile experiments, the results of which are described in previous quarterly reports (Refs. 4-2 through 4-5) was to provide a basis for meaningful in-pile experiments and their evaluation. An opportunity presented itself to prepare a capsule sample just at the time when the need for the "sterile" technique* was recognized but the equipment to implement it was not yet perfected. An experiment was therefore designed as best as possible. The capsule design permitted the "sterile" irradiation of a diffusion experiment comparable to a standard (out-of-pile) experiment; however, dissassembly of the capsule required exposure to air, which continued during the time allowed for the decay of radioactive impurities. The sleeve and the source used in the capsule were then characterized in standard sterile experiments. Experimental details, results of the capsule experiments, and interpretation of the results are presented below.

The basic method (which was described earlier in Refs. 4-3 and 4-4) uses highly sorptive, char-loaded graphite as the source and sink in measuring the transport of cesium across a barrier sleeve of the graphite to be studied. The capsule (in-pile) experiment was partially described in Ref. 4-6; an expanded description is presented below.

A standard diffusion assembly consisting of a source, sleeve and plugs, and sink and caps was placed in a tightly fitting spacer cylinder which in turn fitted into a crucible closed with screw caps at both ends. The crucible in turn fitted tightly into a niobium can fitted with a cover to which originally a thin niobium tube was attached.

^{*}A "sterile" technique was developed for protecting the diffusion assembly from air or moisture during experiments after an initial bake-out (see Ref. 4-2).

In preparing for the capsule experiment, a reasonably wellcharacterized source/sleeve combination was chosen and subjected to a standard 2-hour permeation experiment in a quartz tube which contained also another sink and caps and the remaining capsule parts. It should be remembered that this was before introduction of the "sterile" technique so that the samples were prepared in air but degassed and annealed in 8% hydrogen in helium. The quartz tube was however opened within a glove-bag flushed several times with the 8% hydrogen in helium mixture. The sink was removed and replaced by the clean one which was placed in the spacer, crucible, and niobium can. At this point the tube of the niobium cover broke off (because of hydrogen embrittlement).

The can with the crucible was placed in a double plastic bag; the inner bag was sealed with adhesive tape adapted for remote opening; and the glove-bag was opened. A new niobium tube was welded to the lid. The can, with one plastic bag, was then placed in a welding jar. After purging and refilling with inert gas, the plastic bag was removed. The lid was placed in the can opening and welded on. The tube was then welded shut.

The can was then placed in the quartz tube under a stream of 8% H₂, the end of the niobium tube was snipped off, and the quartz tube was closed and evacuated promptly. The quartz tube was then purged twice with 8% H₂ at room temperature, purged at 500°C, promptly heated to 860°C, purged twice (which took about 6 minutes), and cooled in air until it reached room temperature. It was then opened again in a glove bag. The can was placed in an aluminum holder and the niobium tube was closed with a rubber stopper. The whole was enclosed in a plastic bag, removed from the glove bag, and placed in the welding jar. After repeated purging, the plastic bag and the rubber stopper were removed and the niobium tube was sealed off at the base. The sealed can was tested for vacuum tightness on a helium leak detector. Thus, the assembly can be assumed to have entered the irradiation test relatively free of impurities and with a negligible amount of cesium in the sink.

The diffusion assembly was exposed in capsule HB-2 to a design fluence of 4.6 x 10^{25} n/m² (E > 29 fJ)_{HTGR} during 104 days of irradiation. The irradiation temperatures, calculated on the basis of design data and actual control rod positions, varied from 913 to 1123 K. The irradiation conditions were equivalent to 49.4 days at 1138 K (if the activation energy for the transport is taken as 140 kJ/mol (33 kcal/mol) on the basis of the data given in Ref. 4-3).

Remote dissasembly (in the hot cell) after irradiation was not simple and had to be done in air. In the process, one of the screw caps of the outer crucible was lost and some contamination may have been picked up. The graphite parts were removed from the hot cell, disassembled in air, placed in polyethylene vials, and counted. A number of impurities were found, increasing in concentration outwardly from the source, which made determination of the cesium imprecise. The parts were then kept in the vials for 4.5 months, during which time most of the impurities decayed sufficiently to permit proper estimation of the cesium content. It can be noted that the activity of the cesium increased considerably during irradiation as some of the Cs-133 carrier present became activated.

At this point the source was characterized by using it in a series of standard diffusion experiments with a previously characterized sleeve. The source was not baked out prior to the first experiment, the purpose of which was also to remove any oxidizing impurities. The "sterile" technique was used from this point on. The sleeve was in turn characterized by first subjecting it to two anneals with sinks, but without a source, to remove the surface-adsorbed cesium and then to two standard transport experiments using a previously characterized source. Again "sterile" handling was applied after the first anneal.

After extensive exposure to air, the source was paired with the sleeve used in the experiments of Table 4-3 of Ref. 4-2. That sleeve showed an average permeability of 2 x 10^{-12} m²/s in the earlier experiments and took up 1.3% of the activity of the source. In the present experiment with the previously irradiated source it gave surprisingly similar results, taking

up 1.3% of the source activity and showing a permeability of 2.1 x 10^{-8} m²/s. Thus, in this experiment the source behaved as if it had not been irradiated.

The irradiated sleeve, after having been freed of surface-sorbed cesium from the high-activity source, was paired with the source from the experiment of Table 4-3 of Ref. 4-2 and showed a permeability of 5.6 x 10^{-12} m²/s, which is reasonably close to that of 3.6 x 10^{-12} m²/s showed prior to irradiation. Thus, again the sleeve seemed to behave as if it were quite unaffected by irradiation.

The results of the in-pile experiment are given in Table 4-1. After irradiation 94.2% of the cesium accounted for was in the source, 4.0% in the sleeve and plugs, 1.2% in the sink, 0.4% in the caps, and some 0.2% in the spacer and crucible. If the permeation coefficient of the sleeve is computed in the standard manner for the 49.4 day equivalent period on the basis of the sink content, the permeation coefficient is found to be 3.1 x 10^{-14} m²/s. The original permeability of the sleeve on the basis of two non-sterile anneals of 6 and 16 hours duration is 3.6 x 10^{-12} m²/s, i.e., about 100 times higher. If this difference were to be accounted for on the basis of a temperature error, the equivalent capsule temperature would have to be 590°C instead of 865°C, i.e., some 275°C lower, which seems highly unlikely.

One other observation shows that the transport during irradiation was not normal by out-of-pile standards. After irradiation the sleeve contained 3.85% of the source activity. Before irradiation the sleeve content was close to 0.7% of the source. Thus, although the sleeve accumulated 5.5 times more cesium during irradiation than expected, it allowed 100 times less to pass through it.

In out-of-pile experiments after a very short lag time, practically all the cesium leaving the source permeates through the sleeve and is found

	Sou	ırce	S1	.eeve	Sink	Permeation	
Experiment	Ident.	Activity (µCi)	Ident.	Áctivity (µCi)	Activity (µCi)	Coefficient (x 10-12 m ² /s)	Comments
Preirradiation	A	74.5	с	0.788	(a)	3.6	Avg. of several experiments at 1138 K
In-pile (irradi- ation)	A	1330	С	51.2	16.4	0.031	Activity (µCi) on other components was 5.68 on plugs, 5.43 on cap, 0.76 on spacer, 5.86 on crucible, and 1.98 on crucible cap
Previous out-of- pile experiments	В	59.6	D	0.73	(a)	2.3	Avg. of earlier experiments at 1138 K using source B and sleeve D (Ref. 4-2)
Postirradiation ^(b)	A	1290	D	17.3	3.81		6 h at 1138K
	A	1250	D	18.3	5.28	2.1	6 h at 1138K
		None	с	(c)	6.01		5 h at 1138K
		None	с	41.2	0.860		6 h at 1138K
	В	61.0	С	41.8	0.636		6 h at 1138K
	В	60.1	С	41.4	0.679	5.6	6 h at 1138K

TABLE 4-1 RESULTS OF CESIUM PERMEATION TESTS

(a) Several different sinks were used.

(b) The gamma counting for the postirradiation tests was done on different equipment and corrected to be consistent with the preirradiation and capsule tests.

4

1

(c)_{Not measured after test.}

in the sink. This was not the case in the capsule experiment. To appreciate the significance of this difference, a fictitious permeation coefficient can be computed on the assumption that the cesium which was held up by the sleeve can be included in the amount permeating. This gives a value some 3.5 times larger than actually found, but still 30 times smaller than expected from out-of-pile data.

Thus, the experiments show that after irradiation, both the source and the sleeve behaved quite normally. Yet during irradiation the sleeve absorbed most of the cesium, rather than letting it permeate through readily as happened under out-of-pile conditions. Also, during irradiation the source released very much less cesium than it would have out-of-pile.

To account for these somewhat paradoxical results, as well as for those previously obtained, the following model is proposed. Cesium is present in the graphite in two principal forms: (1) absorbed within the graphite crystallites where its motion is very slow and it has a high activation energy, and (2) adsorbed on the surface at sites of varying energy. Surface-adsorbed cesium can diffuse at a rate which depends on the energy with which it is adsorbed, jumping readily between low energy sites but lingering for a long time at the high energy sites. This surface adsorbed cesium can be removed rather readily (e.g., by exposure to a sink for 2 hours at 1140 K), whereas the absorbed cesium is practically unaffected by such a treatment.

There is competition for the high energy sites between cesium and oxidizing impurities, with the latter generally winning. Thus in the presence of such impurities, the surface transport (i.e., permeation) is much faster, and reproducible results are obtained only when such impurities are carefully controlled as in the "sterile" technique.

One of the effects of fast neutron irradiation is the formation of surface defects that provide high-energy adsorption sites which, in the absence of impurities, are very effective in immobilizing cesium. Exposure to air following capsule opening permits the access of impurities which

displace the cesium and thus restore its original mobility. The implication is that the impurities either continue to occupy the most active sites or destroy them so that these are no longer available to the cesium even under "sterile" conditions. Thus it is possible for the components of the diffusion assembly to act essentially unchanged after irradiation and exposure to air, whereas under irradiation the transport of cesium is drastically reduced.

The model also accounts for the very fast permeation and "burst effects" found in the presence of oxidizing impurities and for the reproducibility obtained by controlling impurities by the "sterile" technique (see Ref. 4-2).

Permeation Experiments Using Char-Loaded Graphite. Char-loaded graphite of high sorptivity was used exclusively as source and sink material in a series of cesium permeation experiments. The experimental arrangement, described in Ref. 4-3, was the opposite of the usual one in that the sink was a small rod as normally used for the source and the source was a large hollow cylinder as normally used for the sink. Both were of char-loaded graphite. Between the sink and source there was a sleeve and plugs of char-loaded graphite whose permeability was being measured. This arrangement provided a large supply of cesium to compensate for the greater sorptivity and retentive power of the char-loaded sleeve as compared with a plain graphite sleeve. The whole assembly was enclosed in a niobium crucible having a slip-over cover with small clearances to permit degassing and yet reduce cesium loses. The "sterile" technique was used in handling the samples.

As reported earlier (Ref. 4-3), three consecutive anneals giving substantially constant permeation were obtained after 7 days of annealing at 1338 K. The experiments were, however, continued with the unexpected result that the permeation rate continued to increase, reaching an apparently steady rate twice as high between 18 and 24 days of annealing. This is shown in Fig. 4-1, where the originally reported steady state is shown

Fig. 1. Time dependence of cumulative permeation of cesium in char-loaded graphite

as a dotted line. It must be noted, however, that in these last experiments of 3 days duration, the small sinks were reaching 30% of the equilibrium value, and this must have slowed down the permeation. This also distorted the loading rate of the sleeve. As time did not permit conducting a series of shorter anneals to obtain more interpretable results, the only conclusion that can be drawn is that char-loaded graphite reaches steady state at a very slow rate but that its permeability finally becomes at least as high and probably appreciably higher than that of H-451 graphite.

TASK 200: FISSION PRODUCT TRANSPORT CODES

Subtask 220: Code Validation

Status Report on Fission Product Code Validation

The accuracy of predictions provided by the fission product transport codes RANDI, TRAFIC (FIPERQ), and PAD is being quantified via comparison of calculated and measured in-pile fission product behavior. This validation effort is being performed to ensure that GA fission product design codes meet appropriate federal regulations requiring verification of design methods. Acceptable agreements between measurements and predictions have been found for each validation test performed to date. The results for each code are summarized as follows:

- RANDI (used to predict radionuclide inventories within the primary circuit): Although this code has yet to be submitted for verification, the basic transport assumptions relating to fission gas release are being checked using the SURVEY analysis of Fort St. Vrain rise to 18% power. A need in this work is to verify and quantify the gas phase diffusion effect (see Ref. 4-2, p. 4-19).
- 2. TRAFIC (FIPERQ) (used to predict fission metal release from fuel elements): Results from the GA-CEA SSL-1 loop test showed that

measured nominal cesium release was within 25% of that observed. The large uncertainty (40x) accompanying the predicted release resulted principally from uncertainties in the reference input data. It appears that release from particles was overpredicted and diffusion through fuel element graphite was underpredicted. (A topical report covering this work is in review.)

Preliminary cesium release comparisons for the GA-CEA CPL-2/1 test showed that release was overpredicted by a factor of three (see Ref. 4-6). This work is continuing.

3. PAD (used to predict condensable fission product plateout distribution in the primary circuit): Comparison of the fission product distribution measured during Peach Bottom primary circuit gamma scanning and the distribution calculated using the PAD code showed good agreement.

PAD code calculations for the CPL-2/1 test provided acceptable fits of the observed plateout profiles in the heat exchanger (see Ref. 4-6). This work is on-going.

TASK 300: FISSION PRODUCT DATA ANALYSIS

Review of Release Rate Coefficient Data for Use in Core Heatup Analysis

Introduction and Summary

Release rate coefficient data are required to determine the release of radionuclides from the HTGR core during core heatup. The coefficients are used in the SORS code (Ref. 4-7). The reference release rate coefficient data (i.e., the data currently used in SORS calculations) are represented by the curves in Figs. 4-2 and 4-3. These figures were taken from Ref. 4-8.* The release rate coefficient data were derived from fractional

^{*}Sets of the release rate coefficient curves are also given in Figs. 4-6 and 4-7 of Ref. 4-9, and it should be noted that curve 2 and the ordinate scale of Fig. 4-7 were incorrectly drawn.

Fig. 4-2. Release rate coefficients for intact particles as a function of temperature

Fig. 4-3. Release rate coefficients for failed particles as a function of temperature

release rate data. References for the fractional release rate data used are given in Table 4-5 of Ref. 4-9. This table provides uncertainties for the release rate coefficient data in the form of standard deviation factors. Note that the curves designated 10 BISO and 10 TRISO in Fig. 4-3 are applied to reference particles with failed coatings (i.e., curve 10 BISO is applied to failed fertile particles with BISO coatings and ThO₂ kernels and curve 10 TRISO is applied to failed fissile particles with TRISO coatings and dense UC₂ kernels). The other curves of Fig. 4-3 are applied to both failed fertile and failed fissile particles.

The reference release rate coefficient curves of Figs. 4-2 and 4-3 and the standard deviation factors were derived from a review of fractional release data, including a statistical analysis of the data, conducted during the AIPA study (see Ref. 4-9, p. 4-21). This review has been extended and the following report is a documentation of the extended review.

At the end of this report, the presently recommended release rate coefficient data and standard deviation factors are summarized. There are no significant differences between the presently recommended release rate coefficient data and the data represented by the curves of Figs. 4-2 and 4-3. The presently recommended standard deviation factors for Xe and Kr release from failed particles are slightly larger than those in Ref. 4-9.

This report first discusses the treatment of fractional release data to obtain release rate coefficients and then presents the bases for the release rate coefficient curves for the following elements and particle configurations:

- 1. Iodine release from failed BISO particles with oxide kernels.
- 2. Iodine release from failed TRISO particles with dense UC_2 kernels.
- 3. Iodine release from intact particles.
- 4. Xenon release from failed particles.
- 5. Xenon release from intact particles.
- 6. Krypton release from failed particles.
- 7. Krypton release from intact particles.

- 8. Cesium release from intact BISO and failed particles.
- 9. Strontium release from intact BISO and failed particles.
- 10. Strontium release from intact TRISO particles.
- 11. Cerium release from intact BISO and failed particles.
- 12. Cerium release from intact TRISO particles.
- 13. Barium release from intact BISO and failed particles.
- 14. Barium release from intact TRISO particles.

For other elements, release rate coefficient curves were chosen on the basis of similarities in chemical or physical properties of these elements with the above listed elements.

Treatment of Fractional Release Data to Obtain Release Rate Coefficients

The release behavior of each nuclide from HTGR fuel under core heatup conditions is expressed by a release rate coefficient, R. The fractional release is calculated according to the equation:

$$F_{rel} = 1 - e^{-Rt}$$
, (4-1)

where F_{rel} = fractional release, R = release rate coefficient, and t = time.

The release rate coefficient is a function of temperature, fuel type, fuel particle integrity, irradiation history, and nuclide.

Equation 4-1 generally fits the available experimental data only over a limited time interval. Thus to derive from the equation a value of R which yields a conservative estimate of the release function, F_{rel} , a small value of t should be chosen. In this review, the value 1 hour is chosen since this is the smallest measurement time for most of the data. This choice of time is still somewhat arbitrary since experimental data at times less than 1 hour are not available and no comparison of the fit of Eq. 4-1 to the experimental data can be made at shorter time intervals. The agreement of Eq. 4-1 with the experimental data appears to substantially improve as the temperature increases.

In computing uncertainties for the experimental data, a log normal distribution of errors is assumed.

Iodine Release From Failed BISO Particles with Oxide Kernels

The release rate coefficient curve representing iodine release from failed BISO particles (curve 10 BISO in Fig. 4-3) was generated using ORNL data for pyrolytic carbon coated UO_2 particles which were mechanically cracked to simulate failure and were in an unconstrained configuration during the measurements (Refs. 4-10, 4-11). These were the only available data for iodine release from failed particles with oxide kernels. It is reasoned that iodine release from UO₂ kernels is similar to that from ThO₂ kernels.

The fractional release data are given in Table 4-2. The data of Ref. 4-10 are given as mean and error bars (see Fig. 5.13 of Ref. 4-10). To better reflect in our calculations the spread of the data, we have listed in Table 4-2 the points representing the terminal points of the error bars. The average of each set of two points is identical to the average point given in Fig. 5.13 of Ref. 4-10.

Release rate coefficient data, calculated from the fractional release values using Eq. 4-1, are included in Table 4-2 and plotted in Fig. 4-4. A least-squares fit of the data yielded curve 2 in Fig. 4-4.

Curve 1 in Fig. 4-4 is an early least-squares fit of release rate coefficient values derived from the ORNL data. Curves 1 and 2 differ because of a difference in the way the data were treated. In the earlier least-squares treatment, five of the data points used were averages of other data and were inadvertently used. The difference in curves 1 and 2 is negligible in view of the other uncertainties.

Curve 3 in Fig. 4-4 is the 2-sigma lower limit relative to curve 1, the earlier least-squares fit of the release rate coefficient data. Curve 3 was adopted as the reference curve for failed BISO particles and is the same as curve 10 BISO in Fig. 4-3. In adopting curve 3, it was reasoned

TABLE 4-2 RELEASE RATE COEFFICIENTS (R) FOR IODINE RELEASE FROM FAILED BISO PARTICLES

Temp. (°C)	Percent Release(a)	R	Data Source
1100	3,2(b)	0.0325	Ref. 4-11. Table 5.4.
1100	0.8	0.0080	p. 80: 1-hour anneal
	2.7	0.0274	data
1200	1.6	0.0161	
	4.4	0.0450	
	2.9	0.0294	
1300	2.9	0.0294	
	5.4	0.0555	
1350	2.9	0.0294	
	7.7	0.080	
1400	12.8	0.137	
	13.9	0.150	
	8.7	0.091	
1500	33.3	0.405	
1000	0.63(c)	0.0032	Ref. 4-10, Fig. 5.13,
	1.15	0.0058	p. 97; 2-hour anneal
1100	0.29	0.0015	data
	3.1	0.0158	
1200	1.7	0.0086	
	4.5	0.0230	
1300	3.4	0.0173	
	10.3	0.0545	
1400	11.8	0.0630	
	18.9	0.1045	
1500	22.9	0.1300	
	53.5	0.383	

(a) Percent release values are for I-131 release from mechanically cracked pyrolytic carbon coated UO_2 . The values resulted from anneal tests performed at ORNL (References given under Data Source).

(b) Five average values and one datum on a crushed particle were omitted from the Ref. 4-11 data.

(c) The two points at each temperature are from the error bar extremes in Fig. 5.13, p. 97 of Ref. 4-10. The average of these is the mean point for each temperature.

Fig. 4-4. Temperature dependence of release rate coefficients for iodine release from failed BISO particles (i.e., failed particles with oxide kernels)

that this curve represents release rate coefficient values for constrained failed particles as contrasted with unconstrained failed particles (see next two paragraphs) and that curve 1 represents the upper 2-sigma limit. This was an approximate means for accounting for lower release from constrained failed particles. It is recognized that this method of selecting the reference curve is questionable because it depends on the number and spread of the data points; however, as related below the curve is reasonable.

Burnette <u>et al.</u> (Ref. 4-12) found that fission gas release values for loose failed fuel particles are appreciably higher than values for failed particles in fuel rods. This led to the concept of the constrained failed particle, defined as a failed particle with a cracked coating in a fuel rod where the crack is constrained from opening by the matrix material and adjacent particles. The constrained particle appears to be representative of failed particles in fuel rods. (This needs to be verified for failed particles under high-temperature accident conditions.)

Curve 4 of Fig. 4-4, which is a factor of four lower than curve 2, is drawn on the basis of the following justification. Fission gas release (R/B) for Kr-85m at 1100°C has been measured (Ref. 4-12) to be a factor of about four smaller for constrained failed particles than for unconstrained failed particles. On the basis of this finding, one can lower the release rate coefficient for unconstrained failed particles by a factor of four. This is an approximation, of course, since it is not known if iodine isotopes behave as Kr-85m.

Curve 3 does not differ greatly from curve 4, and it is conservatively high relative to curve 4. This justifies the retention of curve 3 as the reference curve.

The fractional release data in Table 4-2 are for either 1 or 2 hours of annealing; ideally, one would like more annealing time to know more accurately the time dependence of the release. The application of Eq. 4-1 to the data adds uncertainty, as discussed above. There is the possibility
that the fits according to Eq. 4-1 of the datum at 1 or 2 hours still result in an underestimation of the release at times less than 1 or 2 hours, but this error will become less important at higher temperatures (around 2200 K).

The temperature range of the ORNL annealing experiments was 1273 to 1773 K (1000° to 1500°C). It would be desirable to have data to at least 2200 K. Data are not required above 2200 K because the release rates would be very high and iodine retention times correspondingly low.

Burnups were 10% for Ref. 4-10 data and 11% for Ref. 4-11 data. These burnups are comparable to the maximum burnup for reference fertile particles (7.5% FIMA), but additional data for lower burnup values are needed. If more data were available at lower burnup, a reduction in R values might be obtained. The present burnup effect results in a conservative mean curve, other factors being neglected.

The somewhat arbitrary uncertainty limits placed on the reference curve (curve 3 of Fig. 4-4) are the 2-sigma upper bound represented by curve 1 and a lower bound which is symmetric to the upper bound.

Iodine Release From Failed TRISO Particles with UC₂ Kernels

Available fractional release data (taken from Ref. 4-10) for use in generating release coefficient values for iodine release from failed TRISO particles are given in Table 4-3. The data were measured in anneal tests on mechanically cracked pyrolytic carbon coated UC_2 . These were the only available data for iodine release from failed particles with UC_2 kernels. It was reasonable to use these data, even though the particle coatings were not TRISO, because after failure the nature of the coatings becomes much less important in influencing release. The particles were irradiated to 15% burnup. The data in Table 4-3 are for 2-hour anneal tests.

Release rate coefficient values derived from the fractional release values using Eq. 4-1 are included in Table 4-3 and plotted in Fig. 4-5. A

Temp. (°C)	Percent Release	R
1000	0.04 0.2 0.7 0.06 0.03	0.0002 0.001 0.0035 0.0003 0.00015
1300	0.5 0.7 0.1 0.3	0.0025 0.0035 0.0005 0.0015
1400	0.9 1.5	0.0045 0.0076

TABLE 4-3 RELEASE RATE COEFFICIENTS (R) FOR IODINE RELEASE FROM FAILED TRISO PARTICLES(a)

(a) Percent release values taken from ORNL report (Ref. 4-10, Table 5.4, p. 96). Values are for I-131 release during 2-hour anneals. Particles used were mechanically cracked pyrolytic carbon coated UC₂.

3

Fig. 4-5. Temperature dependence of release rate coefficients for iodine release from failed TRISO particles (i.e., failed particles with UC₂ kernels)

ł,

least-squares fit of the data, performed in the same manner as for the failed BISO particles, yielded curve 2 of Fig. 4-5.

Curve 1 in Fig. 4-5 is an early least-squares fit of the release rate coefficient data. Curve 1 differs from curve 2 because only averages of the release coefficient data at each temperature were used in obtaining the former. All data points were used in obtaining curve 2.

Curve 3 of Fig. 4-5 is the 2-sigma lower bound relative to curve 1. Curve 3 was adopted as the reference curve for failed TRISO particles and is the same as curve 10 TRISO in Fig. 4-3. In adopting curve 3, it was reasoned that this curve represents release rate coefficient values for constrained failed particles and that curve 1 represents the upper 2-sigma bound. This was an approximate means for accounting for lower release from constrained failed particles.

Curve 4 is a factor of four lower than curve 2. The justification for the factor of four is the above cited finding that Kr-85m release is a factor of four lower for constrained failed particles than for unconstrained failed particles.

Curve 3 does not differ greatly from curve 4; it is conservatively high relative to curve 4, and in view of the uncertainties involved, the difference between the two curves is probably not significant. This justifies the retention of curve 3 as the reference curve. (The procedure and reasoning which led to adopting curve 3 of Fig. 4-5 as the reference curve for failed TRISO particles is the same as that used in adopting curve 3 of Fig. 4-4 as the reference curve for failed BISO particles.)

The release rate coefficient curve for iodine release from failed TRISO particles is low relative to the failed BISO particle curve (compare curves 10 BISO and 10 TRISO in Fig. 4-3). The ORNL data clearly show that the release rate of iodine from carbide kernels is appreciably lower than that from oxide kernels. The appreciably lower release for failed particles with carbide kernels can readily be seen by examination of the

release rate data given in Table 5.4 of Ref. 4-10. (This table compares iodine release from cracked coated UO₂ and UC₂ particles during post-irradiation anneals at 1000° to 1400°C. Percent releases of iodine are greater by a factor of 10 or more for the UO₂ kernels than for the UC₂ kernels.)

The temperature range of the anneal experiments which provided the release data in Table 4-3 was rather narrow (1000° to 1400°C) from the viewpoint of accident conditions. The activation energy for the release coefficient data is correspondingly uncertain.

The greatest uncertainty associated with the curves in Fig. 4-5 is probably the dependence of the release rate coefficient on burnup. The burnup of the particles from which the data of Table 4-3 were obtained was only 15%, whereas the range of burnup from zero to about 75% is of interest. Since there are no data on the dependence of iodine release on burnup, data on the release of noble gases were examined. From limited GA data, only a weak dependence of release of Kr-85m on burnup was found in the range between 25% and 54% FIMA for UC $_{\rm 2}$ particles (and also in the range between 0 and 30% FIMA for UO, particles). On the other hand, workers at CEA (Ref. 4-13) have found an order of magnitude increase in fission gas release in the range of burnup from 0 to about 6% FIMA for (Th,U)0, particles. The CEA experiments were performed on GA particles which were laser-drilled to simulate failure. The particles with about 6% FIMA had been irradiated in capsule test SSL-1 with a neutron flux of 7.4 x 10^{15} n/m^2 s. The applicability of the CEA data to the present situation is not established; however, allowing for the effect of burnup is prudent. Accordingly, allowance was made for the uncertainty in burnup dependence by extending the uncertainty limits relative to the reference curve (curve 3 of Fig. 4-5), and this is reflected in the standard deviation factor given in Table 4-5 of Ref. 4-9.

Iodine Release From Intact Particles

The data for iodine release from intact particles are shown in Table 4-4. In all cases, the particles are BISO coated with HTI coatings. Some of the particles were tested at rather long times after the initiation of the anneal, and using these data without a correction would result in underestimating the release rate coefficient. Therefore a correction to these data has been made as indicated in Fig. 4-6. The correction consists of extrapolating the fractional release data to 1 hour in an essentially conservative manner; i.e., the fractional release found by extrapolation to 1 hour is essentially the maximum such value that can be obtained by extrapolating the data. [For one datum of Table 2 of Ref. 4-15, only one measurement of fractional release has been obtained and this sample is therefore not used here (i.e., sample F-1409-17).]

The data of Table 4-4 are all for $(Th,U)C_2$ particles. However, if the coating contamination is the principal source of iodine for intact particles, the restriction to carbide particles should not be important. This is generally assumed to be the case (see Ref. 4-17).

The least-squares straight line for the data of Table 4-4 and the 95% confidence bounds, based on the standard deviation for a single estimated value of the dependent variable, are shown in Fig. 4-7. The least-squares straight line (LSSL) is the same as curve 10 in Fig. 4-2.

Xenon Release From Failed Particles

The xenon fractional release data and derived release rate coefficients are given in Table 4-5 for release from uncoated $(Th,U)C_2$ kernels. The data were obtained from measurements on kernels embedded in a graphite matrix. There are no data for failed constrained particles.

The data of Table 4-5 are plotted in Fig. 4-8. Curve 1 is the leastsquares fit of the data, and one would expect this curve to be higher than a curve for failed constrained particles since retention of fission gases

Temp. (°C)	^F rel	Percent FIMA	Time (h)	R	Data Source
1600	$<1.4 \times 10^{-3}$	24.	2.5	$<5.6 \times 10^{-4}$	Ref. 4-14;
1600	$<5.8 \times 10^{-4}$	24.	2.5	$<2.3 \times 10^{-4}$	pp. 136-138
1100	$<3.2 \times 10^{-4}$	8.5	15.0 ^(b)	$< 3.4 \times 10^{-4}$	
1300	$<7.5 \times 10^{-4}$	8.5	14.9	$<7.5 \times 10^{-4}$	
1100	$<1.0 \times 10^{-4}$	~ 0	15.0	$< 1.0 \times 10^{-4}$	
1300	$<1.0 \times 10^{-4}$	∿0	15.0	$< 1.0 \times 10^{-4}$	
1340	2.1×10^{-4}	24.	6.0	2.1×10^{-4}	
1700	3.0×10^{-3}	~ 0	(c)	3.0×10^{-3}	Ref. 4-15;
1700	3.3×10^{-4}	∿0	(c)	3.3×10^{-4}	pp. 4-5
1700	1.2×10^{-4}	∿0	(c)	1.2×10^{-4}	
1000	6.0×10^{-6}	~ 0	(c)	6.0×10^{-6}	Ref. 4-16;
1200	2.3×10^{-5}	~ 0	(c)	2.3×10^{-6}	Table 6b, p. 34
					1

TABLE 4-4 RELEASE RATE COEFFICIENTS (R) FOR IODINE RELEASE FROM INTACT PARTICLES(a)

 $^{\rm (a)}{\rm All}$ particles are BISO type particles with HTI coatings.

(b) The listed times correspond to the one available datum; a conservative value of R was calculated by assuming t = 1 h.

(c) Data were extrapolated to 1 h as shown in Fig. 4-6.

Fig. 4-6. Extrapolation of release data for iodine release from intact particles

Fig. 4-7. Release rate coefficient - temperature curves for iodine release from intact particles

Temp. (°C)	Frel	R	Data Source
2000 2000 1800 1800 1600 1600 1400 1400	0.44 0.30 0.25 0.14 0.09 0.09 0.033 0.0095	0.58 0.36 0.29 0.15 0.094 0.094 0.033 0.0095	Ref. 4-16; Fig. 6, p. 14

TABLE 4-5 RELEASE RATE COEFFICIENTS (R) FOR XENON RELEASE FROM "FAILED" (UNCOATED) PARTICLES OF (Th,U)C₂^(a)

(a) All data are for $\sim 0\%$ FIMA; the data are from 1-h anneals.

`

Fig. 4-8. Release rate coefficient - temperature curves for xenon release from "failed" particles

by the graphite matrix is less than by constrained coatings (Ref. 4-12). Therefore curve 1 should yield a conservatively high estimate of release. Curve 2, which is the same as curve 5 in Fig. 4-3, is an early leastsquares fit of the release rate coefficient data, and this curve does not differ significantly from curve 1; therefore retention of curve 2 as the reference curve is justified.

The data of Table 4-5 are restricted to carbide kernels. There apparently are no data on the time dependence of xenon fractional release for oxide kernels. The only guide to estimating the relative fractional releases for oxide kernels compared to carbide kernels is the relation between these types of kernels as found for iodine in the previous section. For iodine the release rate coefficients for oxides are about a factor of twenty larger than those for carbides. [Compare the mean curves for constrained, failed particles of the present analysis in Figs. 4-4 and 4-5, for example, at $10^4/T$ (K) = 6.5.] Iodine is frequently assumed to behave like xenon and evidence for this exists (for example, see Table 4 of Ref. 4-16).

The xenon release rate coefficient curve for carbide kernels lies very close to the iodine curve for oxide kernels in failed constrained particles (compare curve 2 of Fig. 4-8 with curve 4 of Fig. 4-4). Thus, on the basis that the fractional release of xenon and iodine are the same, it is assumed that the xenon release rate coefficient curve for oxide kernels in constrained failed particles will be adequately represented by the present xenon release rate coefficient curve for carbide particles. Accordingly, curve 2 of Fig. 4-8 is taken to represent xenon release from both oxide and carbide kernels in constrained failed particles. Curve 2 should be especially conservatively high for carbide kernels considering the much lower iodine release rate observed for carbide kernels compared to oxide kernels.

For the data of Table 4-5, the burnup was very small. There are no data on the effect of burnup for xenon release from failed fuel particles. This effect is taken into account through the uncertainty assigned to curve 2 of Fig. 4-8. A moderately conservative estimate is made that the upper

bound to curve 2 is a factor of 10 greater than the mean (LSSL) curve. This estimate accounts for the available data on burnup as presented previously in the case of iodine release from failed TRISO particles.

Xenon Release From Intact Particles

The data for xenon release at early times from intact BISO and TRISO coated particles are shown in Table 4-6. The values of F_{rel} in Table 4-6 are treated in an effectively conservative manner by assuming these values of F_{rel} correspond to measurements taken 1 hour after annealing began. The data from Refs. 4-16 and 4-19 have fractional releases 100 times smaller than the other data in Table 4-6. The reason for this discrepancy is unknown but on the basis of comparative studies (Ref. 4-18), the discrepancy possibly results from differences in the manufacturing processes for various lots of particles. Since data are not available for reference particles, a conservative position is taken, and the low-release data are excluded in computing the mean curve.

The data for R in Table 4-6 are plotted in Fig. 4-9. These release data are too limited to determine the temperature dependence of R. Instead, this dependence is fixed by taking the slope of the release rate coefficient - temperature curve to be the same as for iodine release from intact particles. The resulting mean curve, as shown in Fig. 4-9, was drawn so as to pass through the point $R = 2.2 \times 10^{-5}$ at $10^4/T$ (K) = 6.0, which is also a point on the least-squares straight line fit to the R data of Table 4-6. The bound curve of Fig. 4-9 is based on the same uncertainty as was assigned to the mean curve for iodine release from intact particles.

Krypton Release From Failed Particles

There are no available fractional release data which are suitable for calculating release rate coefficients for krypton release from failed particles. Steady-state release fraction (R/B) data are available (Ref. 4-16) for uncoated particles irradiated for 1 hour. These data are not directly applicable to core heatup accident analyses. However, these steady-state

TABLE 4-6RELEASE RATE COEFFICIENTS (R) FOR XENON RELEASE FROM INTACT PARTICLES

Temp (°C)	Frel	Percent FIMA	t (h)	Coating	R	Data Source
1600 1600 1100 1300	<6.2 x 10 ⁻⁵ <5.6 x 10 ⁻⁵ <1.7 x 10 ⁻⁵ <4.4 x 10 ⁻⁵	24.0 24.0 8.5 8,5	2.5 2.5 15.0 14.9	HTI HTI HTI HTI	$\begin{array}{c} 6.2 \times 10^{-5} \\ 5.6 \times 10^{-5} \\ 1.7 \times 10^{-5} \\ 4.4 \times 10^{-5} \end{array}$	Ref. 4-14; pp. 136-138, BISO particles
1400 1400 1400 1400 1400 1400	1.1×10^{-5} 6.4 x 10 ⁻⁶ 7.4 x 10 ⁻⁶ 1.3 x 10 ⁻⁵ 5.2 x 10 ⁻⁵ 2.4 x 10 ⁻⁵	(a) (a) (a) (a) (a) (a)	5 5 5 5 5 5 5	(a) (a) (a) (a) (a) (a)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Ref. 4-18; p. 140, TRISO particles
1700 1400 1200 1000 1400	<1.7 x 10 ⁻⁷ (b) <2.7 x 10 ⁻⁷ <2.2 x 10 ⁻⁷ <1.8 x 10 ⁻⁷ 3.2 x 10 ⁻⁷	~ 0 ~ 0 ~ 0 ~ 0	65 65 20 15 5	LTI LTI LTI LTI LTI		Ref. 4-16; Table 6, p. 34, BISO particles Ref. 4-19; Table V.11, p. 217, BISO particles

(a)_{Data not given in Ref. 4-18.}

>

(b) Note that the very low release data are not used (see text).

ě,

Fig. 4-9. Release rate coefficient - temperature curves for xenon release from intact particles

data were used in earlier estimates of the release rate coefficients and are the basis for the reference curve (curve 6 in Fig. 4-3).

A different approach, which is considered to be more reliable, is the following. The assumption is made that the ratio of the release rate coefficients for Kr to Xe is given by the ratio of the corresponding R/B values as measured in loops, reactors, etc. Ratios have been recently evaluated (Ref. 4-20). To estimate the release rate coefficient curve for krypton release from failed particles, the release rate coefficient curve for xenon release from failed particles, curve 2 of Fig. 4-8, was multiplied by appropriate values of the ratios. The resulting curve is shown in Fig. 4-10 as curve 1. To obtain this curve, points at 1100° and 1400°C on curve 2 of Fig. 4-8 were multiplied by the ratios 2.5 and 3.3, respectively.

This estimated mean curve is compared in Fig. 4-10 with the mean curve from the earlier analysis. The differences only exceed a factor of 3 above 2300°C; since extrapolation of any curve much beyond this temperature is not justified, the differences in the curves can be neglected. Therefore, the retention of curve 2 as the reference curve is justified.

The uncertainties of the krypton curve are unlikely to be smaller than those associated with the corresponding xenon curve and therefore a factor of ± 10 in R values will give moderately conservative bounds.

Krypton Release From Intact Particles

The data on krypton release from intact particles are listed in Table 4-7 and shown in Fig. 4-11. The scatter in these data is large, but the data correspond roughly to those for xenon as presented in Table 4-6. To maintain consistency, the release rate coefficient curve for xenon release from intact particles is used but multiplied by the ratios given above to represent krypton release from intact particles. The resulting curve is shown in Fig. 4-11 as curve 1. This curve was obtained by multiplying points at 1100° and 1400°C on curve 1 of Fig. 4-9 by the ratios 2.5 and

Fig. 4-10. Comparison of mean curves for krypton release from failed particles

Temp (°C)	^F rel	R(a)	Data Source
1440 1600 1370 1700 1370 1660 1800 1370 1660 2000 1370 1370 1370 1520 1370 1700 2000 1370 1700 2000	3.0×10^{-6} 6.0×10^{-6} 1.0×10^{-6} 1.0×10^{-6} 4.0×10^{-6} 4.0×10^{-6} 4.1×10^{-6} 4.1×10^{-6} 4.5×10^{-5} 2.0×10^{-6} 4.2×10^{-4} 1.1×10^{-4} 9.0×10^{-6} 1.1×10^{-5} 1.6×10^{-5} 2.5×10^{-5} 1.8×10^{-5} 2.2×10^{-5}	= F _{rel}	Ref. 4-21

TABLE 4-7RELEASE RATE COEFFICIENTS (R) FOR KRYPTONRELEASE FROM INTACT PARTICLES

(a)
$$F_{rel} = 1 - e^{-Rt} % Rt \equiv R$$
, for $t = 1$ h.

۳

Fig. 4-11. Release rate coefficient - temperature curves for krypton release from intact particles

3.3, respectively. Curve 1 of Fig. 4-11 differs negligibly from curve 2 of an earlier analysis, justifying curve 2 as the reference curve. The assigned uncertainties shown in Fig. 4-11 are the same as used for xenon release from intact particles.

Cesium Release From Failed Particles

Recent experimental data (Ref. 4-22) for cesium release from failed particles are presented in Table 4-8. These data are plotted in Fig. 4-12. The least-squares straight line and 95% confidence bounds are also given in Fig. 4-12. The least-squares straight line is the reference curve (curve 2 in Fig. 4-3).

The data derived from the Peach Bottom element and from the FTE-2 laser-drilled particles are in agreement except for one datum at 1400°C. This agreement indicates that the coating type, HTI or LTI, is not important for release from failed particles, as expected.

For the particles with ThO₂ kernels, near peak burnup was achieved; for particles with carbide kernels, the burnup was small relative to peak burnup. Since no release rate data are available for carbide kernels at peak burnup, there is an unknown uncertainty in applying the mean curve of Fig. 4-12 to predict release of cesium from failed particles with carbide kernels. However, the release rate coefficients of Fig. 4-12 are quite high; for example, taking into account the upper confidence bound, all cesium would be released in 30 minutes at 1500°C. Thus, use of the mean curve and confidence limits of Fig. 4-12 for carbide particles should produce little error in times of the order of hours under accident conditions.

Cesium Release From Intact Particles

The data used for obtaining release rate coefficient curves for cesium release from intact particles are given in Table 4-9. The data from Ref. 4-23 are for BISO-type particles with essentially HTI coatings and FIMA of 8.5%. The data of Table 4-9 are plotted in Fig. 4-13 and the mean (LSSL)

Temp. (°C)	Frel	Percent FIMA	Particles	R	Data Source
1000 1200 1400 1000 1200 1400	9.0 x 10^{-4} 2.5 x 10^{-2} 1.8 x 10^{-1} 1.5 x 10^{-3} 2.0 x 10^{-2} 2.8 x 10^{-1}	∿5	(Th,U)C ₂ with HTI coating	9.0 x 10 ⁻⁴ 2.5 x 10 ⁻² 2.0 x 10 ⁻¹ 1.5 x 10 ⁻³ 2.0 x 10 ⁻² 3.3 x 10 ⁻¹	Peach Bottom element P13-05, 100% failed
1000 1200 1400	3.0×10^{-3} 1.4 x 10 ⁻² 5.5 x 10 ⁻³	∿7	ThO ₂ BISO with LTI coating	3.0×10^{-3} 1.4 x 10 ⁻² 5.5 x 10 ⁻³	FTE-2; laser- drilled particles

TABLE 4-8RELEASE RATE COEFFICIENTS (R) FOR CESIUMRELEASE FROM FAILED PARTICLES(a)

(a)_{Data from Ref. 4-22.} Anneal times are 1 h.

Fig. 4-12. Release rate coefficient - temperature curves for cesium release from failed particles

Temp. (°C)	Frel	Percent FIMA	R	Data Source
1370 1700 2000 1100 1250 1500 2000 1100 1250 1500 1750	$3 \times 10^{-4} 4 \times 10^{-4} 2 \times 10^{-3} 2.8 \times 10^{-5} 5.5 \times 10^{-5} 1.2 \times 10^{-4} \sim 2 \times 10^{-2} 2.2 \times 10^{-5} 4.9 \times 10^{-5} 1.2 \times 10^{-4} 2.3 \times 10^{-4} $	$ \sqrt{0} $	$3 \times 10^{-4} 4 \times 10^{-4} 2 \times 10^{-3} 2.8 \times 10^{-5} 5.5 \times 10^{-5} 1.2 \times 10^{-4} \sim 2 \times 10^{-2} 2.2 \times 10^{-5} 4.9 \times 10^{-5} 1.2 \times 10^{-4} 2.3 \times 10^{-4} $	Ref. 4-21; p. 104 Ref. 4-23; pp. 104, 106

TABLE 4-9 RELEASE RATE COEFFICIENTS (R) FOR CESIUM RELEASE FROM INTACT PARTICLES

.

Fig. 4-13. Release rate coefficient - temperature curves for cesium release from intact particles

curve (curve 1) from the present analysis as well as curve 2 (a slightly revised version of the Ref. 4-7 mean curve) are drawn. The differences in the two mean curves are due primarily to the assumption in Ref. 4-23, and thus in Ref. 4-7, that the release rate coefficient curves (coefficients being evaluated at 20 hours) which exhibit two portions with different slopes reflect the operation of two different release mechanisms and not simply errors in the measurements. In the present analysis, this assumption has not been made on the basis that (1) the data are too few to draw such a strong conclusion, (2) other data (Ref. 4-24) for certain particles show no evidence for a changing slope of release rate coefficient curves, and (3) the evaluation of release rate coefficients at 20 hours is not satisfactory for accident analysis given that Eq. 4-1 has to be used. Consequently, the mean curve of the present analysis is an adequate representation of the data.

The data, as mentioned above, are primarily for HTI coatings, whereas LTI coatings are of primary interest in HTGRs. A clear demonstration has been given (Ref. 4-25) that the diffusion coefficient of cesium in LTI is significantly greater than the diffusion coefficient in HTI pyrocarbon. Therefore, a correction to the mean curve of the present analysis is in order. The correction is made as follows. The fractional release is proportional to the square root of the diffusion coefficient for small values of the products of reduced diffusion coefficient and time and decay frequency and time (Ref. 4-26). The approximation that this proportionality can be applied to correct the HTI coating data is used. Thus the mean curve of Fig. 4-13 is increased by factors derived from the square root of the ratio of diffusion coefficients for LTI to HTI pyrocarbon coatings as determined from Ref. 4-25. At $10^4/T$ (K) = 4.0, the factor is determined to be 14.6 and at $10^4/T$ (K) = 6.0, the factor is 4.1. The new mean curve for cesium release from LTI coated particles is shown by curve 3 of Fig. 4-13. Notice that in obtaining this new curve, the further assumption of a proportionality between fractional release and release rate coefficient has been made. This curve is the same as curve 2 in Fig. 4-2.

The uncertainty associated with the new mean curve will be the standard deviation of a single point based on the data of Table 4-9. The standard deviation of a single point rather than that of the mean is chosen to take into account differences in the materials to which the data may be applied from the materials on which the data were based. This consideration is in addition to the differences between HTI and LTI pyrocarbon which has been accounted for by the use of multiplying factors. The confidence bounds at the 95% limit are shown in Fig. 4-13.

Additional data at 4% FIMA (Ref. 4-24) are available but were overlooked in this review until completion of the analysis. Rather than revise the analysis, which could not be essentially altered thereby, the data will be briefly discussed. The data are given in the form of release rate coefficients which are calculated for initial release behavior; thus, qualitatively they are acceptable for the present review. At temperatures above 1400°C, these data are not significantly different from the data plotted in Fig. 4-13; for temperatures of 1400°C and smaller, the data lie below the data of Fig. 4-13. Thus the dependence of release rate coefficients on FIMA is apparently weak for intact particles as expected. On this basis, the effect of FIMA can be neglected and omission of the 4% FIMA data is not important.

Strontium Release From Intact BISO Particles

The data for strontium release at early times from BISO type particles are given in Table 4-10. All data are for intact particles except for the one case noted and only data at 1 hour after start of annealing are used except as noted.

All the particles considered in Table 4-10 had carbide kernels, whereas the reference BISO particles have ThO₂ kernels. However, this discrepancy is relatively unimportant because the release of strontium is controlled by diffusion through the pyrocarbon at temperatures above 1400°C. At lower temperatures, the release of strontium is controlled by

Temp. (°C)	Frel	Percent FIMA	Kernel and Coating	R	Data Source
1300 1400 1750	7.4 x 10^{-4} 2.9 x 10^{-2} 4.6 x 10^{-1}	4.0 4.0 4.0	(Th,U)C ₂ HTI	7.4 x 10^{-4} 2.9 x 10^{-2} 6.2 x 10^{-1}	Ref. 4-23; p. 112
1250	9.0×10^{-2}	7.5	UC2 ^(a)	9.4 x 10^{-2}	Ref. 4-27; p. 111
1100 1300 1100 1300	4.0×10^{-3} 5.6×10^{-1} 2.6×10^{-3} 2.2×10^{-1}	24.0 24.0 24.0 24.0	(Th,U)C ₂ HTI	$\begin{array}{r} 4.0 \ x \ 10^{-3} \\ 8.2 \ x \ 10^{-1} \\ 2.6 \ x \ 10^{-3} (b) \\ 2.5 \ x \ 10^{-1} (c) \end{array}$	Ref. 4-14; Table 3.19, p. 137
1400	3.5 x 10 ^{-3(d)}	0	Carbide LTI	3.5 x 10 ⁻³	Ref. 4-19; Table V.11, p. 217
1100 1250 1500 2000	$\begin{array}{c} 2.0 \times 10^{-3} \\ 3.5 \times 10^{-2} \\ 3.6 \times 10^{-1} \\ 4.0 \times 10^{-1} \end{array}$	8.5 8.5 8.5 8.5	(Th,U)C ₂ HTI	$\begin{array}{cccccccc} 2.0 & \times & 10^{-3} \\ 3.6 & \times & 10^{-2} \\ 4.5 & \times & 10^{-1} \\ 5.1 & \times & 10^{-1} \end{array}$	Ref. 4-28; p. 105
1370 1700 2000	7.0×10^{-3} 1.1×10^{-1} 3.8×10^{-1}	へ0 へ0 へ0	(Th,U)C ₂ ?	7.0×10^{-3} 1.2 x 10 ⁻¹ 4.8 x 10 ⁻¹	Ref. 4-21; p. 104

TABLE 4-10 RELEASE RATE COEFFICIENTS (R) FOR STRONTIUM RELEASE

 ${\rm (a)}_{\rm All}$ coatings were intact except for this case in which the coating was mechanically failed.

(b) 1.5 h point treated as a 1 h point.

(c) $_{\rm Based}$ on extrapolated value to obtain ${\rm F}_{\rm rel}$ at 1 h.

(d) Average of four lots.

kernel diffusion. The assumption of pyrocarbon control of release at temperatures below 1400°C will result in overpredicting the release but not by a significant amount since the contribution to total release below 1400°C is small as a result of the exponential dependence of release on temperature (considering the temperature ramp conditions of accidents). Therefore, it is assumed that the pyrocarbon controls the release of strontium at all temperatures of interest.

Unlike the case of cesium, as discussed earlier, the data for strontium migration through LTI and HTI pyrocarbon indicate there is little difference between the diffusion coefficients for strontium in LTI and HTI pyrocarbon (Refs. 4-25, 4-29). Most of the particles represented in Table 4-10 have HTI coatings but these were treated, along with the rest, as if they had LTI coatings.

The data of Table 4-10 are plotted in Fig. 4-14; examination of these data shows a dependence on FIMA with large release rate coefficients associated with large FIMA values. The FIMA values range from 0 to 24%. Such a correlation between the diffusion coefficient of cesium in pyrocarbon and FIMA has recently been noted (Ref. 4-30) and is apparently independent of kernel type. Further work is required to understand the correlation, although it appears not to extend much above 20% FIMA. In the present case, where FIMA values of less than 7.5% are of concern, this correlation is considered only in terms of the assigned uncertainties. The mean curve for the intact particle data plotted in Fig. 4-14 is shown as curve 1. Curve 2, which is derived from an earlier analysis and appears as curve 1 BISO in Fig. 4-2, is in error apparently due to a transcription error. However, it does not differ significantly from curve 1 within the uncertainty limits shown in Fig. 4-14. These limits are based on the standard deviation of a single estimated value of the dependent variable. Curve 1 is being used in current SORS calculations of strontium release from intact BISO coated particles.

Fig. 4-14. Release rate coefficient - temperature curves for strontium release from BISO particles

Strontium Release From Failed Particles

For strontium release from failed particles, only one point is available from the existing data (Table 4-10). Therefore, the release rate coefficient curve for failed particles was established by multiplying curve 1 of Fig. 4-14 by the ratio of the failed particle datum to the datum of curve 1 at the same temperature. This ratio, from Fig. 4-14, is 8.2. The uncertainty is assumed to be the same as in the intact particle case.

The release rate coefficient curve of Fig. 4-3 for strontium release from failed particles (curve 1) differs from the recommended curve for the same reason as noted above in the case of strontium release from intact BISO particles. Again the difference is not significant but the recommended curve should be used.

Strontium Release From Intact TRISO Particles

The data for strontium release from intact TRISO particles are given in Table 4-11. Because of the high anneal temperatures involved, data are available on particles without some defect only at one temperature (1400°C) and it is necessary to consider defective particles to estimate the temperature dependence of the release rate coefficients. The particles listed in Table 4-11 are classified as defective if (1) the inner pyrocarbon coating is missing, (2) a high release of xenon was obtained, or (3) the coating contamination by uranium was large.

Classification of the data is given in the legend of Fig. 4-15 and a mean curve is drawn for classification sets 1, 4, and 5. Sets 3 and 6, with nonzero FIMA values, yield mean curves not significantly different from the curves for the corresponding zero FIMA data sets. Thus, no effect of FIMA on the release rate coefficient is shown by the data. The three mean curves have essentially the same slope. The mean curve for set 2, the particles without defects, is drawn parallel to the other mean curves and is passed through the mean value for data of this set at 1400°C. For this mean curve, the uncertainty is estimated to be a factor of about 50.

Temp. (°C)	Frel ^(a)	Percent FIMA	R	Defective	Symbol	Data Source
1400 1600 1800	3.7×10^{-5} 2.8 x 10 ⁻⁴ 7.7 x 10 ⁻⁴	~0 ~0 ~0	3.7×10^{-5} 2.8 x 10 ⁻⁴ 7.7 x 10 ⁻⁴		0 0 0	Ref. 4-31
1400 1600	1.4×10^{-3} 3.5 x 10 ⁻³	へ0 へ0	1.4×10^{-3} 3.5 x 10 ⁻³	x x	•	Ref. 4-31
1400 1600 1800 1400 1600 1800	$3.5 \times 10^{-6} 1.0 \times 10^{-3} 1.8 \times 10^{-2} 2.2 \times 10^{-4} 1.6 \times 10^{-3} 1.1 \times 10^{-2} $	へ0 へ0 へ0 へ0 へ0 へ0	$3.5 \times 10^{-6} 1.0 \times 10^{-3} 1.8 \times 10^{-2} 2.2 \times 10^{-4} 1.6 \times 10^{-3} 1.1 \times 10^{-2}$	x x x x x x	• • • •	Ref. 4-31
1400 1600 1800	2.3×10^{-6} 4.5×10^{-5} 4.2×10^{-5}	~0 ~0 ~0	2.3 x 10-6 4.5 x 10 ⁻⁵ 4.2 x 10 ⁻⁵		0 0 0	Ref. 4-31
1400 1600 1800 1800 1600 1800 1800 1800	$3.5 \times 10^{-5} 1.9 \times 10^{-4} 3.8 \times 10^{-4} 5.4 \times 10^{-5} 2.8 \times 10^{-3} 9.6 \times 10^{-2} 4.4 \times 10^{-2} 1.6 \times 10^{-2} $	10.5 10.5 13.2 11.6 11.6 12.6 13.2	3.5×10^{-5} 1.9×10^{-4} 3.8×10^{-4} 5.4×10^{-5} 2.8×10^{-3} 1.0×10^{-1} 4.5×10^{-2} 1.6×10^{-2}	x x x x x	$\Diamond \Diamond \Diamond \Diamond \diamond \blacklozenge \blacklozenge \blacklozenge$	Ref. 4-31
1400 1400 1400 1400 1400 1400 1400 1400	1.1×10^{-7} 2.4×10^{-7} 1.9×10^{-5} 1.3×10^{-5} 1.9×10^{-6} 8.1×10^{-5} 3.3×10^{-6} 4.8×10^{-7} 1.4×10^{-4} 2.9×10^{-4}	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1.1×10^{-7} 2.4×10^{-7} 1.9×10^{-5} 1.3×10^{-5} 1.9×10^{-6} 8.1×10^{-5} 3.3×10^{-6} 4.8×10^{-7} 1.4×10^{-4} 2.9×10^{-4}	x x x x x		Ref. 4-19

TABLE 4-11 RELEASE RATE COEFFICIENTS (R) FOR STRONTIUM RELEASE FROM INTACT TRISO PARTICLES

(a) Fractional release values at 1 h.

Fig. 4-15. Release rate coefficient - temperature curves for strontium release from intact TRISO particles

Cerium Release From Intact BISO and Failed Particles

The data for cerium release from intact BISO particles are given in Table 4-12 and shown in Fig. 4-16. These data represent only pyrocarbon coated $(Th,U)C_2$ kernels. Furthermore, for the particles represented by the GA data (Refs. 4-23 and 4-24), the coatings were HTI pyrocarbon.

There are fewer related experiments on which to base an approach to interpretation of these cerium data than for the cases of cesium or strontium, but the general procedure in the past has been to liken cerium to strontium in its behavior as a migrating fission product. With the assumption of similarity in transport for cerium and strontium, one expects little dependence on the pyrocarbon coatings represented by HTI or LTI. Thus, in Table 4-12 the data for particles with HTI coatings can be treated as representing data obtained on particles with LTI coatings. Furthermore, one expects a dependence of the release rate coefficient on FIMA, which is shown by the data of Fig. 4-16.

The choice of the mean curve is somewhat arbitrarily made by using the curve for the 8.5% FIMA case as shown in Fig. 4-16. The uncertainty associated with the mean curve is based on the standard deviation of a single estimated value of the dependent variable.

For failed particles, no data are available; in accordance with the assumption of the similarity of cerium and strontium, the same treatment and factor that were applied to strontium for failed particles are also applied to cerium.

Cerium Release From Intact TRISO Particles

As there are apparently no data for the case of cerium release from intact TRISO particles, the corresponding curve and uncertainties applicable to strontium release from intact TRISO particles can be used on the assumption of a similarity between cerium and strontium in regard to transport in particles.

Temp. (°C)	Frel	Percent FIMA	R	Data Source
1370 1700 2000	$\begin{array}{r} 4.0 \times 10^{-4} \\ 5.0 \times 10^{-3} \\ 8.0 \times 10^{-2} \end{array}$	~0 ~0 ~0	4.0×10^{-4} 5.0 x 10 ⁻³ 8.3 x 10 ⁻²	Ref. 4-21; p. 104
1100 1250 1500 2000 1100 1250 1500 1750	$1.5 \times 10^{-4} 5.1 \times 10^{-3} 2.4 \times 10^{-2} 4.7 \times 10^{-1} 8.0 \times 10^{-5} 1.2 \times 10^{-3} 2.2 \times 10^{-3} 1.8 \times 10^{-1} $	8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	$1.5 \times 10^{-4} 5.1 \times 10^{-3} 2.4 \times 10^{-2} 6.3 \times 10^{-1} 8.0 \times 10^{-5} 1.2 \times 10^{-3} 2.2 \times 10^{-3} 2.0 \times 10^{-1} $	Ref. 23; pp. 105, 107
1300 1400 1750 2000 1300 1750 2000	(a) (a) (a) (a) (a) (a) (a) (a)	$ \begin{array}{r} 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\$	$1.3 \times 10^{-5} \\ 1.6 \times 10^{-4} \\ 3.5 \times 10^{-3} \\ 1.0 \times 10^{-1} \\ 1.6 \times 10^{-4} \\ 8.5 \times 10^{-3} \\ 7.1 \times 10^{-2} \\ 10$	Ref. 4-24; P.62

TABLE 4-12 RELEASE RATE COEFFICIENTS (R) FOR CERIUM RELEASE FROM INTACT BISO PARTICLES

(a) R values are presented in Ref. 4-24.

Fig. 4-16. Release rate coefficient - temperature curves for cerium release from intact BISO particles

Barium Release From Intact BISO and Failed Particles

The data on intact particles for barium are given in Table 4-13 and in Fig. 4-17; these data represent particles with carbide kernels and with both HTI and LTI coatings. These data indicate no significant difference between release rate coefficients for particles with LTI and HTI coatings, but clearly exhibit (excluding Ref. 4-21 data) a dependence of the release rate coefficient on FIMA. These statements provide the basis for considering a similarity between barium and strontium (or cerium). Thus, as in the case of strontium, all data are used to derive a mean curve for the release rate coefficients for barium. Note that three of the data points included in Table 4-13 were obtained by extrapolation of release-time data. The derived mean curve is shown in Fig. 4-17.

The uncertainty associated with the mean curve is taken to be the same as in the case of strontium; the 95% confidence bounds are shown in Fig. 4-17.

For failed particles, no data are available. Therefore, the same procedure as was used in the case of strontium was used for barium, i.e., an increase in all values from the mean curve for release rate coefficients for intact BISO particles by a factor of 8.2. The uncertainties are estimated to be a factor of about 50.

Barium Release From Intact TRISO Particles

The data for barium release from intact TRISO particles are similar to those for strontium and the treatment of the data for barium parallels that used in the case of strontium. The data are given in Table 4-14; some of the release fractions were obtained by extrapolation of release-time curves. The data are plotted in Fig. 4-18; the legend for Fig. 4-18 summarizes the group classification.

The best representation of barium release rate coefficients from intact TRISO particles is given by curve 2 of Fig. 4-18, which was derived
Temp. (°C)	Frel ^(a)	Percent FIMA	Coating	R	Data Source
1300 1400 1750 2000 1300 1750 2000	(b) (b) (b) (b) (b) (b) (b)	4.0 4.0 4.0 4.0 4.0 4.0 4.0	HTI HTI HTI HTI HTI HTI HTI	$1.2 \times 10^{-4} \\ 3.5 \times 10^{-3} \\ 5.0 \times 10^{-3} \\ 1.4 \times 10^{-1} \\ 2.0 \times 10^{-4} \\ 1.4 \times 10^{-2} \\ 8.5 \times 10^{-2} \\ 8.5 \times 10^{-2} \\ 1.4 \times 10^{-2$	Ref. 4-24; p. 62
1100 1300 1300	$<2 \times 10^{-3}$ 1.6 x 10 ⁻¹ 2.7 x 10 ⁻³	24.0 24.0 8.5	HTI HTI HTI	$<2 \times 10^{-3}$ 1.7 x 10^{-1} 2.7 x 10^{-3}	Ref. 4-14; p. 137
1200 1000	5.0 x 10 ⁻⁵ 1.0 x 10 ⁻³	~0 ~0	LTI LTI	5.0×10^{-5} 1.0 x 10 ⁻³	Ref. 4-16; p. 34
1370 1700 2000	4.0 x 10 ⁻³ 1.3 x 10 ⁻¹ 3.0 x 10 ⁻¹	へ0 へ0 へ0	LTI LTI	$\begin{array}{r} 4.0 \times 10^{-3} \\ 1.4 \times 10^{-1} \\ 3.6 \times 10^{-1} \end{array}$	Ref. 4-21; p. 104
1400	3.4×10^{-4}	∿0	LTI	3.4×10^{-4}	Ref. 4-19; p. 217

TABLE 4-13 RELEASE RATE COEFFICIENTS (R) FOR BARIUM RELEASE FROM INTACT BISO PARTICLES

(a)_{Values} for 1 h.

(b) $_{\rm R}$ values are presented in Ref. 4-24.

Fig. 4-17. Release rate coefficient - temperature curves for barium release from intact BISO particles

Temp. (°C)	F _{rel} (a)	Percent FIMA	R	Defective	Symbol	Data Source
$1400 \\ 1600 \\ 1800 \\ 1400 \\ 1600 \\ 1400 \\ 1600 \\ 1800 \\ 1400 \\ 1600 \\ 1800 \\ 1400 \\ 1600 \\ 1800 \\ 1600 \\ 1800 \\ 1600 \\ 1800 \\ 1400 \\ 1600 \\ 1800 \\ $	$\begin{array}{c} 4.9 \times 10^{-5} \\ 7.3 \times 10^{-5} \\ 1.6 \times 10^{-4} \\ 1.9 \times 10^{-4} \\ 4.1 \times 10^{-3} \\ 2.3 \times 10^{-5} \\ 2.0 \times 10^{-4} \\ 6.4 \times 10^{-3} \\ 2.4 \times 10^{-5} \\ 8.8 \times 10^{-5} \\ 2.9 \times 10^{-3} \\ 2.2 \times 10^{-6} \\ 5.9 \times 10^{-6} \\ 2.0 \times 10^{-5} \\ 1.2 \times 10^{-4} \\ 1.3 \times 10^{-5} \\ 4.2 \times 10^{-4} \\ 1.3 \times 10^{-5} \\ 4.2 \times 10^{-4} \\ 1.3 \times 10^{-5} \\ 8.5 \times 10^{-4} \\ 9.2 \times 10^{-2} \\ 3.4 \times 10^{-2} \\ 1.7 \times 10^{-2} \end{array}$	$\begin{array}{c} & & \\$	$\begin{array}{c} 4.9 \times 10^{-5} \\ 7.3 \times 10^{-5} \\ 1.6 \times 10^{-4} \\ 1.9 \times 10^{-4} \\ 4.1 \times 10^{-3} \\ 2.3 \times 10^{-5} \\ 2.0 \times 10^{-4} \\ 6.4 \times 10^{-3} \\ 2.4 \times 10^{-5} \\ 8.8 \times 10^{-5} \\ 2.9 \times 10^{-3} \\ 2.2 \times 10^{-6} \\ 5.9 \times 10^{-6} \\ 2.0 \times 10^{-5} \\ 1.2 \times 10^{-6} \\ 1.3 \times 10^{-5} \\ 4.2 \times 10^{-5} \\ 1.5 \times 10^{-4} \\ 1.3 \times 10^{-5} \\ 1.5 \times 10^{-4} \\ 1.9 \times 10^{-5} \\ 8.5 \times 10^{-2} \\ 3.5 \times 10^{-2} \\ 1.7 \times 10^{-2} \end{array}$	x x x x x x x x x x x x x x	000 • • • • • • 000 0000000000000000000	Ref. 4-31
1400 1400 1400 1400 1400	2.9×10^{-7} 9.9 × 10^{-7} 2.0 × 10^{-6} 2.6 × 10^{-7} 1.8 × 10^{-4}	へ0 へ0 へ0 へ0 へ0	$\begin{array}{c} 2.9 \times 10^{-7} \\ 9.9 \times 10^{-7} \\ 2.0 \times 10^{-6} \\ 2.6 \times 10^{-7} \\ 1.8 \times 10^{-4} \end{array}$	x x x		Ref. 4-19

TABLE 4-14 RELEASE RATE COEFFICIENTS (R) FOR BARIUM RELEASE FROM INTACT TRISO PARTICLES

(a) Fractional release values at 1 h.

Fig. 4-18. Release rate coefficient - temperature curves for barium release from TRISO particles

as in the case of strontium. Curve 4, which is from an earlier analysis, is conservative with respect to curve 2 and, on this basis, is retained as the reference curve. The uncertainty estimate, as in the case of strontium, is given by a factor of about 50.

Release of Other Elements From Intact and Failed Particles

For elements other than those discussed above, there are no documented data. The release rate constants for Rb, Sm, Eu, Zr, Nb, Mo, Tc, Pm, Nd, Pr, Y, Pd, Sn, La, Ru, Rh, Se, Br, Te, and Sb are selected from the data presented here on the basis of the similarity of chemical or physical properties with the elements considered (see Figs. 4-2 and 4-3 and Ref. 4-7).

Summary of Release Rate Coefficient and Uncertainty Data

The release rate coefficients are calculated according to the equation

$$\log_{10} R = A - B [10^4/T (K)]$$
, (4-2)

where A and B are constants as given in Table 4-15. To calculate the associated uncertainties, standard deviation factors are employed. The standard deviation factor is defined by

$$S_{\rm F} = e^{\rm S}$$
, (4-3)

where S is the standard deviation in $\log_e R$ (the natural logarithm of R). The standard deviation factors are given in Table 4-16. To derive 95% confidence limits, the following equations are used:

Upper limit

$$R_u = R \cdot e^{1.645S}$$
 (4-4)

(-)		Inta	ct BISO	Intact	TRISO	Faile	d BISO ^(b)	Failed TRISO(b)	
Group ^(a)	Element(s)	A	В	A	В	A	В	Α	В
1	Sr	1.55 ^(c)	-0.521 ^(c)	0.851	-1.134	2.23 ^(d)	-0.521 ^(d)	2.23 ^(d)	-0.521 ^(d)
2	Cs,Rb	2,81	-1.01	2.81	-1.01	6.19	-1.15	6.19	-1.15
3	Ba,Sm,Eu	2,28	-0.782	-2.03	-0.625	3.19	-0.782	3.19	-0.782
4	Се	5.21	-1.242	0.851	-1.134	6.12	-1.242	6.12	-1.242
5	Хе	-1.95	-0.452	-1.95	-0.452	3.28	-0.856	3.28	-0.856
6	Kr	-1.951	-0.452	-1.951	-0.452	3.18	-0.768	3.18	-0.768
7	Zr,Nb,Mo,Tc	0.851	-1.134	0.851	-1.134	6.12	-1.242	6.12	-1.242
8	Pm,Nd,Pr,Y,Pd,Sn,La	-1.951	-0.452	0.851	-1.134	6.12	-1.242	6.12	-1.242
9	R u, Rh	-1.951	-0.452	0.851	-1.134	6.12	-1.242	6.12	-1.242
10	Se,Br,Te,Sb,I	-0.951	-0.452	-0.951	-0.452	3.366	-0.796	0.8736	-0.599

TABLE 4-15 PARAMETERS IN THE EQUATION FOR RELEASE RATE COEFFICIENTS AS A FUNCTION OF TEMPERATURE

 $\log_{10} R = A + B[10^4/T(K)]$

(a) The group classification is that shown in Figs. 4-2 and 4-3.

(b) The factors for failed BISO and failed TRISO are applied to reference particles with failed coatings (i.e., failed fertile particles with BISO coatings and ThO₂ kernels and failed fissile particles with TRISO coatings and dense UC₂ kernels). Except for group 10, the parameters for each group are the same for failed BISO and failed TRISO.

(c) Current values are A = 4.23, B = -0.937.

(d) Current values are A = 5.14, B = -0.937.

		S _F								
Group(b)	Element(s)	Intact BISO	Intact TRISO	Failed BISO(c)	Failed TRISO(c)					
1	Sr	5.4	10.0	5.4	5.4					
2	Cs,Rb	3.0	3.0	2.0	2.0					
3	Ba,Sm,Eu	5.4	10.0	10.0	10.0					
4	Ce	10.0	10.0	10.0	10.0					
5	Хе	4.7	4.7	4.1 ^(d)	4.1 ^(d)					
6	Kr	4.7	4.7	4.1 ^(d)	4.1 ^(d)					
7	Zr,Nb,Mo,Tc	10.0	10.0	10.0	10.0					
8	Pm,Nd,Pr,Y,Pd,Sn,La	4.7	10.0	10.0	10.0					
9	Ru,Rh	4.7	10.0	10.0	10.0					
10	Se,Br,Te,Sb,I	4,7	4.7	1.7	2.7					

TABLE 4-16 STANDARD DEVIATION FACTORS (S_F) FOR THE RELEASE RATE COEFFICIENTS $S_F = e^S$; S = standard deviation in log_e R^(a)

(a)Note that logarithm to the base 10 is used in Table 4-15 but in this table logarithm to the base e is used.

(b) The group classification is that shown in Figs. 4-2 and 4-3.

^(c)The factors for failed BISO and failed TRISO are applied to reference particles with failed coatings (i.e., failed fertile particles with BISO coatings and ThO_2 kernels and failed fissile particles with TRISO coatings and dense UC₂ kernels). Except for group 10, the factors for each group are the same for failed BISO and failed TRISO.

(d) The values are slightly larger than reported in Ref. 4-9.

Lower limit

$$R_1 = R \cdot e^{-1.645S}$$
 (4-5)

TASK 600: COOLANT IMPURITY/CORE MATERIAL INTERACTION

Subtask 610: Reaction of Coolant Impurities with Fuel Material

Work on this subtask during the past quarter included: (1) measurements of the expansive force due to hydrolyzing ThC_2 and (2) setup and checkout of equipment for measurements of the rate of hydrolysis of irradiated carbide fuel.

The former experiment utilizes equipment and procedures given in Ref. 4-4. In this test the internal pressure of hydrolyzing ThC₂ fuel samples contained by graphite crucibles is continuously measured using a load cell. Water concentrations of from 1000 to 30,000 ppmv in helium and temperatures of 200° to 700°C are utilized. The measured pressure can then be related to graphite stress and will be used to establish criteria for steam ingress and fuel element design.

The apparatus for monitoring the rate of hydrolysis of ThC_2 and UC_2 utilizes both thermogravimetry and gas analysis techniques. In this test the rate of uptake of moisture of a sample of carbide fuel is measured with a sensitive recording microbalance. Simultaneously, the rate of evolution of gaseous products, hydrogen, and/or hydrocarbons is continuously moni-tored with a gas chromatograph. Parameters of primary importance in this study are (1) degree of burnup in the sample of fuel materials, (2) moisture concentration, and (3) temperature. Thus far, experiments on unirradiated UC₂ have been performed and emphasis has been placed on measurements on small fuel samples consisting of a few fuel particles. This is of importance because only relatively small amounts of irradiated fuel can be handled in this apparatus due to the high radiation involved.

Subtask 940: Fort St. Vrain Coolant Impurity Surveillance

Summary

During the recent steady operation of the Fort St. Vrain HTGR at 28% power, gaseous impurity concentrations have in general been below the technical specification limits for full-power operation. Using the GOP computer code, good correlations are found between calculated and measured concentrations indicating that radiolysis-induced chemical reactions contributed largely to the specific mixtures of impurities in the primary circuit.

Introduction

Primary coolant impurities were monitored during the recent 7-weeklong steady operation of the reactor at 28% power (December 10, 1965 through January 30, 1977). During this period coolant impurities were observed to decrease to relatively low levels compared to those observed in the initial rise to 27% in July 1976. For example, the steady-state concentration of oxidizing impurities $(CO + CO_2 + H_2O)$ was typically below 10 ppmv, which is the technical specification limit for full-power operation. The low impurity concentration was due to the excellent operation of the purification system and to diminished steady sources of impurities such as outgassing of primary circuit components. Transient impurity sources have occurred, however, which caused occasional spiking of certain impurity concentrations. These transient sources have been identified as (1) injection of emergency water to the circulator bearings via the accumulators, (2) pump-up of PCRV pressure from helium storage, and (3) changes in power or core temperature.

Computer analysis of the impurity data is being performed with the use of the GOP code by G. L. Tingey and W. C. Morgan of Battelle Pacific Northwest Laboratory. The GOP code is used to calculate steady-state impurity

concentrations in the HTGR by considering core geometry, temperature, flow rate, pressure, and ten chemical reactions (four thermal and six radiolytic). The purpose of this effort is to determine to what degree chemical reactions control the impurity concentrations in the Fort St. Vrain HTGR. Details of the capability of the GOP code and the analysis of the initial rise to 27% power are given in the previous quarterly (Ref. 4-2). The present GOP analysis is much improved over that reported in Ref. 4-2 because of certain changes and corrections which have been made to the code. A discussion of the GOP analysis follows.

Results and Conclusions of GOP Analysis

During the current quarter, errors were found in the manner in which the GOP code computed some of the radiolytic reactions. These errors were corrected, and other relatively minor adjustments were made in the code.

In these studies, there are some parameters that must be inferred from the gas compositions because of the lack of input data. For example, there is no way of knowing the rate of steady inleakage of H_2^0 into the coolant gas. In these startup tests it is assumed that some portion, and perhaps most, of the impurity comes from outgassing of the reactor graphite and other components. Therefore, for these calculations the H_2^0 inleakage rate was set such that the total oxygen content $(H_2^0 + C0 + 2CO_2)$ equalled the measured value.

During the early tests conducted in July 1976, the hydrogen purification system was not operating effectively and even during the last test (28% power), there appears to be some source of hydrogen other than water vapor (total $H_2 >$ total 0). Therefore, in these calculations the hydrogen purification rate was adjusted such that at steady state the H_2 added to the coolant would equal the H_2 removed in the purifier:

Leak rate of H_20 = purification of all hydrogen species

 $= P.F.[H_20] + 2P.F.[CH_4] + P.F._{(H_2)}[H_2]$ (4-6)

$$P.F._{(H_2)} = \frac{Lk H_2 O - P.F.[H_2 O] - 2P.F.[CH_4]}{[H_2]}$$

P.F.
$$(H_2)$$
 = computed purification factor of H_2

P.F. = purification factor of
$$H_2^0$$
, $CH_4 = \frac{purification flow}{coolant inventory}$

Using the above assumptions and the input data for GOP given in the previous quarterly report (Ref. 4-2), the gas compositions for various power levels up to 28% power were calculated. The calculated compositions are compared with measured compositions in Table 4-17.

It is interesting to note that the predicted values are in reasonably good agreement with the measured compositions for all power levels. The main exception is the low calculated CO compositions. In the GOP model, the primary source of CO is the thermal reaction of $\mathrm{H}_{2}\mathrm{O}$ with carbon. However, at the temperatures of these tests, the contribution from this reaction is significant only at the 28% power level, and even there yields only 18% of the measured value. In the absence of thermal reactions, CO is only formed by the radiolytically induced water gas shift reaction (CO + $H_2O \rightarrow CO_2 + H_2$) and the carbon dioxide - graphite reaction ($CO_2 + C \rightarrow 2CO$), and these are partially offset by the reverse shift reaction. To predict the high CO levels observed from these reactions, unreasonable G values for the radiolytic reactions would be required. The source of the CO composition is, therefore, uncertain at this point. Several sources appear possible: (1) CO is outgassing from the core slowly and continuously, (2) the thermal reaction is contributing more CO than expected, and (3) the radiolytic reaction of H_2O with C yields both CO and CO_2 .

In actual fact, more than one of these possibilities may be involved. Carbon monoxide outgassing will undoubtedly make a contribution during the lower power experiments; however, it would not appear to be a feasible explanation during the 6-week operation at 28% power. At this power level,

.

	2%	Power	7.5% Power		11.4% Power		19.5% Power		27% Power		28%	Power
	GOP	Measured	GOP	Measured	GOP	Measured	GOP	Measured	GOP	Measured	GOP	Measured
H ₂ O, ppm	32	30	53	50	36	34	98	100	77	80	4.4	2.7
CO, ppm	0.0002	0.2	0.008	1	0.01	1.5	0.1	2	0.3	3	0.2	1.7
CO ₂ , ppm	0.4	0.7	2.4	3	2.1	2.5	8.2	6	9.6	7	0.5	0.6
H ₂ , ppm	14	22	21	25	22	33	68	80	37	30	3.1	10.5
CH ₄ , ppm	0.1	0.3	0.5	1.2	1.0	2	5.1	3.5	2.9	3	0.3	0.5
Outlet temperature, °C	240	240	330	330	390	390	450	450	500	500	610	
H ₂ O leak rate, 1b/h	0.09		0.17		0.12		0.45		0.04		0.025	
H ₂ /H ₂ O purification rate ^(a)	0.05		0.18		0.11		0.09		0.37		0.18	

TABLE 4-17 MEASURED AND CALCULATED GAS COMPOSITIONS DURING FORT ST. VRAIN STARTUP

1

t

(a) Ratio of H_2 purification flow to main purification flow.

it appears that the contribution from the thermal reaction has been underestimated. One is tempted to conclude from the analogy with the thermal steam-graphite reaction that both CO and CO_2 would be formed in the radiolytic process. This conclusion, however is not verified by experiment (Ref. 4-32). A more conclusive answer to this problem will require data at higher power levels and temperatures.

REFERENCES

- 4-1. "HTGR Accident Initiation and Progression Analysis Status Report, Volume V, AIPA Fission Product Source Terms," ERDA Report GA-A13617, General Atomic Company, February 1976.
- 4-2. "HTGR Fuels and Core Development Program Quarterly Progress Report for the Period Ending November 30, 1976," ERDA Report GA-A14180, General Atomic Company, December 27, 1976.
- 4-3. "HTGR Fuels and Core Development Program Quarterly Progress Report for the Period Ending August 31, 1976," ERDA Report GA-A14046, General Atomic Company, September 24, 1976.
- 4-4. "HTGR Fuels and Core Development Program Quarterly Progress Report for the Period Ending May 31, 1975," ERDA Report GA-A13444, General Atomic Company, June 30, 1975.
- 4-5. "HTGR Fuels and Core Development Program Quarterly Progress Report for the Period Ending August 30, 1974," ERDA Report GA-A13126, General Atomic Company, September 30, 1974.
- 4-6. "HTGR Fuels and Core Development Program Quarterly Progress Report for the Period Ending May 31, 1976," ERDA Report GA-A13941, General Atomic Company, June 30, 1976.
- 4-7. Schwartz, M. H., D. B. Sedgley, and M. M. Mendonca, "SORS: Computer Programs for Analyzing Fission Product Release from HTGR Cores During Transient Temperature Excursions," General Atomic Report GA-A12462 (GA-LTR-10), April 15, 1974.
- 4-8. "GASSAR-6, General Atomic Standard Safety Analysis Report," Section
 2A (NRC Docket STN 50-535), February 1975.

- 4-9. "HTGR Accident Initiation and Progression Analysis Status Report, Volume VI, Event Consequences and Uncertainties Demonstrating Safety R&D Importance of Fission Product Transport Mechanisms," ERDA Report GA-A13617, General Atomic Company, January 1976.
- 4-10. Baumann, C. D., et al., "Nuclear Safety Program Annual Progress Report for Period Ending December 31, 1969," ERDA Report ORNL-4511, Oak Ridge National Laboratory, March 1970, Section 5.3, "Fuel Integrity and Fission Product Release," pp. 93-100.
- 4-11. Morgan, M. T., R. L. Towns, and J. G. Morgan, "Gas-Cooled Reactor Program Semiannual Progress Report for Period Ending March 31, 1968," ERDA Report ORNL-4266, Oak Ridge National Laboratory, September 1968, Section 5, "Fission Product Release and Transport Studies; Fission Product Release from High-Burnup Coated Fuel Particles by Postirradiation Annealing," pp. 77-82.
- 4-12. Burnette, R. D., W. E. Bell, and N. L. Baldwin, "Fission Product Retention Characteristics of HTGR Fuel," in Proceedings of the <u>International Conference on Nuclear Fuel Performance</u>, British Nuclear Energy Society, London, October 15-19, 1973, paper No. 16, p. 16.1.
- 4-13. Commissariat a l'Energie Atomique (CEA), private communication.
- 4-14. "Public Service Company of Colorado 330-MW(e) High-Temperature Gas-Cooled Reactor Research and Development Program, Quarterly Progress Report for the Period Ending September 30, 1967," USAEC Report GA-8270, General Atomic, Division of General Dynamics, October 30, 1967, pp. 136-140.
- 4-15. Anderson, E. E., P. E. Gethard, and L. R. Zumwalt, "Recent Data Obtained on Fission Products Released from (Th,U)C₂-Particle -Graphite Fuels," General Atomic, Division of General Dynamics Report GA-3119, May 22, 1962.
- 4-16. Zumwalt, L. R., E. E. Anderson, and P. E. Gethard, "Fission-Product Retention Characteristics of Certain (Th,U)C₂-Graphite Fuels," General Atomic, Division of General Dynamics Report GA-4551, September 17, 1963.

- 4-17. Haire, M. J., and D. W. McEachern, "Gaseous Radioactivity Levels in the Primary Coolant of an HTGR," General Atomic Report GA-A12946 (GA-LTR-14), October 1, 1974.
- 4-18. "Public Service Company of Colorado 330-MW(e) High-Temperature Gas-Cooled Reactor Research and Development Program, Quarterly Progress Report for the Period Ending March 31, 1969," USAEC Report GA-9261, Gulf General Atomic, April 29, 1969, pp. 138-143.
- 4-19. "Public Service Company of Colorado 330-MW(e) High-Temperature Gas-Cooled Reactor Research and Development Program, Quarterly Progress Report for the Period Ending June 30, 1969," USAEC Report GA-9440, Gulf General Atomic, July 31, 1969, pp. 216-232.
- 4-20. Myers, B. F., <u>et al.</u>, "The Behavior of Fission Product Gases in HTGR Fuel Materials," ERDA Report GA-A13723, General Atomic Company, to be published.
- 4-21. "Gas-Cooled Reactor Program Semiannual Progress Report for Period Ending March 31, 1965," USAEC Report ORNL-3807, Oak Ridge National Laboratory, June 1965, pp. 103-106.
- 4-22. Baldwin, N. L., General Atomic unpublished data.
- 4-23. "Public Service Company of Colorado 330-MW(e) High-Temperature Gas-Cooled Reactor Research and Development Program, Quarterly Progress Report for the Period Ending September 30, 1966," USAEC Report GA-7453, General Atomic, Division of General Dynamics, February 7, 1967, pp. 103-113.
- 4-24. "Public Service Company of Colorado 330-MW(e) High-Temperature Gas-Cooled Reactor Research and Development Program, Quarterly Progress Report for the Period Ending June 30, 1966," USAEC Report GA-7314, General Atomic, Division of General Dynamics, September 30, 1966, pp. 60-67.
- 4-25. Morgan, M. T., H. J. De Nordwall, and R. L. Towns, "Release of Fission Products from Pyrocarbon-Coated HTGR Fuel Particles During Post-Irradiation Anneals," USAEC Report ORNL-TM-4539, Oak Ridge National Laboratory, December 1974.
- 4-26. Beck, S. D., "The Diffusion of Radioactive Fission Products from Porous Fuel Elements," Batelle Memorial Institute Report BMI-1433, April 18, 1960.

- 4-27. Morgan, M. T., and R. L. Towns, "Gas-Cooled Reactor Program Semiannual Progress Report for Period Ending September 30, 1967," USAEC Report ORNL-4200, Oak Ridge National Laboratory, February 1968, Section 5, "Fission-Product Release and Transport Studies; Fission-Product Release from High-Burnup Coated Particles by Postirradiation Annealing," pp. 107-113.
- 4-28. "Public Service Company of Colorado 330-MW(e) High-Temperature Gas-Cooled Reactor Research and Development Program, Quarterly Progress Report for the Period Ending December 31, 1966," USAEC Report GA-7634, General Atomic, Division of General Dynamics, March 20, 1967, pp. 104-108.
- 4-29. Myers, B. F., and W. E. Bell, "Strontium Transport Data for HTGR Systems," ERDA Report GA-A13168 (GA-LTR-16), General Atomic Company, December 6, 1974.
- 4-30. Myers, B. F., and W. E. Bell, "Cesium Transport Data for HTGR Systems," ERDA Report GA-A13990, General Atomic Company, to be published.
- 4-31. Adams, C. C., <u>et al.</u>, "Fission Product Release Measurements on TRISO Fuel Particles Irradiated in Capsule P-13F," USAEC Report GA-9383, Gulf General Atomic, October 22, 1969.
- 4-32. Woodley, R. E., "The Radiolytic Reaction of Graphite with Water Vapor," Battelle Pacific Northwest Laboratory Report BNWL-SA-1804, April 1968.

9. HTGR FUEL DEVELOPMENT AND ENGINEERING 189a NO. 00551

TASK 100: FUEL PRODUCT SPECIFICATION

The ThO_2 BISO portion of the draft Fuel Product Specification support document was reviewed at ORNL and at GA and work continues on the remainder of the document.

TASK 200: ACCELERATED IRRADIATION TESTING

Subtask 210: Fresh Fuel Qualification

Summary

The postirradiation examination (PIE) of capsule P13T was continued during the reporting period. The following items have been completed:

- 1. The irradiation-induced dimensional fuel rod changes have been determined and compared with predicted values. The results indicated that the irradiation-induced strain in P13T fuel rods is anisotropic and that the observed dimensional changes are less than predicted.
- 2. A significant portion of the metallographic evaluation of P13T fuel rods has been completed. The high porosity in the OPyC coating is suspected of enhancing matrix/OPyC interactions, which led to high OPyC failure in UC₂ TRISO fissile particles in the 1300°C cell. These results coupled with those of P13R and P13S capsules indicates that an OPyC surface porosity on the order of 32 μ L/g PyC or less will be needed to minimize OPyC-matrix interactions.

- 3. With OPyC failure as high as as 70%, only 3% of the SiC coating failed at a fluence of $3.5 \times 10^{25} \text{ n/m}^2$. In the BISO ThO₂ and TRISO WAR particle batches where the degree of OPyC coating failure was much lower (<2.6%), failure of the total particle coating was always less than 1% up to maximum exposure conditions [8 x 10²⁵ n/m² (E > 29 fJ)_{HTGR} and 1300°C].
- 4. The P13T dosimetry analysis was completed and indicates that the fast and thermal fluences were approximately 11% less than the capsule design values, resulting in a maximum fast neutron exposure of 8 x 10^{25} n/m² (E > 29 fJ).
- 5. The dimensional changes of the H-451 and TS-1240 graphite crucibles agree well with predicted changes based on graphite irradiation capsule results.
- 6. The postirradiation fission gas release measurements were completed on all removed P13T fuel rods. The results are in fair agreement with the previous measurements on P13T fuel bodies prior to removal of fuel rods.
- 7. The push-out shear stress from P13T cure-in-place (CIP) fuel rods was determined. The results indicate a higher push-out force is required for H-451 than for TS-1240.

The postirradiation examinations of HT-31 and HT-33 were completed. The results were as follows:

 No pressure vessel failure was observed in the TRISO ThO₂ particles irradiated at 1200°C, but high failure was observed in the 1500°C sample. An analysis is under way to determine the cause of the high failure in the 1500°C sample. The entry of moisture into the capsules is suspected as a possible cause.

2. A range of failure rates was observed in the BISO ThO_2 particles at both 1200° and 1500°C. The outer coating anisotropy (BAF₀) appears to have a strong effect. At a BAF₀ greater than 1.05, the samples exhibited high failure at both 1200° and 1500°C.

Capsule P13T

Introduction. Capsule P13T is the ninth in a GA series of LHTGR fuel irradiation tests conducted under the HTGR Fuels and Core Development Program. P13T is a large-diameter capsule containing two cells. Cell 1 is a qualification test of reference fresh fuel [TRISO UC₂ (VSM) and BISO ThO₂ particles] irradiated at 1300°C. Cell 2 is an evaluation test of reference fresh fuel and recycle fissile fuel [TRISO UC₃ (WAR) particles] irradiated at 1100°C. The capsule was inserted in the ORR reactor in May 1975. The capsule was discharged from the core on July 6, 1976 after being irradiated to a peak fast fluence of 8 x 10^{25} n/m² (E > 29 fJ)_{HTGR}. A detailed description of the capsule is given in Ref. 9-1.

The postirradiation examination of P13T was started on September 10, 1976. Approximately 90% of the hot cell work on P13T has now been completed. Work is continuing on the analysis of the broad range of data generated by this PIE. Some of these results are presented in the discussions which follow.

Irradiation-Induced Dimensional Changes in P13T Fuel Rods. The mean irradiation-induced diametral, axial, and volumetric changes are plotted in Figs. 9-1 through 9-3. The range for the predicted dimensional and volumetric changes is also shown on these plots.

Dimensional changes were predicted using the SHRINK computer code. The model assumes that the particles in the fuel rod are in point-to-point contact (close-packed array) and the fuel rod dimensional change is isotropic. It is also assumed that the percent volume change of a fuel rod during irradiation is equal to the percent volume change of the constituent

Fig. 9-1. Diametral dimensional change in P13T fuel rods versus fast fluence

.

٠

Fig. 9-2. Axial dimensional change in P13T fuel rods versus fast fluence

.

Fig. 9-3. Bulk volume change in P13T fuel rods versus fast fluence

,

particle types weighted by their respective volume fractions. The percent linear dimensional change of the rod is equal to one-third the percent volume change and is calculated using the following equation:

$$\% \Delta D/D_{o} = 1/3 \sum_{i} X_{i} (\% \Delta V/V_{o})i$$
, (9-1)

where % $\Delta D/D_{o}$ = percent diameter change of the fuel rod,

 $% \Delta V/V_o$ = percent volume change of the ith particle type, X_i = particle volume fraction of the ith particle type.

Two general trends are evident from Figs. 9-1 through 9-3:

- Irradiation-induced strain in fuel rods is anisotropic (axial and diametral strains are unequal).
- Observed bulk volume changes are less than predicted using the SHRINK computer code.

In general, fuel rod anisotropy in P13T is such that axial strain undergoes less contraction than radial strain for 1100°C exposure. This trend is consistent with the observations in capsules HT-24 and HT-25 (Ref. 9-2) and capsule P13Q (Ref. 9-3). Strain anisotropy for P13T fuel rods is arbitrarily defined as:

 $\Delta t = t_A - t_D , \qquad (9-2)$

where $\Delta t = \%$ strain anisotropy,

 $t_A = \%$ axial strain (100 x $\Delta \ell/\ell$), $t_D = \%$ diametral strain (100 x $\Delta D/D$).

Figure 9-4 is a linear regression plot of Δt versus fast fluence for rods tested in capsule P13T. The wide scatter in the data in Fig. 9-4 is attributed to the large uncertainty in preirradiation measurements; viz, the 95% confidence bounds on the mean diametral and axial strains are

Fig. 9-4. Strain anisotropy versus fast fluence in P13T fuel rods

typically $\pm 0.4\%$ (absolute) and $\pm 2.5\%$ absolute, respectively. The trend in anisotropy in Fig. 9-4 is reversed for fuel rods tested in cell 1 at a nominal peak design temperature of 1300°C. The bias in these rods indicates that the axial strain underwent contraction relative to the radial strain.

Metallographic Evaluation of P13T Fuel Rods. Nine fuel rods irradiated in graphite bodies 1, 2, and 4 have been sectioned longitudinally and polished to the midplane. Table 9-1 summarizes the results of the TRISO coated fissile and inert particle evaluation. Table 9-2 summarizes the results of the BISO coated fertile particle evaluation. The most significant P13T PIE results which impact on particle design considerations are summarized as follows:

Fissile Particles

- High OPyC failure (3.9% to 70.4%) occurred on TRISO coated fissile particles tested at a nominal peak design temperature of 1300°C. This failure correlates strongly with evidence of matrix/OPyC interactions, e.g., OPyC tearing.
- 2. The maximum fission product attack observed in SiC layers in TRISO coated VSM UC₂ particles tested at a peak fuel rod design temperature of 1300°C was 4 to 5 μ m. This observation is consistent with the kinetics of fission product attack developed from out-of-pile tests. Figures 9-5 and 9-6 are representative metallographic cross sections of VSM UC₂ fissile particles tested at a nominal peak fuel rod design temperature of 1300°C.
- 3. WAR particles $(U \cdot C_{2.92} \cdot O_{0.64})$ tested at a peak fuel rod design temperature of 1100°C did not show an optically active IPyC layer under polarized light. This is taken as evidence that the concentration of fission products beyond the kernel phase is markedly reduced when compared to VSM UC₂ particles tested under comparable conditions. However, a fine dispersoid (~ 2 to 3 μ m in

		Irradiation	n Conditions	Results of Metallographic Examination											
Particle Batch Data Retrieval Number	Capsule Position	Nominal Peak Fuel Rod Design Temp. (°C)	Fast Fluence ($10^{25} n/m^2$) (E > 29 fJ) _{HTGR}	No. of Particles Examined	Cracked Or Consumed Buffer ^(a) (%)	IPyC Debonded From SiC (%)	IPyC Failed (%)	IPyC Coating Reaction(b) (%)	SiC Coating Reaction(c) (%)	Sic Failure (%)	SiC+ OPyC Failure (%)	OPyC Tear(d) (%)	OPyC Failure (%)	OPyC Tear And Failure (%)	Severely Faceted Particle ^(e) (%)
					Trisc	Coated VS	M UC ₂ Pa	rticles							
6151-12-015	184	1300	7.7	102	1.0	14.7	1.0	100	46.1	· 0	0	0	3.9	0	0
6151-12-015	4A1	1100	4.6	96	1.0	2.0	0	86.5	0	0	0	0	2.1	0	ND ^(f)
6151-17-025	101	1300	3.5	98	0	38.8	1.0	100	23.5	3.1	3.1	3.1	70.4	3.1	1.0
6151-17-025	1C4	1300	7.7	91	0	14.3	1.1	97.8	40.7	1.1	1.1	19.8	54.9	18.7	4.4
6151-17-025	2A1	1100	8.0	170	6.5	21.2	0	48.8	0	0	0	0	0	0	ND
Triso Coated War U*C _{2.92} *0 _{0.64} Particles											-				
6157-02-015	2C1	1100	8.0 .	106	60.4	0	0	0	0	0	0	0.9	0	0	ND
	2C2	1100	7.6	150	56.7	0	0	0	0	0	0	0	0	0	ND
	4C1	1100	4.6	77	29.9	0	0	0	0	0	0	0	0	0	0
ŧ	4C4	1100	3.0	116	53.4	1.7	0	0	0	2.6	0	2.6	, 2.6	0.9	6.9
					Tris	so Coated 1	nert Par	ticles			•				
6351-01-020	184	1300	7.7	69	ND	ND	ND	ND	ND	ND	ND	0	30.4	0	ND
1	1C1	1 300	3.5	63								0	58.7	0	ND
ļ	1C4	1300	7.7	132								3.0	47.0	0.8	ND
	2A1	1100	8.0	157								ND	0.6	ND	ND
	2C1	1100	8.0	143								ND	0	ND	ND
	2C2	1100	7.6	128								ND	0	ND	ND
	4A1	1100	4.6	58								ND	0	ND	ND
+	401	1100	4.6	56	+	•	+	ł	<u> </u>	+	•	ND	0	ND	ND

 TABLE 9-1

 SUMMARY OF P13T METALLOGRAPHIC RESULTS ON TRISO COATED FISSILE AND INERT PARTICLES

(a) Buffer layers in VSM UC₂ particles are characterized as either cracked or not; however, buffer layers in WAR U·C_{2.9}·O_{0.6} particles are characterized as consumed when >50% of the buffer layer reacts with the kernel.

1 A

(b) Particles which exhibited large concentrations of metallic fission products in the IPyC layer.

(c) Particles which exhibited metallic fission product attack of the SiC layer up to 5 µm penetration; attack of <1 µm was not observable.

(d) Classed as any degradation of OPyC layer other than failure.

(e) Generally defined as particles with an aspect ratio $\geq 2:1$.

 $(f)_{ND}$ = not determined.

		Irradiation Conditions			Results of Metallographic Examination							
Particle Batch Data Retrieval Number 6542-27-015	Capsule Position	Nominal Peak Full Rod Design Temp. (°C)	Fast Fluence (10^{25} n/m^2) (E > 29 fJ) _{HTGR}	No. of Particles Examined	Cracked Kernel (%)	Cracked Buffer (%)	Buffer Debonded From OPyC (%)	OPyC _{Tear} (a) (%)	OPyC Failure (%)	OPyC Tear and Failure (%)	Severely Faceted Particle ^(b) (%)	
6542-27-015	1C1	` 1300	3.5	156	1.3	0	5.8	0	0	0	1.9	
6542-27-015	1C4	1300	7.7	156	0.6	0	2.6	0.6	0	0	0.6	
6542-27-015	2A1	1100	8.0	268	8.5	0.7	27.6	0	0	0	ND(c)	
6542-27-015	2C1	1100	8.0	116	6.0	0.9	15.5	0.9	0	0	' ND	
6542-29-015	4C4	1100	3.0	144	0	1.4	22.2	0	0	0	ND	
6542-31-015	4C1	1100	4.6	266	0.8	0	26.7	0	0	0	ND	
6542-32-015	1B4	1300	7.7	167	0	0	0	0.6	0.6	0.6	0	
6542-33-025	2C2	1100	7.6	371	3.2	1.1	22.6	0	0.8	0	0.3	
6542-35-015	4A1	1100	4.6	265	1.5	0.4	16.2	0	0	0	1.9	

TABLE 9-2 SUMMARY OF P13T METALLOGRAPHIC RESULTS ON BISO COATED FERTILE PARTICLES

ι T

~`A

(a) Classed as any degradation of OPyC layer other than complete failure.
 (b) Generally defined as particles with an aspect ratio ≥2:1.

(c)_{ND} = not determined.

۲

L7630-228

L7630-229

Fig. 9-5. Metallographic cross section of VSM fissile particle (batch 6151-17-025) in fuel rod 1C1. Depicts OPyC failure and fission product concentration for an exposure of 1300°C and $3.5 \ge 10^{25} \text{ n/m}^2$ (E > 29 fJ)_{HTGR}.

L7630-230

Fig. 9-6. Metallographic cross section depicting fission product attack in a fissile particle (batch 6151-17-025) in fuel rod 1C1; 1300°C and 3.5 x 10^{25} n/m² (E > 29 fJ)_{HTGR}

extent near the SiC interface) was present in some WAR particles. When observed, the position of this phase bore no consistent relation to the thermal gradient and is apparently randomly distributed about the inner SiC interface. Figures 9-7 and 9-8 are representative metallographic cross sections of WAR $U \cdot C_{2.92} \cdot O_{0.64}$ fissile particles tested at a nominal temperature of 1100°C and to a fluence of 7.6 x 10^{25} n/m² (E > 29 fJ)_{HTCR}.

Fertile Particles

- 1. No OPyC failure was observed in the "near reference" BISO coated particle design (batch 6542-27-015) exposed to a nominal peak fuel rod temperature of 1300°C and a fluence of 7.7 x 10^{25} n/m² (E > 29 fJ)_{HTGR} (see Fig. 9-9).
- 2. OPyC failure in batch 6542-33-025 was 0.8%. This batch had a mean OPyC thickness of 66 μ m with a standard deviation of 7 μ m. If it is assumed that all failure occurred in the thin coating portion of the thickness distribution, the failure implies a critical limit of 49 μ m. These data provide support for a critical limit in fuel product specifications of OPyC thickness. As a point of comparison, the mean reference BISO coated OPyC thickness currently specified is 80 μ m and the critical limit is 46 μ m.

OPyC Failure on TRISO Coated Fissile Particles. Previous evidence based on the HRB-4, -5, and -6 PIEs (Ref. 9-4) indicates that in some instances premature OPyC failure can result from excessive matrix/coating interactions. An increase in particle-matrix bond strength is equivalent to potentially subjecting the OPyC layer to a greater tensile component. The tensile component exerted on the OPyC layer is a result of the differential volume contraction between the TRISO coated particle and the surrounding matrix phase. In previous work, failure of particles in fuel rods was correlated with irradiation conditions (temperature and fluence), as well as structural properties of the matrix (ratio of binder coke weight to

L7630-73

L7630-74

Fig. 9-7. Metallographic cross section depicting morphology of WAR kernels $(U \cdot C_{2.9} \cdot O_{0.6})$ in fuel rod 2C2 (batch 6157-02-015); nominally 1100°C and 7.6 x $10^{25} n/m^2$ (E > 29 fJ)_{HTGR}

L7630-109

Fig. 9-8. Metallographic cross section depicting fission product distribution in WAR fissile particle $(U \cdot C_{2.9} \cdot O_{0.6})$ located in fuel rod 2C2 (batch 6157-02-015); nominally 1100°C and 7.6 x 10^{25} n/m² (E > 29 fJ)_{HTGR}

L7630-216

L7630-217

Fig. 9-9. Metallographic cross section of BISO coated fertile particle in fuel rod 1C4 (batch 6542-27-015); 1300°C and 7.7 x 10²⁵ n/m² (E > 29 fJ)_{HTGR} matrix surface area) (Ref. 9-4). However, the most significant property variation capable of explaining differences in OPyC failure between P13T and other capsule tests was microporosity in the OPyC layer. TRISO coated fissile particles tested in capsules P13R and P13S had OPyC microporosity* values of <32 μ L/g OPyC and there was no evidence of matrix/OPyC interactions in these batches. However, four of the fuel rods examined in the P13T PIE showed evidence of matrix/OPyC coating interactions.

Figures 9-10 through 9-12 are metallographic cross sections of typical interactions observed. Tearing in Figs. 9-10 and 9-11 is described in terms of the OPyC fracture morphology; i.e., the crack opens at the OPyC surface and propagates inward. Figure 9-12 is a more descriptive photomicrograph which depicts a BISO particle (partially torn) with a TRISO coated OPyC fragment adhered. The presence of an interface phase is taken as evidence that the matrix partially impregnated the OPyC layers of both particle types.

Figure 9-13 is a series of metallographic cross sections depicting the microporosity present in preirradiated OPyC layers of TRISO coated fissile particles tested in capsule P13T. It should be noted that two batches had a preirradiated microporosity of 58 μ L/g OPyC and one batch had a microporosity of 43 μ L/g OPyC. The outer OPyC region (\sim 5 to 10 μ m) in all fissile particle batches was characterized as being substantially porous. The increase in porosity in the OPyC layer has two deleterious effects:

- Allows for a more tenacious bond to form between the OPyC and matrix.
- 2. Degrades the fracture strength of the OPyC layer.

Results from the P13R and P13S experiment indicate that a microporosity equivalent to <32 μ L/g OPyC will provide satisfactory performance.

^{*}Measured by Hg intrusion at ~0.069 MPa (10 psi).

L7630-423

L7630-424

L7630-425

Fig. 9-10. Metallographic cross section of fuel rod 1C4 (batch 6151-17-025); 1300°C and 7.7 x 10^{25} n/m² (E > 29 fJ)_{HTGR}. Depicts localized tearing and OPyC failure in TRISO fissile particle.

L7630-311

L7630-313

Fig. 9-11. Metallographic cross section of fuel rod 4C4 (batch 6157-02-015); 1100°C and 3.0 x 10^{25} n/m² (E > 29 fJ)_{HTGR}. Depicts torn OPyC layer on TRISO coated U·C_{2.92}·O_{0.64} kernel.

L7630-420

L7630-421

L7630-422

Fig. 9-12. Metallographic cross section of fuel rod 1C4 (batch 6351-01-020); 1300°C and 7.7 x 10^{25} n/m² (E > 29 fJ)_{HTGR}. Depicts localized interaction between BISO particle (batch 6542-27-015) and TRISO inert particle.

MP74024-6 (Not currently determined) (a)

(58 µl/g ОРуС) (b)

(d)

Fig. 9-13. Metallographic cross sections depicting porosity in preirradiated OPyC layers on TRISO coated fissile particles: (a) batch 6151-12-015, (b) batch 6151-17-015, (c) batch 6151-17-025, and (d) batch 6157-02-010. OPyC porosity referenced in parentheses. P13T Dosimetry Results. The analysis of the thermal (Va-Co) and fast fluence (Va-Fe) dosimeters has been completed. Results indicate that the fast and thermal fluences experienced by P13T were approximately 11% less than the design values. A third-order least-squares fit was performed on these data to establish equations for fast and thermal fluences and fast and thermal fluxes. The flux and fluence values were fit in an equation of the form:

$$f(x) = a + bx + cx^{2} + dx^{3}$$
, (9-3)

where x is the distance from the bottom of the core. The values for the coefficients are presented in Table 9-3. The calculated P13T fuel rod fast and thermal flux and fluence values are shown in Table 9-4.

A comparative plot of the actual and design P13T fast and thermal fluence data is shown in Fig. 9-14. This figure indicates that the shape of the design axial fast flux curve for the Oak Ridge Reactor (ORR) is well known, but that the design axial thermal flux curve is apparently somewhat uncertain, especially at the top and bottom of the ORR core.

<u>P13T Graphite Dimensional Changes</u>. The measured graphite dimensional changes for P13T fuel crucibles have been previously reported (Ref. 9-5). A comparative analysis has been performed on these data to determine if the P13T observed graphite dimensional changes were of the same order as had been previously determined (Refs. 9-6 and 9-7) for these graphites. The results are shown in Figs. 9-15 through 9-17 for the H-451 and TS-1240 graphites used in P13T. The curves shown in these figures indicate the established values based on graphite irradiation capsule results. The data points shown are from P13T crucibles. (The fluence values have been corrected to account for the final P13T dosimetry results discussed in the previous section. The temperatures shown are subject to correction when the final P13T thermal analysis is completed.)

	a	Ъ	с	d
Thermal flux	0.60	0.26	-0.018	2.70×10^{-4}
Thermal fluence	1.88	0.81	-0.056	8.48×10^{-4}
Fast flux (E > 29 fJ) _{HTGR}	0.75	0.46	-0.034	6.34×10^{-4}
Fast fluence (E > 29 fJ) _{HTGR}	2.36	1.45	-0.108	1.99×10^{-3}

TABLE 9-3 P13T DOSIMETRY COEFFICIENTS FOR EQ. 9-3 COEFFICIENTS

۶

	Distance from Bottom	Therm	al	Fast (E > 29 fJ) _{HTGR}				
Rod No.	of Core (cm)	Flux (x 1019 n/m ² -s)	Fluence (x 10 ²⁵ n/m ²)	Flux (x 10 ¹⁹ n/m2-s)	Fluence (x 10 ²⁵ n/m ²)			
1-1	2.03	0.8	2.49	1.10	3.45			
1-2	5.08	1.05	3.28	1.54	4.84			
1-3	9.65	1.34	4.19	2.04	6.42			
1-4	15.75	1.58	4.95	2.44	7.67			
2-1	25.37	1.66	5.22	2.57	8.04			
2-2	30.38	1.59	4.99	2.44	7.64			
3-1	37.06	1.39	4.39	2.14	6.69			
3-2	42.06	1.19	3.76	1.85	5.77			
4-1	47.75	0.92	2.91	1.50	4.64			
4-2	50.80	0.76	2.42	1.32	4.05			
4-3	53.85	0.60	1.92	1.14	3.49			
4-4	56.90	0.43	1.41	0.99	2.98			

TABLE 9-4 P13T FUEL ROD FAST AND THERMAL FLUXES AND FLUENCES

1 1

1

.

*

Fig. 9-14. EOL fast and thermal fluences for capsule P13T

Fig. 9-15. Dimensional change of H-451 graphite in the radial directional as a function of fast fluence - capsule P13T

Fig. 9-16. Dimensional change of H-451 graphite in the axial direction as a function of fast fluence - capsule P13T

Fig. 9-17. Dimensional change of TS-1240 graphite as a function of fast neutron fluence - P13T capsule

It is not expected that these data are sufficiently accurate to add to the H-451 and TS-1240 data base, but it is interesting to note that reasonable agreement exists between the P13T data and the already established data for graphites H-451 and TS-1240.

<u>P13T Fission Gas Release Data</u>. As part of the PIE of capsule P13T, fission gas release measurements were made on the fuel bodies and individual fuel rods contained in the capsule. The Kr-85m R/B values obtained for all four fuel bodies were reported earlier (Ref. 9-5). After disassembly of the fuel bodies, the fuel rods were submitted for individual R/B measurements.

Table 9-5 lists the fuel rods tested and the resulting Kr-85m R/B at 1100 °C. Only two of six rods from body 3 were submitted for fission gas release measurements. The equivalent U-235 loading given in Table 9-5 takes into account the contribution from U-233 plus U-235 remaining in the fuel rods at end-of-life.

As discussed in Ref. 9-5, the R/B measurement on fuel body 1 was made at room temperature due to failure of the heating element in the TRIGA King furnace. Therefore, a temperature dependence study was performed on fuel rods from body 1 to obtain a correction factor to be applied to the roomtemperature data. Table 9-6 shows the results of the temperature dependence study on all 1B rods in body 1. Fission gas release was measured from all four rods at room temperature and 1100°C on the same day. A repeat of the 1100°C measurement was made 24 hours later to determine the effect of consecutive TRIGA irradiations on the apparent steady-state birth rate. As can be seen in Table 9-6, this effect was small and therefore the 1100°C R/B values were averaged. Rod 1B1 was an exception in that the repeat 1100°C measurement was a factor of 20 lower, possibly indicating a problem in collection of the released fission gases.

Rod 1B4 was the only rod showing significant release at room temperature. The R/B was found to increase by a factor of 11 between the room temperature and 1100°C measurements. This correction factor, while lower

Fuel Rod No.	Fuels Chemistry Branch Identification No.	Equivalent U-235 Loading (mg)	Kr-85m R/B at 1100°C
1A1	7298-138	123.1	2.44×10^{-5}
1B1	7299-12	121.9	6.25×10^{-6}
1C1	7299-37	123.1	1.01×10^{-5}
1A2	7298-139	94.5	5.70×10^{-5}
1B2	7299–13	95.2	6.29×10^{-6}
1C2	7299–38	95.2	5.24×10^{-5}
1A3	7298–140	159.0	1.46×10^{-5}
1B3	7299–10	159.7	1.90×10^{-5}
1C3	7299-16	158.9	5.79×10^{-6}
1A4	7298-141	146.1	3.99×10^{-5}
1B4	7299–11	146.5	1.05×10^{-4}
1C4	7299–17	146.6	5.21×10^{-5}
2A1	7298-143	87.1	9.68×10^{-5}
2B1	7299–35	85.7	5.08×10^{-5}
2C1	7298-149	86.9	2.22×10^{-5}
2A2	7298-144	97.2	1.58×10^{-5}
2B2	7299–36	95.5	2.33×10^{-5}
2C2	7298–150	93.1	3.66×10^{-6}
3B1	7299–39	106.9	7.11×10^{-5}
3B2	7299-40	133.5	4.02×10^{-5}
4A1	7298–145	112.6	6.03×10^{-6}
4B1	7299–31	112.1	4.99×10^{-6}
4C1	7298–151	112.7	8.42×10^{-6}
4A2	7298–146	113.6	3.55×10^{-6}

TABLE 9-5R/B VALUES FOR INDIVIDUAL FUEL RODS IRRADIATED IN CAPSULE P13T

*

٠

Equivalent U-235 Loading Fuels Chemistry Branch Kr-85m R/B Fuel at 1100°C Identification No. (mg) Rod No. 3.65×10^{-8} 7299-32 112.4 4B2 8.91×10^{-7} 4C2 114.5 7298-152 5.57×10^{-5} 147.2 4A3 7299-23 1.44×10^{-6} 4B3 7299-25 145.8 1.85×10^{-6} 145.9 4C3 7299-33 6.37×10^{-8} 196.9 4A4 7299-24 4.08×10^{-7} 4B4 7299-26 196.8 5.15×10^{-7} 4C4 7299-34 192.7

TABLE 9-5 (Continued)

Number	Fuel Chem. Branch Ident. Number	Date	Time	Temp. (°C)	Equiv. U-235 Loading (mg)	Kr-85m R/B
1B1	7299-2	10/28/76	0918	RT	121.9	<10 ⁻⁷
	7299-4	10/28/76	1109	1100		6.25×10^{-6}
	7299-12	10/29/76	1101	1100		3.33×10^{-7}
1B2	7299-3	10/28/76	0918	RT	95.2	<10 ⁻⁷
	7299-5	10/28/76	1109	1100		6.99×10^{-6}
	7299-13	10/29/76	1101	1100		5.58 x 10 ⁻⁶
				1100 avg.		6.29 x 10 ⁻⁶
1B3	7299-6	10/28/76	1317	1100	159.7	2.32×10^{-5}
	7299-8	10/28/76	1507	RT		<10 ⁻⁷
	7299-10	10/29/76	0923	1100		1.47×10^{-5}
				1100 avg.		1.90 x 10 ⁻⁵
1 B4	7299-7	10/28/76	1317	1100	146.5	1.19×10^{-4}
	7299-9	10/28/76	1507	RT		9.18 x 10^{-6}
	7299-11	10/29/76	0923	1100		9.05×10^{-5}
				1100 avg.		1.05 x 10 ⁻⁴
	L					·

TABLE 9-6R/B TEMPERATURE DEPENDENCE FOR P13T CELL 1 FUEL RODS

·#5

.

...

٠

,

than would be calculated based on past experience, was used to correct the room temperature R/B value obtained from body 1.

Table 9-7 shows a comparison of the in-pile R/B and postirradiation TRIGA R/B values obtained for each cell. The average R/B values found for individual rod measurements for each fuel body are included. The postirradiation TRIGA values for the fuel body and the individual rod averages show reasonably good agreement with the exception of body 3. However, only two of the six rods in body 3 were tested individually. For the other three bodies, the fuel body and average rod values were within a factor of two for the TRIGA tests.

A comparison of the in-pile end-of-life R/B and postirradiation TRIGA R/B on the fuel bodies indicates a higher release for the TRIGA tests. As shown in Table 9-8, the end-of-life TRIGA R/B for cell 1 when corrected for estimated volume-average temperature was found to be a factor of 7 higher than the in-pile release value. The in-pile release measurement for cell 2 was a composite of fuel bodies 2, 3, and 4. Applying corrections for estimated volume-average temperature and fissions per crucible results in an R/B for Kr-85m for cell 2 of 9.7 x 10^{-6} . This is a factor of approximately 3 higher than the in-pile release values, and the TRIGA crucible Kr-85m R/B measurements need to be corrected for the actual in-pile volume-average temperatures before a final comparison of the in-pile and TRIGA data can be made.

P13T Fuel Rod/Fuel Hole Gaps and Shear Stress. A comparison has been made between the preirradiation and postirradiation shear stress as a function of graphite type, fuel rod/fuel hole gap, and matrix type. The results are shown in Table 9-9. Analysis of these data indicates a stronger bond exists between the fuel rods and the surrounding H-451 graphite (Great Lakes Carbon Corporation) than between the fuel rods and the TS-1240 graphite (Union Carbide Corporation). This effect holds true for both the preirradiation and postirradiation data, as shown in Table 9-9. Since the bond results from the cure-in-place (CIP) processing, different

			Kr-85m R/B	
Cell Number	Body Number	In-Pile at Cell Temp.	TRIGA at 1100°C(a)	Individual Rod Average at 1100°C
1	1	1.6×10^{-5}	7.1×10^{-5} (b)	3.3×10^{-5}
	2	$2.8 \times 10^{-6(c)}$	2.2×10^{-5}	3.5×10^{-5}
2	3		1.3×10^{-5}	$5.6 \times 10^{-5(d)}$
	l4		4.4×10^{-6}	7.0×10^{-6}

TABLE 9-7 COMPARISON OF IN-PILE AND TRIGA R/B MEASUREMENTS

(a) The R/B values shown for bodies 2, 3, and 4 are slightly higher than those given in Ref. 9-5 due to a correction for collection efficiency.

(b)_{R/B} temperature corrected to 1100°C.

(c) The release from cell 2 was a composite of bodies 2, 3, and 4.

(d) Average of two rods out of a total of six rods in the body.

TABLE 9-8 COMPARISON BETWEEN FINAL IN-PILE AND CRUCIBLE TRIGA R/B MEASUREMENTS

Cell Number	Final In-Pile Kr-85m R/B	Estimated Final In-Pile Volume-Average Cell Temp. (°C)	Crucible Kr-85m R/B at Same Temp.
1	1.6×10^{-5}	1230 ^(a)	11.6×10^{-5}
2	2.8 x 10 ⁻⁶ (b)	1080 ^(a)	9.7 x 10 ^{-6(c)}

(a) Subject to correction when the P13T thermal analysis has been completed.

(b) The release from cell 2 was a composite of crucibles 2, 3, and 4.

(c) Average for crucibles 2, 3, and 4 corrected for temperature and fissions per crucible.

TABLE 9–9															
COMPARISO	N C	ΟF	P13T	PREI	[RRA	DIA	FION	AND	POS	STIRR/	DIA!	CION	FUEL	ROD	SHEAR
STRESS	AS	А	FUNCT	CION	OF	GRAI	PHITE	TYP	ΡE,	FUEL	ROD	FUEL	. HOLE	E GAI	· ,
					Æ	ND N	1ATRI	Х ТУ	ΥPE						

Fuel Rod Column No.	Graphite Type	Matrix Type(a)	Pre- Irrad. Fired Radial Gap (mm)	Pre- Irrad. Shear Stress (kPa)	Post- Irrad. Radial Gap (mm)	Post- Irrad. Shear Stress (kPa)
1A	H-451	1	0.043	122.7	0.099	76.5
1B		2	0.039	108.2	0.104	60.7
1C	t t	3	0.036	34.5	0.102	55.2
2A	TS-1240	1	0.042	90.1	0.137	9.0
2B		1	0.046	45.5	0.097	4.8
2C	ł	1	0.051	81.4	0.137	4.8
3B	H-451	2	0.042	90.3	0.097	73.8
4A	TS-1240	3	0.045	29.6	0.218	2.8
4B		3	0.061	29.6	0.241	9.0
4C	-	3	0.043	29.6	0.211	4.2

(a)_{Matrix 1} is 30 wt % Asbury 6353 natural-flake graphite flour, 65 wt % A-240 pitch, and 5 wt % octadecanol. Matrix 2 is 38 wt % Lonza KS-15 graphite flour, 47 wt % A-240 pitch, 5 wt % polystyrene, and 10 wt % octadecanol. Matrix 3 is 38 wt % Lonza KS-15 graphite flour, 57 wt % A-240 pitch, and 5 wt % octadecanol.

matrix types might be expected to affect the bond. However, examination of the data for the three matrix types used in P13T does not generally support this theory. Currently, data from other capsule irradiation experiments are being examined to determine if a stronger bond exists for CIP fuel rods processed in H-451 graphite as opposed to TS-1240 graphite.

Capsules HT-31 and HT-33

Capsules HT-31 and HT-33 are part of the continuing HT-capsule series, which is a cooperative effort between GA and ORNL. The uninstrumented capsules were the first to test TRISO and BISO coated ThO₂ particles fabricated in the pilot plant 240-mm-diameter coater. The OPyC coating properties of these particles were varied. The samples were irradiated at design temperatures of 1200° and 1500°C to fluences and burnups beyond peak LHTGR conditions. A detailed description of the capsules is given in Ref. 9-8.

Capsules HT-31 and HT-33 were discharged from the HFIR reactor on June 16, 1971 and October 21, 1971, respectively. The capsules were disassembled and the fuel samples were examined at the hot cells at ORNL. Each sample was examined under a stereomicroscope.

The TRISO ThO₂ particle samples were irradiated in both capsules. The irradiation conditions and the results of the visual examination are presented in Table 9-10. The 1200°C samples irradiated in HT-31 and HT-33 to a fluence of 4.1 to 8.3 x 10^{25} n/m^2 (E > 29fJ)_{HTGR} and a burnup of 4.9 to 9.1% FIMA exhibited zero pressure vessel failure (both the OPyC and SiC coating failed) and low OPyC coating failure ($\leq 3.8\%$). High pressure vessel failure was observed in the 1500°C samples irradiated to a fluence of 7.4 to 10.4 x 10^{25} n/m^2 (E > 29 fJ)_{HTGR} and a burnup of 8.2 to 12.8% FIMA. Lower failure was usually detected in samples located at the ends of the 1500°C magazines in HT-31 and HT-33, indicating the temperatures may have been lower. It should be noted that only the nominal particles from each parent batch were tested, which means that low pressure vessel failure in the parent batch.

	TABLE 9-10		(-)
PARTICLE DESCRIPTION AND OF	COMPARISON OF RESULTS OF CAPSULES HT-31 AND HT-33	TRISO ThO2	SAMPLES ^(a)

4

.

(1949) and a state of the second state of the	1 ^{master}		and the second secon			ورماري الأخر المستحدي الطائبات	-			The second second second	and the second		بمبرور ومستقرب وجوار فتشعره			A THE REPORT OF THE REPORT		
	<u> </u>	•	Partic	le Properti	les			Va	riables ^(C)			HT-31 Sa	mples]	HT-33 Sa	mples	
			Charge Size for	,	OPyc	Coating												
	Nominal Kernel	Coater	Coating (kg of	Density (M	₩g/m ³)	Coating]]	ļ	OPvC	Fast Fluence		OPyC Coating	Pressure Vessel	Fast Fluence		OPyC Coating	Pressure Vessel
Parent Batch Number	Diameter (um)	Size (mm)	Heavy Metal)	Liquid Gradient	Bulk	Rate (µm/min)	BAF _o (b)	Coating Rate	Bulk Density	Charge Size	(10^{25} n/m^2) (E > 29 fJ) _{HTGR}	Burnup (% FINA)	Failure (%)	Failure ^(d) (%)	(10^{25} n/m^2) (E > 29 fJ) _{HTGR}	Burnup (% FIMA)	Failure (%)	Failure ^(d) (%)
1200 ^o C Hagazine (Design)																		
6252-05-015 ^(e)	500	127	1.8	1.85	1.66	4.5	1.026	Low	Medium	Small	5.9	6.7	0	0	7.1	7.5	0	0
6252-06-015	450	240	11.0	1.74	1.59	5.0	1.033	Low	Low	Large	4.6	54	0	0	6.2	6.5	0	0
6252-06-025	450	240	6.6	1.70	1.57	5.6	1.038	Low	Low	Small	4.8	5.6	0	0	b .8	7.1	3.8	0
6252-07-015	450	240	13.2	1.81	1.59	5.9	1.042	Low	Low	Large	5.3	6.1	3.7	0	7.6	8,1	0	0
6252-07-025	450	240	6.6	1.80	1.65	5.3	1.041	Low	Medium	Small	5.5	6.3	1.9	0	7.9	8.5	0	0
6252-08-015	450	240	6.6	1.89	1.73	5.9	1.045	Low	High	Small	4.1	4.9	0	0	5.9	6.2	0	0
6252-09-015	450	240	5.5	1.78	1.59	7.5	1.036	High	Low	Small	6.1	6.9	1.9	0	8.3	9.1	0	0
6252-10-015	450	240	5.5	1.98	1.75	8.4	1.052	High	High	Small	6.5	7.2	1.9	0	5.3	\$.6	0	0
			and the second secon				والمكافر ومعمول التراري		1500 ⁰ C Ma	gazine (Design)							
6252-05-015 ^(e)	500	127	1.8	1.85	1.66	4.5	1.026	Low	Medium	Small	8.1	8.9	(f)	94.1	10.4	12.5	(£)	100
6252-06-015	450	240	11.0	1.74	1.59	5.0	1.033	Low	Low	Large	7.4	8.2	0	0	10.1	12.1	(f)	100
6252-06-025	450	240	6.6	1.70	1.57	5.6	1.038	Low	Low	Small	7.6	8.4	(f)	11.7	10.2	12.2	(f)	100
6252-07-015	450	240	13.2	1.81	1.59	5.9	1.042	Low	Low	Large	7.7	8.5	(f)	52.5	9.8	11.5	(f)	98.7
6252-07-025	450	240	6.6	1.80	1.65	5.3	1.041	Low	Medium	Small	7.9	8.6	(f)	38.5	9.9	11.7	(f)	100
6252-08-015	450	240	6.6	1.89	1.73	5.9	1.045	Low	High	Smal1	8.1	8.8	(f)	80.0	10.4	12.8	(f)	27.5
6252-09-015	450	240	5.5	1.78	1.59	7.5	1.036	High	Low	Small	7.9	8.7	(f)	94.9	9.4	11.0	(f)	51.3
6252-10-015	450	240	5.5	1.98	1.75	8.4	1.052	High	High	Small	8.0	8.8	(f)	53.2	10.4	12.6	(f)	98.7

.

(a) All samples were screened, density separated to parent batch average and heat treated at 1800°C for 30 minutes in Ar.
(b) Measured with Seibersdorf optical anisotropy unit using 24 µm circle.
(c) Word descriptions are relative to these particle batches only.
(d) Based on visual examination.
(e) This sample was previously tested in capsules HT-28 and HT-29.
(f) OPvC failure with pressure vessel failure was not observed.

.

.

Also, the sample sizes are small and, therefore, the uncertainty in the failure fractions is relatively high.

The results of the TRISO ThO₂ samples are discussed below. The irradiation performance of particles fabricated in a prototype 127-mmdiameter coater and the pilot plant 240-mm-diameter coater was similar. The OPyC coatings having a range of properties performed acceptably at 1200°C. Although high pressure vessel failure occurred in the hightemperature magazines of capsules HT-31 and HT-33, the irradiation conditions were severe and the cause of the failure cannot be determined until further analysis is performed. The failure fractions will be correlated with particle performance model prediction to compare the performance to that of previously irradiated particles. The 1500°C results may be clouded by the fact that ORNL detected corrosion of exposed SiC coatings of the driver fuel in capsules HT-31 and HT-33 (Ref. 9-9). It is possible that the OPyC coating failed initially in the TRISO particles and then the SiC coating was degraded by corrosion, causing increased SiC coating failure.

The BISO ThO₂ particle samples were irradiated in capsule HT-33. The irradiation conditions and the results of the visual examination are given in Table 9-11. The OPyC coating failure (same as pressure vessel failure for BISO particle) ranged from 0 to 59% for the 1200°C samples irradiated to a fluence of 5.3 to 8.3 x 10^{25} n/m² (E > 29 fJ)_{HTGR} and a burnup of 5.6 to 9.1% FIMA. The 1500°C samples exhibited 0 to 95% failure after irradiation to fluences of 9.4 to 10.4 x 10^{25} n/m² (E > 29 fJ)_{HTGR} and burnups of 11.0 to 12.8% FIMA.

The results of BISO coated ThO_2 particles are described below. The irradiation performance of particles fabricated in the small- and large-diameter coaters was similar, as it was for the TRISO particles. Two types of diluent gases were used for the deposition of the OPyC coating. Inert diluent gases (N₂, Ar, and He) have been used primarily at GA in the small-diameter coaters. H₂ dilution appeared to produce a more uniform OPyC coating for the large coater batches. Capsule HT-33 was the first experiment to test OPyC coatings deposited using H₂ diluent gas. The initial

TABLE 9-11

*

DESCRIPTION AND RESULTS OF VISUAL EXAMINATION OF BISO THO2 SAMPLES(a) IN CAPSULE HT-33

					Variab	les		-				Results of V	Results of Visual Fxam	
		Process			OPyC	Coating	i an	Capsule	Sample	Ir	radiation Condition	ns		
	Coater	Initial Load	OPyC Coating	Density (vig/m ³)	Coating		Heat-Tr Condi	Heat-Treatment		Fast Fluence (e)			OPyC Coating
Sample Number	Size (mm)	Size (kg)	Diluent Gas	Liquid Gradient	Bulk	Rate (µm/min)	BAF _o (b)	As-Coated	1650°C ^(C)	Capsule Position ^(d)	$(x \ 10^{25} \ n/m^2)$ (E > 29 fJ) _{HTGR}	Burnup ^(d) (% FIMA)	Number of Particles	Failure (%)
1200 ^o C Magazine (Design)														
6542-39-0161-001	240	20	N ₂	1.98	1.92	3,9	1.079		х	2	5.3	5.6	38	7.9
6542-40-0161-001	240	13	H ₂	1.74	1.67	5.8	1.043		x	4	5.9	6.2	41	0
6542-40-0261-001	240	13	H ₂	1.77	1.70	5.8	1.038		Х	5	6.2	6.5	41	0
6542-40-0260-001	240	13	H ₂	1.77	1.69	5.6	1.038	х		7	6.8	7.1	41	n
6542-27-0161-001 ^(±)	127	2	Ar '	1.86	1.78	4.2	1.041		х	8	7.1	7.5	40	0
6542-29-0261-001	240	20	N2	1.96	1.89	4.4	1.081		X	10	7.6	8.1	39	59.0
6542-41-0161-001	240	13	N ₂	2.02	1.93	5.5	1.081		х	11	7.9	8.5	40	35.0
6542-41-0160-001	240	13	N ₂	2.00	1.93	5.6	1.060	Х		13	8.3	9,1	40	30.0
							1500 ⁰	C Magazine (Design)					
6542-29-0261-002	240	20	N ₂	1.96	1,89	4.2	1.081		x	15	9.4	11.0	55	89.1
6542-27-0161-002 ^(f)	127	2	Ar	1.86	1.78	4.2	1.041		х	17	9.8	11.5	57	0
6542-41-0161-002	240	13	N ₂	2.02	1.93	5.5	1.081		х	18	9.9	11.7	56	94.0
6542-41-0160-002	240	13	N2	2.00	1.93	5.4	1.060	х		20	10.1	12.1	56	Lost
6542-39-0161-002	240	20	N ₂	1.98	1.92	4.1	1.079		х	21	10.2	12.2	54	92.6
6542-40-0161-002	240	13	H2	1.74	1.67	5.7	1.043		х	23	10.4	12.5	58	91.4
6542-40-0261-002	240	13	H ₂	1.77	1.70	5.6	1.038		Х	24	10.4	12.6	56	0
6542-40-0260-002	240	13	H ₂	1.77	1.69	5.7	1.038	х		26	' 10.4	12.8	58	17.2

(a)_{All samples} were screened and density separated to the batch average density, (b)_{Measured} with Seibersdorf optical anisotropy unit using 24 μ m circle, (c)_{Heat} treated at 1650°C for 90 minutes in Ar.

1

(d) The number designates the axial position in capsule; the numbers increase consecutively toward the bottom of capsule (relative to the reactor core).

(e) Design values.

(f) Batch previously tested in capsules HT-28 and HT-29,

results indicate the irradiation performance of OPyC coatings made with H₂ and inert gas diluents was comparable. The OPyC coating failure is plotted as a function of fast fluence in Fig. 9-18. This figure indicates a fluence dependence although there is a great deal of scatter in the data points.

The most influential effect on the coating failure appears to be anisotropy. Figure 9-19 is a plot of coating failure as a function of anisotropy. This figure shows that all samples which had a OPyC coating optical anisotropy (BAF) of greater than or equal to 1.06 exhibited high failure at both 1200° and 1900°C. All these samples had a high OPyC density. The failure is attributed to the irradiation-induced dimensional change of the OPyC coating due to the high anisotropy rather than the high density (Ref. 9-10). All samples which had an OPyC BAF ≤ 1.04 exhibited zero failure at 1200°C and a range of failure at 1500°C. These samples included the particles with the OPyC coating deposited using H_2 dilution. Some failure would be expected in the high-temperature samples since the particles were irradiated to burnups which were 30% to 45% higher than the peak LHTGR burnup, and higher temperatures produce higher OPyC coating failure (Ref. 9-11). The reason for the large differences in failure in the 1500°C BISO samples with $BAF_{2} \leq 1.04$ is not known; this difference will be evaluated during further analysis.

TASK 300: INTEGRAL FUEL SYSTEM TESTING

Subtask 310: Peach Bottom Fuel Test Elements

Differential Thermal Expansivity Measurements for H-327 Graphite Strips From Peach Bottom Fuel Test Elements

<u>Summary</u>. Five thin strips from Peach Bottom fuel elements FTE-5 and FTE-6 were submitted for a heatup experiment in order to establish the sensitivity of irradiation-induced thermal expansivity changes and to find a possible explanation for the fact that four of these five strips experienced residual bow in a direction contrary to prediction.

Fig. 9-18. Total coating failure of BISO ThO₂ samples irradiated in capsule HT-33 as a function of fluence

Fig. 9-19. Total coating failure of BISO ThO₂ samples irradiated in capsule HT-33 as a function of anisotropy

For all five cases, the presence of a larger coefficient of thermal expansion (CTE) at the location of the hotter fiber of the strip during irradiation was unambiguously established. All five strips showed abnormalities in thermal strain starting at furnace temperatures above 600° to 800°C, which are possibly annealing effects when reaching irradiation damage temperatures. This can be explained either by a sudden recovery of larger irradiation-induced shrinkages at the hotter fiber or a partial recovery of larger irradiation-induced reduction of thermal expansivity at the cooler fiber.

The established amount of differential CTE was found to be larger than present predictions and in some cases in the opposite direction. This is not unexpected, considering the second-order nature of a differential effect and the high sensitivity to irradiation temperatures. The magnitude of the shutdown stress component due to measured differential CTE was found to be equal to, or larger than, the amount due to temperature gradients along the cross section of the tested strip. Mean CTE measurements on samples taken from the same strip and differential expansivity measurements on the complete strip by the described method are a good means for establishing shutdown stresses independently of other methods.

Residual stresses* should be derived from residual bow measurements. By this means operational stresses prior to shutdown could be established. Because of the inverse direction of the bow, compressive operational stresses were deduced at the hottest fiber of the strip, where tensile stresses are predicted based on the well established dimensional changes of the material. Any contribution from the thermal expansivity toward this abnormality was ruled out by the described sensitivity experiment. The cutting mode of the saw is suspected as a possible cause. The cutting characteristics of the saw will be examined using irradiated graphite as the inversion in bow was found to increase with irradiation exposure.

^{*}Only differential stresses between the inner hotter and cooler outer fiber are discussed.

Experiment Description. An experiment was conducted on five thin strips obtained from the destructive stress examination of Peach Bottom fuel test elements. One end of the strips was cantilevered inside a horizontal furnace, which had glass windows at the front and rear. The deflection of the free end of the strip was photographically recorded during heatup to 1000°C and subsequent cooldown.

Figures 9-20a and 9-20b show one of the strips at furnace temperatures of 84° and 1000°C, respectively. From the auxiliary grid in the photographs, a lateral movement of the free end in the direction of the original bow of the strip can clearly be identified. The plane of the bow was approximately horizontal in order to eliminate gravitational effects. A slight inclination in the longitudinal direction was required for better visibility. An additional but smaller movement of the strip in an upward direction can be seen from a comparison of Figs. 9-20a and 9-20b. This movement is apparently due to a slight asymmetry in the cross section of the strip. Only the lateral movement of the strips was analysed.

The deflection of the five strips versus furnace temperature is given in Figs. 9-21 and 9-22. The measurements have been corrected for parallax and scale. The nominal graduation of the photographed scale is 1 mm, the actual scale was calibrated as 0.9878 mm, and the parallax factor was 0.8636, which resulted in a conversion factor of 0.8531 from the photographed to the actual scale at the plane of the free end of the strip.

The precision of the photographic measurements was assessed as (Ref. 9-12)

$$p = \pm \frac{e}{\sqrt{12n}} \qquad (1\sigma) \qquad , \qquad (9-4)$$

where e is the smallest graduation of the scale and n is the number of measurements taken. This resulted in

$$p = \pm 0.246 \text{ mm}$$

Fig. 9-20. FTE-5 strip 5-2-1-1 heatup experiment: (a) furnace temperature 84°C

Fig. 9-20. FTE-5 strip 5-2-1-1 heatup experiment: (b) furnace temperature 1003°C

.

Fig. 9-21. FTE-5 thin strip heatup experiment, differential deflection versus furnace temperature: (a) body 2, hole 3

Fig. 9-21. FTE-5 thin strip heatup experiment, differential deflection versus furnace temperature: (b) body 2, hole 1

Fig. 9-21. FTE-5 thin strip heatup experiment, differential deflection versus furnace temperature: (c) body 3, hole 7

Fig. 9-22. FTE-6 thin strip heatup experiment, differential deflection versus furnace temperature: (a) body 2, hole 3

FURNACE TEMPERATURE (°C)

Fig. 9-22. FTE-6 thin strip heatup experiment, differential deflection versus furnace temperature: (b) body 2, hole 5

for a single measurement, as shown in Figs. 9-21 and 9-22.

A preliminary calibration of the furnace was done with an unirradiated strip which did not show lateral movement. The calibration will be repeated in conjunction with a temperature field determination. The present analysis is based on a nominal furnace temperature, i.e., isothermal conditions are assumed. In the likely event of axial temperature buckling, the presently deduced sensitivity of the thermal expansivity between the inner and outer fibers of the strip with regard to the center of the teledial graphite fuel bodies, from where the strips were cut, will increase. The inner fiber is the concave side of the strip cross section, as shown in Fig. 9-20b. This side was part of the fuel hole surface and was therefore the hotter fiber during irradiation. The nominal strip dimensions of the thin strips were:

Length, l	457.2	mm	(18.0	in.)
Width, w	8.99	mm	(0.35	in.)
Min. thickness, t	5.59	mm	(0.22	in.)
Mean thickness, t	5.84	mm	(0.23	in.)
Max. thickness, t	7.11	mm	(0.28	in.)

The analysis was based on an idealized strip with a rectangular cross section (width t x thickness w). Circular bending was assumed, which gives a deflection at the free end four times larger than the maximum bow (arcto-chord displacement):

f = 4h

where f is the deflection and h is the bow. The experimental arrangement took advantage of this magnifying effect.

Data Evaluation. The experiment was designed to identify the direction and approximate magnitude of a differential CTE along the cross section of an irradiated strip. A difference in CTE between the inner and

outer fibers will result in a differential strain during isothermal heatup of the strip:

$$\delta \varepsilon = \frac{2t \delta f}{\ell_0^2} \qquad (9-6)$$

The differential deflection δf is the observed change in deflection during heatup. The sign convention is based on a larger CTE at the inner hotter fiber, which results in a positive differential strain during isothermal heatup for the inner fiber and consequently in a bow direction away from the center of the fuel. All five measured strips unambiguously support this assumption of a larger CTE at the inner fiber. This demonstrates a lower reduction of the beginning-of-life CTE at a higher irradiation temperature for the temperature range experienced by the five strips.

The differential strain can be divided by the differential temperature, which results in a differential CTE:

$$\delta \text{CTE} = \frac{\delta \varepsilon}{\delta T} = \frac{2t}{\ell_0^2} \cdot \frac{\delta f}{\delta T} = \frac{2t}{\ell_0^2} \cdot a_1 \quad . \tag{9-7}$$

The term $\delta f/\delta T$ is the first derivative of the deflection versus temperature plot. Under a linearity assumption, this would be the slope a₁ of a linear regression of the measurements presented in Figs. 9-21 and 9-22.

Three distinctive ranges can be recognized: (1) heatup, (2) annealing, and (3) cooldown. The second range is distinguished from the first by an abrupt change in slope, which is positive for all three strips from FTE-5. This may be explained by annealing of irradiation-induced dimensional changes, especially at the hotter inner fiber (rather than a differential CTE), which would begin when the end-of-life (EOL) irradiation temperature is exceeded. During cooldown, the measured differential strain is approximately the same as that during the heatup phase. Strips 5-2-1-1 and 5-3-1-7 (Figs. 9-21b and 9-21c) show a slightly steeper slope during cooldown than during heatup, which supports a more isothermal temperature

field and hence a more pronounced differential strain than during heatup. (Strip 5-2-1-3 was not measured during cooldown; strips 5-2-1-1 and strip 5-2-1-3 were sister strips taken from the same graphite body.) Table 9-12 includes the EOL irradiation conditions as determined through an irradiation simulation of the experiment with HTGR design codes. The predicted EOL temperatures (volume averages) are close to the so-called annealing temperatures, determined as the intersection between the linear regression analysis.

The two sister strips 6-2-2-3 and 6-2-2-5 taken from the center body of FTE-6 again show an annealing range; however, no further increase in strain is observed, but rather a leveling off (Fig. 9-22a) or even a decrease (Fig. 9-22b). In neither case was the predicted EOL temperature reached when the change was observed. In both cases the slope during cooldown is lightly flatter than during heatup; this is contrary to a more pronounced differential strain in a more isothermal temperature field, as postulated earlier and experienced for FTE-5. A partial reduction in differential expansivity especially at the cooler outer fiber (rather than, or in excess of, recovery from irradiation-induced changes) during the annealing phase would be a possible explanation, which could also explain a lower differential CTE during cooldown. The lack of agreement between the predicted EOL irradiation temperature and the observed "annealing" temperature could have originated with the different temperature history of FTE-6 as compared with FTE-5. Also, the Peach Bottom Reactor was run on a downward transient during the last weeks of operation, which made predictions of EOL temperatures difficult. The "memory" of graphite with regard to a representative irradiation damage temperature is also not fully established. Strip 6-2-2-3 (Fig. 9-22a) shows recovery toward the original deflection. The hysteresis of the strips can be established through remeasurement of the deflection after cooldown.

Table 9-12 presents a summary of the differential CTE values deduced for the different ranges observed for the five strips. The 10 uncertainty statements were derived from the standard error determined for the slope of the linear regression. The correlation coefficient was greater than 0.8

.

COMBEWISON OF PREDICTED AND MEASURED DIFFERENTIAL CTE⁽²⁾ ACROSS STRIP IN FTE-5 AND FTE-6 HEATUP EXPERIMENT TABLE 9-12

,

.

V 3

052~	02≈19 \32	22	968	86.2	90.0+	0*74 5*21	5.971	2.771	22°0 75°7	2°5 0'4	52.1 4.90	7°8 9°71	92°0 61°7	⊻s'×s x'×	8516.71	۲-۱- ٤-2
0292		68	056	2.83	69'1-	20.1 78.2	٤.771	2.481	06'1 07'01		98.7 80.0		12.95 2.73	¥ς ≚		Mean
0630	0£e 8€≠Tð	68	056	2.83	69.1~	28.1 28.8	٤.771	2.481	79°7 15°10	7°1 7°8	89.7 89.7	3.6 3.6	12°1 15°91	×s'×s x'×	5516.71	9-5-5-3
012~	0£e 8€≈Tð	68	056	58 2	69'1-	67°0 16°7	٤.771	2.481	98.0 98.0	8.1 8.1	18°0 70°8	0	61 1 61 1	×s*×s ×*x	8260.81	9-5-2-9
087~		32	\$06	٢٩٠٤	٤٥،١-	1.29 7.08	£ 021	7.871	5116 15106		09.5 77.21		1.55 10.20	×s ≭		псэМ
0\$ <i>L</i> ∿	285 85≈78	se	\$06	٢٩٠٤	£0.1-	77°1 00°8	٤.071	7.871	97.2 13.63	8.01 8.01	09.£	6*9 5*22	۲۹۰۲ 67.11	בی ۲×نگ	0660.81	1-1-2-5
0180	¢Z=25 685	\$ £	\$06	٤,67	£0°1-	1.22 5.24	£.071	7 8/1	5.08 8.92	€°€ 7°51	(c)	6°21 9'77	26.8 80,2	×s*xs x*x	1260.81	8-1-2-5
(0,)	(),)	(),)	(0.)	(E > 50 E1)	(%)	(2)	FOL	BOL	(1-39b 8-01)	(^{1-geb 8-01})	(^{1-geb 8-01})	(¹ -g ₉ b ⁸⁻⁰¹)	(1-gab 8-01)	slodmy2	('UT)	fication
-" [faggå"	EOL	·qmsT	.berri	Fast Fluence	Predicted	aro atto fes	(a) sulf	, 8-01)	.ssaM nsaM	sjed IlA G	unoptoop	"gnilsennA" я	dutesH		'uzgnad	-tinghI
	sieis	Parame	Strip (Z = 0, 23 in.) Measured EoL pifferential Thermal Expansivey of CTE (Tit.) (GTE/CTE (CTE/CTE)													

(a) Differential CTF is the difference between the FOL CTEs at the hotter inner tiber and the cooler outer tiber of the strip. A negative 6CTE means that the irradistion-induced changes resulted at a lower FOL CTE for the inner tiber. All experimental data indicate a positive 5CTE as predicted for irradistion temperatures <900°C.</p>
(b) From Ref. 9-6.

9-57

(°)

for the three distinct ranges. The so-called annealing range is clearly distinguished from the heatup and cooldown ranges and has been excluded from further analysis. For comparison only, all measurements have been combined to one estimate of the differential CTE, which resulted in relatively low correlation coefficients. For further evaluation purposes, the heatup and cooldown δ CTE data have been pooled as the best estimate and compared with predictions. Predictions are based on present design data (Ref. 9-6) and temperature history simulations (Ref. 9-13). The following data are taken from Table 9-12:

Fuel Element	Fast Fluence $(10^{25} n/m^2)$ (E > 29 fJ)	Mean Irradiation Temperature (°C)	Measured δCTE/CTE (% ± 1σ%)	Predicted δCTE/CTE (%)
FTE-5, body 2	3.7	905	+7.1 ± 1.3	-1.0
FTE-5, body 3	2.4	896	+2.6 ± 0.4	+0.1
FTE-6, body 2	2.8	950	+5.9 ± 1.1	-1.7

The absolute mean CTE was taken from Ref. 9-13 and was corrected for irradiation temperature and fluence. The temperature and fluence dependences are presently being updated through additional measurements on control and irradiation samples, which should change the predicted differential CTE to a larger extent than the predicted mean CTE. The present data basis identifies a minimum for the differential CTE at 900°C irradiation temperature, which happens to coincide with the time-weighted temperature ranges established for the FTE-5 and FTE-6 strips. The observed disagreement in sign and magnitude is therefore not surprising.

Stress Assessment. The absolute operational stresses for the strip prior to cutting are predicted to be compressive with a stress gradient toward the cooler outer fiber. Thermal shutdown stresses are superimposed. The cutting operation releases the compressive axial stresses for the neutral fiber and the differential stresses between inner and outer fibers result in residual bow of the strip. The amount of axial stresses relieved

can be determined from the length change of the neutral fiber. These measurements have not been completed for the presented five strips. Measurements from other strips confirm an extension of the neutral fiber, i.e., release of compressive stresses. Only the differential stresses in the axial direction along the cross section of the strip are discussed below.

Being a second-order effect, the impact of the measured differential CTE on shutdown stresses has to be established. The same sign convention as established earlier for strains is used: positive stresses at the inner fiber are tensile, and negative stresses are compressive.

The strain at the inner fiber due to thermal stresses is determined by two terms, one resulting from the temperature difference, δT , between the hot and cool fiber and a mean CTE, and the other from the differential CTE and the temperature difference, ΔT , between the mean EOL operational temperature and the shutdown temperature:

$$\varepsilon_{th} = \overline{CTE} \cdot \delta T + \delta CTE \cdot \Delta T$$
(9-8)
First Second
order order
term term

The proportion between both terms has been established in Table 9-13 for all five strips and found to be about equal or slightly larger for the second-order term. According to the present design data base, the differential CTE becomes negative for irradiation temperatures above 900°C, which results in a reduction of shutdown stresses. The sensitivity of the thermal expansivity has therefore a significant impact on shutdown stresses. Measurement of absolute and differential CTE is a good means of establishing shutdown stresses independent of predictions.

In the unrelieved state (prior to cutting), the thermal strain results in tensile stresses which are maximum at the hottest fiber:

$$\sigma_{\rm th} = \varepsilon_{\rm th} \cdot E \quad . \tag{9-9}$$

		Strip	Mat	erial Properti	es	М	aximum Sh	utdown S	train	Maximu	m Fiber Stres	ses, EOL	Material	Strength, EOL
	Identifi-	Residual Deflection, f(b)	Elastic Mod., EEOL(c)	$\frac{\text{Ref.}}{\text{CTE}}(c)$	Measured စ်CTE	$\epsilon(\overline{\text{CTE}})$	ε(ôCTE)	ε	ε(δCTE)/ε	Thermal oth	Residual(d) ⁽⁾ resid	Operational(d) ^O oper	Tensile ^J UTS	Bending(e) ^O UBS
	cation	(in,)	(10 ⁶ psi)	(10 ⁻⁸ deg ⁻¹)	(10 ⁻⁸ deg ⁻¹)	(10 ⁻⁵)	(10 ⁻⁵)	(10 ⁻⁵)	(%)	(psi)	(psi)	(psi)	(psi)	(psi)
	5-2-1-1	-0.5156	3.23	170.3	8.92	4.26	5.93	10.19	58	329	-1176	-1505	5111	6797
	5-2-1-3	-0.4523	3.23	170.3	13.63	4.26	9.06	13.32	68	430	-1031	-1461	5111	6797
	6-2-2-5	+0.0276	3.17	177.3	8.71	6.74	7.93	14.66	54	464	+61	-403	'4990	6636
	6-2-2-3	-0.0786	3.17	177.3	12.10	6.74	11.01	17.74	62	562	-178	-740	4990	6636
9-6	5-3-1-7	-0.2132	3.22	176.5	4.54	3.53	3.25	6.78	48	218	-492	-710	5106	6792
õ	(0)		•											•

TABLE 9-13 FTE-5 AND FTE-6 STRESS ASSESSMENT FOR INVERSELY BOWED STRIPS AT HOTTEST FIBER^(a)

(a) Only differential stresses between inner and outer fiber of thin strip are considered; release of axial stresses through extension of neutral fiber takes place in addition.

(b) Difference in maximum deflection before and after cutting (f = 4 x bow). Positive direction toward fuel coincides with tensile stresses in the unreleased state.

(c) From Ref. 9-6. Mean values for edge location within graphite log, axial direction.

(d) It is hypothesized that these compressive stresses are erroneous as a result of artificial deformation of the strips during cutting. The irradiationinduced dimensional changes are higher for higher irradiation temperatures, which should lead to restraint shrinkage and consequently tensile rather than compressive stresses at the hottest fiber.

4

•

(e)_A ratio of 1.33 between ultimate bending and ultimate tensile stresses was taken from Ref. 9-14.

The differential deflection f between the fuel body and the strip can be converted to residual axial tensile stresses, which are the sum of operational and shutdown stresses. (The positive direction of bow or deflection is defined as the direction toward the fuel.)

$$\sigma_{\text{resid}} = \frac{\mathbf{t} \cdot \mathbf{f} \cdot \mathbf{E}}{\ell_0^2} \tag{9-10}$$

$$\sigma_{\rm oper} = \sigma_{\rm resid} - \sigma_{\rm th} \tag{9-11}$$

In four of the five cases, the observed residual bow of the strip was in the direction away from the fuel, i.e., negative. The corresponding residual stresses were therefore compressive. The resulting operational stresses at EOL were compressive at the hottest fiber for all five evaluated cases. The results are given in Table 9-13.

Dimensional changes in the axial direction are increasingly negative with increasing irradiation temperatures. This results in significant tensile stress at the hottest fiber. The stated amount of bow, its direction, and the resulting compressive stresses lack a possible explanation from a material property basis. Thermal expansivity has to be ruled out because of the evidence presented.

Distortion of the strip during the cutting process still remains a possible explanation, which has to be evaluated. Inversion of the direction of bow has been found to increase with irradiation exposure. A parameter study on the cutting characteristics of the saw using irradiated material is required.

Subtask 320: FSV Fuel Test Elements

The manufacture of FTE-7 and FTE-8 was completed in December 1976. These elements were made from H-451 graphite machined by CEA Marcoule in France. The fuel loaded in these elements was standard FSV segment 7 reload fuel.

During the loading of these blocks, a considerable amount of surveillance was accomplished. Approximately 2000 graphite measurements were made and over 2500 fuel rods were measured. For each rod, two sets of three diameter measurements and two length measurements were taken. This amounts to over 20,000 data points taken on these two elements.

Similar programs are planned for FTE-1 through FTE-6. These elements will be cured-in-place.

TASK 400: OUT-OF-PILE PARTICLE TESTING AND EVALUATION

No conclusions to report.

REFERENCES

- 9-1. Young, C. A., and D. P. Harmon, "Preirradiation Report of Fuel Materials for P13T Capsule Irradiation," ERDA Report GA-A13343, General Atomic Company, April 1976.
- 9-2. Johnson, W. R., <u>et al.</u>, "Postirradiation Examination of Capsules HT-24 and -25," ERDA Report GA-A13486, General Atomic Company, September 15, 1975, pp. 44-48.
- 9-3. Young, C., and C. B. Scott, "Postirradiation Examination of Capsule P13Q," ERDA Report GA-A14174, General Atomic Company, to be issued.
- 9-4. Scott, C. B., and D. P. Harmon, "Postirradiation Examination of Capsules HRB-4, HRB-5, and HRB-6," ERDA Report GA-A13267, General Atomic Company, November 28, 1975, pp. 113-118.
- 9-5. "HTGR Fuels and Core Development Program Quarterly Progress Report for the Period Ending November 31, 1976," ERDA Report GA-A14180, General Atomic Company, December 1976.
- 9-6. "Fuel Design Data Manual, Issue B," General Atomic unpublished data.
- 9-7. Price, R. J., and L. A. Beavan, "Final Report on Graphite Irradiation Test OG-3," ERDA Report GA-A14211, General Atomic Company, January 1977.

- 9-8. Kovacs, W. J., C. A. Young, and D. P. Harmon, "Preirradiation Report of TRISO and BISO Coated ThO₂ Particles for Irradiation in Capsules HT-31 and HT-33," ERDA Report GA-A13923, General Atomic Company, November 1976.
- 9-9. Tiegs, T. N., Oak Ridge National Laboratory, private communication, January 19, 1977.
- 9-10. Harmon, D. P., and C. B. Scott, "Development and Irradiation Performance of LHTGR Fuel," ERDA Report GA-A13173, General Atomic Company, October 31, 1975.
- 9-11. Scott, C. B., D. P. Harmon, and J. F. Holzgraf, "Postirradiation Examination of Capsules P13R and P13S," ERDA Report GA-A13827, General Atomic Company, October 8, 1976.
- 9-12. Wallroth, C. F., <u>et al.</u>, "Postirradiation Examination and Evaluation of Peach Bottom Fuel Test Element FTE-4," ERDA Report GA-A13452, General Atomic Company, to be published.
- 9-13. Wallroth, C. F., J. F. Holzgraf, and D. D. Jensen, "Postirradiation Examination and Evaluation of Peach Bottom Fuel Test Element FTE-6," ERDA Report GA-A13943, General Atomic Company, to be published.
- 9-14. Price, R. J., "Strength of Graphite Webs in Fort St. Vrain Fuel Elements," General Atomic Report GA-A14201, November 1976.

,

11. GRAPHITE DEVELOPMENT 189a NO. 00552

Graphites that will satisfy the requirements for LHTGR components are being developed and evaluated. Characterization and irradiation studies to establish reference and backup grades for fuel elements, core support components, and side reflectors are in progress. Support technology is being developed to provide data for design and safety analyses. The support technology studies include the mechanics of graphite strength, fatigue behavior, structural integrity, analysis for impurity content, and oxidation effects. Development of control materials is included in the longrange program but no work is funded during FY-77.

Work has been completed on preproduction lots of graphite H-451, which is the fuel element reference material, and current work is concentrated on the first available production logs. Work has been suspended temporarily on backup grades S0818 and TS-1240. Initial characterization work on graphite grades for core support structures and side reflectors is in the preliminary stage. This work is aimed at completing a preliminary characterization data set, which should permit the selection of reference grades for these components.

The irradiation work has been suspended during FY-77 due to the temporary closing of the ORR and will resume in FY-78.

Progress in support technology has been made in areas of determining fatigue behavior, verification of stress calculation methods, and oxidation effects.

Capsule OG-5

Work on capsule OG-5 remains suspended during the FY-77 shutdown of the Oak Ridge Reactor. Assembly of the capsule will be resumed during the final quarter of FY-77 in preparation for insertion in the Oak Ridge Reactor early in FY-78.

TASK 200: GRAPHITE SPECIMEN PREPARATION AND PROPERTY MEASUREMENTS FOR CAPSULE IRRADIATION

Capsule OG-3

The final topical report on the OG-3 capsule (Ref. 11-1) was completed and issued. An abstract of the report follows:

"This report documents the results of dimensional, thermal expansivity, thermal conductivity, Young's modulus, and tensile strength measurements on graphite specimens irradiated in capsule OG-3. The graphite grades investigated included near-isotropic H-451 (three different preproduction lots), TS-1240, and SO818; needle coke H-327; and European coal tar pitch coke grades P_3JHA_2N , P_3JHAN , and ASI2-500. Data were obtained in the temperature range 823 K to 1673 K. The peak fast neutron fluence in the experiment was 3 x $10^{25} n/m^2$ (E > 29 fJ)_{HTGR}; the total accumulated fluence exceeded 9 x $10^{25} n/m^2$ on some H-451 specimens and 6 x $10^{25} n/m^2$ on some TS-1240 specimens.

Irradiation-induced dimensional changes on H-451 graphite differed slightly from earlier predictions. For an irradiation temperature of about 1225 K, axial shrinkage rates at high fluences were somewhat higher than predicted, and the fluence at which radial expansion started (about 9 x 10^{25} n/m² at 1275 K) was lower. TS-1240 graphite underwent smaller dimensional changes than H-451 graphite, while limited data on S0818 and ASI2-500 graphites showed similar behavior

to H-451. P_3 JHAN and P_3 JHA₂N graphites displayed anisotropic behavior with rapid axial shrinkage. Comparison of dimensional changes between specimens from three logs of H-451 and of TS-1240 graphites showed no significant log-to-log variations for H-451, and small but significant log-to-log variations for TS-1240.

The thermal expansivity of the near-isotropic graphites irradiated at 865 K to 1045 K first increased by 5% to 10% and then decreased. At higher irradiation temperatures the thermal expansivity decreased by up to 50%. Changes in thermal conductivity were consistent with previously established curves. Specimens which were successively irradiated at two different temperatures took on the saturation conductivity for the new temperature.

The fractional increase in Young's modulus as a function of irradiation conditions was similar for all near-isotropic graphite specimens, regardless of orientation or location in the parent log. The tensile strength increased in a manner similar to Young's modulus, but the exact relationship between strength and modulus was different for different materials. The coefficient of variation of the strength determinations was not significantly changed by irradiation."

TASK 300: CHARACTERIZATION OF CANDIDATE GRAPHITES FOR PROPERTIES AND PURITY

Replaceable Fuel and Reflector Elements

H-451 Production Logs

Current work is concentrated on production logs of H-451 manufactured for Fort St. Vrain (FSV) fuel element reloads. Approximately 350 logs were processed through the bake state during FY-76 by GLCC and 98 of these logs were further processed through graphitization and purification. The disposition of the 98 logs was discussed in the previous quarterly report (Ref. 11-2). Tensile testing has been completed on eight axial specimens taken

at the approximate midlength center (MLC) of each log and on four radial specimens taken from the end center (EC). The data have been analyzed and a topical report (Ref. 11-3) was written to cover the work. A summary of this report follows:

"Ninety-eight production logs of H-451 graphite, from three separate extrusion lots, were sampled for tensile testing. Eight replicate axial specimens from the midlength center and four replicate radial specimens from the end center of each log were tested. The following observations were made:

- The axial strengths (average value 12.7 MPa) showed wide lot-to-lot and log-to-log variations, while the radial strengths (average value 15.8 MPa) were more uniform.
- 2. There was no statistically significant correlation between axial strength and radial strength in the same log, or between strength and the position of the log in the graphitizing furnace.
- 3. Acceptance criteria for assigning logs to a minimum strength category should be based on axial tensile tests, and each log should be sampled. A statistical model incorporating a separate lot-to-lot variance, log-to-log variance, and within-log variance was adopted for this purpose.
- 4. Acceptance criteria for assigning a log to strength category A [minimum strength 10.3 MPa (1500 psi)], B [minimum strength 8.3 MPa (1200 psi)], or C [minimum strength 5.5 MPa (800 psi)] were derived. Calculations were made for either four or eight replicate specimens per log and for two alternative definitions of "minimum strength." The first definition would require 90% of the material at the midlength center of the log to exceed the specified minimum strength, with 90% confidence (90/90); the second, more stringent,

definition would require 99% of the material to exceed the specified minimum, with 95% confidence (99/95).

- 5. The criteria were applied to the axial test data from the 98 logs. Using the 90/90 definition of minimum strength and testing eight specimens per log, two logs would fail to qualify for category C while almost half of the logs would qualify for category A.
- 6. Adoption of the more stringent 99/95 definition of minimum strength would increase the number of logs rejected to 18; the yield of logs accepted in each strength category would fall slightly short of the requirements of a typical core segment.
- Decreasing the number of tests per log from eight to four causes a small reduction in the yields.
- 8. The differences in quality between the three extrusion lots represented in the 98-log order have a clear effect on the yields of logs in each strength category. Using the 99/95 definition of minimum strength, only two of the 56 logs in the best lot (478) would be rejected and about 25% would qualify for category A. This compares with a rejection rate of about 40% for logs from the other two lots."

In conjunction with testing the strength of the 98 production logs, a round-robin test program was carried out with GLCC to assure that tensile and flexural test procedures at the two laboratories give equivalent results. A log of H-451 was sampled and the specimens divided randomly; one portion was tested by GLCC and a second portion by GA.

Summaries of the flexural and tensile data are given in Tables 11-1 and 11-2,* respectively. Comparisons and conclusions are given in Table 11-3. Full data sets are given in Tables 11-4 through 11-10. No significant differences were found when GLCC and GA tensile tests were made with cylindrical specimens; however, GLCC's tensile data averaged about 8% lower when square dogbone specimens were used. Cylindrical flexural specimens were about 13% stronger than square cross-section specimens. This experiment assures that future tensile strength data, whether measured at GA or GLCC, will be equivalent.

Side Reflector Graphite

Great Lake Carbon Corporation's grade HLM, an extruded graphite 1.14 m in diameter by 1.83 m long, is under investigation as a candidate graphite for side reflector blocks. One-half of a HLM log has been characterized and the results reported in Ref. 11-2. This log was a standard GLCC commercial production log. A second "special production" log was purchased from GLCC for delivery in March 1977. The special log was manufactured under more controlled conditions than the regular commercial grade. The special HLM log will be characterized in the same manner as the first log.

Core Support Floor Graphites

Union Carbide's grade PGX is under investigation as a candidate graphite for core support floor blocks. Grade PGX is a molded graphite 1.14 m in diameter by 1.83 m long. A full log (No. 6484-112, lot 805-3) was purchased for characterization. A summary of the mean values of tensile and compressive strengths of PGX was reported in Ref. 11-2. Flexural strength data are summarized in Table 11-11. The complete data set is given in Table 11-12. The uniformity of the PGX with respect to flexural strength is excellent.

Core Support Post and Seat Graphites

Stackpole Carbon's (SC) grade 2020 and GLCC's grade H-440N are candidate materials for core support post and seat components. Grades 2020 and

^{*}Tables appear at the end of Section 11.

H-440N are fine-grained isostatically molded graphites. Grade 2020 is manufactured as logs 254 mm in diameter by 1.83 m long, and grade H-440N is manufactured as a preproduction log with a cross section of 330 mm by 330 mm and a length of 1.83 m. Production logs of H-440N will be 254 mm in diameter by 2.1 m long.

Grade 2020 was characterized first. The tensile, flexural, and compressive strengths of 2020 were reported in Ref. 11-2.

Strength data for preproduction grade (log 6484-81) H-440N are summarized in Table 11-13. Complete data sets are given in Tables 11-14 through 11-16.

This H-440N log was weaker at the middle than at the top. The tensile strength of radial specimens ranged from 10.4 MPa at the middle of the log to 13.1 MPa at the top, and axial specimens ranged from 10.9 MPa at the middle to 11.2 MPa at the top. Flexural and compressive strengths showed the same gradient. This log, which was one of the first preproduction logs in the development of grade H-440N, has a lower strength than grade 2020.

TASK 400: FRACTURE MECHANICS (FORMERLY STATISTICAL STRENGTH STUDIES)

No work funded under this subtask in FY-77.

TASK 500: FATIGUE BEHAVIOR OF GRAPHITE

A series of ambient temperature uniaxial fatigue tests on PGX graphite has been completed. Test procedures were the same as those reported earlier for H-451 graphite (Ref. 11-3).

The previous two quarterly reports (Refs. 11-2 and 11-4) described tests on radial specimens of PGX graphite tested with a zero-tension loading cycle (R = 0) and with a tension-compression loading cycle (R = -1) and tests on axial specimens with R = 0. During the current reporting

period, the tests were completed with a set of 50 fatigue tests on axial specimens with R = -1. The data are tabulated in Table 11-17.

Figure 11-1 shows the data plotted as the logarithm of the peak tensile stress versus the logarithm of the number of cycles to failure. The lower population tolerance limits calculated by statistical analysis are included in the figures. The analysis included the single-cycle tensile data but excluded the specimens which ran out beyond 10^5 cycles.

A summary of the endurance limits, normalized by dividing by the average tensile strength, is given in Table 11-18. For a given number of cycles, the endurance limits are lower for the tests with R = -1 than with R = 0, as found earlier with H-451 graphite (Ref. 11-3). The normalized endurance limits are somewhat lower for axial specimens than for radial specimens. The normalized endurance limits for PGX graphite are higher than H-451 graphite tested under similar conditions (Ref. 11-3), indicating better fatigue resistance for grade PGX.

TASK 600: RDT AND ASTM GRAPHITE STANDARDS

This section concerns the writing of RDT graphite standards for HTGR graphite component materials. ASTM standard work on nuclear graphite will be monitored and progress will be reported. The ASTM work is by industry concensus and as such is not a part of the Task 11 scope.

RDT Standards

Fuel Element and Replaceable Reflector Graphites

The final draft (No. 5) of E6-1 is under review by ERDA. Resolution of remaining controversial issues is in progress.

11-9

PEAK TENSILE STRESS, σ_{MAX} (MPa)

NUMBER OF CYCLES TO FAILURE

Fig. 11-1. Fatigue test data for PGX graphite, axial orientation, end - one-third radius location, in air at ambient temperature. Log-log plot of normalized maximum stress versus number of cycles to failure with stress ratio R = -1. Lower x/y tolerance limits represent the limits above which at least x% of the points fall, with y% confidence. Open circles represent runouts.

Core Support and Side Reflectors

Work has been suspended on standards for core support posts, core support blocks, and side reflector graphites until E6-1 is resolved. Drafts will not be submitted for review at this time.

TASK 700: IRRADIATION-INDUCED CREEP IN GRAPHITE

This work is funded at ORNL.

TASK 800: STRUCTURAL INTEGRITY OF GRAPHITE BLOCKS

Summary

In the previous quarterly report (Ref. 11-2), large differences were reported between analytical and experimental strip cutting results. Experiments in which strips were heated indicated that the temperature dependence of the irradiated thermal expansivity of H-327 graphite needs better definition. However, lack of precise thermal expansivity data could not account for the discrepancies in the strip cutting results. The possibility of the strip cutting technique inducing strain in the graphite strips is currently under investigation.

Diametral compression tests were conducted on unirradiated test elements. Maximum loads at failure and the load-deflection relations of sixhole and eight-hole teledial elements were determined. Analytical calculations were obtained through the finite element idealization of a linear elastic model. The results were used to estimate the maximum stresses at failure and will also be used to interpret data from tests of geometrically identical specimens of irradiated graphite.

Evaluation of Primary Loading Tests

Diametral compression tests to failure were performed on 61 six-hole and 43 eight-hole unirradiated H-327 teledial disks. Finite element models

of a one-quarter sector of each type of specimen are shown in Figs. 11-2 and 11-3. Twelve of the 43 eight-hole teledial disks were tested after pressure burst tests had been performed on holes 2, 4, 6, and 8, which led to failure of the webs as shown in section 2 in Fig. 11-3. The disks that had been altered by previous pressure burst tests are represented approximately by the mesh in Fig. 11-4. The section which fails first during loading is shown as section 1 in Figs. 11-2 through 11-4.

Load-Deflection Relation

Typical results of load-deflection curves selected from all 20-mmthick specimens are given in Figs. 11-5 and 11-6. Nonlinearity is apparently not pronounced before the failure load is reached. The average initial slopes of the load-deflection curves were measured to be 0.46 mm/kN for six-hole teledial disks (Fig. 11-2), 0.72 mm/kN for eight-hole teledial disks (Fig. 11-3), and 2.76 mm/kN for eight-hole teledial disks without center portions (Fig. 11-4).

Linear elastic stress calculations were performed for the three types of disks with the GTEPC program (Ref. 11-5). Young's modulus and Poisson's ratio were assumed to be 4.4 GPa and 0.117, respectively. The ratios of deflection to load were calculated to be 0.24 mm/kN for the six-hole teledial disks, 0.50 mm/kN for the eight-hole disks, and 1.79 mm/kN for the eight-hole disks without the center portions. The measured displacement is 40% to 92% higher than the calculated values. The Instron machine used for the tests will be recalibrated to show if this can account for the discrepancy.

Failure Stresses

The average failure loads obtained from the load-deflection curves of the 20-mm-thick specimens were 1.023 kN for six-hole teledial disks, 0.485 kN for eight-hole teledial disks, and 0.182 kN for eight-hole teledial disks without the center portions. The peak stresses obtained by finite

Fig. 11-2. Finite element model of six-hole teledial fuel body under diametral compression loading

Fig. 11-3. Finite element model of eight-hole teledial fuel body under diametral compression loading

Fig. 11-4. Finite element model of eight-hole teledial fuel body under diametral compression after pressure burst tests

Fig. 11-5. Load-deflection curve for six-hole teledial disk under diametral compression

Fig. 11-6. Load-deflection curves for eight-hole teledial disks under diametral compression

element computation were 36.13, 18.57, and 16.66 MPa, respectively. Locations at which the peak stress occurred are indicated in Figs. 11-2 through 11-4. The mean ultimate tensile strength of H-327 graphite at the log location from which the specimen is taken is 8.5 MPa. The calculated peak stress is 2 to 4.2 times higher than the mean tensile strength. These results indicate that there is a large degree of conservatism in a failure criterion equating the maximum calculated elastic stress to the tensile strength.

The eight-hole teledial disk without center portions (Fig. 11-4), which had an inner- to outer-radius ratio of 0.84, failed at a peak stress of 16.6 MPa. This result appears to be in reasonable agreement with the maximum tensile stress at failure in diametrally loaded rings (Ref. 11-6). The calculated stresses along the fracture surface are plotted in Fig. 11-7. The six-hole disk reached the maximum stress of 36 MPa with the highest stress gradient.

TASK 900: CONTROL MATERIALS DEVELOPMENT

No work funded under this subtask in FY-77.

TASK 1000: GRAPHITE OXIDATION STUDIES

The HTGR Fuels and Core Development Program work on graphite oxidation, previously reported under Task 4, 189a No. SU001, is being reported under this task of 189a No. 00552 in FY-77. Experimental work is in progress to determine oxidation rates and the effect of oxidation on the mechanical properties of fuel element and core support graphites.

Fuel Element Graphites

A series of oxidation rate experiments on preproduction H-451 graphite has been completed. The reaction rate constants were determined for use in the Langmuir-Hinshelwood equation at low water vapor concentrations, 10 to

Fig. 11-7. Stresses along the fracture surface of teledial disks under diametral compression

200 Pa (100 to 2000 μ atm H₂O), and at H₂ concentrations varying from 100 to 2000 Pa (1,000 to 20,000 μ atm H₂); analysis of the test data is in progress.

A series of experiments to determine the effect of oxidation burnup on the mechanical properties of preproduction H-451 graphite has begun.

Core Support Graphites

Summary

A series of experiments to determine the effect of oxidation burnoff on the mechanical properties of Stackpole grade 2020 graphite is under way. The oxidation portion of the experiments is complete and is reported herein. Mechanical testing of all oxidized samples is proceeding and will be reported later. The oxidation rates of the samples were variable and were found to correlate with position in the log, with high rates observed in top-edge samples. Also, the rates appeared to correlate with iron impurity content, but not with density.

Procedure

Oxidation of 236 cylindrical samples of Stackpole 2020 graphite (12.8mm diameter) for mechanical property testing has been completed. Of the total number of samples, 126 were for compression testing (length = 25.4 mm) and 110 were for tensile testing (length = 76.2 mm). All samples were obtained from the parent log of Stackpole 2020 (No. 6799) according to the sampling plans given in Figs. 11-8 through 11-14. The tensile samples which were obtained radially from the 152-mm-diameter log were equal in length to the log radius. These samples were designated "whole radius." Axial tensile samples obtained within two sample widths of the edge were designated "edge" and those from the remaining center of the log were designated "center." The radial compression samples were obtained by cutting the whole radius cores in half, yielding edge radial and center

٠

•

æ

*

Fig. 11-8. Stackpole 2020 graphite

Fig. 11-9. Coring diagram, Stackpole 2020, slab 1, tensile and compression radial samples

Fig. 11-10. Coring diagram, Stackpole 2020, slab 1, tensile and compression axial samples

NO. 11-6799

S = SPECTROGRAPHIC ANALYSIS

Fig. 11-11. Coring diagram, Stackpole 2020, slab 3, tensile and compression radial samples

Fig. 11-12. Coring diagram, Stackpole 2020, slab 3, tensile and compression axial samples

NO. 11-6799

S = SPECTROGRAPHIC ANALYSIS

EDGE CENTER

Citizen en la construction de la								
SECTION	CORE	SAMPLES						
	25.4 mr	n COMPR	ESSION					
	69	69	70C					
	71	71S	72					
1	73	73	74C					
	75	75C	76					
	77	77	78					
	79	79C	80					
	81	81	82C					
J	83	83C	84					
	85	85	86C					
	87	87C	88					
v	89	89	90C					
N	91	91C	92					
	93	93	94C					
	95	95C	96					
. [97	97	98S					
L	99	99C	100					
	101	101	102					
	76.2 mm TENSILE							
	69	69	70C					
	71	71C	72					
1	73	73	74C					
	75	75C	76					
	77	77	78C					
	79	79C	80					
. 1	81	81	82C					
J	83	83C	84					
	85	85	86C					
	87	87C	88					
	89	89	90C					
ĸ	91	91C	92					
	93	93	94C					
	95	95C	96					
	97	97	98C					
L	99	99C	100					
l	101	101	102C					

Fig. 11-13. Coring diagram, Stackpole 2020, slab 5, tensile and compression radial samples

Fig. 11-14. Coring diagram, Stackpole 2020, slab 5, tensile and compression axial samples

radial specimens. Axial compression samples were designated "edge" and "center" in the same manner as the axial tensile samples.

All samples were oxidized at 1148 K (875° C) in an atmosphere of 5% H₂ and 3% H₂O in helium. The samples were placed on graphite racks which were positioned inside quartz tube furnaces. Each furnace load contained 14 samples. The process gas entered the furnace through a 6-mm-diameter quartz tube, which extended the length of the furnace below the sample racks. Several outlet holes in the gas inlet tube were spaced at frequent intervals along the tube length so that the graphite specimens were exposed to the process gas uniformly.

Results and Discussion

A summary of the rate data is given in Table 11-19 and total burnoffs $(\% \Delta W/W)$ and the average reaction rates (%/h) for all samples are given in Table 11-20. The total oxidation burnoffs ranged up to 25%. Average reaction rates were observed to vary by as much as a factor of 60 within a given furnace load. No correlation with sample position in the furnace was noted. In some cases adjacent samples exhibited vastly different oxidation rates.

Using the detailed coring diagrams, it was possible to determine the exact location of each sample in the original log (Figs. 11-8 through 11-14). Table 11-19 summarizes the reaction rates as a function of location in the log. For each section, the average and the range of the reaction rates and densities were computed. These results are shown in Figs. 11-15 and 11-16. For slab 1, the slab which showed the greatest variation in rate, rate versus location was plotted for each sample (Fig. 11-17).

Table 11-21 gives the results of the emission spectrographic analysis of samples taken from several positions in the log. Figure 11-18 is a plot of iron impurity versus position. The highest iron impurity concentrations were found in the top part of the log, particularly close to the edge.

Fig. 11-15. Average and range of reaction rates of each section versus distance from top of log

Fig. 11-16. Average and range of densities of each section versus distance from top of log

Fig. 11-17. Reaction rate versus position in log for slab 1

Fig. 11-18. Fe contamination versus position in log

Conclusions

Figure 11-15 shows that the highest rates occur at the top of the log. A sharp decrease in rate appears between sections C and D. Referring to Fig. 11-17, this is seen to occur at about 180 mm from the top of the log. With regard to lateral position, samples with the highest rates (0.12%/h) were all taken from the edge of the log. Samples from the center of the log all had rates less than 0.05%/h. Note that tensile radial samples extend across the whole radius of the log; therefore, their reaction rates and densities should show an approximate average between the extremes of the edge and center samples. This was indeed the case for the top slab where wide variations in rate were observed, as shown in Table 11-19 and Fig. 11-18.

Figure 11-16 is a plot of density versus position. No correlation of reaction rate with density is apparent.

Referring to Fig. 11-18, it is seen that the highest iron concentration was observed in samples taken from the top edge of the log, which correlates well with the observed reaction rates. Since iron is known to be a potent catalyst in the steam-graphite reaction, it is concluded that the variations in oxidation rate were due to variations in iron content.

Validation Tests

Writing of a test plan, mentioned previously in Ref. 11-2, to determine the effect of a nonuniform radial oxidation burnoff profile on the mechanical properties of a core support post graphite has been delayed and will be reported in the next quarterly report.

REFERENCES

11-1. Price, R. J., and L. A. Beavan, "Final Report on Graphite Irradiation Capsule OG-3," ERDA Report GA-A14211, General Atomic Company, January 1977.

- 11-2. "HTGR Fuels and Core Development Program Quarterly Progress Report for the Period Ending November 30, 1976," ERDA Report GA-A14180, General Atomic Company, December 27, 1976.
- 11-3. "HTGR Fuels and Core Development Program Quarterly Progress Report for the Period Ending May 31, 1976," ERDA Report GA-A13941, General Atomic Company, June 30, 1976.
- 11-4. "HTGR Fuels and Core Development Program Quarterly Progress Report for the Period Ending August 31, 1976, ERDA Report GA-A14046, General Atomic Company, September 30, 1976.
- 11-5. Tzung, F. K., "GTEPC-2D, a Computer Program for Two-Dimensional Graphite Thermal-Elastic-Plastic-Creep Analysis, User's Manual," General Atomic Report GA-A13532, January 31, 1976.
- 11-6. Brocklehurst, J. E., and M. I. Darby, "Concerning the Fracture of Graphite Under Different Test Conditions," <u>Mater. Sci. Eng.</u> <u>16</u>, 99 (1974).

				GA Results		G	LCC Result	S	
Specification Size	Orientation	Location	No. of Specimens	Mean Strength (MPa)	Standard Deviation (MPa)	No. of Specimens	Mean Strength (MPa)	Standard Deviation (MPa)	Strength Difference, GA - GLCC (MPa)
6.4-mm- diameter cylinder	Axial	Midlength edge	35	26.2	1.3	35	26.6	1.3	-0.4
	Axial	End center	35	21.3	1.8	35	21.1	2.3	0.2
	Radial	End edge	36	22.7	1.2	36	22.0	2.5	0.7
	Radial	Midlength center	35	18.6	2.5.	36	18.4	2.1	0.2
8.9-mm square cross- section beam	Axial	Midlength edge	23	23.9	1.5	24	23.8	1.3	0.1
	Axial	End center	25	19.7	1.7	25	18.2	1.4	1.5
	Radial	End edge	26	18.8	2.8	26	19.4	2.4	-0.6
	Radial	Midlength center	36	16.7	1:9	36	16.6	1.8	0.1

۰**،**

TABLE 11-1 GA-GLCC ROUND-ROBIN FLEXURAL TESTS: DATA SUMMARY (CORRECTED FOR NONLINEARITY)

.

4 .

				GA Results		G	LCC Result	s	
Specification Size	Orientation	Location	No. of Specimens	Mean Strength (MPa)	Standard Deviation (MPa)	No. of Specimens	Mean Strength (MPa)	Standard Deviation (MPa)	Strength Difference, GA - GLCC (MPa)
12.8-mm- diameter cylinder	Axial	Midlength edge	52	19.9	1.4	52	19.3	1.5	0.6
	Axial	End center	50	13.0	1.6	50	12.8	1.0	0.2
	Radial	End edge	30	13.6	3.5	36	13.6	3.5	0.0
	Radial	Midlength center	30	10.4	2.1	36	10.7	1.9	-0.3
7.6-mm square cross- section dogbone	Axial	Midlength edge		I	ſ	47	18.8	1.4	_
	Axial	End center		No GA test	S	48	11.8	1.5	
	Radial	End edge				26	11.8	3.0	-
••••••••••••••••••••••••••••••••••••••	Radial	Midlength center				36	9.8	2.4	-

TABLE 11-2 GA-GLCC ROUND-ROBIN TENSILE TESTS: DATA SUMMARY

< •

.

11-35

٤

٠

Type of Test	Comparison	Average Difference (%)	Number of Cases Where Difference was Significant (at 95% Confidence Level)	Conclusion
Tensile (cylinder)	GA vs GLCC	+1	1 out of 4	No real difference between test laboratories
Flexural	GA vs GLCC	+1	1 out of 8	No real difference between test laboratories
Tensile	Cylinder vs dogbone (GLCC only)	+8	2 out of 4	Real effect; probably caused by sharp edges, radiused shoulders, or worse alignment of dogbone
Flexural	Cylinder vs rectangular beam	+13	8 out of 8	Real effect; rectangular beam stresses more material to peak stress and has larger thickness- to-span ratio

•

TABLE 11-3 GA-GLCC ROUND-ROBIN STRENGTH TESTS: CONCLUSIONS

), ,

TABLE 11-4 ROUND-ROBIN TENSILE DATA: CYLINDRICAL SPECIMENS (GA DATA)

a	LUG 1 + 145	<u>alīv —</u>	<u>- ^(a</u>	/M**3			-
PECIMEN LIDER	IRIE TO ATILN	LUCA- IION	DENSITY (MG/M#+3	YDUNGS)MODULUS	PERN-	FRAC- Ture	TENSILE STRENGIH
				(GPA)	SE1 (PCI)	STRAIN (PCI)	(MPA)
*****		*****		*****			*****
SAEMEUQA	A AX	E				where some	19 6
M=1.36	A AX	LE			-		10.0
Mm (1 32	28 AX	1 E					20.7
<u>ne05</u> t	A AX	E					18.6
ner∩a Mentalia	אַס רוי אַס אַר	"LE. 1 M					20.4
Meu88	5H 4X	'LE	epune				19.6
M= 104	A 48_	3LE	***		and taken and		51.5
Merila	AX B	1LE					17.5
M=034	<u>L^A <u>АХ</u> LH л X</u>	mir				1	- <u>19.2</u>
M=066	A AX	MLL					19.7
M=066	B AX	11LE					19.1
M=100	LA 4X	MLE	-				19.8
料==	ρΗ Δ.Χ. Δ. Δ.Υ.	MLE					20.4
Ma(136	B AX			······································			17.2
Mau 68	LA .A.A	ALE					19.6
かーいちゃ	15 51	MLt					18.2
M=098		MLE	-			-	21.3
ອງຊະ ອາຫຼາງຊະ	10 4X	ግቴር //1 ሥ					21.0
M=10c	H AX	MLE					22.1
M=102	A AX.	MLE			-		21.4
M=102	15 A x	MLE					20.9
50- <u>M-216</u> M-216	<u>A AX</u>	MI F					203
M=188	A Ax	MLE					18.6
4=1HP	XA 61	MLE					16.7
M=158	LA 4.X_	MLE		-			18.4
M = 1 つだ M = 1 つど	15 AX	MLE					14.5
M=126	B Ax	LE					21.9
M=190	A_AX_	MLE					20.3
M=196	bḋ ∆X	"LE					20.5
M=160		MLE			-		- 21.3
1m100 Maiza	τι 4)× Α Αγ	16 E 11 E					61.0 20 k
4∞136	B AX	MLE					50.5
M=198	A 1X	MLE					19.5
1-198	B AX	MLE					19.8
Melot		- 196E					18.9
4	Α Δχ	ጓዜር					22.7
M=138	H AX	111		*			_ 21.3
M-220	A Ax	ALE					21.3
M-221	AX	MLE _				···· ··· ···	20.6
M=224 M=234	IA AX	ጣቢቲ Mi հ					10,0 20.7
₩≈226	A 4.X	MLL					20.7
M=226	B AX	MLE					20.5
***		* 48 69 69 69 69 6	× 15° m 49° 49° 49° 49° 49° 49° 49° 49° 49° 49°	******	*****	*********	an
	MEAD	Ł					(2840 me
							(2003,63

LUT 4 LUG N LUG D	LL. <u>RR</u> (1. 648 1+82 ENSIIY ==164	SPEC. DIA. 1: SPEC. LENGTH (M**3	2 <u>8 mm</u> 76, mm
PFLIMEN URIEN VUMBER ATIO	T+ LICA- DENSITY IN IIJV (MGZE**3)	YUUNUS PERMA FRAC MUDULUS ANENT TIRE (GPA) SET STRAT (PCT) (PCT)	TENSILE STRENGTH N (PA)
amamamamamana A ASBBmanal		» « « » » « « » » » » » » » » « » » « » » « » « » « » « » « » « » « » « » « » « » « » « » « » « » « » « » « » «	**************************************
F=0028 A	X FC		13.3
E=012A A	K EL		14.4
E=1120 A	X r(15.7
A ASSURE	X EL		12.4
F=0558 .	X ⊬L		12.1
E-032A A	X EC	Salarith adaptations	11.0
E-0328 4	X EC		13.4
E-0424 A	X EC		13.0
E-0428 A	X EL		12.7
E-US2A A	<u>X EC</u>	ungegang wildhigh minin minin Ungelagig same dan migin dag summangganga	12.2
E-1528 A	x EC		10.6
E-062A A	X EL		13.8
E=0620 A	X FL		14.4
E UZON A	X EL		12.2
E=0426 A			
E-URCH A	A. <u>56</u>	- AND - PERSONAL PROPERTY AND A SUBJECT OF A	لاسم لالا 1 1 2
τ-002Λ Λ Ε-062Λ Λ	X FC		13.8
F=0928 A	X +C		14 8
F=102A A	X FC		11.6
E-1028 A	ΧΕΟ		12.0
E-112A A	XEC		12.4
E=112B A	X FL		12.8
L=1224 A	A EG		7.0
F-1558 V	x EC		11.7
14-1-1324 A	X EC	gyrag watering stations	15.8
E-1328 A	X EL		14.2
EP142A A		A Landrage Participation of the application of the device and the second	
Caleso a			14.6
Faiszn A		anona gaganga kana	1.1 1
E=1520 A	ν ευ γ εί		14.1
t=1028 A	x FC	analay nationalization along an	13.7
E-172A A	x tí		14.7
E-1728 A	X FC		14,4
AAAAAAAA	X FL		12.3
E-1828 A	X FL		13,4
E=192A A	X_ EC		12,0
E-1928 A	X FL		14.1
<u>t=202A</u> A	X EC		13,9
E-2058 V	X +C		14.0
ERCICA A			
5-3334 A			12 3
E=2222 A F=2222A ∧	x 50 X F0		12.C 12.R
F=2324 A	annin lula X Fí		1300
E-2328 A	X EC		10.7
E=242A A	X FC	ana	12.2
E=2428 A	X EL		12.0
³⁹ 29 29 29 29 29 29 29 29 29 29 29 29 29	\$P @ \$P @ @ # # # # # # # # # # # # # # # # #	u د د د د د د د د د د د د د د د د د د د	
4	EAN		<u>13.0</u> (1891.PSI
S	to. otv.		1.6 (231_PS1

11-38

.....

÷

	LUT MO. LUG NO. LOG DEMO	RH 6+84= SITY =	42	SPEI SPEI	DIA. C. LENG	12. TH 76	<u>B MN</u> • MM
						_	
SPELIMEN _NLIMBER	ATIC .	LIJCA- TION	DENSIT	Y YJUNGS 3)MJDULUS (GPA)	PERM- ANENT SE1 (PCT)	FRAC- TURE STRAIN (PCI)	TENSILE SIRENGIM (iPA)
⁽¹⁾ 498 498 499 499 597 498 499 499	666 660 650 650 650 660 660 f		****		****		
_ 1H=t==Uu	1 RAD	Et				www.epinepin	_ 10,9
<u> </u> () [1 HAD	たと					8 . 5
<u>t = Ud</u>	L PAU	EL					- 9.1
<u>ر</u> (، سه ع	1 240	с с.					3.0
<u>F_==4</u>	L HAD	L		ana an indiana an	ninera manineratum attante dia apar ma	n n nigel fr áffin Klann - m	1V.02 -
(r E 5 5					7.4
[1 40	_ <u>LL</u> 		- conformation action			12.4
		г. с. с. с.					10.0
[=== 1 U	1 HAD						12 4
[1] 1]	1 840						16.0
ba	1 410	her den	2.64	andraan androhende a	5 1.04 MR 4.0404	-	- 1902
	1 0 1 0	ساسا مکانی					10,0
		لت لے ان ا			- Alexandria		10.2
1 1 / 1 / 1 / 1 / 1	1 200	er er Ar Ar					15,0
1 17	1 = A()	F F		1800 B.C.			15 8
10-1	1 240	FF					12.7
	1 600	F.F.	n mer en en anstan salatione	sendar flem och stärtninkurkkalmantaat AMBEEN	at dat inditionality	and and the field of the set	13.4
E==20	1 PAL	ĒĒ	_				11.8
151	1 KAI	ŁĒ	_				12.5
E==22	1 PAL	t.t.					7.9
t23	1 KAD	EE		angan pengantan anananyak keperjak			12.4
E24	1 RAD	<u>E</u> E					18.3
+==25	1 KAD	EE		annan		and the supervised of the supe	18.5
£ == 20	L RAU	EE					18.5
E27	1 HAD	FE					15.4
E28	1 RAD	EE					18.9
F==24	1 RAD	EE					18.9
18=E=007	1 RAD	<u> </u>	an ana ana	water an an all all and			
F 08	1 RAD	EE					12.0
		<u> </u>			****	*****	
	MEAI	N	Marcura avan bankaanaan	مى يې	·····		13.6 (1965.Pi
	сто	1 5 . /					

٠

.

.

		TABI	E 11-4	(Continue	ed)		
	******	*****	*****			***	
	LOT NO.	RR		SP	EC. DI	A. 1	2.8 MM
	LUG NO.	6484-82	2	SP	EC. LE	NGTH	76. MM
	LUG DENS	ITY we	MG	/M**3	-		-
	· 第書のとのです。		*********	日間客館砂園園			
NUMBED	ATTON	TION ()	AC VMAA 8		IS ANEN	T TIDE	STRENGTH
NUNULN	A 104		.0.7	(GPA)	SET	STRAI	N (MPA)
					(PCT) (PCT)
***		****		****	****	***	******
38=M==00	1 RAD	MLC					12.0
M==01	1 RAD	MLC					10,7
M === 0 2							16.6
Mee 04		MIC					R. 4
M==05	1 RAD	MLC					9,6
M	1 RAD	MLC					11.9
M == 07	1 RAD	MLC					8,6
M = = 08	1 RAD	MLC					11.2
M 🚥 🖚 A 9	1 RAD	MLC					9.7
M == = 1 0	1 RAD	MLC					9.0
Mee 11	1 PAD	MLC					11,5
M	I RAD						7°7
Masa 1 4		MLC					A_1
Mee 15	1 RAD	MLC					8,6
Mam16	1 RAD	MLC					10.4
M==17	1 RAD	MLC					11.5
3a-m-18	1 RAD	MLC					7.8
M==19	1 RAD	MLC					9.6
M==20	1 RAD	MLC					8.4
Mee21	I RAD	MLC					7,9
M==23							10 2
Mee24	1 PAD	MIC					13.3
M==25	1 RAD	MLC					11.9
M==26	1 RAD	MLC					14.4
M27	1 RAD	MLC					13.8
M==28	1 RAD	MLC					11.8
M==29	1 RAD	MLC					14.4
****	**************************************	***	*****	****	****	*****	ም ድመዋወቁ ወቁ ወቁ ወቁ ወ ቁ ወ 1 Λ Δ
	ક.કેંટે* આ કેલ						(1509_PSI)
							· • • •
	STD.	DEV.					2.1
							(304,PSI
*****	****	****	*****	***	***	*****	

ROUND	-ROBIN TEN	SILE DATA:	CYLINDRIC	CAL SPEC	IMENS (GLC	C DATA)
	*****	***	# # # # # # # # # # #		****	
	LOT NO.	RR(GL)		SPEC.	DIA.	12,8 MM
	LUG NU.	0404#02]]Y ww	MG/M**	JALL.	LENGTH	/0. MM
	EAT KP	•••		•**		
					有些要的的有多的。	
NUMBER	ATION	TION (MG	100 /M##31M00	ULUS A	CRM® PR	RE STRENGTH
	N-40-		(GP	Δ)	SET STR	AIN (MPA)
				()	PGT) (P	CT)
34- M8A	A X	MLE	*****	. 200 viti 600 607 600 644 6	ar an an an an an an an an an	19,3
M104	AX	MLE				19,7
#12A	4 X 4 V	MLE				18,9
442A	ÂX	MLE				16.2
MILLA	AX	MLE				18,0
M64A	AX	MLE				19,3
474A	A X	MLE				18.9
494A	ΔX	MLE				19.3
M104A	AX	MLE				19.0
ALIZA	4 X 4 X	MLE				21.0
38-M126A	AX	MLE				21.8
M130A	AX	MLE				20.0
4152A	ад Ах	MLE				17.0
M160A	AX	MLE			-	21,8
A162A	AX	MLE				19,3
M182A M1904	A X A X	MLE				18,1
4192A	AX	MLE				18,4
ASISM	_ AX	MLE				17,6
M232A M2444		MLE				20.2
M248A	AX	MLE				20.3
34-M88	AX	MLE				18,5
M 386 M648	4 X 4 V	MLE				18,9
M948	AX	MLE				21.1
MIUB	AX	MLE				18,7
M428 M124	X A A X	MLE				15.3
M728	AX	MLE				19.7
M440	AX	MLE				17,9
M74B	A X	MLE				16.3
M1128	A X	MLE				21.0
M1088	ΑX	MLE				55°3
38-M2128	AX	MLE				20.6
M1528	AX	MLE	-	-		10.0
MISOR	AX	MLE				0,15
M1908	A X	MLE				19.8
M1608	AX	MLE				19,5
M1928	4 X 4 X	MLE				17.2
M1628	AX	MLE				19,3
M1328	AX	MLE				20.1
M2488	_ AX	MIF	÷		** *	20.4
M2328	ÂX	MLE				20.5
*****	,	***	***			
	MEAN					ر ۲۹ (2803_PST)
			-		-	
	STD.	DEV.				1,5
*****			****	******		iseessessessessessessessessessessessesse

TABLE 11-5

***** SPEC, DIA, 12.8 MM SPEC, LENGTH 76. MM LUT NU, RR(GL) LUG NO, 6484-82 LUG NO. 6484-82 SP LOG DENSITY -- MG/M**3 ********* SPECIMEN URIENT- LUCA- DENSITY YOUNGS PERM- FRAC- TENSILE WIMBER ATION TION (MG/M**3)MODULUS ANENT TURE STRENGTH (GPA) SET STRAIN (MPA) (PCT) (PCT) 14-E4A AX EC 14.8 E144 Ax EC E244 Ax EC F34A Ax EC E44A Ax EC E44A Ax EC E44A Ax EC E54A Ax EC E64A Ax EC E74A Ax EC F74A Ax EC F34A Ax EC 11.8 13.2 12.6 11,8 10.8 11,7 А X А X 15.7 FRUA εc 12.0 E94A AX £C 12.4 £104A AΧ FC 13,2 AX E114A εc 11.9 £124A AX EC 12,3 E)_____ H=E134_ E144A * 154A 18-E1 54A AX EC 14.2 Ax £Ç 15,1 AX ΕĊ 14.4 EÇ EC AX 14.1 E174A AX 11.9 E184A AX EC EC 13.6 E194A A X A X 12.7 18-E204A EC 12.3 E214A AX EC 13,6 E224A AX EC 11,9 ~ AX E234A EÇ 12.5 £244A A X A X εç 12,5 14-E48 EC 12.6 E148 AX 5 C 12.7 F248 Δx EC 12.6 E 34B AX FC 12,8 A X A X EC F448 EC 15.0 E548 13.1 E648 AX EC 12.8 E748 AX ΕÇ 13.1 AX E848 EC 10,8 AX AX L-48 E1048 EC 12,8 ĒČ -13.1 A X A X E1148 ΕÇ 13.4 E124B AX EC 13.4 18-E1348 AX EC 15.4 E1448 E1548 AX FC AX EC AX EC AX EC 13.8 13.8 E1648 12.7 E174B 12,4 ΕÇ E1848 AΧ EÇ AX EC AX EC E1948 12.0 E2048 EC 12.0 AX EC E2148 15.9 E2248 AX ΕÇ 11.3 ĒĈ E2348 AX 12,9 __AX E2448 EC 12.4 *** ***** MEAN 12.8 (1858.PSI) STD. DEV. 1.0 (140,PSI)

		******	******	******	***		
	LOT NO. Log no. Log dens	RR(GL) 6484-82 SITY	MG/M*	SPEC. SPEC.	DIA. Length	12.8 MM 76. MM	1
SPECIMEN NUMBER	URIENT- ATION	LUCA- DE TIDN (MG	NSITY YU /M**3)MU (G	UNGS P DULUS A PA) (ERM- FF NENT TL SET STF PCT) (F	AC TE IRE STR IAIN (ICT)	NSILE ENGTH MPA)
10 - E 3A E 1 3A E 2 3A E 3 3A E 4 3A E 5 3A E 5 3A E 6 3A E 7 3A E 10 3A E 10 3A E 1 2 3A E 1 3 3A E 1 3 3A E 1 3 3A E 1 4 3A E 1 5 3A E 1 7 3A E 1 6 3A E 1 7 3A E 2 3A E 3 3 3	RAD RAD RAD RAD RAD RAD RAD RAD RAD RAD	E F C E E E E E E E E E E E E E E E E E					10.7 7.8 8.7 9.1 8.4 6.9 13.6 12.5 10.5 11.9 11.1 14.8 15.5 15.7 12.8 15.7 15.8 15.7 15.8 15.7 15.8 10.3 17.1 15.8 18.9 17.5 18.8 18.9 17.5 18.8 17.5 19.1 17.6 15.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 18.8 17.5 17.5 17.5 18.8 17.5 17.5 17.5 18.8 17.5 17.5 17.5 18.8 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5
에도 가진한 정도와 가진한 정도와 역사의 《영화 《영화 ·	MEAN		an an da da fa da da ga	en-en en e			13.6 978.PSI)
1979 - 1976, andre soon, alleja, ange	STD.	DEV,		an an 100 an 100 100 100		(3,5 505,PSI)

	******************************	TA 	BLE 11-5	(Continue	d) ********	8	
	LOT NU. LOG NO. LOG DENS	RR(GL) 6484=8 IIY ==	2 MG	SPE SPE S/M**3	C. DIA. C. LENGTH	12,8 1 76,	M M M M
SPECIMEN NUMBER	DRIENT- ATION	TION (DENSITY MG/M**3	YUUNGS)MUDULUS (GPA)	PERM- F ANENT 1 SET S1 (PCT)	RAC- TURE TRAIN (PCT)	TENSILE STRENGTH (MPA)
38- M3	**************************************	MLC	*****) 100 (00 40 40 40 40 60 60 60	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	*****	9,6
M13	RAD	MLC					12,4
M23	RAD	MLC					11.4
M 3 3	RAD	MLC					9.4
M43	RAD	MLC					12,7
M53	24D	MLC					11.4
M6 3	RAD	MLC					10,6
M73	HAL	MLC					11.7
MB3	RAD	MLC					11.5
M93	RAD	MLC					11,0
M103	RAD	MLC					9,7
M113	RAD	MLC					11.4
M123	KAD	MLC					5,0
M133	RAD	MLC					9.7
M143	RAD	MLC					10,4
M153	RAD	MLC					9.3
M163	RAD	MLC					9.0
M173	RAD	MLC					7.4
A=M183	RAD	MLC					8,3
M193	RAD	MLC					7.9
M203	RAD	MLC					10,2
M213	PAD	MLC					9,7
M252	RAD	MLC					8,9
M233	RAD	MI, C					10.0
M243	MAD	MLC					12.5
M253	RAD	MLC					13.0
M263	RAD	MLC					12.4
₩273	RAD	MLC					12.5
M583	RAD	MLC					14,1
M293	RAD	MLC					14.3
M 30 3	RAD	MLC					11,4
M313	RAD	MLC					10.2
M323	RAD	MLC					10,9
M 333	RAD	MLC					13.4
M343	HAD	MLC					11,1
м 353	RAD	MLC					11.1
1 9996 agus anns 9399 9396 agus agus agus a	MEAN			(1999-1999) (1999-1999) (1999-1999) (1999-1999) (1999-1999) (1999-1999) (1999-1999) (1999-1999) (1999-1999) (19		****	10 .7 (1554_PS
	STD.	DEv.					1,9 (279,PS

11-44

.

-

٠

÷

4

	****		******		*****	1	
		RACELL		SPEC	DIA	6 /1 MM	
		6484-82		SPEC	LENGTH	S1 MM	
	LOG DENS		MGZN	5		24 g 100 1	
*			1071				
200 200 and an 600 200 and and 100 1	10 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -	100 500, 000, 000, 000, 000, 000, 000, 0	175 185 on on an 188 me		-		
SPECIMEN	()RIENT -	UCA DE	NSTTV	MODULUS		FIFXIIPAI	
NUMBER	ΔΤΤΟΝ	TION (MG	/M + + %)	RUPTURE	(MPA) 9	TRENCTH (4 P &)
1 4 1 F 1 F 1 F 1 F 1 F 1 F 1 F	M. TOW	ratura trada		LUNCORRE	CTEDI	CORRECTED	N
	******		****				* /
3A- 6	AX	MLE		39.	5	29.4	
10	AX	MLE		37.	3	28.5	
12	AX	MLE		36.	1	28.0	
10	Δx	MLE		33.	6	26.8	
22	AΧ	MLE		34.	5	27.3	
20	AX	MLE		37,	9	28,8	
28	Aχ	MLE		33.	,6	26.8	
32	AΧ	MLE		36.	. 1	28,0	
38	ΔX	MLE		34.	1	27.0	
44	ΔX	MLE		33,	5	26.6	
46	AX	MLE		38.	0	28,8	
50	XΑ	MLE		36.	4	28,1	
52	AX	MLE		36.	6	58°5	
58	AX	MLE		33.	4	26.7	
64	Δx	MLE		34.	8	27.4	
66	AX	MLE		36.	8	28.3	
68	AX	MLE		35,	7	27.8	
30= 18	AX	MLE		52.	3	26.1	
00	4 X	MLE		<u>ى</u> د.	0	20.0	
0 ८		MLC)), 75	V	20.0	
04	д Х А У	MLE		27, 74	*	21.7	
7 -	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	MIE			0	20,2	
Q.A	M A A V	MIS		22.	7	2/ 97	
100	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	MIS		JC., ZQ	2	20,1	
110	* A A ¥	MIE		,	7	27 8	
112	Δ×	MIF		28	2	27 6	
114	ΔX	MLF		در. ۲۲	0	26 5	
110	AX	MLF		36.	ŭ	28.1	
118	ΔX	MIF		36.	6	28.2	
130	AX	MLF		37.	S	28.6	
132	AX	MLE		36.	4	28.1	
136	۵X	MIF		37.	7	28.7	
138	AX	MLE		40.	2	29.6	
140	AX	MLE		32	3	26.1	
 		***************************************		***	~ ~	****	***
*	MEAN			35.	4 MPA	27.6 M	IPA
				(5131	. PSI)	(4003. F	SI)
				• • •		- v	··· · •
	STD.	DEV.		2,	5 MPA	1.2 1	1PA
		-		(362	, PSI)	(177, F	SI)
***	****	*****	****	***	****	****	

	9 ^村 島 谷 谷 谷 谷 谷 谷 谷 谷 谷 谷 谷 谷 谷 谷 谷	***************************************	
	LOT NO. RR(GL) LUG NO. 6484-82 LUG DENSITY	SPEC. DIA. SPEC. LENGT MG/M**3	6.4 MM H 51. MM
SPECIMEN NUMBER	ORIENT- LUCA- DE ATION TION (MG	NSITY MODULUS OF (M**3) RUPTURE (MPA) (UNCORRECTED)	FLEXURAL STRENGTH (MPA) (CORRECTED)
1A - 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 18 - 212 206 18 - 212 220 18 - 212 220 18 - 224 228 232 236 240 244 248 252 256 260 264 252 256 260 264 252 256 260 264 268 272 276 280	AX EC AX EC	18.0 25.5 30.3 27.4 26.0 24.9 18.0 27.4 20.6 22.8 24.6 23.6 21.6 22.8 24.0 25.0 25.1 27.4 28.9 29.3 23.9 24.8 20.6 25.1 27.4 28.9 29.3 23.9 24.8 20.6 25.1 27.4 28.9 29.3 23.9 24.8 20.6 27.4 28.9 29.3 23.9 24.8 20.6 27.4 28.9 29.3 23.9 24.8 20.6 27.4 28.9 29.3 23.9 24.8 20.6 27.4 28.9 29.3 23.9 24.8 20.6 27.4 28.9 29.3 28.7 29.4 29.5	$ \begin{array}{r} 16.8\\ 21.9\\ 24.9\\ 23.1\\ 22.2\\ 21.5\\ 16.2\\ 23.1\\ 18.3\\ 20.0\\ 21.3\\ 20.5\\ 19.1\\ 19.9\\ 22.7\\ 20.8\\ 21.9\\ 21.6\\ 23.1\\ 24.1\\ 24.3\\ 20.7\\ 21.6\\ 23.1\\ 24.1\\ 24.3\\ 20.7\\ 21.6\\ 23.1\\ 24.4\\ 24.5\\ 25.9\\ 23.0\\ 24.4\\ 25.9\\ 23.0\\ 24.4\\ 25.9\\ 23.0\\ 24.4\\ 24.5 \end{array} $
	MEAN	26.1 MPA (3781. PSI)	22.1 MPA (3211. PSI)
	STD, DEV,	3,5 MPA (501, PSI)	2.4 MPA (344. PSI)

11-46

سن

	*****	****	******	6
	LUT ND, R LOG NO, 6 LUG DENSI	R(GL) 484-82 Ty MG,	SPEC. DIA. SPEC. LENGTH /M**3	0.4 MM 51. MM
				· · · · · · · · · · · · · · · · · · ·
NUMBER	ATION T	INN (MG/M**3)	HUDULUS UF RUPTURE (MPA)	STRENGTH (MPA)
***	***			
18-147	RAD	EE	19.1	16.7
151	RAD	ĒĒ	24.5	20.4
155	RAD	ĒŁ	28.0	22.3
159	RAD	EE	17.3	15.3
163	RAD	ĒĒ	23.9	19.9
167	RAD	ĒĒ	25.2	20.8
171	RAD	ĒŁ	25.7	21.0
175	RAD	EE	25.5	20.9
179	RAD	EE	25.0	20.6
183	RAD	EE	29.5	23.1
187	RAD	EE	24.1	20.1
191	HAD	EE	26.1	21.3
195	RAD	EE	33.0	24.5
199	RAD	EE	28.6	22.6
203	RAD	EE	30.5	23.5
207	RAD	EE	28.6	22.6
211	RAD	EE	29.8	23.2
215	PAD	EE	35.5	25.2
10-219	RAD	EE	30.7	23.0
223	RAD	EE	33.4	24.6
227	RAD	EE	34.5	25.0
231	RAD	EE	29.1	22.9
235	RAD	EE	26.0	21.6
239	RAD	EE	28,2	22.4
243	RAD	EE	36.4	25.4
247	RAD	EE	31.4	23.9
251	RAD	EE	28,2	22.4
255	RAD	EE	32.0	24.2
259	RAD	EE	35.2	25.2
203	RAD	FE	35.5	25.2
267	RAD	EE	32,0	24,2
271	RAD	EE	35.0	25.1
275	RAD	EE	31,6	24.0
279	RAD	EE	34.8	25.0
283	RAD	E E.	34.5	25.0
287	RAD	EE	37,3	25,6
	****	者我就我我有有事要要要有我	,	
	MEAN		29.6 MPA (4295, PSI)	22.8 MPA (3301, PSI)
÷	STD.	DEV.	4.8 MPA (698. PSI)	2.4 MPA (347, PSI)
		*****	*******	******

		450 460 1 8	* 春 ŵ 卷 *	****	****	***	*******	@ @ @	****	•		
		រពា	NO.	RRIG)		SPEC	- ſ	A 1 (64	мм	
		LOG	ND.	6484	- 82		SPEC		FNGTH	51.	MM	
		LÜG	DENS	SITY	9 6 9	MG/	M**3	Sh rie	a dan	~ * 8		
			adri tega			· 1.446 %	USK					
	****	*****	****	82 459 ⁴ 88 689 689 6	****	****	****	()) ()) ()) ()) ()) ()) ()) ()) ()) ())	*****	****	1980 9990 1	***
SPE	CIMEN	ORIF	NTO	LUCA	DENS	TTY	MODUL	US	OF	FLEXU	RAL	-
NUI	MHER	A 1 1	ON	LON	(MG/M)	**,5)	RUPTUR	E (MPA) S	STRENGT	HI	(MPA)
	-							REC	TED)	CURRE	CTE	:0)
ZH.	ς. ζ		2 A D	MLC		*****	2	4.5) 	,	. Z	·····································
-	7	F	AD	MLC			1	5.0)	13	.6	
	11	F	CAD	MLC			5	5.0)	50	. 6	
	15	F	OAS	MLC			2	0.0)	17	.3	
	19	R	DAS	MLC			1	8,6	>	16	, 3	
	23	R	AD	MLC			2	7,3	5	15	• 9	
	27	R	AD	MLC			5	0.7		17	. 8	
	51	R	AD	MLC			1	7.7		15	• 7	
	\$5 70	R	AD	MLC			2 2	> ,>)	50	• ?	
	39	R	AD	MLC			2	0.0		1/	• 5	
	43	K	AU				۲.	, , , , , , , , , , , , , , , , , , ,) r	20	• ~	
	4/	¥ د					2	4.3 0.0)	10	e کر	
	51 51			MIC			2	ט • ר ג ה	•	1/	• C	
	55 50		AD AD	MLC			2	V o C 1 1		10	ر م د	
	63	r Q		MIC			2	2 0	l	10	0 l 7	
	67	2 2	AD	MIC			2	3.0		10	e / T	
	71			MIC			2	ц. 3		20	, - ->	
34-	75	R	AD	MLC			2	1.0	r }	18	.4	
	79	R	AD	MLC			1	7.5		15	.5	
	83	R	AD	MLC			1	9,5		17	.0	
	87	R	AD	MLC			23	2.0	1	18	7	
	91	R	AD	MLC			2	2,5		19	.0	
	95	R	AD	MLC			2	4,8		20	,5	
	99	R	AD	MLC			2'	9.3	•	23	• 0	
1	03	R	AD	MLC			1	9°0		17	.3	
1	.07	R	AD	MLC			50	6.4		15	.4	
)	11	R	AD	MLC			51	5.6		52	• 6	
1	10	R R	AU				2	4.5	•	20	• C	
ار و	27	R D	AU	MIC			2	4.3		20	* 4	
1. 1	27	۳ ن	AD	MIC			2	9.0 // 8		20	• 0 E	
4	ζ./ ζ1	л С	AD	MIC			2	*•0 7 ₹		21	, 7 0	
1	44	a a	AD	MIC			ء ار	5.2		20	е 7 Д	
1	39	R	AD	MLC			2	2.7		19	2	
1	43	R	AD	MLC			2	5.7		21	.0	
(1)) (1)) (1)) (1)) (1)) (1)) (1)) (1))	1989 999 999 997 999 99	90000000000000000000000000000000000000	100 100 100 100	***************************************)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			\$		* ~	· @ # @ @
			MEAN	i			55	2,9	MPA	19	•5	MPA
							(33)	27.	PSI)	(278	8,	PSI)
								-				
			STD.	DEV.			•	3,3	MPA	S	• 5	MPA
							(4)	32,	PSI)	(31	6.	PSI)
**		****	***	****				***			2000 AND 4000	

.

ς.

....

*

	LOT	ND.	RK	SPEC. UIA.	6,4 MM	
	LÖG	NO.	6484=82	SPEC. LENGTH	51. MM	
	LUG	DENS	SITY DO	G/Mat3		William and a second structure
	*****					****
NUMBED	1 NU	5 IV I	TTIN ING/MA	LAN DIOTIOL (MDA)	RTUENCTH I	* (N) (20 A)
		1014	ITON (HONNIK)	(UNCURRECTED)	CURRECT	117 MJ
*****	***	****			******	*****
SLAB 3-A	42	AX	MLE	35,2	27.6	TATION INTERNET AND IN THE REAL PROPERTY OF
	62	AX	MLE	34.0	27.3	
inan a ann an	2	AX	MLE	32,9	26.4	~ -
	18	AX	MLE	29.5	24.5	
	34	AX	MLE	32.9	26.4	
	54	AX	MLE	34.5	27.3	
deladopien. in cis. extend of	4	AX	MLE	32.8	26.4	
	20	AX	MLE	32.4	50.1	
	36	AX	MLE	32,1	26.0	unit was
	56	AX	MLE	35.3	27.6	
an an anagota (to gro	70	AX	MLE	35,8	27.9	*
	14	AX	MLE	35.4	27.7	
албананынаны таларына жин дүгүүч а	30	AX	M I Be		5.75	-Press Proved From
	48	A X	MLE	33.9	26.9	
	8	AX	MLE	31.4	25.6	
	24	AX	MLE	31.8	25.8	
	40	AX	MLE	35,5	27.7	
	60	AX	MLE	- 37.1	28.5	
SLAB 3.R	122	AX	MLE	35.1	25.9	un ur manifester reconstan
9LA3 3-8	134	AX	MLE	35.1	20.0	
analyzation on unsumer an attach to	72	AX	MLE	31.1	25.4	• ••
	88	AX	MLE	32.0	25.9	
lan alam ana ana ana ana ana ana	104	AX	MLE	30.6	25.1	
	124	AX	MLE	31.2	25.5	
	74	AX	MLE	29.2	54.3	an a
	90	AX	MLE	34.6	27.3	
an a	106	AX	MLE	30.2	24.9	
	126	AX	MLE	30.3	24.9	
	76	AX	MLE	31.3	25.5	
	92	AX	MLE	30.3	28.1	
***	108	AX	MLE	30.9	25.3	а толи софилоно с «нист
	128	AX	MLE	25.6	22.0	
nggi ng kanalan sa kana	86	AX	MLE	31.0	25.4	
	102	AX	MLE	30.5	26.1	
and a subsection with the subscription of the	120	AX	MLE	32.8	26.4	
*****				· · · · · · · · · · · · · · · · · · ·	****	****
EESSEALAINEN IN DIE DESSEALAINEN IN DIE	ananyan dan seri ang kalanda di	MEAN		32.6 MPA	80.2	MPA
				(4726, P81)	(3798,	P\$1)
	·····	STD,	DEV.	2.4 MPA	<u> </u>	MPA
				(348, 231)	(149°	291)

TABLE 11-6ROUND-ROBIN TENSILE DATA:SQUARE DOGBONE SPECIMENS (GLCC DATA)

2

. Ø

		1 117	NĤ	88		201 r	UTA	A 11 M M	
	tema ungeratur		NO.	6484-82		SPFC.	LENGT		an analas an agara, ca rana an .
		LÜG	DENS		MGZM	**3	enetres, stefes t		
دەن بېرې (بايد ۱۵۰۰ مېر کېږي کې د د	desk den van gevallikeren som	999, by 999, .	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and a second sec		and a set the	an an tao mandra ann an tao	tin ng militanin kalanin wa gita man katin na katin na katina katin	r- allen - Manda, mälling en sydryf Arrien 180 val e
	****	※会会要要	**	****	****	*****	****	*****	**
PECI	MEN	URI	ENTO	LUCA. DE.	ISITY	MODULUS	3 OF	FLEXURA	L
NUME	SER	AT	IUN	TION (MG/	(M**3)	KUPTURE	(MPA)	STRENGTH	(NPA)
						UNCORRE	ECTED)	(CORRECT	ED)
****		***			***	******	****	****	***
BLAB	1 • A	142	AX	EC		23,	, l	50.5	
		140	AX	<u> </u>		51	, 8	19,2	
		150	AX	EC		24	, >	51.5	
		154	_ A X	EC	ener söjadjörgerande son sigar soften	26,	, 1	55'3	
		158	AX	EC		24,	, 9	21.5	
	andhew	105	AX	EC	1747 AT IN A CONTRACT OF A DESCRIPTION	51	<u>.</u>	19,1	na na anna annsaigh na annsainnsa
		166	AX	EC		26,	, <u>7</u>	55.2	
		170	A X	EC		24,	, 4	21.5	
		174	AX	EC		24,	, 1	20.9	
		178	AX	EC		23.	<u>, \$</u>	20.3	-
		185	AX	EC		50.	, 4	55.5	
14-1005-5	synthese and Claims of	186	AX	EC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	53	<u>, 5</u>	20.3	84******* vendessorerensee
		190	AX	EC		23.	, 0	20.5	
		194	AX	EC		17.	, Y	16.2	
		198	AX	EC		51,	,7	19.1	
		505	AX	EC		. 55	V.	19,4	
		206	AX	EC		53.	,/	20.6	
inter source and the second	ananda albahadipitina sa	510	A X	£C.	ana adamining in an ang sharana	53		50.6	transmer and an and submitteen
LAB	1.48	214	AX	EC		29,	, U	54.5	
<u>il AB</u>	1-8	518	AX	<u> </u>		23,	, ù	20.4	
		525	AX	EC		53.	,/	20.6	
	·•• ·	550	AX	EC		25	<u> </u>	55'1	
		230	AX	EC		58,		24.0	
	wa without	234	AX	t C	an an an and the second second second	. 75	, Y	53.5	
		238	AX	e C		50,		24.2	
	and a design of the second	242	AX	EC		26.	. /	55.6	
		240	AX			21.	, <u>C</u>	10.8	
danati manta pan, na		63 0	A X	<u> </u>	f		, 2	<u>٤1,0</u>	
		634	AX	EC		٤/،	р / м	25.3	
ne alt maintaithe sauce fin a	6101019-00 01.0000000070-	638	AX	E U	a hay not see the second s	66.	, Q	1468	tu tuda matakin ngapinipanga si 1400 kabang
		606	AX			<u> </u>	, <i>2</i>	£4,\$	
		<u> </u>	А А - _л	<u> </u>		63 i	• 4	6) • 63	
		618	A A A V			66	1	EV. V	
		614	M A	E. 6		<u> </u>	, V 	<u> 66;7</u>	
		610	AA	C C		¢/,	• ₩ • #! # # # # * * * * *	63,1	
	****	8 49 49 49 4 			*****	******		**********	
			m C A N			64 1 12603	IT PERA F. Det 1	دوري (۲2/18/1	Deli
					-	13201		(3404)	<u>~~**/</u>
			6.TN	DEV		\$	A MOA	1 8	MDA
			~`V#	₩ 66 ¥ ¢		<u>بة</u>	•** ₽°₩	4 g Q	F17" 🛤

11-50

	<u> </u>	NO.	RR	- powerski Middle vis so morradas vor ov	SPEC. L	IA.	6.4 MM	· ··· ····
	100	NU.	6484=82		SPEC, L	RNGI	1 31. 11	
анданных лонны и Монка, сайдалого санараго ни Фо	Lüg	DEN	SITY **	MG/	M # # 3	adan sarah saka saka sakar s	alinantantan ana arawa katantan katanta	- Janko w sove cana
***	sets ens ant de	1). 1916: 1926: 1916: 1916 - 1916			****	1 cm cm cm cm c		in an di Sh m
SPECIMEN		ENTO	LUCA. DE	NSITY	MUDULUS	UF	FLEXURA	L.
NUMBER	AT	ION	TIUN (MG	/M##3)	RUPTURE I	(MPA)	STRENGTH	(MPA)
		م مد `` ستلم م	ter nær an ann agens, seldigirikener	an a	CUNCURREL	TEDS	(LURRECT	EUJ
	***		****		*****	****		****
SLAB 1.00	145	RAD	EE		50.	/	21.0	
Nelson and -Selection -	149	RAD	<u> </u>		29.	•	53.3	
	153	RAD	EE		50.0)	55.8	
	157	RAD			20.0) 	<u></u>	
	161	RAD	E E		59.1	<i>\$</i>	23.3	
anna ann an a	105	KAD	k k	ngunggaggaggaggaggaggaggaggaggaggaggaggagga	24.1		20.1	an in the sector of the sector
	169	RAD	6 K.		20.6	5	¢1.3	
	175	MAU	<u> </u>		<u> </u>		<u>Ę0.</u> /	
	1//	RAU	66		20,0		66.4	
	181	MAU		n waanafaffar aanaa a	<u> </u>	}	- 63.1	
	103	RAU	E E c c		6/98 20 2	5 3	61.e7 30 A	
and a substance of the second s	103	RAU		a ana antikating waa	<u> </u>	NUMBER OF STREET, STRE	66,4	a where normalise and the d
	173	RAU	E C		20	, 1	EV.1	
affendage an affendation agé	141	BID	<u> </u>		200	×	- 62.1	~ ~~~~
	206	CAU	6 C 6 C		3V 8 4 30 6	2	63.4 DI 1	
	203	CAD	<u> </u>			F 	- 202	
	217	RAU DAN	E C 6 Ø		200 27 k	,	2023 2023	
	513	DAD D	6 G. 6 K	NZALINA KARMANANYIN'NY MANANANA. IV'N	200	, 		Polic In Automotivity
	221	DAD	5 6 5 6		ແກງຄູງ 73 ເມື	, 7	6.J., J 2. 6	
	225	BAD	in in [4] [5]		27.	-	22.0	-
	220	BVU	6 E		6194 1611 - A	>	27.4	
ana ana ang ang ang ang ang ang ang ang	221	RAD			28.0	}		-
	227	ØAN	sa ha Si Si		26.0	,	20.0	
and there are a state of the second of	241	RAD	han hay armente and a subscription and a subscription of the subscription of the subscription of the subscription of the subscription (subscription of the subscription of the subscriptio	January 107-0648-000-024-00-404			21.0	
	245	RAD	r 6		3.1. 6		22.6	
	240	PAD			24.6	· · · · · · · · · · · · · · · · · · · ·	22.6	
	282	RAD	e e		29.3		23.4	
	257	RAD	<u> </u>	anagana an an an	20)	23.1	
	261	RAD			32.1		24.5	
NUMBER AND AN ADDRESS OF THE ADDRESS	248	RAD	6- 6- F- F	untilitation all for All from the only distances	26.2		21.7	a. 2017 - 2019 - 10 1 - 100 - 101 - 100 -
	260	RAD	ĒĒ		30-1)	22.2	
designing the system of the second	272	RAD		valle ann aig laga an		}	22.0	
	277	QAD	5 6		31.4		22.0	
	281	RAD	<u>p</u> p		33.1	- 1788-7997-6 5569-0198	24.5	
	285	RAD	ĒĒ		33.2	2	24.6	
	****	* *** (*** * **		*****		* 48 68 68 68 4		****
		MEAI	N		28.4	MPA	22.7	MPA
ingen angen ander ander ander ander ander ander ander and			-fyrene		(4180.	P91)	(3286,	P\$1)
98/1994		81D	DEV-		2	5 MPA	1.2	MPA
		भक्त ा 3 067 ∶	1927 - 1929 - 6 B		· ***	0011	· · · · · · · · · · · · · · · · · · ·	8671

TABLE 11-	.6 ((Continued)	
-----------	------	-------------	--

. \

average and the second		LOT NO.	<u></u>	e na constrainty dependents and	SPEC.	DIA	<u>6.4 M</u>	M
		LOG NO.	6484-82		SPEC.	LENGTH	51. M	Μ
		LOG DEN	SITY .	MG/M	**3		_	
**	****							
SPECI	MEN	ORIENT-	LUCA- DEM	SITY	MODULUS	S OF	FLEXUR	AL
-NUMB	IER	ATION	LION (MG)	Maa3)	RUPIURE	(MPA) S	TRENGTH	(MPA)
					UNCURRE	CTED)	(CORREC	TEDJ
<u>物理理理</u> 構 CIALI	**************************************			****		1944220 <i>m</i> 9 6	12222292999999 24	<u>.</u>
OLAD	3=0	5 DAD	MIC		25	0	20	6
~		Q DAN	MIC	-	- 676	0 0	21	> >
		13 040	MIC		26	9	21	e. R
ei chathi	1840-1240 Juni - 146	17 RAD	MIC	nonnik melan wannik da	25.	9	21	1
		21 RAD	MLC		25	2	20.	8
-	~	25 RAD	MLC	φ	19	3	16.	8
	_	29 RAD	MLC		21,	.8	18.	6
		33 RAD	MLC		55	8	19.	3
	14 webbi	37 RAD.	MLC	ns ar valation	18	8	16.	5
		41 RAD	MLC		25,	, 1	50,	7
		45 RAD	MLC _	where we are the	19,	, 4	16.	9
		49 RAD	MLC		18,	, 8	16,	5
**		53 RAD	MLC		51	.5	18.	4
		57 RAD	MLC		10.	. 1	9,	5
	~ ~	61. RAD.	MLC	e na ananan e n		,0	15.	9
		65 RAD	MLC		21,	,8	18.	6
.		69_RAD	MLC _		_21.	.8_	18.	6
SLAB	3=A	73 RAD	MLC		19,	, 1	16.	7
SLAB	3=A	77 RAD	MLC		Ę۷.	8	17.	9
		OI RAD	MLC		د>.	, 0	٤١.	0
~ *		OS RAU		4	664		- 17.	<
		ON KAU			24. 25		¢۷.	£ 4
		97 DAD			67,	7	£V.	Q Q
		101 DAD	MIC		24	1	20	7 1
		105 040	MIC		18	Ô.	16	e. 6
			MIC		24	A	20	ς
* #	944 - 1946 1	113 PAD	MIC	nada utanan d		7	19	2
		117 RAD	MLC		24.	0	20.	0
		121 RAD	MLC		22	.8	19.	3
		129 RAD	MLC		22.	. 1	18.	8
		133 RAD	MLC		22.	1	18.	8
-		137 RAD	MLC		20.	2	17.	5
	-	141 RAD	MLC		14.	0	12.	7
***		*****	***	******	***	******		***
		MEA	N		22.	0 MPA	18.	6 MPA
		-	an an angelene en		_(3192	PSI)	(2698	, PSI)
nation was week have a	an yigana	STU	DEV.	aligner - sering som managler		5 MPA	2	5 MPA
					1 510	PST)	1 365	. PST)

	ROUND~1	ROBIN FI	LEXURAL D.	ATA: C	LINDRICAL	SPECIME	NS (GA DA'	TA)
	הן רע רע	IT NO. IG NO. IG DENI	RR(GL) 6484-82 SITY	мĢ	9PE SPE /M**3	C. VIA C. LENG	• **** 3TH 76	er ΜΜ ● MM
SPFCIM	8888888 EN ()F R (IENT# IENT#	LOCA≕ D Tîn∿ (M	****** FNSITY G∕M±+3	YOUNGS MODULUS (GPA)	PERMA DERMA I ANENT SET (PCT)	PRACE TURE Strain (PCT)	TENSILE Strength (MPA)
***	****	***		****	*********			***
34=426	A	AX	MLE					18.5
MS84		AX	MLE					18.4
M 30A ⊎€ 3A		AX	MLF					18,8
ግንሮች ሥልበል		A A A Y	MIF					18 . 0
4624		AX	MLE					20.4
ASBM		AX	MLE					19.4
4528		AX	MLE					18,2
"62A	-	AX	MLE					50.4
34= 1281	P J	AX	MLE					18.3
~ 50 B			~~ *: E					16,8
		A X	MIS					1789
490A		AX	MLE					19.6
196A		a X	MLE					16,1
1959		AX	MLE					18.8
100A		A X	MLE					50.3
1924	0 A	& X ∧ ∀	™[_E M: £					20,5
	**	4 A 4 X	MIS					17.7
4144A		AX	MLE					21.1
1044		AX	MLE					16,2
4172A		A X	MLE					19,7
41744		AX	MLE					17.0
~194A		AX	MLE					18,1
120CA		A A A X	MLE					19.4
M222A		۵x	MLF					20.1
12304		AX	MLE					17.3
42384		ΔX	MLE					15.9
34=4901	a,	A X	MLE					16.5
M458		A X	MLE					18.0
19691 M1068		AX	MLE					19.0
41228		8 X	MIS					10.8
M26R		ÂX	MLE					19.1
3H=M142	5B	AX	MLE					19.7
41448		AX	MLE					19.8
M1648		AX	MLE					17.7
M1728		A X	MLE					17.5
~174B 4104B		А К А Х	м, 8 М, 8					18,4
MZOZA		AX	MIE					18.7
MZOUA		AX	MLE					18,4
M2228		AX	MLE					21.6
M230B		AA	MLE					18.3
M2388		AX	MLE					19.3
***	*****			****	****	***	****	4 C C C
		MEA	A					(2721,PSI)
		STD,	DEV.					1.4 (198.PSI)
~~~~~	****	****	******	****	****	****		

TABLE 11-7



*

.

~

8	æ	墩	69	-	1	-	18	68	88	1	87	帶	œ	-	8	88	1	6	8	æ	8	æ	18	94	8 1	<b>ж</b> н	a 📾	69 1	89 48	

	LOT NO.	RR(GL)	_	SP	EC, DI	4. *****	* MM
	LUG NU.	, 6484#8 v9177 ##	r Mg	3P /M**3	EC, LE	VGTM 78	* MM
			•				
ଭବରରେକ୍କ୍କ୍ରେଲ େପ୍ଟେମି ଅଳ୍ମ			200000000 200000000		9999999999 95 km	. 5574.	ማመዋቋመመው የድረጫና፣ ድ
VIMBER	ATION	TION (	16/M#*3	JHODHLU	S ANENT	TURE	STRENGTH
				(GPA)	SET	STRAIN	(MPA)
					(PCT)	) (PCT)	
1 A = F 1 0 A			8 # # # # # # # # # 8	*****	, # 8 8 8 9 4 H (	9 <b>* *</b> * * * * * * * * * * * * * * * * *	**********
EPOA	A X	EC					12.5
F 30A	A X A V	EC					12.2
E504	A X	EC EC					10.1
E604	AX	EC					10,9
F 704	8 X 8 V	EC					10.1
E904	A X	EC					11.2
\$100A	A X	EC					10.2
F110A	AX	EC					9.5
18=F130A	A * A X	E L 6 C					10.4
E1504	AX	EC					13.8
F1694	A X	EC					10.5
E173A E180A	A X A X	EC					13,4
E190A	ÂX	EC					11,4
F2004	AX	EC					11.8
F 2 30 A		EC					11.4
ESTOV	AX	EC					11.4
E140A	A X	ĒĊ					12.7
F210A	AX	EC					12.3
FSOR	А А А Х	50 80					11,1
EGOB	AX	ĒČ					10.6
FLUUR	AX	EC					11.3
1H=F140H	A X A X	80 80					11.5
F1508	AX	ĔĊ					12.2
E160H	AX	EC					11.3
E120H	A X A V	EC # ^					8 . A ( 3 7
E1BOR	AX	εc					13.9
E1908	A X	EC					12.0
F2()0R 531)8	& X ^ ¥	EC					12.5
F220B	ÂX	EC					12.5
E230B	AX	ĒČ					12.5
E2408	AX	EC					12,9
ESOR	* * * *	に 第10					18.0
E40B	AX	ĔČ					13.7
E708	AX	EC					11.0
EBOR	AX	EC					10.3
5905 18#61308	A X A X	2C 50					1691
80000000000000000000000000000000000000	*********	***	******	<b>探察的复数考试</b>	****	*****	**************
	MEA	N					11,8
							( 1707.85[)
	<b>S</b> 7D	. DEV.					1.5
		-					( 218, PSI)
***	******	****	新的的表示。 第四十年二年	******	*****	) * * * * * * * * * * * * * * * * * * *	1999 1999 1999 1999 1999 1999 1999 199

5

,

.

..

			********	****	
	LOT NO. Log no. Log dens	RR(GL) 6484-82 SITV	MG/M±±3	SPEC, DIA, **** SPEC, Length 7	** MM 6 MM
SPECIMEN NUMBER	ORIENT ATION	LOCA- DE TION (MG	NSITY YOUN /m#+3)modu (gpa	GS PERM® FRAC® LUS ANENT TURE ) SET STRAIN (PCT) (PCT)	TENSILE STRENGTH (MPA)
18- E9 E19 E29 E39 E49 E59 E69 E109 E109 E109 E119 E129 E119 E129 E149 E159 E149 E159 E149 E159 E219 E229 E229 E229 E2239 E2239 E2239 E2239 E229 E239	RAD RAD RAD RAD RAD RAD RAD RAD RAD RAD				7.6 11.0 9.5 7.0 11.2 5.2 13.8 14.2 11.3 10.9 9.4 11.1 12.9 14.4 15.6 15.2 15.2 15.2 15.2 11.1 10.1 11.2 14.4 10.5 6 5.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.
999 1997 1997 1999 1999 1999 1999 1999	MEAN	4			11.8 ( 1706.PSI)
***	<b>3</b> TD,	, DEV.	***		3,0 ( 429,PSI)

*******

LOG NO. 6484-82 SPEC, LENGTH 76, MM	
LUG DENSITY == MG/MAX3	
»	
SPECIMEN ORIENT- LOCA- DENSITY YOUNGS PERM- FRAC- TENS	ile
NUMBER ATION TION (MG/M##3)MODULUS ANENT TURE STREN	GTH
(GMA) SEI SIRAIN (MM. (Bri) (Bri)	a )
	90 <i>9</i> 0 ee
3B=M69 RAD MLC 6	. 1
M79 RAD MLC 9	. 1
M89 RAD MLC 9	. 6
M99 RAD MLC 11	.8
MIO9 RAD MLC 9	ę 1
M130 DAD MLC 10	e V C
	, « >
MILLO RAD MIC A	_ 4
M159 RAD MLC 7	. 6
MI69 RAD MLC 7	9
M179 RAD MLC 8	<b>3</b>
3A=M189 RAD MLC 9.	<b>0</b>
M199 RAD MLC 7	9
M209 RAD MLC 9	. 8
M219 RAD MLC 6	,8
	د و م
M2/10 DAD MIC 13	0
	р ^{ан} . А.
M269 RAD MLC 11.	. 2
M279 RAD MLC 14	. 0
M289 RAD MLC 13	Ś
M299 RAD MLC 14	4
M309 RAD MLC 10	8
M319 RAD MLC 11.	, 8
M329 RAD MLC 11.	, 9
	، / ۵
38 M9 RAD MLC 10.	3
MIN RAD MLC 10	. 7
M29 RAD MLC 11	Ś
M39 RAD MLC 10.	,8
M49 RAD MLC 10.	4
M59 RAD MLC 13	. 1
╺ ╺ · · · · · · · · · · · · · · · · · ·	******* . 8
( 141	, P81)
STD, DEV.	4
( 34	7, P81)

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
	LOT NO. LOG NO. LOG DENS	RR(GL) 6484-82 Ity	SPEC, DIA, SPEC, Lengi Mg/M**3	***** 'H 76 * MM						
SPECIMEN NUMBER	ORIENT= ATION	LOCA- DENS TION (MG/M	ITY MODULUS OF **3) RUPTURE (MPA) (UNCORRECTED)	FLEXURAL STRENGTH (MPA) (CORRECTED)						
34 - M20 M46 M76 422 M54 M84 M24 M56 166 M16 M120 38 - M200 M170 M140 M208 M170 M140 M208 M148 M210 M148 M210 M150 M28 M242 M242	A X A X A X A X A X A X A X A X A X A X	M M M M M M M M M M M M M M M M M M M	26.7 29.4 26.4 28.5 25.9 29.5 27.8 26.4 28.7 29.3 33.4 29.4 28.5 28.9 34.2 30.5 29.5 30.4 28.2 29.7 30.5 27.6 28.9 30.5	23.4 25.2 23.1 24.6 22.8 25.3 24.1 23.1 24.8 25.1 27.7 25.2 24.6 24.9 25.3 25.9 25.3 25.9 25.3 25.9 25.3 25.9 24.4 25.4 26.0 24.9 26.0 24.9 26.0 MPA						
德容容易命命命	\$TD.	DEV.	(4222, PS) 2.0 MPA (284, PS)	(3626, PSI) 1.3 MPA (188, PSI) 						

-

٦

٠

.

٠

.

٣

	LOT NO, RP(GL LOG NO, 6484 LOG DENSITY =	.) ∂2 ∞ MG/M	SPEC, DIA, SPEC, LENGTH 1**3	****** MM 76 ₈ MM
SPECIMEN NUMBER	ATION TION	DENSITY (MG/M±±3)	MODULUS OF Rupture (MPA) (uncorrected)	FLEXURAL STRENGTH (MPA) (CORRECTED)
1A E8 E18 E28 E38 E48 E58 E58 E58 E98 E108 E118 1B E128 E138 E148 E148 E148 E158 E148 E148 E178 E168 E178 E188 E218 E228 E238 E238 E238 E248	AX EC AX EC		26.8 21.5 21.1 18.2 19.7 19.6 22.4 19.7 20.5 20.1 19.2 21.2 21.2 21.2 21.5 22.6 24.1 19.6 23.8 20.6 23.8 20.6 23.2 21.8 21.6 20.7 22.5 19.1	23.4 19.4 19.4 19.1 16.7 18.0 17.9 20.1 18.0 18.6 18.5 19.2 19.4 20.3 21.4 17.9 18.1 21.2 18.7 20.7 19.7 19.7 19.7 19.7 19.5 18.8 20.3 17.5
	MEAN Std. Dev.	****	21.2 MPA (3079. P8I) (277. P8I)	19.2 MPA (2784, PSI) (2787, PSI)
	医囊疹 神 身 体 神 神 命 会 音 彩 命 音 筆	****	·	你心觉我们的你的你的你的你?" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~

LOT	NO.	RR(GL)	SPEC. U	DIA.	****	MM
LUG	NO.	6484-82	SPEC, L	LENGTH	76.	MM
LOG	DEN	SITY	MG/M##3			

				~~~~~~~~~~~	
SPECIMEN	ORIENT I	LOCA=	DENSITY	MODULUS OF	FLEXURAL
NUMBER	ATION	TION (	MG/M**3)	RUPTURE (MP	A) STRENGTH (MPA)
	*	_		CUNCORRECTE	D) (CORRECTED)
		5 CC	*******		
	RAU				
217	RAU	2.2		20.7	18,5
E 2 7	RAD	EE		51.0	18.6
E37 ·	RAD	EE		20,7	18.3
E47	RAD	EE		20.0	17.8
E57	RAD	5 E		20,4	18.1
Ē67	RAD	<b>E</b> E		20.9	18.5
F 7 7	RAD	60		24.4	20.9
687	RAD	* 5		21.9	20.6
E07	DAG	600 \$00. 67 65		3/1 6	24 4 24 4
5 1 1 2	DAD	66			2101
	RAU			<i>C / e *</i>	66.7
E11/	RAU	60		20,1	23.3
E127	RAD	EE		50.5	23.4
E 1 37	RAD	EE		24.1	20,7
E147	RAD	EE		24,2	20,8
E157	RAD	EE		27,0	22.6
E167	RAD	EE		27.1	22.7
F177	RAD	EE		28.8	23.7
14=F187	RAD	ĒĒ		23.1	20.1
F107	RAD	66		10.0	17.7
14-5307	PAÑ	5 C		31 6	10 0
E317	DAN	6. he 67. 67		22 0	100
	DAD -	5 C # #			
2661	KAU	6 C		69. V	20.0
2237	KAD	ee		10,6	14.0
E 2 4 7	RAD	EE		30,)	24.4
6257	RAD	EE		28.1	23, 3
*****	*****	 	*****	****	***
	MEAN			23.7 M	PA 20.3 MPA
				(3434. P	81) (2950, PSI)
				یک مطلب بی مالید یا ∰ی و	कार्थाल अर्थिय थें प्रियंश की र अभि 1999 के
	<b>4</b> 7 n	nëv "		<b>1</b> 6 M	
	@ 1 V e	₩ <b>6 4</b>			
		• ~		( 310° L	31) (333, 731)
			*****	****	



*

(5)	630	<b>63</b> 8	繎	689	癜	685	-	æ	88 <b>8</b>	橡	82	-	<b>#</b>	688	88	889	-	-	<b>6</b>	癞	<b>68</b>	æ	æ	<b>6</b> 94	s B	癜	<b>88</b> 8	<b>8</b>	-	嫐	<b>\$</b>	蠍	曫	689	** f	10 C
- 60	100	100	adds.		695	-	-	webber.	(date.		100		ditto	vites.	1000	-	460	4946	487	190	A		-			4000	-stites	viewor	AMA:	-140 P				100		a

SDFC 1MFN	NRIFNIC I	NCA= DFNS1	TY MODULUS	S OF FLE	XURAL
NUMBER	ATION	TION (MG/M	+3) RUPTURE	(MPA) STREN	IGTH (MPA)
	77	- en vage	LUNCORRE	CTED) (COR	RECTED)
***		******			
38 M7	RAD	MLC	16,	, <u>č</u>	14,8
M17	RAD	MLC	<b>2</b> 0,	2	18.0
M27	RAD	MLC	20,	, 1	17.9
M 37	RAD	MLC	21,	1 ⁴ ·	10,0
M47 ME7	RAD	MLC	14.	, / 	17.0
~~~~/ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			17,	, 0	1000
M77	DAA	MIC	20	7	12.8
MAT	RAD	MLC	17	.8	16.1
MQ7	RAD	MLC	20.	2	18.0
M107	RAO	MLC	21	3	18.8
M117	RAD	MLC	20	ŝ	18.2
M127	RAD	MLC	16.	9	15.4
M137	RAD	MLC	19	4	17.3
M147	RAD	MLC	19	6	17.5
M157	RAD	MLC	18,	4	16.6
M167	RAD	MLC	18,	5	16.4
M177	RAD	MLC	19.	, 8	17.7
34=M187	RAD	MLC	12,	,8	12.0
M197	RAD	MLC	18,	4	16.6
M207	RAD	MLC	16,	, 7	15,2
M217	RAD	MLC	18,	3	16.5
M551	RAD	MLC	19,	, 7	17.5
M237	RAD	MLC	13.	, X	13.0
M247	RAD	MLC	20,	, ¥	10,5
1CSM	RAU		<i>e</i> 0 ,	р У Б	10,3
"CO/	AU		230	7	
M207			26,	н / Д	2
M207		MIP	c.)(21	7	6 V 9 J
M307	RAD	MLC	22	Ó	19.2
M % 1 7	RAD	MLC	19.	.5	17.4
M 327	RAD	MLC	23.	3	20.2
M 337	RAD	MLC	21.	. 8	19.1
M347	RAD	MLC	20	3	18.1
M357	RAD	MLC	21	3	18,8
	*********				*********
	MEAN		19, (284)	,6 MPA 3. P8I) (2	17.5 MPA 1537, PSI)
	STD.	DEV.	2, (355	4 MPA 5. PSI) (1.9 MPA 275, PSI)

	ROUND-	-ROBIN	FLEXURAL D	ATA: CY	LINDRICAL SP	ECIMENS (GLCC	DATA)
	# #	***	***	*****	********	***	
	LO	T NO.	426/RR		SPEC.		A MM
	្រែ	G NO.	6484-82		SPEC. L	LENGTH 76	MM
	LOI	G DEN	SITY 1.73	MG/	M**3		•
**	***	***	****		******	******	****
SPECIME	N (IR)	IENTO	LOCA- DE	NSITY	MODULUS	OF FLE	XURAL
MINHER	Δ `	TION	TIUN (MG	(M**3)	RUPTURE	(MPA) STREN	GTH (MPA)
					(UNCURRE(CTED) (CUR	RECTED)
*****	***	****	****		******	*****	****
SLAA 3	м14	AX	N'LE		54.4	9	25.1
	~440	ΔX	"LE		23,1	1 .	20,7
	M70	Δ×	MLE		58.6	5	24.8
	14R	A X	MLE		53.4	5	21,2
	M78	AX	NE		27.9	7	24.2
	M18	A X	MLE		26.5	2	53.5
	450	ΔΧ	MLE		25.4	5	55.0
	M80	AX	MLE		27,0	2	23.7
	M110	ΔX	MLF		58.1	7	24.7
	M118	AX	ALE		29,65	3	25.5
	1114	AX	MLE		29.4	3	25,5
	M509	A x	MLE		30.5		26.0
	M176	AX	MLE		30,8	\$	26 , 2
	4146	AX	MLE.		26.1	L (55,9
	MS10	AX	MLE		24.9	1	22,0
	MIBU	AX	MLE.		26.1		23,3
	MISU	AX	MLE		27.4	+	23.9
	M210	AX	MLE		28,0)	24,2
SLAR 3	MINS	AX	1 LE		59.6	3	25,5
	M156	AX	MLE		28.8	5	24,8
	M234	AX	MLE		27.4	*	23.8
	M240	AX	MLE		28,1	5	24,5
	M246	AX	MLE		29.0) 2	25.0
*****	***	******	******	*****			
		MCA	V		27.5	3 MPA	CJON MPA
					(24476	(3)	471, 231)
		然帮 办	R.P.L.		20 ₆ 4	1 14 15 4	4 67 94 FR 4
		310	OEV.		C _1	L MPA	1,3 MYA
					(307 e	, F31) ((217, MOT]
****	***	******	*****	****		*******	

TABLE 11-8

¢

.

٠

	寄宿县前 章 动	TABLE 11-	8 (Continued)	19 (19 fao fao
	LDT NO. LDG NO. LDG DENS	426/RR 6484-82 ITY 1.73	SPEC, DIA, SPEC, LENG MG/M**3	• ★★★★★ ⁴ M GTH 76 • ⁵ 1M
SPECIME NUMBER	889 99 99 99 99 99 99 99 99 99 99 99 99	LUCA DENSI TIUU (MG/M*)	TY MODULUS OF *3) RUPTURE (MP) (UNCURRECTED	FLEXURAL A) STRENGTH (MPA) D) (CORRECTED)
SLAB 1	E6 AX E6 AX E16 AX E20 AX E30 AX E30 AX E460 AX E76 AX E76 AX E966 AX E1106 AX E1126 AX E1266	EC EC EC EC EC EC EC EC EC EC EC EC EC E	20.4 21.7 20.6 18.1 22.5 22.3 22.4 20.6 21.0 22.2 21.1 23.7 24.6 24.9 29.3 22.0 20.3 21.2 20.4 21.3 20.6 21.0 24.9 29.3 21.2 20.6 15.6 20.6 21.0 24.9 29.3 21.0 20.6 21.0 24.9 29.3 21.0 20.6 21.0 24.9 29.3 21.0 20.6 21.0 21.0 24.9 29.3 21.0 20.6 21.0 21.0 22.2 21.0 21.0 22.2 21.1 23.7 24.6 24.9 29.3 21.0 20.6 21.0 24.9 29.3 21.0 20.6 21.0 21.0 20.6 21.0 20.6 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 20.6 21.0 21.0 21.0 20.6 21.0 21.0 21.0 20.5 21.0 20.0 21.0 21.0 20.0 20.0	18.6 19.6 18.7 16.7 20.1 20.0 20.1 18.7 19.0 20.0 19.1 21.8 22.0 25.2 19.8 18.5 19.2 18.5 19.2 18.5 19.2 18.5 19.2 18.7 18.7 19.0 21.8 18.7 19.0 21.8 18.7 19.0 21.8 18.7 19.0 21.8 18.7 19.0 21.8 18.7 19.0 21.8 18.7 19.0 21.8 18.7 19.0 21.8 18.7 19.0 21.8 18.7 19.0 21.8 18.7 19.0 21.8 18.7 19.0 21.8 18.5 19.8 18.5 19.8 18.5 19.8 18.7 19.0 25.2 19.8 18.7 19.0 25.2 19.8 18.7 19.0 21.8 18.5 19.8 18.7 19.0 25.2 19.8 18.5 19.8 18.7 19.0 21.8 18.5 19.8 18.7 19.0 21.8 18.5 19.8 18.7 19.0 21.8 18.5 19.8 18.7 19.9 18.5 19.8 18.7 19.9 18.5 19.9 18.7 19.9 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 19.0 21.8 19.7 18.7 19.7 18.7 19.7 19.7 19.7 10.7
	MEAN		21.4 MF (3174, PS	A 19,7 MPA (2858, PSI)
	STD.	DEV.	2.3 MF (327. PS	PA 1.7 MPA 81) (250, PSI)

11-62

¥

,

.

*

ĸ

•

盤審養鍍鐵審會	****	********	
LOT NO. Log No. Log dens	420/RR 6484-82 ITY 1.73 MG/M	SPEC. DIA. SPEC. LENGTH **3	★★★★★ MM 76
SPECIMEN UPIENTE UUMBER ATION	LUCAD DENSITY Tium (mg/Max3)	MUDULUS UF RUPTURE (MPA) ((UNCORRECTED)	FLEXURAL STRENGTH (MPA) (CORRECTED)
SLAH 1 F5 RAD F15 RAD E25 RAD E35 RAD E45 RAD E145 RAD E145 RAD E145 RAD E145 RAD E145 RAD E145 RAD E165 RAD E165 RAD E165 RAD E175 RAD E165 RAD E175 RAD E165 RAD E175 RAD E185 RAD E195 RAD E195 RAD		15.1 14.1 17.3 18.2 18.5 21.0 24.3 19.0 24.7 21.9 16.2 20.1 24.9 25.0 25.0 25.0 25.0 25.0 25.0 25.0 17.8	13.9 16.3 15.7 16.4 16.6 19.0 20.9 17.5 21.2 14.8 22.1 21.2 21.3 20.3 21.7 21.8 20.5 19.0 19.0 19.2 14.8 22.1 21.2 14.8 22.1 21.2 14.8 22.1 21.2 14.8 20.9 14.8 22.1 21.2 14.8 20.9 14.8 20.9 14.8 22.1 21.2 14.8 20.9 14.8 22.1 21.2 14.8 20.9 14.8 21.2 14.8 20.9 14.8 20.9 14.8 20.9 14.8 21.2 14.8 20.9 14.8 21.2 14.8 20.9 14.8 20.9 14.8 20.9 14.8 20.9 14.8 20.9 14.8 20.9 14.8 20.9 14.8 20.9 14.8 21.2 14.8 20.9 14.8 20.9 14.8 21.2 14.8 20.9 14.8 14.8 20.9 14.18 14.8 20.9 14.18 20.9 14.18 20.9 14.18 20.9 14.18 20.9 14.18 20.9 14.18 20.9 14.18 20.9 14.8
SLAR I E195 RAD E215 RAD E225 RAD E235 RAD E245 RAD E245 RAD E255 RAD MEAN STD.		17.0 22.3 17.2 16.0 20.2 27.3 28.2 21.0 MPA (3130, PSI) 3.8 MPA (555, PSI)	19.5 15.6 15.1 18.0 22.8 23.4 18.8 MPA (2734. PSI) 2.8 MPA (403. PSI)

TABLE 11-8 (Continued)								
LUT VU. LOG VU. LOG PENS SPECIMEN HRIENT JUMKER ATIUN	426/RR 6484-82 ITY 1.73 MG/I LUCA= DENSITY TTUN (MG/M**3)	SPEC, DIA, SPEC, LENGTH M**3 MODULUS OF RUPTURE (MPA) (UNCORRECTED)	***** MM 76, MM FLEXURAL STRENGTH (MPA) (CDRRECTED)					
SLAH 3 "5 RAD "115 RAD "25 RAD "35 RAD "45 RAD "415 RAD "45 RAD "45 RAD "425 RAD "425 RAD "425 RAD "425 RAD "45 RAD "45 RAD "45 RAD	MLC MLC MLC MLC MLC MLC MLC MLC	21.3 17.9 19.2 17.7 21.1 18.8 13.1 20.8 20.2 19.0 20.7 19.9 18.1 15.5 18.7 17.7 15.6 16.9 16.1 16.6 15.1 14.8 18.6 15.5 18.7 17.7 15.6 16.1 16.6 15.1 14.8 18.6 15.5 18.7 17.7 15.6 16.1 16.6 15.5 18.7 17.7 15.6 16.1 16.6 15.5 18.7 17.7 15.6 16.1 16.6 15.5 15.7 23.0 19.7 21.5 21.0 20.0 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.5 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.5 21.0 20.0 20.0 22.3 15.7 23.0 19.7 21.5 21.0 20.9 16.7	18,8 16,2 17,2 16,1 18,7 16,9 12,2 18,4 18,0 17,1 18,3 17,7 16,4 16,8 16,8 16,8 16,8 16,8 16,8 16,8 15,8 14,8 15,8 15,8 14,8 15,8 14,8 15,8 14,8 15,8 14,8 15,8					
	() () () () () () () () () () () () () (18.6 MPA (2699, PSI)	16.7 MPA (2422, PSI)					
STD.	DEV.	2.4 MPA (350. PSI)	1.9 MPA (274, PSI)					
	nang-diter dittions alternations	and the set was and and and and and	a material and an and an and an and and and and an					
---	--	--	--	--				
	LOT NO.	-KRIGL)	SPEC	6-4 MM				
	LOG NO.	6484-32	SPEC. LENGT	H 51. MM				
shar. waters	LOG DEA	člit — – « c	an full faitheadh and an an an an	ಕಡೆಸಿದ ಭಾರ್ಥ ಕೆಲ್ಲಾ ವ್ಯಾಕ್ತ್				
SPECIMEN	OR IENT-	LOCA- DENSITY	MODULUS OF	FLEXURAL				
NUKHEH	ATION	TIGN + MG/M**3	-) RUPTURE (MPA)	STRENGTH (MPA)				
			(UNCORRECTED)	(CORPECTED)				
	**************************************	en e						
148	~ ~ ^ ^ ^		24 1	20.0				
160	A X		2 0 C	<u>ም</u> ቲምን ግግር በ				
1.5.	X 4 V A			2307 77 1				
120			23+8	2 X 8 X 7 Y 7				
160	AX	10	24.5	21.02				
164	A -X		an anna an an 2 Sangaby					
163	АУ	[C	16.9	15.4				
172	-AX	-E C	- 25.8	22+1				
176	A X	FC	19.4	17.4				
1-2-2	×A	F E-	- 21+5	19.0				
184	ХA	LC	23.2	20.2				
- 188	- for the	······································	22.2	19.5				
192	AX	20	20.4	18.1				
196	A X	£C	21.5	16.9				
200	X A	EC	25.2	21.6				
204	XA	- [C		19.8				
278	AΧ	EC	24.1	20.9				
11-212	A.X	- CC		- 20.6				
216	АX	LC	25 e	22.1				
.20	XA	Г с	- 27-2	23.0				
11-224	AX	FC	27.6	23.2				
228	ΔΧ	FC	22.5	19.7				
222			77-4	20.4				
276		FC	2004	21.5				
240			and the second sec	பாகைய வகைக்களைத்துடுகள்குள் கூட ,பட அந்து				
2413			200U	2 6 6 C				
	#.A	5 ^						
ん 4 ど つ 5 つ	# X		<i>cle1</i>	660 Y				
	- <u>AX</u>		······································	an an darde to fan anne				
.156	АХ	LU	20.8	25.02				
Ellimon			and a consideration and the set of the set o	and were used were the the second				
264	ХA	LC	27.8	23.3				
268	AX_			- 24.8				
272	ХA	EC	25.6	21.9				
276	A.X	<u> </u>	27.7	-23.3				
280	XΑ	EC	27.8	23.4				
මෙහිම මන්තු මනාක දෙනු දේවාව මන්තා කිරීමා මන්තා කිරීමා කොලා මෙමෙම මන්තා මන්තා කරන		and any star and an						
		т ус Панятично пятат басстан различность так различно заращиност масс	13561. PSI)(3062. PSI)				
		_						
	<u>STD</u>	• DEV.		MPA				

TABLE 11-9

TABLE	11-9	(Continu	(ber
-------	------	----------	------

	LOT NO. RP(GL)	SPEC. DIA. SPEC. LENGTH	<u>6.4 MM</u> 51. MM
		-	
****	***************************************	98.999.999.999.999.999.999.999.999.999.	1.000.100.101.101.101.101.101.101.101.1
SPECIMEN	ORIENT- LOCA- DENSITY	MODULUS OF	FLEXURAL
NUMBER	ATION IJON (MG/M**3)	RUPTURE (MPA)-S	TRENGTH (MPA)
		(UNCOFRECTED)	(CORRECTED)
	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ ΛΥ Ι\ΙΓ	1.8 m. 	1.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
10		75.1	2065
12	AX MIF	34.0	27.0
_16	AX MLE	31.7	25.7
22	AX MLF	32.5	26.2
	AX	75.7	27.8
28	AX MLF	31.7	25.7
- 32	AX. MLE	34-0	27-0
38	AX MEE	32.1	26.0
- 44	AX MLF	31.2 -	25.5
46	AX MLE	35.7	27.9
	AX MLE		27-1
52	AX MLC	34.5	27.2
56	AX MLE	31.5	25.6
6.4	AX MLF	32.7	26.3
66	AX MLF	34.7	27.3
68	AX MLE	33.6	26.8
3878	AX MLF	- 30-4	25.0
٤۵	AX MLE	30.2	24.9
82	AX - MLE	31-0 -	25.4
84	AX MLE	33.8	26.9
94	AX MLE	34.5	27.2
96	AX MLE	73.8	26.9
98 -	AX	30.4	25.0
100	AX MLF	36.6	2°5°
110	AX MLE _	- 33-6	26.8
112	AY MLE	26.5	22.6
114	AX_ MLE	- 31+0	25.4
116	AX MLF	34.2	27.1
112	AX	34 -5	27.2
136	AX MLE	35 • 3	27.6
- 132	AXE	- 34-2	27.1
136	AY MLE	35.5	27.7
138 -	AX MLE		28.8
14()	AX MLE	30.4	25.0
nalise englis willin blind willin wille with some state a magazitationalis date tana and malant			
	MEAN	33.3 MPA	26.6 MPA
	and part and particular and and a state of the	4833. PSI)	13855, PSI)
		10. A. A.C. 204. A	6 10 Link -
			- 1-5 MPA
		1 341. PSI)	(184. PSI)

	LOT NO.	-RP (GL)		<u> </u>	
	LOG NO.	6484-82	SPEC. LENGTH	51. MM	
анынын майлагын өкинч тага.	-LOG-DEN	SJTY NGA	สีนหมือเมืองเมืองการการการการการการการการการการการการการก	e Mille March San Frei IV richtlich an adhr Arthrandi	denne offen an other against
er 18 19	997. Mit. Mit. Mit. Mit. Mit. Mit.	97199. 194199	19.00. <i>19.00.00.00.00.00.00.00.00.00.00.00.00.00</i>	1991-1993-1993-1993-1993-1993-1993-1993	
SPECIMEN	ORIENT-	LOCA- DENSITY	MODULUS OF	FLEXURAL	
-MAKBEH-	- ATION-	110N (MG/M**3)		STRENGTH 4	MPA)
			(UNCOPRECTED)	ICORRECTE	D)
18-147	RAD	≈∽≈ <i>∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞</i>	18.0	15.9	- 20 1994, 1994, 4994, 4
- 151	- PAD		23.1	19+4	
155	RAD	LE	26.3	21.4	
159	RAD	· · · · ·			
163	RAD	EE	22.5	19.0	
. 167	RAD _	ne ansaran fin fin anna an		19.9	
171	RAD	EE	24.2	20.1	
- 175 -	PAD		24.0	20-0-	
179	PAD	E E	23.5	19.7	
183	- RAD				
187	RAD	EE	22.7	19.2	
		*** ***********************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		saughter verify and a
105	RAD	EE E	51.0	23.8	
. 199	KAU .			21-8	
203	RAD	t t	28.7	22.7	
	PAD	n and den and a second			
211	RAU	L L r r	20°0 77 4	2203	
	E A D	terreneration and a second	30 C		
	RAD DAD		2067	22.00	
1 1 1 2 277	CAD		7 7 E		
~ 21	DAD	L L F F	32 e 3 77 /s	240J 77 N	
	PAN	с Г [.]	25.1	20 7	-
239	PAD	f F	25+0	21.5	
243	DAD	ne na ne ne en	ζμ. 2	7 <i>u</i> .0	
247	RAD	<u> </u>	29.5	23.1	
251	RAD	f F	26.5	21.5	ernaurau proble oce .
	RAD	EE.	30.2	23.4	
259	RAD	F F	33.2	24.6	
263	RAD	F. F.	33.4	24.6	1
267	RAD	EF	30.2	23.4	
271	RAD		33.0	24.5	
275	RAD	ŁE	29.8	23.2	
279	RAD	E E	32.7	24.4	-
283	RAD	EF	32.5	24.3	
287	RAD	<u>E</u> E	35.1	25.J	
ه وروب هواه وروب وروب وروب وروب	 MF A I	an dan an a			 M D A
	unner morr underbeijigensföljel	din na mana ang pang mang pang pang pang pang pang pang pang p	(4045. PSI)	(3187.	PSI)
КОн «Чистика» каруур ⁴ 50 одобайнаасык, күлүргө кануларар	CTD.	DEV.	L.S. MDA	? . C	MDA
	2101	명 뉴/ 월, 부 월	**************************************	682	1 1 1 P 4

600

•

.

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- <u>-6-,4</u> MM
	LOG NO.	6464-82	SPEC. LENGTH	51. MM
alle fill som det for all som	-LOG-DE-NS	J.I.Y	Matterthousenesseese a second contraction of the second second second second second second second second second	станаваная авласт наяк народнародам. У ная досстание таконстанародальных чист на
PECIMLN	OP 1ENT-	LOCA- DENSITY	MODULUS CF	FLEXUPAL
NUMBER-	- ATION	TION (MG/M**3)	RUPTURE (MPA) (UNCORRECTED)	STRENGTH (MPA (CORRECTED)
B- 3	RAD		23.1	19.4
	RAD			12,9
11	RAD	MLC	23.5	19.7
	- #40			- 16.5
19	HAU		1/00	15.5
······································	EAN	NIC	an ann a bha ann ann ann ann ann ann ann ann ann a	non normalizingality and a m
	DAD	MLC	1700	1/00
τς	RAD	MIC	24.0	20.0
39	- RAD	-NFC	⊷	16-5
43	RAD	MLC	24.0	20.0
	RAD			
51	PAD	MLC	18.6	16.3
55	- RAD	-MFC		- 16.7
59	RAD	MLC	19.9	17.3
63 -	- RAD	-#LC		17,9
67	PAD	MLC	21.6	18.5
71	RAD.	and the second second and the second se		
A- 75	RAD	MLC	20.3	17.6
19	RA0		-16.5	
83	RAU	PLC NIC	18•4	16.2
	- RAU	MIC	21 2	10 2
91	RAU DAD			10 4
	DAD	waaraan u saaan u waxaa waxaa waxaa MIN	erenezen e maneren anezetarigineten anezetaria. 7 7 - 6a	
103		MIC	18.7	16.4
107	PAD	MLC	24.8	20.5
	RAD	MLC	27.0	21.8
115	RAD	MLC	22.9	19.3
119	RAD	MLC.		19.4
123	RAD	MLC	25.0	20.7
<u>    127                                </u>	RAD	<u>MLC</u>	23.3	
131	RAD	MLC	25.7	21.0
135	RAD	<u>MLC</u>	23,8	19.9
139	RAD	MLC	21.4	18.3
143	RAD			20-1
	MEAN		21.6 MPA	
			(3133. PSI)	(2662. PSI)
4 ain seant shifti kangangan a sarayayiyi kati sa				

٤

ROUND-ROI	BIN FLEXURAL DATA: SQUARE CR	OSS SECTION SPECIM	ENS (GLCC DATA)
	LOT NO. RR(GL) LOG NO. 6484-82	SPEC. DIA. SPEC. LENGTH	
ana	LOG DENSITY MG/M	**3	analasan waxaalaalaa ay salaan ay araalaa aayaa ayaaladhadhaalaagaaa gada
	╸╸。。	• ₩ 48 m 49 m	400 400 400 400 400 400 400 400 400 400
SPECIMEN	ATTON TTON (MC (M++7)		FLEXURAL
- NUMBE R	ATTON TION (MG/H##3)	KUPTURE IMPAI	SIKENGIH IMPAL
1A- F8	AX FC	25.2	22.3
E18	AX EC	20.2	18.4
E28	AX EC	19.9	18 a 1
E 3 8	AX EC	17.1	15.8
E48	AX EC	18.5	17.0
<b>E5</b> 0	AX EC	18.4	16.9
E6 9	AX EC	21.0	19.1
<u> </u>	AX EC	18.5	17.4
E88	AX EC	19.3	17.6
<u> </u>	AX EC	18.9	17.3
E108	AX EC	18.1	16.6
<u>E118</u>	AX EC	20.0	18.2
1B-E128	AX EC	23.2	18.4
E138	<u>AX EC</u>	21.3	19.3
E148	AX EC	22.6	20.3
E158	AX EC	18.4	17.0
E168	AX EC	18.7	17.1
<u>E178</u>	AX EC	22.4	20,1
E188	AX EC	19.4	17.7
<u>E198</u>	<u>AX EC</u>	21.8	. 19.7
E 208	AX EC	20.5	18.7
<u> </u>		20.3	18.5
EZZS		19.5	1/.8
£238			1964
C ∠ 4 8	AX EC	18.0	10.0
402. 509 609 607 607 609 609 609 609	an a		
	FIL AIR	2000 FIFA 17807 DETN	1006 UTA 10670 DCTN
addressing to any		120710 1311	16037, 1311
	STD. DEV.	1.8 MDA	1.4 MDA
videologi, edda agos, "Af" and trividiologically, aphracessically, "Aft		1 261. PCT1	( 208 . PST)
	دی د	ላይት 1 0 ይህ - 1 <i>1 1</i> 	, 5,700 , 91.8

TABLE 11-10 -----

TABLE 11-10 (Con	ntinued)	
------------------	----------	--

4.4. Bart 44.		
** *	LOT NO. RR (GL)	SPEC. DIA. ***** MM
	LOG NO. 6484-82	SPEC. LENGTH 76. MM
and a constant of the second	LOG LENSITY	M6/M**3
SPECIFIEN	ATTON TTON INCIME	TI TUDEUS OF FLEXORAL
NUMBER	ATION TICN LHE/ PA	ADJ RUPTURE (MPA) STRENGTH (MPA)
من وي من منه منه منه منه منه منه منه		
3A-M20	AX MLF	25.2 22.2
M46	AX MLE	27.6 24.0
M76	AX MLE	24.9 22.6
M22	AX MLE	26.8 23.4
M 5 4	AX MLE	24.4 21.7
<u>M84</u>	AX MLE	27.7 24.1
M24	AX MLE	26.2 23.0
_M56 _	AX MLE	24.8 22.4
M86	AX MLE	27.6 23.6
_M116 _	AX MLE	27.5 23.9
M124	AX MLE	31.4 26.5
<u>M120</u>	AX MLE	27.7 24.1
3B-M260	AX MLE	26.8 23.4
M170	AX MLE	27.2 23.7
M14L	AX MLE	32.1 27.0
N208	AX MLE	28.7 24.7
M178	AX MLE	27.8 24.1
<u>M148</u>	AX MLE	28.6 24.7
M211	AX MLE	26.6 23.2
<u>M18</u> ſ	AX MLE	27.9 24.2
M150	AX MLF	28.7 24.8
M228	AX MLE	26.0 22.8
M236	AX MLE	27.2 23.7
M242	AX MLE	28.7 24.8
eter atta tita etta etta etta tata data data	The state in the state is the state state state state state state state state $s_{\rm eff}$ and s a set and set an set an set and set and set and set and set a	**************************************
alaa maa kaana may aalamaalaan ah	FIE MIV	<u> </u>
		(37/3) 731/ (3433, 751)
somersøksen en om halfadeler	STD. DEV.	1.8 MPA 1.3 MPA
		( 267, PST) ( 185, PST)

.

-

ĸ

			000 400 000 400 000 000 000 000			
	LOT NO	PD (GL)			A who note she she she	64 M
• • • • • • • •		<u> </u>		SPEC. LEN		<u>ртр</u>
	LOG LENS	5464 - 62	MG/MA	JELO LLI MAR		ri ri
anan anggorga gandaan ang pangan dagtaan dagta anangan	<u> </u>		an anna dala Michael a la dalar	and an all and a second se	a	
موجه معهد مرض ورجه مرض مرجع معهد مح			1839 4244 4546 4669 4690 4244 4244 4246 435		*****	القائب مقابل العاري من المقار
SPECTMEN	ORTENT-	IOCA- DEN	NSTTY	MODULUS OF	F FIFXII	RAL
NUMBER	ATION	TTON (MG/	/M**3)	RUPTURE (ME	PA) STRENGT	H (MPA)
And a set and a set of a set of the set of t	and a second			(UNCORRECTE	ED) (CORPE	CTFD)
میں میں میں میں میں میں میں میں	والله منها خليه خريه ويته وليه جنه و	- 4720- 6200- 6200- 6200- 6200- 6200- 6200- 6200- 6200-	an an an an an an an an			
1R- E7	RAD	EE		18.0	16	• 2
E17	RAD	<u> </u>	tena ar ar antidagegegegegen an a dater a sua canada	19.7	17	.6
E 2 7	RAD	EF		19.7	17	• 6
E 37	RAD	<u> </u>		19.5	17	.4
E47	RAD	EE		18.8	16	• 9
<u> </u>	RAD	<u>EE</u>	alara a datalaja sugardarita milaterikajaran	19.2		alan
E67	RAD	EE		19.6	17	• 5
<u> </u>	RAD	<u> </u>		<u>23.C</u>	20	eli_
E87	RAD	E <b>E</b>		22.5	19	• É
<u> </u>	_RAD	EE	anden anyon product memory contra	23.1	20	.1
E107	RAD	EE		25.8	21	• 9
<u>E117</u>	PAD	EE	unin si ani ani ani ani ani ani ani ani ani an	26.5		• <u> </u>
F127	RAD	EE		26.6	22	• 4
E137	RAD	EE		22.07	19	
F 147	RAD	EE		22.8	19	• 8
E157	RAD	<u>EE</u>	Antonistana and an an	25.4	21	• 6 -
E167	PAD	EE		25.5	21	• 7
E17/	RAD	and the second s	to a factor of the second second second second	27.1		<u>.</u>
1A-E18/	RAD	EE.		21.7	19	•
<u> </u>	RAU	<u>ŁŁ</u>		18.7	16	
IA-E207	RAD	E E		Zü•3	18	• 1
E(1/	<u> </u>			21.5		•
E227	RAD	EE C C		21.1	19	• 1
E 43/	RAU		an a	10.0		<u>ey</u>
[24] 5357	RAU			2003 2005	23	**
E 2 3 7	<u>RAU</u>				66	•
	MEAN			26.3 1	MPA 19	.4 MPA
an in 14 - 17 - 18 - 14		98 - var visionen en	1997-1998-1999-1999-1999-1999-1999-1999-	(3232. F	PSI) (281	1. PSI)
eggeföllstar i Landelog vär sossand	STD.	DEV.	nter grup tio mittigatione	3.4 N	MPA 2	.4 MPA
		······································		<u>( 488. f</u>	PSI) ( 34	6. PSI)
4800 000-4200 4800 4800 4800 4800 4800 4800			۵۵۰ میں میں میں میں میں میں م	هي هوي هي هوي هوي هي		



	LOT NO. RR (GL)	SPEC. DIA.	<u>****** MM</u>
	LOG NO. 6484-82	SPEC. LENGTH	1 76. MM
- Andrew Applies - Brilliou Mour	LOG DENSITY	<u>MG/M**3</u>	net neurott – Turkrötelskalanskalarijansesse, neurologijas spenso
100 an air air air an an an	鸟 章 章 章 章 章 章 章 章 章 章 章 章 章 章 章 章		医金属子 化基苯化基基 化化盐 化化子 异子 医子子 化化子 化化子 化化子 化化子
SPECIMEN	ORIENT- LOCA- DE	NSITY MODULUS OF	FLEXURAL
NUMBER	ATION IION (MG	/M**3) RUPIURE (MPA)	STRENGTH (MPA)
		(UNCORRECTED)	(CORPECTED)
20_ M7		● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	مرون مرون مرون مرون مرون مرون مرون مرون
20 - P1 M17			14.0
I [		100	- <u>1/al</u>
Fi Z 7			17.0
		and the second and the second se	
ME 7		ið oð	16.7
	SAU MLL .	······································	- LAL .
	KAU MLU		LeCL
<u>) ) M</u>		19.5	1/.4
M8 /		16.7	15.2
MA1	KAU MLC	19.0	17.1
MIC/	RAU MLC	20.1	1/09
<u></u>	KAU MLC		ma
M127	RAD MLC	15.9	14.6
M1 < 7	RAU MLC	18.2	16.4
M147	RAD MLC	18.5	16.0
M157	RAD_MLC	17.3	
M167	RAD MLC	17.2	15.6
<u>M177</u>	RAD MLC	18.7	16.8
3A-M1c7	RAD MLC	12.0	11.3
<u>M197</u>	RAD MLC	17.4	15.7
M207	RAD MLC	15.7	14.4
M217	RAD MLC	17.3	15.7
M227	RAD MLC	18.5	16.7
<u>M237</u>	RAD MLC	13.1	12.3
M247	RAD MLC	19.6	17.5
M257_	RAD MLC	19.6	17.5
M267	RAD MLC	22.4	19.6
M277	RAD_MLC	21.4	18.9
M287	RAD MLC	22.0	19.3
M297	RAD MLC	20.4	18.1
M377	RAD MLC	20.7	18.3
<u>M317</u>	RAD MLC	18.4	16.6
M327	RAD MLC	21.9	19.2
<u>M337</u>	RAD MLC	20.5	18.2
M347	RAD MLC	19.1	17.1
M 357	RAD MLC	20.0	17.8
	۲۵۵۵, ۳۵۵۵ ۴۵۵۹ ۴۵۵۹ ۴۵۵۵, ۳۵۵۵, ۳۵۵۹ ۴۵۵, ۴۵۵, ۴۵۵, ۴۵۵, ۴۵۵, ۴۵۵, ۴۵۵, ۴	*****	
	MEAN	<u>18.5 MPA</u>	16.6 MPA
		(2680, PSI)	(2468. PSI)
	STD. DFV.	2.3 MPA	1.8 MPA

	Flexural Strength (MPa)											
	Axial					Radial						
	Cent	er	Midra	ndius	Edg	;e	Cent	er	Midra	ndius	Edg	ge
Slab	x	σ	x	σ	x	σ	x	σ	x	σ	x	σ
Тор	15.8	1.2	16.1	1.0	16.0	0.9	15.1	1.8	15.5	1.8	16.6	1.2
Middle	15.3	0.9	15.9	0.8	16.8	0.8	14.3	2.2	15.7	1.5	17.1	1.6
Bottom	14.1	1.3	13.3	1.0	14.3	1.1	14.1	1.7	13.9	1.1	13.5	1.9

TABLE 11-11 SUMMARY OF FLEXURAL STRENGTHS OF PGX GRAPHITE (Log 6484-112, Lot 805-3)

ì

4

2

5

	ana 1960 (100- 100) (100- 100)	FLEXURAL STI	RENGTH O	F PGX GRAPHI	TE	
	LOT NO. Log No. Log Den	8D5-3 6484-112 SITY 1.78	MG/M	SPEC. D SPEC. L **3_	IA. 6. ENGTH 51	4 MM • MM
PECIMEN NUMBER	ORIENT- ATION	LOCA- DEN TION (MG/	SITY M**3)	MODULUS Rupture ( (Uncorrec	OF FLE MPA) STREN TED) (COR	XURAL GTH (MPA) RECTED)
1A E	56A AX 56B AX 58A AX 58B AX 62A AX 62B AX 68A AX 68B AX			19.7 17.5 16.7 18.0 17.4 17.4 17.1 18.6 18.3		16.8 15.3 14.7 15.6 15.2 15.0 16.1 15.9
18E 	708       AX         708       AX         1284       AX         1285       AX         1304       AX         1305       AX         1304       AX         1344       AX         1344       AX         1348       AX         1348       AX         1348       AX         1408       AX         1424       AX	C E E E E E E E E E E E E E E E E E E E	<b>**</b>	17.3 16.8 19.0 17.7 20.3 20.3 21.1 19.6 19.6 19.9 16.8		15.1 14.8 16.3 15.4 17.2 17.2 17.7 16.7 16.7 17.0 14.8 16.2
	1428 AX MEAI STD	DEV.		<u>18.8</u> <u>18.5</u> (2688. <u>1.4</u> ( <u>196.</u>	MPA PSI) (2 MPA PSI) (	16.2 16.0 MPA 32C. PSI) .9 MPA 137. PSI)

# TABLE 11-12

w

	TABLE 11-12 (Continued)					
-	LOT_NO. LOG_NO. LOG_DEN	8D5-3 6484-112 SITY 1.78 MG/	SPEC. DIA. SPEC. LENGTH M**3	6.4 MM 51. MM		
SPECIMEN NUMBER	ORIENT- ATION	LOCA- DENSITY TION (MG/M**3)	MODULUS OF RUPTURE (MPA) (UNCORRECTED)	FLEXURAL STRENGTH (MPA) (CORRECTED)		
1 A Y 1 B Y	36 A A X 36 B A X 38 A A X 38 B A X 42 A A X 42 B A X 42 B A X 48 B A X 50 B A X 10 8 A A X 110 A A X	E M E M E M E M E M E M E M E M E M E M	$ \begin{array}{r}     16 \cdot 7 \\     22 \cdot C \\     19 \cdot 5 \\     19 \cdot 4 \\     17 \cdot 1 \\     16 \cdot 4 \\     18 \cdot 9 \\     19 \cdot 2 \\     19 \cdot 6 \\     19 \cdot 4 \\     19 \cdot 5 \\     19 \cdot 5 \\     19 \cdot 8 \\     18 \cdot 1 \\ \end{array} $	14.7     18.3     16.7     16.6     15.0     14.5     16.3     16.5     16.7     16.6     16.7     16.6     16.7     16.9     15.7     15.7     1		
18 Y	1108 AX 114A AX 1148 AX 120A AX 1208 AX 1208 AX 1228 AX	E M E M E M E M E M E M	18.3 17.5 20.7 19.5 17.9 15.8 18.0	15.8 15.3 17.5 16.7 15.6 14.0 15.6		
	ME A STD	N . DEV.	18.7 MPA (2707. PSI) 1.5 MPA (217. PSI)	16.1 MPA (2333. PSI) 1.0 MPA (152. PSI)		

NO. 8D5-3		nage an	
NO. 6484-	112	SPEC. DIA.	<u>6.4</u> MM
DENSITY 1	.78 MG/M	**3	-
ENT- LOCA-		MODULUS OF	FLEXURAL
ION TION	(MG/M**3)	RUPTURE (MPA) (UNCORRECTED)	STRENGTH (MPA) (CORRECTED)
AX EC	איז	19.1	16.5
AX EC		18.6	16.1
AX EC		15.8	14.1
AX EC		19.1	16.5
AX EC		18.6	16.1
AX EC	90°.	21.1	17.8
AX EC		17.4	15.2
AX_ EÇ		16.7	14.8
AX EC		14.6	13.2
AX EC		18.7	16.2
AX EC		16.9	14.9
AX EC		18.8	16.3
AX EC		16.9	14.9
AX EC		19.7	16.9
AX EC		16.9	14.9
AX FC		21.4	18.0
AX EC		17.5	15.4
AX EC		16.5	14.6
AX EC	a 60 <i>мили ме</i> л	16.9	14.9
AX EC		18.8	16.3
AX EC		19.1	16.5
ΔΧ ΕΟ		20.1	17.2
AX EC		18.9	16.4
AX EC		16.8	14.8
••••• 		~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	****
MEAN		18.1 MPA	15.8 MPA
v v bagi d ^{ar} v t <b>v</b> natur		(2628. PSI)	(2289. PSI)
STD. DEV.		1.6 MPA	1.2 MPA
~፣µቁ µ₹ቆ		1 237_ PCT1	1 172. PCT
anda, santa ya jako in	ىر «ئەلەشە»» ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،		
	MEAN STD. DEV.	MEAN STD. DEV.	MEAN 18.1 MPA (2628. PSI) STD. DEV. 1.6 MPA (237. PSI)

			• = = = = = = = = = = = = = = = = = = =	
age th	LOT NO . LOG NO . LOG DEN	8D5-3 6484-112 SITY 1.78 MG/	SPEC. DIA. SPEC. LENGTH	6.4 MM 51. MM
SPECIMEN	N ORIENT- ATION	LOCA- DENSITY TION (MG/M**3)	MODULUS OF RUPTURE (MPA) (UNCORRECTED)	FLEXURAL STRENGTH (MPA) (CORRECTED)
6 A E	200A AX 200B AX 202A AX 202B AX 202B AX 206A AX	MLE MLE MLE MLE MLE	19.2 17.6 21.8 18.1 17.8	16.6 15.5 18.4 15.9 15.7
	2068 AX 212A AX 2128 AX 214A AX 2148 AX	MLE MLE MLE MLE MLE	19.0 19.7 19.2 19.5 18.6	16.5 17.0 16.7 16.9 16.2
6 B E	270A AX 270B AX 272A AX 272B AX	MLE MLE MLE MLE	20.3 19.4 19.1 21.0	17.4 16.8 16.6 17.9
	2768 AX 2808 AX 2808 AX 2808 AX 2828 AX	MLE MLE MLE MLE	19•5 19•9 18•4 20•9 24•0	10.9 17.2 16.1 17.9 17.2
6BE	2828 <u>AX</u>	MLE	18.9	
	MEA	N	19.4 MPA (2815. PSI)	16.8 MPA (2434. PSI)
	STD	. DEV.	1.1 MPA ( 157. PSI)	.8 MPA ( 110. PSI)



a. 194

				nde Men dies and als ande Ande 2000 2020 2020 2020 men dem die	
	LO	T NO.	805-3	SPEC. DIA.	6.4 MM
	LO	6 NO.	6484-112	SPEC. LENGTH	51. MM
ga ng sasang	LO	G DENS	ITY 1.78 MG/	M * * 3	na sanaana ay ka ahaa ay ahaa ahaa ahaa ahaa ahaa
PECIMEN		IENT-	LOCA- DENSITY	MODULUS OF	FLEXURAL
NUMBER	A	TION	TION (MG/M**3)	RUPTURE (MPA)	STRENGTH (MPA)
				(UNCORRECTED)	(CORRECTED)
6 A Y	180A	AX	MLM	19.8	17.0
	180B	AX	MLM	19.8	17.0
	182A	AX	MLM	19.3	16.7
	182B	AX	MLM	16.2	14.4
	186A	AX	MLM	18.8	16.3
	186B	AX	MLM	18.4	16.0
	192A	AX	MLM	18.9	16.4
	192B	AX	MLM	18.1	15.8
	194A	AX	MLM	18.6	16.2
	194B	AX	MLM	16.6	14.7
6BY	25 D A	AX	MLM	18.6	16.1
alan an a	2508	A X	MLM	17.6	15.4
	252A	AX	MLM	18.0	15.7
n administrativa and a second and a second	252B	AX	MLM	16.9	14.9
	256 A	AX	MLM	17.4	15.3
l The second se	256B	AX	MLM	18.7	16.2
	262A	AX	MLM	16.7	14.8
ander over eine die seider	262B	AX	MLM		16.2
6 B Y	264A	AX	MLM	17.7	15.5
	2648	<u> </u>	MLM	19 e ] 	<u>1695</u>
in the second		MEAN	r gan ar e e e e a com a la come de la come de la dela dela dela dela dela dela de	18.2 MPA	15.9 MPA
				(2639. PSI)	(2300. PSI)
nn a thailean an a	le an reletar a company and	STD.	DEV.	1.0 MPA	.8 MPA
		10-10-11-10-10-10-10-10-10-1-1-1-1-1-1-	· · · · · · · · · · · · · · · · · · ·	( 152. PSI)	( 111. PSI)

~		NO. NO. DENS	8D5-3 6484- SITY 1	112 .78 MG/M	S S 1**3	PEC. DI PEC. LE	NGTH	6.4 51.	M M M M
FCTMEN				. NENCTIV	 				******
UMBER	۵N2 ۵۱	ION	TION	(MG/M**3)	RUP	TURE (	1PA)	STRENG	TH (MPA)
	منعه وينه منع				101		EU)	10088	CCICU)
6AC	154 A	AX	MLC		.84	16.8	u	1	4.8
	154B	AX	MLC	-		19.1		1	6.4
	156A	AΧ	MLC			16.5		1	4.5
	156B	AX	MLC	~		17.0	~	_ 1	4.9
	163A	AX	MLC			17.7		1	5.4
*	16 <u>0</u> 8	AX	MLC	Are set into	a makinana	19.5	MC .		6.07
	174A	AX	MLC			14.2		1	2.8
	1740	AX	MLC	-		10.9		1	4.8
	1700	AX	MLC			18.6		1	5 • U
	1/00		MLC			18.0		1	5.U
	1004		MLC			10 7		1	De£ < 1
680	2244	ÄX	MIC	*	salar wa	17.4	March		Ce.4
000	224B	Δχ	MIC			15.1		1	७ के ८ २ू द
	226A	AX	MLC		-	17.8	~		5.4
	226B	AX	MLC			18.2		1	5.7
	232A	AX	MLC	-		18.2		1	5.8
6 B C	232B	AX	MLC			16.9		1	4.8
	236 A	ÂX	MLC		~ *	17.2		······································	5.0
	236B	AX	MLC			17.3		1	5.1
	238A	AX	MLC			16.9		1	4.8
	238B	AX	MLC			18.9		1	6.2
	244A	AX	MLC			18.Ĵ		- 1	5.9
	244B	A X	MLC	~		17.0			4.9
		MEAN			. 410. 100. 60. 610.	17.6	MPA	1	5.3 MPA
						(2550.	PSI)	122	18. PSII
		STD.	DEV.			1.3	MPA		.9 MPA
	_					( 181.	PSI)	( 1	33. PSI1
* • • • • • • • • • • • • • • • • • • •		 		*** ***					
								antitik kanala ar britisaana	-

		100 cch 400 ch 400 c	TABL	E 11-12	(Continued)	1000 1000 1000 1000	
	L 0' L 01 L 01	T NO. G NO. G D <u>e</u> ns	8D5-3 6484-11 SITY 1.7	12 78 Mg.	SPEC. DI SPEC. LE /M**3	A. 6.4 NGTH 51.	MM MM
PECIMEN NUMBER	O R A	IENT- TION	LOCA- E TION (M	DENSITY 1G/M**3	MODULUS O ) RUPTURE (M (UNCORRECT	F FLEX PA) STRENG ED) (CORF	URAL TH (MPA) ECTED)
12AF.	340A 340B 342A 342B 346A 346B 352A	A X A X A X A X A X A X A X A X	EE EE EE EE EE EE EE	20 100 100 100 100 100 100 100 100 100 1	17.4 14.1 14.1 15.6 17.4 16.5 15.7	1	5 • 1 2 • 7 2 • 7 3 • 8 5 • 1 4 • 5 3 • 9 7 • 2
12BE	3528 354A 354B 412A 412B 414A 414B	A X A X A X A X A X A X		-	14.8 15.3 18.8 18.9 15.4 17.3 14.5	] ] ] ] ]	3.6 6.1 3.6 5.0 2.9
12BE	418A 418B 424A 424B 426A 426B	A X A X A X A X A X A X	EE EE EE EE EE EE		$     17.4 \\     14.3 \\     16.6 \\     18.6 \\     17.3 \\     16.7 $	1 1 1 1	5 • 2 2 • 8 4 • 5 5 • 9 5 • 0 4 • 6
~	covia a	MEAN STD.	DEV.		$     \begin{array}{r}                                     $	MPA 1 PSI) (20 MPA PSI) (1	4.3 MPA 77. PSI) 1.1 MPA 65. PSI)

----

-

	මක ඇතා හුඩා වෙං අතා හා ප	TABLE 11-	-12 (Continued)	
, an	LOT NO. LOG NO. LOG DENS	8D5-3 6484-112 SITY 1.78	SPEC. SPEC. MG/M**3	DIA. 6.4 MM LENGTH 51. MM
SPECIMEN	N ORIENT- ATION	LOCA- DENS TION (MG/M	ITY MODULUS **3) RUPTURE (UNCORRE	S OF FLEXURAL (MPA) STRENGTH (MPA) ECTED) (CORRECTED)
12AY	320A AX 320B AX 322A AX 322B AX 322B AX 326A AX 326B AX 332A AX 332B AX 332B AX 334B AX	E M E M E M E M E M E M E M E M E M	16 13 16 15 13 14 14 15 12 13	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
12BY	3928 AX 3928 AX 3948 AX 3948 AX 3988 AX 3988 AX 4048 AX 4048 AX 4068 AX	E M E M E M E M E M E M E M E M	15 13 13 14 13 14 13 16 15 17 16	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	MEAN	• DEV •	14 (216) ( <u>19</u>	9 MPA 13.3 MPA B. PSI) (1923. PSI) 3 MPA 1.0 MPA 5. PSI) (148. PSI)

×

4

11-81

178-10-

100 (\$E4

							-						
		0 T 0 G	NO. NO.	8D5- 6484	3 -112			SPEC	• D	IA. ENGTH	6. 51	4 M	M
	L	0G	DENS	SITY	1.78	ŀ	1G/M×	**3	78-		-	ويند. ا	
				1008			 [ v			 0 F		 Y 11 P	·
NUMBER		ATI	ON	TION	( MG	/M**	×3)		E ( Rec	MPA) TEn)	ST <u>R</u> EN (COR	GTH	(MPA) TED)
12AC	294		X	EC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1229 4229 422 62		یں میں میں میں میں میں میں میں میں میں	5.0	- 	, dipin anja dipin anja divin - 	13.	 3
	294	R A	X	ЕC				19	5.2			13.	6
	296	A A	X	EC				- 1:	3.6			12.	3
	2961	B A	X	ΕC				1	7.0			14.	9
	300	A A	X	ЕC				1.	7.4			15.	2
	3001	BA	X	ЕC				19	55			13.	7
100Mat	310	ΑΑ	x	ΕC			. notes	1.	7.4	** 8*-	1944	15.	2
	310	BA	X	ΕC				1	7.2			15.	0
	312	A A	X	EC				Ĩ	5.3			14.	ī
	312	BA	X	EC				1	3.7			12.	4
	316	A A	X	EC				1	7.1			14.	9
	316	PA	X	EC				19	5.6			13.	8
12BC	368	A A	X	ΕC				14	4.0		1877 işə	12.	6
00 mm 1.7 67	3681	RA	X	ΕĊ				1	7.1			15.	â
	366	ΔΔ	X	FC				14	5.3			13.	6
	3661	R A	X	FC				19	5.5			13.	8
	372	ΔΔ	X	FC				- 1	7.8			15.	ς ς
1280	3721	Π Γ Δ	X	FC				2	1.3			17.	2
a ç v ç	784		X	FC			MSTERN JA		5.5	. 645	dihashr aim.	4. I. F.: 9 7 .	ж. Я
	7841	R A	X	FC				4 6	5.4			17.	7
	382	6 A	X	FC		~		11	1.2			12.	<u>.</u> R
	3821	RA	X	FC				4 - 9 -	τ			11_	Q
	722	ы м А А	X	FC				4.	χ_• 4. 7.μ			^ <u>+ -</u> 1 K _	2
	3881	BA	X	EC				1	7.7			15.	4
													1
			MEAN	l				1(	٥٠	MPA		14.	1 MPA
								(232	28.	PSI)	(2)	052	• PSI
			sŦD.	DEV	•	-	• •		1.8	MPA		1.	3 MPA
								( 20	52.	PSI)	(	193	. PSI

	TABLE   - 2			
	LOT NO. 8D5-3 LOG NO. 6484-112 LOG DENSITY 1.78 MG/	SPEC. DIA. SPEC. LENGTH M**3	6.4 MM 51. MM	
SPECIMEN NUMBER	ORIENT- LOCA- DENSITY ATION TION (MG/M**3)	MODULUS OF Rupture (mpa) (uncorrected)	FLEXURAL STRENGTH (MPA) (CORRECTED)	
1 A E	111 RAD EE 115 RAD EE 117 RAD EE 121 RAD EE 123 RAD EE 137 RAD EE 141 RAD EE 143 RAD EE 147 RAD EE 149 RAD EE	18 • 0 19 • 8 16 • 2 16 • 6 19 • 0 19 • 5 18 • 3 16 • 4 17 • 6 21 • 3	16.C 17.4 14.6 14.9 16.8 17.1 16.2 14.8 15.7 18.4	
18 E 18 E	267 RAD EE 271 RAD EE 273 RAD EE 277 RAD EE 279 RAD EE 293 RAD EE 297 RAD EE 299 RAD EE 303 RAD EE 305 RAD EE	21.2 21.2 18.8 20.5 21.0 19.6 19.6 17.9 15.9 19.2 19.3	18.3 16.6 17.9 18.2 17.2 17.2 15.9 14.4 16.9 17.0	
, an	MEAN STD. DEV.	18.8 MPA (2726. PSI) 1.6 MPA (239. PSI)	16.6 MPA (2404. PSI) 1.2 MPA ( 180. PSI)	

6 400 400 400
4PA) ))
-
(PA
SI)
1PA
SI)

n a fa a Mananana an	LOT NO. LOG NO. LOG DEN	8D5-3 6484-112 SITY 1.78 MG/M	SPEC. DIA. SPEC. LENGTH **3	6.4 MM 51. MM	
SPECIMEN NUMBER	ORIENT- ATION	LOCA- DENSITY TION (MG/M**3)	MODULUS OF RUPTURE (MPA) (UNCORRECTED)	FLEXURAL STRENGTH (MPA) (CORRECTED)	•
1B C	163 RAD	EC	15.8	14.1	and the second second
	165 RAD	E C	15.8	14.1	
	169 RAD	EC	1/.8	15.7	
and a final sector of the sect	1/1 RAU	EC	1/02	15.2	
	175 RAD	EC	11.5	10./	
ndado un cristo a calanza o ficialmente matrito	184 RAU			13.8	
	191 RAU		19.7	1/.0	
100	195 RAD		15.7	14.1	
180	197 RAD		~ ~ ~	18.0	
14.0	ZUI RAU		1000	14.5	<b>.</b>
LAC	7 KAU		0 • 0 i	1407	
notice stationary Label . A	Y RAU	EU Para Augusta Para Para Augusta Para Para Augusta Para Para Para Para Para Para Para Pa			يور در مدر
	IS RAD			1004	
con cara e	10 DAD		20.2	1300	
	17 (MD	FC	21.0	10 /	
······································	35 PAD		14.4	13.0	
	TO RAD	FC	16.1	14.4	
ennels anne an	41 DAD	Frank and the second			
	45 PAD	FC	17.5	16.6	
				ني ق ني في مستقد مستقد مستق مستقد مستقد مست	•
	MFA	N	17.1 MPA	15.1 MPA	
ndan y - *	F F Ban F S I		(2478. PSI)	(2185. PSI)	
noden i nandadkan ta' i i i i i i i i	STD	• DEV •	2.4 MPA	1.8 MPA	nto finitazionikoan - panangr
			( 354. PSI)	( 266. PSI)	

		TABLE II-	·12 (Continued)	nto entre
-	LOT NO. LOG NO.	8D5-3 6484-112	SPEC. DIA. SPEC. LENGT	- 6.4 MM H 51. MM
	LOG DEN	SITY 1.78	MG/M**3	ೆ ಕೊಗೆಕೆಸ್ಸ್
PECIMEN	ORIENT-	LOCA- DENSI	TY MODULUS OF	FLEXURAL
NUMBER	ATION	TION (MG/M*	(#3) RUPTURE (MPA) (UNCORRECTED)	STRENGTH (MPA) (CORRECTED)
6 A E	423 RAD	MLE	18.7	16.7
**	427 RAD	MLE	18.9	16.8
	429 RAD	MLE	22 • 8	19.7
	433 RAD	MLE	_ 18.9	16.8
	435 RAD	MLE	16.6	15.0
**	449 RAD	MLE	16.3	14.8
	453 RAD	MLE	20.3	17.9
	455 RAD	MLE	19.2	17.1
	459 RAD	MLE	21.3	18./
(05	451 RAD	MLE	23.5	_ 20.2
OBE	553 RAU	MLE	10.5	10.3
1977	557 RAU			ar a course descendente cou
	559 RAU		1/+O 20 4	10+0
	SOS RAU			16 U
	505 KAD	MI 5	10 + T 22 . G	10.0
ARF	517 RAD	MIF		15.4
002	585 PAD	MIF	20.6	18.1
*	589 RAD	MIF		17.1
	591 RAD	MLE	18.9	16.8
۵۵۵ ۵۵۵ ۵۵۵ ۵۵۵ ۵۵۵ ۵۵۵ ۵۵۵ ۵۵۵	MEAI	un an	19.3 MPA	17.1 MPA
	page.		(2866. PSI	) (2486. PSI)
a	STD	DEV.	2.1 MPA	1.6 MPA
1929 april 1935 april 1920 april 1935 april 1		·····	<u>1 305. PSI</u>	) (230. PSI)
			987	

utera an ann	LOT NO. LOG NO. LOG DENS	8D5-3 6484-112 SITY 1.78 MG/1	SPEC. DIA. SPEC. LENGTH M**3	6.4 MM 51. MM
SPECIMEN NUMBER	ORIENT- ATION	LOCA- DENSITY TION (MG/M**3)	MODULUS OF RUPTURE (MPA) (UNCORRECTED)	FLEXURAL STRENGTH (MPA (CORRECTED)
6 A Y	371 RÂD		18.1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	373 RAU 377 DAN		10 . 7	1000 17.1
	381 PAD	MIM	14.1	14.5
	383 RAD	MLM	18.5	16.4
	397 RAD	MLM	18.1	16.1
5.000 - 500	401 RAD	MLM	19.1	16.8
6 A Y	403 RAD	MLM	18.2	16.2
	407 RAD	MLM	12.0	11.2
	439 <u>RAD</u>	MLM	19.0	16.7
6 B Y	501 RAD	MLM	17.4	15.6
www.uu	505 RAD	MLM	19.4	17.0
	507 RAD	MLM	17.6	15.7
	SIL MAU		10.2	<u> </u>
			1704	10.7
	531 RAD		18.4	16.3
	533 RAD	MLM	17.6	15.7
^	537 RAD	MLM	17.9	15.9
100 dai an an an an an ait	539 RAD	MLM	15.7	14.2
	MEAN	V	17.6 MPA (2557. PSI)	15.7 MPA (2277. PSI
-rig.	ςτn.		1.8 MPA	1.5 MDA
	0.00	r ser ann V V	( 268, PSI)	( 213. PSI

بعه حي

	TABLE 11-12 (Continued)									
	LOT NO. Log no. Log dens	8D5-3 6484-112 ITY 1.78	SPEC. DIA. SPEC. LENGTH G/M**3	<u>6.4 MM</u> 51. MM						
SPECIMEN NUMBER	ORIENT- ATION	LOCA- DENSIT TION (MG/M**	Y MODULUS OF 3) RUPTURE (MPA) S (UNCORRECTED)	FLEXURAL TRENGTH (MPA) (CORRECTED)						
6 A C	319 RAD 321 RAD 325 RAD 327 RAD 331 RAD 345 RAD 347 RAD	MLC MLC MLC MLC MLC MLC MLC	$     \begin{array}{r}       13.8 \\       19.0 \\       12.4 \\       17.4 \\       17.1 \\       9.7 \\       18.6 \\     \end{array} $	12.6     16.7     11.5     15.5     15.3     9.1     16.4						
6 B C	351 RAD 353 RAD 357 RAD 471 RAD 473 RAD	MLC MLC MLC MLC MLC	10.1 17.6 17.7 17.2 14.5	9 • 5 15 • 6 15 • 7 15 • 3 13 • 2						
6B C	475 RAD 477 RAD 481 RAD 483 RAD	MLC MLC MLC MLC	16.3 14.2 16.8 18.6	14.6 13 <u>.0</u> 15.1 16.4						
	485 RAD 487 RAD 489 RAD 493 RAD	MLC MLC MLC MLC	14.4 <u>17.8</u> 17.6 _17.7	13.1 15.8 15.6 15.7						
4400 9405 6200 I	MEAN		<u>15.9 MPA</u> (2310. PSI)	<u>14.3</u> MPA (2072. PSI)						
uusaay vootee	ŠTD.	DEV.	2.7 MPA ( 396. PSI)	2.2 MPA ( 321. PSI)						

unggewiende est	LOG NO. LOG DENS	6484-112 SITY <u>1</u> .78 MG	SPEC. LENGT	H 51. MM
SPECIMEN NUMBER	ORIENT- ATION	LOCA- DENSITY TION (MG/M**3	MODULUS OF NUPTURE (MPA) (UNCORRECTED)	FLEXURAL STRENGTH (MPA) (CORRECTED)
12AE	709 RAD		• • • • • • • • • • • • • • • • • • •	
	713 RAD	EE	17.2	15.3
	715 RAD	EE	10.9	10.2
	719 RAD	ΕΕ	12.9	11.9
	721 RAD	EE	14.9	13.5
	735 RAD	ΕΕ	17.3	15.4
	739 RAD	EE	11.9	11.0
	741 RAD	ΕΕ	12.9	11.9
	745 RAD	EE	16.6	14.8
	747 RAD	EE	16.4	14.6
12BE	865 RAD	EΕ	17.7	15.7
	869 RAD	<u>E E _</u>	14.7	13.3
	871 RAD	EE	11.6	10.8
_	875 RAD	EE	14.7	13.3
12BE	877 RAD	EE	14.2	12.9
	891 RAD	EE	18.2	16.0
	895 RAD	EE	12.8	11.8
<i>ce.</i>	897 RAD	EE .	17.6	15.5
	901 RAD	EE	13.1	12.0
	903 RAD	EE	19.0	16.6
	MEAI		15.0 MPA	13.5 MPA
-		-	(2169. PSI	) (1955. PSI)
040, n. vit	STD	• DEV •	2.4 MPA	1.9 MPA
	-		( 351. PSI	) ( 280. PSI)

.

*

•

gene waan, waa na ara wiitahkaan Awan.

.



**

n and development in the second of

	LOT	NO.	8D5-	3		SPEC. DIA.	6.4 M	M
	LOG	NO.	6484	-112	NC 11	SPEC. LENGTI	H 51. M	IM
•	LUG	DEN	STIA	1.18	<u>M6/M</u>	*** ** ** ****************************	n alalah Manadan Manada keran dintan	
	~~~~		***		ter an 60 ter ter te	، دیکه ویک	***	****
PEĈIMEN	ORI	ENT-	LOCA	- DEN	SITY	MODULUS OF	FLEXUR	AL
NUMBER	AT	ION	TION	(MG/	M**3)	RUPTURE (MPA)	STRENGT	(MPA)
					-	(UN' ORRECTED)	ICORREC	TED)
	876 and 650 and 650		000 000 000 000 000	****				
12AY	657	RAD	EM			14.0	12.	8
	661	RAD	EM			16.3		,6
	663	RAD	EM			14.0	12.	8
	667	RAD	EM			16.6	14.	8
1244	669	RAU	EM			14.7	13.	5
	683 (07	RAU	EM		War		<u>k</u>	<u>Y</u>
	600/	RAU	C 19			10+4	130	• 7
-	607		E M		+ ~	14.9	 17.	1 <u>0</u> 1
	695	RAD	EM			14.4	17.	1
12R Y	813	RAD	FM		Ann 1. An An	14.2	12	C.
****	817	RAD	FM			17.1	15	2
a tata »	819	RAD	EM	when strate	an dan si si suda	12.8	11.	.8
	823	RAD	ЕM			15.7	14.	1
	825	RAD	EM	and and they		17.4	15.	5
	839	RAD	ΕM			15.0	13.	5
	843	RAD	ЕM			18.8	16.	5
Taga, da birta dav	845	RAD	ЕM	م منتخب بوهمونيز	Manu hasheled and at	14.2	13,	Q
	849	RAD	ΕM			16.1	14.	5
-	851	RAD	ΕM			16.6	14.	8
888 688 689 699 699 699 699 6	nder egilen viene dens oligen		nan an	an an an an an		• 400 - 400 - 500	nn an an air an air an an an 19 79	~
		ME A	N			10.4 MPA		Y MPA
						12234 8 831	. (2013	· · · · · · · · · · · · · · · · · · ·
nisered opphysiognal. Or th	*** **	STD	DEV			1.4 MPA		
		0.0		•		(209. PSI)) (165	• PSI)
್ ್ ಮಾಜನಾಭಿಯ ಹೆಸು ಎಲ್ಲಾ ಹಿಸು ಕ						***************************************		
170410	-		~			wygrap yr anglang ar ur anlanny unio arabaid ara		
	-							
		r 0300-140-0300 14	e cratica.	a futualities start at		an a	ay valante - an a striptice provider takente at	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

		න් ඒක ඒක ඒක ඒක කොදන් වික ඒක ඒක ඒක ඒක ඒක ඒක		-
	LOT NO. LOG NO. LOG DENS	8D5-3 6484-112 SITY 1.78MG	SPEC. DIA. SPEC. LENGTH /M**3	6.4 MM 51. MM

NUMBER	ATION	TION (MG/M**3) RUPTURE (MPA) (UNCORRECTED)	STRENGTH (MPA) (CORRECTED)
12AC	601 RAD	E C E C	14 • 2 1 c 7	13.0
	605 RAU 607 PAN	FC	10e/ 14_2	17.0
	611 RAD	EC	15.2	13.8
	613 RAD	EC	17.6	15.8
	627 RAD	EC	14.4	13.2
	631 RAD	EC	16.8	15.1
	633 RAD	EC	16.1	14.6
	637 RAD	EC	18.9	16.7
	639 RAD	EC	12.2	11.4
128C	757 RAD	EC	16.6	14.9
	761 RAU		13.1	12.0
	767 0AD	EC EC	10.7	14 94 16 7
1280	769 RAD	FC	12.8	11.9
****	783 RAD	FC	16.5	14.9
	787 RAD	EC	18.5	16.4
	789 RAD	EC	18.3	16.2
	793 RAD	EC	14.1	12.9
	795 RAD	EC	12.1_	11.2
	MEAI	V	15.6 MPA	14.1 MPA
			(2264. PSI)	(2048. PSI)
	STD	DEV.	2.1 MPA	1.7 MPA
		وي هوي دويه، وي اين اين دوي وي دوي	<u>(306. PSI)</u>	(246. PSI)
			and water and a subtract waterand	امهم معکور میروند. میروند میروند میروند. مرابع
				ukong dar-

٣

*

4

٠

			Axi	al	********		Radial					
	I	op Slab		Mid	dle Sla	b	То	p Slab		Mid	dle Sla	b
Property	x	σ	N ^(a)	x	σ	N	x	σ	N	x	σ	N
Density, Mg/m ³	1.746	0.004	12	1.706	0,029	12	1.740	0.007	8	1.700	0.018	8
Tensile:												
Strength												
MPa	11.2	1.5	34	10.9	1.3	34	13.1	1.1	20	10.4	1.3	20
psi	1621	211		1579	194		1905	153		1506	182	
Modulus												
GPa	7.1	0.3	12	6.0	1.0	12	8.0	0.7	8	7.0	0.8	8
Mpsi	1.03	0.05		0.88	0.14		1.16	0.10		1.01	0.11	
Flexural strength												
MPa	20.5	1.1	42	18.5	1.8	42	21.8	1.4	20	20.1	1.6	20
psi	2976	162		2689	260		3165	197		2908	231	
Compression:												
Strength												
MPa	52.2	2.9	8	49.7	5.2	8	49.4	2.3	8	40.3	1.6	8
psi	7574	414		7168	333		7212	753		5843	237	
Modulus												
GPa	5.7	0.4	8	5.2	0.9	8	7.2	0.4	8	5.2	0.5	
Mpsi	0.83	0.05		1.04	0.05		0.76	0.13		0.75	0.07	

*

4

TABLE 11-13 SUMMARY OF DENSITY, STRENGTH, AND ELASTIC MODULUS DATA FOR H-440N GRAPHITE, LOG 6484-81

(a)_N = number of replicates.

.

1

 Alga- Age - Age -	10. 000 an an an a	ක්ෂුව දෙන දෙම අධිව අධිව අධුව		an			an i davaha saka saka kuta manaka kuta a na kuta ya kuta k
1.01				SPF	C. DTA	. 12.	8 M M
LOG	S NO.	6484-	81	SPE	C. LENG	STH 70	• MM
LOC	DEN:	SITY -	- MG	/M**3			
deline regeneration of the second	an manganan di kang dan sa kang dalam kang d	ingeneration de récorde presentation	······································	an a she and a she a	n de fait fen Almann e na Langegry Griffiel i d'hr a dale de Lanna		nand fallen die Bezogen von die Andre Belleviel die eine Andre Bellevie von die Andre Bellevie von Andre Bezoge
SPECIMEN ORI	IENT-	LOCA-	DENSITY	YOUNGS	PERM-	FRAC-	TENSILE
NUMBER AT	ION	TION	(MG/M**3	MODULUS	ANENT	TURE	STRENGTH
				(GPA)	SET	STRAIN	(MPA)
ананаларынын аларылар кану калакталар нь нь адаруйтатын аршыналарына аларына жанар балары	NEW CONTRACTOR AND A CONTRACTOR	WENTLY		19-18-19-19-19-19-19-19-19-19-19-19-19-19-19-	(PCT)	<u>(PCT)</u>	ana ao marina manana manjari na managanana ana manana ang ang ang ang ang ang ang ang an
				an an an an an an an an Th		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. (() (
SLADIA-L- DA		END	1 752	<u> </u>	010	<u> 0661</u>	110
- 100		CND	4 747	0.00	• 0 1 0	0 K 3 4 7 (E	1107
- <u>100</u>	AA	END	1 744	7 2	<u>•017</u>	• <u>20</u> 5	12.0
-14M		END	1.743	7.2	.020	0 £ 4 3 . 7 £ 5	1 C e 7 9 7 7
- <u>cuk</u> -270	<u> </u>	E NO	1.777	7.1	. 020	<u> </u>	12 E
- 60	~ ~ A Y	FND	20121	7 e 1	• U Z U	e < 4 ↓	1200
- 00	AY	FND			the last of the second s		<u> </u>
- 124	A Y	FND					10.6
-128	AV	FND	an tang ang ang ang tang tang tang tang				
-148	AX	FND					7.7
-184	<u> </u>	F ND	ang ang pantang ang tang tang tang tang tang tang	n ng panan ng sécili pangara apalan Mi	Rahabiliya arang kalang si	angin iyon yili dalarda in iyo sa mar, sa ayyong ka danad	7.7
-122	AX	FND					10.1
-20B	A X	FND					1001 7.0
-224	ΔΧ	FND					6.9
-244	A Y	FND	handen minne van falle af er somme algestynen en en gyd ferteren dere	an analysiya ay a state of an analysis of a state of the			0.7
-248	ΔΧ	FND					10.9
SLAB1B-L-30A	AX	E ND	1.748	7.6	.017	.200	11.3
-34B	AX	END	1.751	6.9	.016	.206	11.0
-36A	AX	END	1.746	6.7	.625	.241	12.2
-38A	AX	END	1.746	7.3	.017	.209	11.5
-44A	AX	END	1.750	7.1	.020	.209	11.0
-46B	AX	END	1.748	7.2	.020	.240	12.4
-30B	AX	END	n - Ang angka dangkan dalam kangkangkan kangkangkan kangkangkan kangkangkan kangkangkan kangkangkan kangkangkan	***************************************	999999-9	~~~B*d+774	12.1
-32A	A X	END					10.2
-32B	AX	END		an ann an martana anns airtig airtig a bhanna anns an an An	ale Water - Angelengik pang pinali di Kitaka pang	1999	10.5
-36B	AX	END					10.9
-388	AX	END					10.6
SLAB1B-L-42A	AX	END			·		12.2
-42B	AX	END				en e	12.6
-44B	AX	END					12.6
-46A	AX	END					11.0
-48 A	AX	END					11.3
-48B	AX	END					11.7
						a an ao dà ao ao ao ao ao	
	MEAN	V	1.746	7.1	.019	.231	11.2
-			fein and de Lifferra Schain differences on 1994 -	(1.03 M	PSI)		(1621.PSI)
			10 AD -			~~~	
	STU	DEV.	.004		<u> </u>	.022	1,5
				(.U5 M	221)		(211.PSI)
	white stills of						

TABLE 11-14 TENSILE STRENGTH AND MODULUS OF ELASTICITY DATA FOR GRADE H-440N

11-93

*

L	T NO.			SP	EC. DIA	. 12.	<u>8 MM</u>
L	G NO.	6484-	81	SP	EC. LEN	STH 70	• MM
L	G DENS	<u>SITY -</u>	<u>- MG</u>	/M##3		an a	
	TENT		nFAICTTV	VOUNES	DFDM	FDACe	TENCTIE
NUMBED /	TTAN	TTAN	INC/MAAR	MADILI II	C ANENT	THOS	CTOENCTU
NUNDLK	11/10	11014	(10/11++)	ICDAN	S ANLNI	CTDATM	INDAL
				IOFAT	JPCT)	JOCTI	(HPA)
SI AR6A-1 -541	ΔX	MI	1.726	6.7	.019	. 176	9,4
564	AX	ML	1.673	5.3	.035	. 180	7.4
588	۸X	ML	1.676	5.6	.030	. 241	10.0
SI AR6A-1 -624	AX	 MI	1.737	8.3		. 168	11.4
684	AX	ML	1.676	5.0	.030	.275	10.0
-1 -708		MI	1.742	6.7	<u>, r22</u>	. 231	11.7
-504	ΔX	ML		~~ · ·	*~~~ ~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v 6- w 6	10.4
	A X	MI	annandine addres in database annables die in Machinelike	-		~	10.2
_~~ K U F	ΔΥ	MI					17.5
-568	ΔΥ	 MI				-	0,0
-604	ΔX	MI					9.8
	A Y	MI	and a star we also to the second s	gand and Webscherpeyney". "Southermark ids		aanse vervahdrikken op skonsestermenter me	11.2
-661		MI					11.2
-668	AV	MI					<u> </u>
~ 6 9 6		1 1 <u>6</u>					L L Ø /
-704		M1	a ana a na na na a na a na ana ana ana				11 2
-704		171 E_					
-124	AA	FIL MA L	adinishmu u subobil she dhe avassasa aya falarika da	10025-110-110-1-0-1-0-1-5-	The reduction and approximent of the following of the second second second second second second second second s	and a company of the finance of the state of	10 /
-/2C		171 L.	\$ 704	(0	0 • • •	100	10.0
LADOD-L-10P	<u>A A</u>		10164	<u> </u>	•019	• 170	<u> </u>
-020	AA			5.0	• 0 3 0	• 2 3 1	7.0
-04	<u>AX</u>	P1L	1.010	<u> </u>	• U 2 0	0220	<u> </u>
-00°	AA		1.775	0.1	• 019	• 2 3 U	11.0
-728	AA	ML.	10/33	0.0	• U 2 1	• 1 7 4	<u> </u>
-946	AX	ML	1.125	6.3	• 423	• 208	12.5
-/4/	AX	M					11.6
-748	AX	ML					12.0
-/88	AX	ML	a, 1941 - 1957 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979	······			11.2
- U 6 - 0 0 A	AA	m L.					11.3
- 6 U B	AX	FT L.	an ar alallar ar ha day maar - alaan gamaa ar alaa ay maar	an an ann an		anana – «Lin Manana no al Annanasi nango	LUs/
-848	AX	ML					10.1
-868	<u> </u>	ML	*			-	12.1
LADOD -L -YUA	AX	ML					12.0
-708	A X	ML.				a a mana ang sa manana sa	14.0
-928	AX	ML					10.5
-94A	AX	ML		ana ana amin'ny soratra amin'ny soratra amin'ny soratra amin'ny fi		10000 00-00000 10000 01 01 10000 01 10000 01	12.0
-96A	AX	ML					15.5
-968	AX	ML					12.1
n ann ann ann ann ann ann ann ann ann a	. Con Con man gan can of	10 600 600 600 600 600 600 600 600 600 6		*****			
nanggangan asa tau - asar tau asar na dikidar saria, sanaga na anan ay - asar	MEAP	4	1.706	6.0	.023	•218	10.9
					MH21)		(1579.PSI
anangan menangan sunga bertakan sunga bertakan sunga bertakan sunga bertakan sunga bertakan sunga bertakan sung	C T D	nev		• n	^ ^ ^	£17 L	ana 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 9 7
	2100	, UEV.	• U∠Y	1.0	600.	• 030	

TABLE 11-14 (Continued)

aar saana 19	LOT	NO.			SPE	C. DIA	. 12.	<u>8 MM</u>
	LOG	NO.	6484-	81	SPE	C. LENG	STH 70	• MM
gyngallitaurin-minischinische syst wit subscrifte inter op	LOG	DENS	ITY -	<u> </u>	/M**3	na manakata anan uguku	۱۹۹۹ی هو. بونی دهندیکه چرچه ۲۰۰۵	EN në nës andërdinës nës mënën sagar
෯෯෯෯෩෯෯෯෩෯෯෯ 								
SPECIMEN	ORIE	ENT-	LOCA-	DENSITY	YOUNGS	PERM-	FRAC-	TENSILE
NUMBER	ALI	LON_	TION	106/0773	IMODULUS	ANENI	IURE _	SIRENGIH
				n un ungebergebietensk vielensk som	(674)	SET (PCT)	<u> </u>	(MPA)
	a con- do- con al							
SLABIA L-		<u>RAD</u>	END			.015	223	13.0
•••		CAU	ENU	1.742	9.0	•010	• 223	15.0
SLAB IA-L-	·25_*	AU	ENU	1.145	8.2		210	13.0
***	-29 k	CAU	END	1.15/	8.2	•010	• 213	12.8
	• <u> </u>		<u>CNU</u>	a Maridan		htinda-darangan ^{magna} di kerintan kasa – art-geli	na ana masaandada aha saraa sab	<u> </u>
	·		END					14.1
1000-1000-000-000-000-000-000-000-000-0	- <u>, , , , , , , , , , , , , , , , , , ,</u>							1363
	-23 r -27 C		FND					11.0
	27 <u>0</u>		END					12.3
SLAB18-1-4	3 6		END	1.748	7.6	.019	. 239	17.5
	7 6	AU U	END	1.749	7.9	.015	. 195	11.0
-6	1 F	RAD	END	1.738	8.5	.015	.265	15.8
~6	5 F	AD	END	1.729	6.7	.018	.251	12.4
- 4	1 F	RAD	END					13.0
~4	5 F	RAD	END					13.0
\$	9 F	DAS	END					12.4
~ 6	9 F	AD CAS	END					13.1
- 6	3 F	CAD_	END					13.5
-6	57 F	CA S	END					14.0
αγκα τοτά τορα ακοι τορα τορα τορα καιτοπι τοται το παι παι σται τοπιστι		MEAN		1.740	8.0	.015	• 227	13.1
and the second	na course whether	for the second		a d harman an a	(1.16 MI	PSI)	erffester daret vaget, swifte Brekklikep auto	(1905.P
		STD.	DEV.	.007	• 7	.003	.023	1.1
aggarnas affasan ann ann		anna fian an a			(.10 M	PSI)		(153.F
2029 dia 420 dia								

*

8	OT NO			ci		12	O MA MA
	OG NO.	6484-	Q 1	<u>رد راد</u>	DEC. LENI	ана ака Сти 70	<u>)</u> MM
1	OG DENS		- MG				/ 6
an a			รมุกระทำสามสาวารการแรงเวล	Section in the section of the sectio	alangees which a namba source of the advancement		на чалат «Жиничения жинания на навите видения летородиния портов и
am am ago an an am am am am am am				യാതാണ് യാതാണും പ			
SPECIMEN C	RIENT-	LOCA-	DENSITY	YOUNGS	S PERM-	FRAC-	TENSILE
NUMBER	ATION	TION	(MG/M**3	MODULI	JS ANENT	TURE	STRENGTH
				(GPA)	SET	STRAIN	(MPA)
					(PCT)	(PCT)	
ක්ෂ කාස දෙන කිය සමා කාස කාස කාස කාස කාස කාස						29 44% 40% 40% 40% 40% 40% 40% 40%	· · · · · · · · · · · · · · · · · · ·
SLAB6A L-79	RAD	ML	1.720			.140	8.5
-83	RAD	ML	1.714	7.2	•016	.189	10.8
-97	RAD	ML	1.720	8.5	.015	. 149	9.8
101	RAD	ML	1.713	7.2	.018	.169	9.7
SLAB6A-L-77	RAD	ML		ing a management of the state o			11.8
-81	RAD	ML					12.5
-85	RAD	ML					11.9
-95	RAD	ML					13.3
-99	RAD	ML				-	11.2
103	RAD	ML					10.3
SLAB6B L115	RAD	ML	1.684	6.4	.019	.193	9.9
119	RAD	ML	1.678	6.2	.015	.204	10.3
	RAD	ML	1.686	6.7	.016	.170	9.3
137	RAD	ML	1.688	6.5	.020	.218	11.0
	RAD	ML					9.9
117	RAD	ML					8.6
121	RAD	ML		Milai may anipunya ini ini ini ini unakana	ayy bini, pila, sela fala ay fala ay fala ay fala ay sa a	171711 (1.12) - 1.171 (1.12) - 1.171 (1.171 (1.171 (1.171 (1.171 (1.171 (1.171 (1.171 (1.171 (1.171 (1.171 (1.17	9.3
131	RAU	ML					9.3
135	RAD	<u>ML</u>					10.2
137	RAU	m L					IU.I
	MC A L		1 700	7 N	<u></u>	170	10 1
	ME AN	1	1./00	11.01	VIUe MDCTV	*117	4 1504 DCTV
ann martali amar bergangan (1900) (1901) - 'n ain ne debeur an debeur	ik en den ver den laktik skimper andere			TTent	MF311	an airthallachailtean ann anna. Anaimrig	1 1300.7311
	STD.	DEV.	.018	• 8	.002	.027	1.3
				(.11	MPSI)		(182.PSI)
				•*** **** @** **** **** •			

	188 W (W)		****	*****	*********) (M &) (M &	4 2	
	LOT	NU.			SPEC.	DIA.	6.4 MM	
	LOG	NU.	6484-8	1	SPEC.	LENGTH	51, MM	-
	LOG	DENS	SITY	MG/M	***3			
	******		,					98 (89 (89 (89 (89
NUMBED	URIE	N @	TION (NENSITY		(MDAN	PLEAURA	(M D A)
ACOLORE M	MII	1 1 1		"G/M××3/	UNCURRE	CTED)	(CIIRRECT	ED)
		ago ago ago ago		*****				
LADIA	24	A X	END	ana ayay galanda kabapatén nana ma		O	20 1	
	<u>μ</u> λ	A x	END		25,	5	21 7	
	UR	AX	ÉNI		21	ũ	18.4	
	64	ΔX	END		26	4	21.7	
	68	Ax	END		24	6	20.6	
	104	AX	END		24	3	20,4	
	108	Δx	END		22	6	19.2	-
	12A	A x	END		24.	3	20.4	
	128	AX	END		24.	8	20.7	
	14A	A X	END		23.	9	20.1	
	148	ΛX	END		25.	8	19.4	
	184	ΔX	EN)	AND A MICH AND AND AND	27,	2	22,1	
	18B	AX	END		25.	9	21.3	
	AUS	4 X	END		26.	7	21.8	
	SOB	Δx	END		27.	1	22.1	
	ASS	AX	END		25.	9	19.4	
	558	A X	END		23.	S	19.7	
	SUA	<u>A X</u>	END	-ender		7	9,55	
LAHIA	308	AX	END		24.	2	20.2	
	SCA	AX	E110		20.	2	21.5	
	560	AX	END		24. 25	2	20.5	
LABID	34A 7/15	A X	END		27.	1	<i>c</i> i, <i>c</i>	
	340	А А А У	END		E 3 a	3	0 • 41	
	30A 763	AA	END	and the subsection reality	32-	0 ~	د ب ۲ کو	
	300	м м А \/	END		ແບ _ຍ ວາເ	c c	61e/ 10 g	
	цõя	A A A Y	END		23.	2 7	10 7	
	400	~~^ A ¥	END		20.	ว้	17 0	
	22R	λx	FND		- 20.	à	20 7	
	444	A X	ENO		23.	Ś	19 8	
~	Tun-	Ăx T	END	anteria destanta ant		-á	20.7	alationangan seras
	50A	AX	END		24-	6	20.6	
	SUB -	AX -	END		- 24	1	20.2	
	S2A	AX	END		23.	8	20.0	
	528	AX -	END	And a state of the	- 26.	2	21.5	
	56A	AX	END		26.	8	21.8	
LABIB -	568	AX	END		20.	4	17.7	and a state of the
	58A	AΧ	END		24.	1	20.2	
	588	AX .	END		24.	4	20.4	
	60A	Δx	END		25.	9	21.3	
	608	AX	END	-	- 25,	2	20,9	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		MEAN		****	24.	6 MPA	20.5	MPL
		·			(3572	PSIN	(2976.	PSI
		STD.	DEV.		·····	8 MPA		MPA
		w	· · 18		(256	PSTI	(162.	PSTI
		ann 200 03		100 000 con 100 cm mm cm 100 cm				

TABLE 11-15 FLEXURAL STRENGTH DATA FOR GRADE H-440N

11-97

~~~

-

----

|                                                                              |                     |               | T.                    | ABLE 11-                                    | -15 (Co                        | ntinued)         |                                                                                 |                                         |                      |           |
|------------------------------------------------------------------------------|---------------------|---------------|-----------------------|---------------------------------------------|--------------------------------|------------------|---------------------------------------------------------------------------------|-----------------------------------------|----------------------|-----------|
|                                                                              | 600 MR 1            |               |                       |                                             | an do 69 da eu                 |                  |                                                                                 | 19 <b>4</b> 9                           |                      |           |
|                                                                              | LUT                 | ND.           |                       | •                                           |                                | SPEC.            | DIA.                                                                            | 6.4 MM                                  |                      |           |
| umdatur                                                                      | 1.06                | NU            | 0484-                 | 81                                          | MCIME                          | JA SPEL.         | _LENGTI                                                                         | 4 51 <u>.</u> MM                        |                      |           |
|                                                                              | 6.00                | UENO          |                       |                                             | ··· ( • • • • • •              | ~ )              |                                                                                 |                                         |                      |           |
| ***************************************                                      |                     | ****          |                       |                                             |                                |                  |                                                                                 |                                         | ****                 |           |
| SPECIMEN                                                                     | UN I                |               | TION                  | DEWAI                                       | 1Y<br>+7) (                    |                  | S UP<br>(MDAN                                                                   | PLEXURAL                                | -                    |           |
| NUMBER                                                                       | <b>Д</b> Г.         | 1 CHN         | 100                   | (mornw                                      | * `)                           | CUNCORRE         | ECTEDI                                                                          | CORRECTI                                | (000)<br>FD1         |           |
| 19 19 19 49 19 19 19 19 19 19 19 19 19 19 19 19 19                           | an an an an an an a |               |                       | 44 469 469 469 469 499                      | no an ta ta ta ta              | ****             | ~~~~~/                                                                          | > ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                      |           |
| SLAH64                                                                       | 06A                 | <u>AX</u>     | ML                    |                                             |                                | - 24             | .5                                                                              | _ 19,6                                  |                      |           |
|                                                                              | 668                 |               | ML                    |                                             |                                | 24,              | , 9                                                                             | 14.8                                    |                      |           |
|                                                                              | 604<br>686          | AX            | ML                    |                                             |                                | 27,              | , U<br>Z                                                                        | 17,0                                    |                      |           |
|                                                                              | 704                 | ΔX            | MI                    |                                             |                                | 24               | , X                                                                             | 19.5                                    |                      |           |
|                                                                              | 708                 | AX            | ML                    | the spectrum of the                         |                                | 26,              | 0                                                                               | 20.3                                    |                      |           |
|                                                                              | 74A                 | AX            | ML                    |                                             |                                | 16,              | 8                                                                               | 14.7                                    |                      |           |
|                                                                              | 743                 | AX            | ML                    |                                             |                                | 19,              | ,6                                                                              | 16,6                                    |                      |           |
|                                                                              | 76A                 | A X           | ML                    |                                             |                                | 21,              | 8                                                                               | 18.0                                    |                      |           |
|                                                                              | 768                 | Ax            | ML                    |                                             |                                | 18,              | .4                                                                              | 15.9                                    |                      |           |
|                                                                              | 78A<br>780          | ΑX            | ML                    |                                             |                                | 19,              | ,0                                                                              | 16.2                                    |                      |           |
|                                                                              | /00<br>434          | AX            | ML                    |                                             |                                | 10,              | , 4<br>E                                                                        | 15.8                                    |                      |           |
| SLABAA                                                                       | 624<br>624          | A A .         | <br>                  |                                             | en-han die edistrike           | - 24             | 2                                                                               | 17.0                                    |                      |           |
| OL AUGA                                                                      | 844                 | Δx            | MI                    |                                             |                                | 24               | 9                                                                               | 19.8                                    |                      |           |
|                                                                              | 848                 | AX            | ML                    |                                             |                                | 24.              | 4                                                                               | 19.5                                    |                      |           |
|                                                                              | 864                 | AX            | ML                    |                                             |                                | 27               | 4                                                                               | 50.9                                    |                      |           |
|                                                                              | 86B                 | A x ¯         | ML                    |                                             |                                | 25,              | , 1                                                                             | 19.9                                    |                      |           |
|                                                                              | 954                 | AX            | ML                    |                                             |                                | 27               | .3                                                                              | 20,9                                    |                      |           |
|                                                                              | 928                 | AX            | ML                    |                                             |                                | 25,              | , 1                                                                             | 19.9                                    |                      |           |
|                                                                              | 94A                 | AX            | ML                    |                                             |                                | 28,              | ,0                                                                              | 21,2                                    |                      |           |
| 61 A 8 6 8                                                                   | 948<br>948          | AX<br>A∀      | ML<br>MI              |                                             |                                | <i>2</i> ، کې کې | , Y                                                                             | 20.5                                    |                      |           |
| 3C×100                                                                       | 986                 | AX            | MI                    |                                             |                                | 25               | .1                                                                              | 19.9                                    |                      |           |
|                                                                              | 100A                | AX            | ML                    |                                             |                                | 23.              | .5                                                                              | 19.0                                    |                      |           |
|                                                                              | 100B -              | Δx            | ML                    |                                             |                                | 215              | 8                                                                               | 18,1                                    | 10 ANN - ANN ANN ANN |           |
|                                                                              | 104A                | AX            | ML                    |                                             |                                | 19.              | 5                                                                               | 16.6                                    |                      |           |
|                                                                              | 1048                | AX            | ML                    |                                             |                                | 17.              | 9                                                                               | 15.5                                    |                      |           |
|                                                                              | 106A                | AX            | ML                    | -                                           |                                | 18.              | ,6                                                                              | 16.0                                    |                      |           |
|                                                                              | 1000                | AX            | мL<br>мі              |                                             |                                | 18.              | , Ö<br>Q                                                                        | 10.1                                    |                      |           |
| SLARAR                                                                       | 108A                | AX            | MI                    | navagedent vier vier verbinnel bestelle som | -                              | 10               | 1                                                                               | 12.7                                    |                      |           |
| OF SOO                                                                       | 114A                | AX            | ML                    |                                             |                                | 24               | .1                                                                              | 19.3                                    |                      |           |
|                                                                              | 1148                | AX            | ML                    |                                             | nakarikan <b>naria</b> gantana | 24               | 0                                                                               | 19.3                                    |                      |           |
|                                                                              | 116A                | AX            | ML                    |                                             |                                | 26,              | 5                                                                               | 20.6                                    |                      |           |
|                                                                              | 116B                | AX            | ML                    |                                             |                                | 25.              | 7 -                                                                             | <u>5</u> 0,2                            |                      |           |
|                                                                              | 1204                | AX            | ML                    | 4                                           |                                | 23,              | 5                                                                               | 18.9                                    |                      | a aga     |
|                                                                              | 1208                | AX            | ML                    |                                             |                                | 23.              | , 1                                                                             | 18,8                                    |                      |           |
|                                                                              | 1224                | AX<br>AV      | т <u>г</u><br>мі      | ***                                         |                                |                  | . <b>C</b>                                                                      | 17.0                                    |                      |           |
|                                                                              | 1281                | м A<br>А У    | MI                    |                                             |                                | 20               | A                                                                               | 1/07                                    |                      |           |
|                                                                              | 1288                | AX            | ML                    |                                             |                                | - 22             | 9                                                                               | 18.7                                    | ••• •••              |           |
| *****                                                                        |                     |               | *****                 | ***                                         | an an an an an an              |                  | ****                                                                            |                                         |                      |           |
|                                                                              |                     | MEAN          |                       |                                             |                                | 22.              | 9 MPA                                                                           | 18.5                                    | MPA                  |           |
|                                                                              |                     | STD.          | DEV-                  |                                             |                                | 3-               | 0 MPA                                                                           | 1.8                                     | MPA                  | e dennes. |
|                                                                              |                     |               | no - 10               |                                             |                                | ( 441            | . PSI)                                                                          | ( 260 .                                 | PSI)                 |           |
| \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | ******              | 1 42 42 42 42 | 603 409 609 609 609 6 | ****                                        | ****                           | ******           | )<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() |                                         |                      | 3         |
|                                                                              |                     |               |                       |                                             | 1                              |                  |                                                                                 |                                         |                      |           |

#### SPEC. DIA. 6.4 MM LUT NO. LOG NO. 6484-81 SPEC. LENGTH 51. MM LOG DENSITY --MG/M\*\*3 URIENT-SPECIMEN LUCA- DENSITY MUDULUS OF FLEXURAL TION ( $MG/M \pm 3$ ) RUPTURE (MPA) STRENGTH (MPA) NUMBER ATION (UNCORRECTED) (CORRECTED) 100 day 10 SLAB1A 7 RAD END 25.3 21.6 25.0 9 RAD END 21.4 13 RAD END 23.0 20.0 22.4 19.5 15 RAD END 25,5 19 RAD END 21.7 24.9 21.3 33 RAD END 29.1 35 RAD 24.0 END 39 RAD 55°1 END 27.0 41 RAD 25.25 19.4 END 45 RAD 23,6 END 20.4 24.3 59 RAD END 50.9 SLAB18 25,4 21.6 61 RAD END 27,2 8,55 65 RAD END 67 RAD 20,8 22.5 END 71 RAD END 50.0 23.9 END 22.1 85 RAD 50.5 24,2 91 RAD END 29.4 93 RAD 26.3 55.5 END 55.0 SLA81B 97 RAD END 26,0 87 RAD 20,1 SLAB1B END 55.1 25.7 MPA 21.8 MPA MEAN (3733, PSI) (3165, PSI) 2.1 MPA 1.4 MPA STD. DEV. ( 297, PS1) ( 197, PSI)



|                                                                                                                     | LOT NO.                                | 6 000 04                                                                             | SPEC. DIA.                              | 6,4 MM          | | | | | | | | | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|                                                                                                                     | LUG NU.                                | 0484=61                                                                              | SPEL, LENUT                             | <u>M 51. MM</u> |
|                                                                                                                     | LUG DENS                               | >117 •••• MG                                                                         | /M××3                                   |                 |
|                                                                                                                     |                                        |                                                                                      |                                         |                 |
| NIMACO                                                                                                              | ATTON                                  | TION (MC/MAAT                                                                        | DIPTIPE (MDA)                           | STRENCTH (MPA)  |
| NOMBER                                                                                                              | W I DIA                                | ACH (HOVERAD                                                                         | (UNCORRECTED)                           | (CORRECTED)     |
|                                                                                                                     |                                        |                                                                                      |                                         |                 |
| SLAB6A                                                                                                              | 111 RAD                                | ML                                                                                   | 24.7                                    | 20.5            |
|                                                                                                                     | 113 RAD                                | ML                                                                                   | 25,4                                    | 21,0            |
|                                                                                                                     | 117 RAD                                | ML                                                                                   | 26.7                                    | 21.7            |
|                                                                                                                     | 119 RAD                                | ML                                                                                   | 26,2                                    | 21.4            |
|                                                                                                                     | 123 RAD                                | ML                                                                                   | 25,1                                    | 20.7            |
|                                                                                                                     | 137 RAD                                | ML                                                                                   | 27.4                                    | 22.1            |
|                                                                                                                     | 139 RAD                                | ML                                                                                   | 28,1                                    | 22,5            |
|                                                                                                                     | 143 RAD                                | ML                                                                                   | 26.3                                    | 21.5            |
|                                                                                                                     | 145 RAD                                | ML                                                                                   | 25.7                                    | 21,1            |
|                                                                                                                     | 149 RAD                                | ML                                                                                   | 27.1                                    | 21.9            |
| 31,4868                                                                                                             | 163 RAD                                | ML                                                                                   | 22,3                                    | 18,9            |
|                                                                                                                     | 165 RAD                                | ML                                                                                   | 23.4                                    | 19.7            |
|                                                                                                                     | 169 RAD                                | ML                                                                                   | 24,0                                    | 20,4            |
|                                                                                                                     | 1/1 HAU                                | м.                                                                                   |                                         |                 |
|                                                                                                                     | 1/3 KAU                                | MI                                                                                   | <u> </u>                                |                 |
| IABAR                                                                                                               | 104 HAU                                | MI                                                                                   | 21.2                                    | 10 . 1          |
|                                                                                                                     | 195 PAD                                | MI                                                                                   | 20.3                                    | 17.6            |
|                                                                                                                     | 197 840                                | ML                                                                                   | 21.8                                    | 18.6            |
|                                                                                                                     | 201 RAD                                | ML                                                                                   | 20.6                                    | 17.8            |
| ****                                                                                                                |                                        |                                                                                      | *************************************** |                 |
|                                                                                                                     | MEAN                                   |                                                                                      | 24.1 MPA                                | 20.1 MPA        |
|                                                                                                                     |                                        |                                                                                      | (3493, PSI                              | ) (2908, PSI)   |
|                                                                                                                     | STD.                                   | DEV.                                                                                 | 2.5 MPA                                 | 1.6 MPA         |
| nga mangang ng mangang<br>K | ###################################### | 99999-9-4899-9-589-9-499 <sup>-9</sup> -9-9 <sup>-9-9</sup> -9-9-9-9-9-9-9-9-9-9-9-9 | ( 368, PSI                              | ) (231, PSI)    |
| All Manakan             |                                      | ا<br>ا<br>ا              | 01                   | []<br>}  <br>}_]         | NO.<br>NO.<br>Den    | 64<br>SIT        | 84-<br>Y             | -81              | <b>11.1</b> 00      | <u>MG</u>     | i/M:                    | **3                             | SPE<br>SPE         | EC.          | _0<br>L                  | IA.EN             | ĠŢŀ           | ł           | 1                    | 2 •<br>25        | 8<br>•      | M M<br>M M             |                      |                   |                      |
|-------------------------|--------------------------------------|--------------------------|----------------------|--------------------------|----------------------|------------------|----------------------|------------------|---------------------|---------------|-------------------------|---------------------------------|--------------------|--------------|--------------------------|-------------------|---------------|-------------|----------------------|------------------|-------------|------------------------|----------------------|-------------------|----------------------|
| SPE<br>_NUI             | IMEN<br>1BER                         | N (                      | I R<br>Al            |                          | NT-<br>ON            | LO<br>TI         | CA-<br>ON            | - D<br>(M        | ENS<br>G/M          | SITY<br>1**3  | Y Y (<br>) M (<br>) ( ) | OUNO<br>ODUL<br>GPA )           | 3 S<br>- U S<br>)  | Р<br>5 А     | ER<br>NE<br>SE<br>PC     | M<br>NT<br>T      | F<br>T<br>S T | R<br>U<br>R | AC<br>RE<br>AI<br>CT | N                | S           | CO<br>TR               | M P<br>E N<br>M P    | R.<br>GTH         |                      |
|                         | 1 A                                  | _ L (<br>L 8<br>L 1      | 5 C<br>3 C<br>2 C    | A<br>A                   | X<br>X<br>X          | E<br>E<br>E      | ND<br>ND<br>ND       | ≫                | - 600 - 600 - 60    | *             |                         | 6 • (<br>5 • 2<br>_ 6 • 2       | 2                  | وينه جليه دي | • 1<br>• 1               | .50<br>.80        |               | 20          | <br>08<br>28<br>17   | 4<br>9<br>6      | an (1997)   | 100 - 410 <del>9</del> | 47<br>53<br>48       | • U<br>• 8<br>• 7 | •                    |
|                         | 18 _                                 | L14<br>L31<br>L32        | ) C<br>2 C<br>2 C    | A :<br>A :<br>A :<br>A : | X<br>X<br>X<br>X     | E<br>E<br>E<br>E | ND<br>ND<br>ND       |                  |                     |               |                         | 6.0<br><u>6.0</u><br>5.3<br>5.9 | 2<br>2<br>3<br>5   |              | • 1<br>• 1<br>• 1        | .50<br>.80<br>.60 |               | 5 .         | 10<br>85<br>40<br>48 | 4<br>9<br>4<br>4 |             |                        | 53<br>52<br>54<br>54 | •4                |                      |
|                         | ar agr fair gan ei                   | L38                      | 3C                   |                          | MEAT                 | E<br>N           | ND                   | 95 956 ap        | - 4000 - 4000 - 400 | in ain an 40  |                         | 5 • 5<br>5 • 7<br>• 8 7         | 5<br>7<br>7<br>8 M | 1P S         | • 2<br>• 1<br>I )        | 64                |               | 5 e<br>     | 23<br><br>95         | 8<br>3           |             |                        | 53<br><br>52<br>75   | •1                | PS                   |
| -                       | 20° 14100 14100 14100 1410           |                          | ai an ag             |                          | STD                  | • D              | EV                   | )                | 100° up 60          | -             | (                       | .05                             | 4<br>5 M           | 1P S         | .0<br>I)                 | 28                | 4709 1020 65  | •           | 54                   | 4                |             | )                      | 24                   | .9.               | PS                   |
|                         | 14                                   |                          | 58<br>98<br>58       | R I<br>R I<br>R I<br>R   | AD<br>AD<br>AD       | E<br>E<br>E<br>E |                      | -                |                     |               |                         | 6.7<br>6.9<br>7.4<br>7.4        | 7<br>?<br>}        |              | • 1<br>• 1<br>• 1        | 30<br>30<br>20    | 2             | <br>        | 34<br>18<br>66<br>83 | 5<br>6<br>9<br>6 |             |                        | 52<br>50<br>46<br>48 | •6<br>•6          |                      |
| yiyaanti aa.mgi Mga     | 18                                   | L49<br>L49<br>L49<br>L59 | iE<br>SR<br>SB<br>SB | R I<br>R I<br>R I<br>R I | AD<br>AD<br>AD<br>AD | ב<br>ב<br>ב<br>ב | ND<br>ND<br>ND<br>ND | ng.              | ~                   |               |                         | 7.1<br>6.9<br>7.2               |                    | <b>.</b>     | • 1<br>• 1<br>• 1<br>• 1 | 30                |               |             | 31<br>17<br>95<br>77 | 1<br>8<br>6<br>8 |             |                        | 52<br>50<br>48<br>47 | •3                |                      |
| ≪33 4 <u>00</u> 0 645 4 | 999 8000 8709 800 80<br>111 80 80 80 | m 600 ega sj             | وی جند م<br>بر جند م |                          | MEAI                 | N                |                      | <b>) (2) (2)</b> | -<br>-<br>          | . 400 400 400 | ()                      | 7.2<br>L.Q4                     | 2                  | <u>IPs</u>   | •1<br>]                  | 30                |               |             | 03                   | 2                | site enge e |                        | <br>49<br>71         | •4<br>68,         | , P <sub>.</sub> S.J |
|                         |                                      |                          |                      |                          | STD                  | <u>•</u> D       | E۷                   | 2                |                     |               | (                       | • 0 9                           | 4<br>5 P           | IPS          | .0<br>I)                 | 08                |               | 6           | 25                   | 7                |             | (                      | 2<br>3               | .3                | PSI                  |

TABLE 11-16

11-101

....

-----

\*\*\*\*

-----

| LOT NO.<br>LOG NO.<br>LCG DENS                                 | 6484-81<br>ITY M                       | SPEC<br>SPEC<br>G/M**3         | DIA.                           | 12.<br>TH 25                     | 8_ MM<br>• MM               |
|----------------------------------------------------------------|----------------------------------------|--------------------------------|--------------------------------|----------------------------------|-----------------------------|
| ****                                                           | 400 00 - 40 - 40 - 40 - 40 - 40 - 40 - |                                | 9 400+ 550+ 660+ 420+ 420      | . ඇත කම බව ඇත යන ඇත              |                             |
| SPECIMEN ORIENT-<br>NUMBER ATION                               | LOCA- DENSIT<br>TION (MG/M**           | Y YOUNGS<br>3)MODULUS<br>(GPA) | PERM-<br>ANENT<br>SET<br>(PCT) | FRAC-<br>TURE<br>STRAIN<br>(PCT) | COMPR.<br>STRENGTH<br>(MPA) |
| 6A LSOC AX                                                     |                                        | 6 • 2                          | •160                           | 3.221                            | 53.6                        |
| L54C AX<br>L56C AX                                             |                                        | 5•8<br>4,4<br>5,8              | •120<br>•190                   | 2.990                            | 52+3<br>43+7<br>52 m        |
| 6 <u>B74</u> C_AX<br>6 <u>B74</u> C_AX                         |                                        | 6.0<br>5.6                     | •130<br>•130                   | 3.461                            | 55x4<br>53×8                |
| L80C AX<br>L84( AX                                             | ML                                     | 3.9<br>4.3                     | •129<br>•150                   | 2.999<br>3.043                   | 43.1<br>43.9                |
| MEAN                                                           |                                        | 5.2<br>(.76 MP                 | .148<br>SI)                    | 3.153                            | 49.7<br>(7212.PSI           |
| STD.                                                           | DEV .                                  | .9<br>(.13 MP                  | .0 <u>20</u> .<br>(12          | *217                             | <u>5</u> .2<br>1 753.PSI    |
| 6A L77 RAD                                                     | ML                                     | <u>م</u>                       | .170                           | 1.765                            | 39.2                        |
| L81 <sup>0</sup> RAD<br>L85 m <u>RAD</u>                       | ML<br>ML                               | 5.4<br>4.5                     | .160<br>.180                   | 1.991<br>2.214                   | 41.4<br>39.4                |
| L95⊢ RAD<br>68 L113E RAD                                       | ML                                     | 6.1<br>5.2                     | •140<br>•130                   | 1.638                            | 40.8<br>37.9                |
| L117   RAD<br>L1216 RAD                                        | ML<br>ML                               | 5.0<br>5.2                     | •120<br>•100                   | 2.650                            | 42.8<br>41.7<br>70 D        |
| MEAN                                                           | ۵۵ ۵۳ ۵۳ ۵۵ ۵۵ ۵۵ ۵۵ ۵۵ ۵۰ ۵۰ ۵۰       | 4 e O<br>                      | • 148                          | 2.080                            | 40.3                        |
| Manggenia wa Mangeniakan waka ku suwantu, wakakan gadattari wa | ta dhini na marangi alabhigi Parana.   | ( .75 MP                       | SI)                            |                                  | ( 5843.PSI                  |
| STD.                                                           | DEV.                                   | •5<br>( •07 MP                 | .030<br>SI)                    | .325                             | 1.6<br>( 237.PSI            |

TABLE 11-16 (Continued)

11-102

## TABLE 11-17 FATIGUE TESTS ON PGX GRAPHITE \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

LUT HI ... ORIE TATION: AX LOG NU: 6484-74 LICATION: END-ONE THIRD RADIUS

STRESS HATIN, H (I (), STRESS / MAX, STRESS): -1.0

-PECTAER VO. DENSITY MAX. MIN. CYCLES TO FAILURE (167 \*\*3) STRESS STRESS - (NRA) (1PA) 乌卡教办法职论学会感觉和学习学校思想的爱爱的意义的意思的思想和意义和意识和意思的意思的意思的意思的意思的事中的 4.3 4.5 >121500 (RUNDUT) 4.3 4.5 >119600 (RUNDUT) 4.3 4.3 >19600 (RUNDUT) 4.3 4.3 >190100 (PU (OUT) 4.3 4.3 11000 54C 1.771 1.765 108 445 100 ВC 1.760 4.3 4.3 >104000 (RUIDUT) 6.0 1.164 4.3 4.3 500 4.3 4.3 4.3 1.765 728 4.3 >163590 (RUNDUT) 4.3 544 >146900 (RULLIUT) 1.760 ALM 4.3 >137800 (RUVHUT) 300 1.770 4.3 >100500 (RUNOUT) 408 1.701 5.4 5.4 16111 1.759 ANA 5.4 5.4 1342 1.760 20C 5.4 5.4 1825 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 1.107 500 55960 264 1.778 859 14A 1.155 165 1.767 1.767 450 16000 COA >126800 (RU JULT) TOA 1.769 2506 1.158 25 5.6 5.0 470 1.765 344 6.2 6.2 6.3 0.3 208 341 1.700 605 
 b.3
 b.3

 b.3
 b.3
 240 1./64 496 104 1.757 23 82 BR 1.759 1.775 SUL 2130 700 646 1.173 1.761 704 200 628 1.760 418 
 0.3
 0.3

 6.3
 0.3

 6.9
 6.9

 6.9
 6.9

 6.9
 6.9

 6.9
 6.9

 6.9
 6.9

 6.9
 6.9

 6.9
 6.9
 886 1.760 176 1.759 44C 17 38 A 1.757 44 1.768 308 113 6.9 180 1.740 193 6.9 6.9 6.9 6.9 1.757 56B 16 1.774 58 - 38 1.768 828 6.9 6.9 79 6.9 124 1.753 6.9 8 725 1.700 6.9 0.9 36 6.9 6.9 644 1.779 27 1.759 789 **,**0 < 1 (FIRST CYCLE) 7.4 1,751 7, H 400 7.8 1 244 1.768 7.8 18 -querque 7,8 1.155 7.8 7.8 120 5 7 8 7 8 7 8 7 8 0 .0 508 1.768 2 324 1./65 7.8 8 1.700 6 A 7.8 3 660 1.763 7.8 12 1.772 6.14 7.8 .0 1 1.776 7.8 7.8 904 3 

11-103

\*\*\*\*

## TABLE 11-18 UNIAXIAL FATIGUE ENDURANCE LIMITS FOR PGX GRAPHITE (SPECIMENS FROM LOG 6484-74, END - ONE-THIRD RADIUS LOCATION)

|             |                                                       |                                   | Endura<br>Peak Stres         | nce Limits,<br>s/Mean Strength |
|-------------|-------------------------------------------------------|-----------------------------------|------------------------------|--------------------------------|
| Orientation | Stress Ratio, R<br><sup>O</sup> min/ <sup>O</sup> max | Number of<br>Cycles               | 50% Survival                 | 99/95 Lower<br>Tolerance Limit |
|             |                                                       |                                   |                              |                                |
| Radial      | 0                                                     | 100<br>1,000<br>10,000<br>100,000 | 0.92<br>0.90<br>0.87<br>0.85 | 0.71<br>0.69<br>0.66<br>0.64   |
|             | -1                                                    | 100<br>1,000<br>10,000<br>100,000 | 0.86<br>0.82<br>0.78<br>0.74 | 0.66<br>0.62<br>0.59<br>0.56   |
| Axial       | 0                                                     | 100<br>1,000<br>10,000<br>100,000 | 0.85<br>0.81<br>0.78<br>0.74 | 0.70<br>0.67<br>0.63<br>0.60   |
|             | -1                                                    | 100<br>1,000<br>10,000<br>100,000 | 0.83<br>0.77<br>0.71<br>0.66 | 0.67<br>0.62<br>0.57<br>0.52   |

|        |              | High<br>(%/hr) | Average<br>(%/hr) | Low<br>(%/hr) | Sampling<br>Frequency |
|--------|--------------|----------------|-------------------|---------------|-----------------------|
| Slab 1 | Edge         | 0.5488         | 0.1268            | 0.0042        | 48                    |
|        | Whole radius | 0.1147         | 0.0350            | 0.0085        | 16                    |
|        | Center       | 0.0483         | 0.0138            | 0.0048        | 14                    |
| Slab 3 | Edge         | 0.0084         | 0.0049            | 0.0013        | 45                    |
|        | Whole radius | 0.0132         | 0.0083            | 0.0053        | 17                    |
|        | Center       | 0.0084         | 0.0060            | 0.0020        | 17                    |
| Slab 5 | Edge         | 0.0123         | 0.0078            | 0.0031        | 45                    |
|        | Whole radius | 0.0374         | 0.0173            | 0.0081        | 17                    |
|        | Center       | 0.0159         | 0.0093            | 0.0034        | 17                    |

## TABLE 11-19 AVERAGE AND RANGE OF STEAM OXIDATION REACTION RATES OF STACKPOLE 2020 GRAPHITE (a)

(a) Experimental conditions: temperature = 1148 K, gas mix = 5%  $H_2$ , 3%  $H_2^{0}$ , balance He.



| Slab | Section | Distance from<br>Top of Log<br>(m) | Sample<br>Type | Orien-<br>tation | Sample<br>No. <sup>(a)</sup> | Burnoff<br>(%) | Reaction<br>Rate<br>(%/h) | Density<br>x $10^{-3}$<br>(kg/m) |
|------|---------|------------------------------------|----------------|------------------|------------------------------|----------------|---------------------------|----------------------------------|
|      |         |                                    |                |                  |                              |                |                           |                                  |
| 1    | A       | 0 - 0.0/6                          | Comp.          | Radial           | 1 E                          | 4.315          | 0.0891                    |                                  |
|      |         |                                    |                |                  | 4 C                          | 4.791          | 0.0124                    | 1.776                            |
|      |         |                                    |                |                  | 5 E                          | 15.774         | 0.2504                    | 1.774                            |
|      |         |                                    |                |                  | 7 E                          | 12.195         | 0.1009                    | 1.772                            |
|      |         |                                    |                |                  | 8 C                          | 2.544          | 0.0120                    |                                  |
|      |         |                                    |                |                  | 9 E                          | 7.767          | 0.0597                    | 1.775                            |
|      |         |                                    |                | Axial            | 201 E                        | 13.344         | 0.2756                    | 1.783                            |
|      |         |                                    |                |                  | 203 E                        | 5.967          | 0.1962                    | 1.784                            |
|      |         |                                    |                |                  | 204 E                        | 4.807          | 0.0993                    | 1.779                            |
|      |         |                                    |                |                  | 205 E                        | 16.695         | 0.5488                    | 1.785                            |
|      |         |                                    |                |                  | 207 E                        | 11.954         | 0.2468                    |                                  |
|      |         |                                    |                | 1                | 209 E                        | 1.157          | 0.0089                    | 1.790                            |
|      |         |                                    |                |                  | 211 E                        | 3.894          | 0.1512                    | 1.779                            |
|      |         |                                    |                |                  | 213 C                        | 0.933          | 0.0193                    | 1.782                            |
|      |         |                                    | Tens.          | Radial           | 1 R                          | 6.305          | 0.0430                    | 1.780                            |
|      |         |                                    |                |                  | 4 R                          | 5.091          | 0.0348                    | 1.787                            |
|      |         |                                    |                |                  | 5 R                          | 16.541         | 0.1129                    | 1.782                            |
|      |         |                                    |                |                  | 8 R                          | 6.095          | 0.0416                    | 1.781                            |
|      |         |                                    |                |                  | 9 R                          | 16.803         | 0.1147                    | 1.781                            |
|      |         |                                    |                | Axial            | 201 E                        | 2.625          | 0.0208                    | 1.784                            |
|      |         |                                    |                |                  | 203 E                        | 13.223         | 0.1047                    | 1.780                            |
|      |         |                                    |                |                  | 205 E                        | 3.693          | 0.0292                    | 1.786                            |
|      |         |                                    |                |                  | 207 E                        | 25.392         | 0.2009                    | 1.788                            |
|      |         |                                    |                |                  | 209 E                        | 17.612         | 0.1393                    | 1.782                            |
|      |         |                                    |                |                  | 211 E                        | 2.474          | 0.0196                    | 1.785                            |
|      |         |                                    |                |                  | 213 E                        | 3.352          | 0.0365                    | 1.787                            |
|      |         |                                    |                |                  | 215 E                        | 5.313          | 0.0420 High 0.5488        | 1.788 High 1.790                 |
|      |         |                                    |                |                  | 217 E                        | 2.880          | 0.0228 Avg. 0.1053        | 1.787 Avg. 1.782                 |
|      |         |                                    |                |                  | 219 C                        | 3.827          | 0.0303 Low 0.0089         | 1.787 Low 1.772                  |
|      | В       | 0.076 - 0.152                      | Comp.          | Radial           | 12 C                         | 1.167          | 0.0483                    | 1.772                            |
|      |         |                                    | -              |                  | 13 E                         | 3.820          | 0.0058                    | 1.773                            |
|      |         |                                    |                |                  | 16 C                         | 0.768          | 0.0122                    | 1.766                            |
|      | 1       |                                    |                |                  | 17 E                         | 3.569          | 0.0058                    | 1.776                            |
|      |         |                                    |                |                  |                              |                |                           |                                  |

\* \*

) ,

TABLE 11-20REACTION RATE AND DENSITY OF SAMPLES, GROUPED ACCORDING TO SECTION

Distance from Reaction Density Top of Log Sample Orien-Sample Burnoff Rate x 10  $\frac{10}{(\text{kg/m}^3)}$ No(a)Slab Section (m) (%/h) Type tation (%) (1)(B) (0.076 - 0.152)(Comp.) Axial 215 E 23.379 0.1912 1.784 217 E 14.496 0.2971 1.786 219 E 5.347 0.2707 1.783 221 E 7.932 0.4016 1.792 223 E 2.531 0.0124 1.794 225 E 8.650 0.4380 1.780 227 C 2.141 0.0101 ----Tens. Radial 12 R 2.277 0.0155 1.780 16 R 1.950 0.0133 1.778 17 R 8.672 0.0592 1.776 Axial 221 E 0.714 0.0056 1.784 223 E 1.828 0.0145 1.782 225 E 3.834 0.0303 1.783 227 E 24.096 0.1906 1.780 229 E 10.152 0.0803 1.781 231 E 0.503 0.0050 1.778 4.499 233 E 1.781 0.0087 235 E 2.883 0.0042 High 1.778 0.4380 High 1.794 237 E 0.576 0.0058 Avg. 0.0891 1.766 Avg. 1.780 239 C 5.340 0.0042 1.779 Low 1,766 0.0118 Low С 0.152 - 0.229Radia1 20 C 3.015 Comp. 0.0095 1.771 21 E 3.399 0.0088 1.784 24 C 0.676 1.775 0.0057 25 E 4.353 0.0073 1.783 Axial 229 E 7.378 0.1523 -----230 E 9.292 0.1475 1.779 231 E 14.953 0.1223 1.788 233 E 14.386 0.2971 1.782 235 E 10.9.68 1.789 0.3606 237 E 5.841 1.790 0.0083 239 E 7.323 0.3708 1.780 241 C 2.577 0.0053 1.783 Radial 20 R 1.747 1.778 Tens. 0.119 21 R 5.142 1.778 0.0351 High 1.790 High 0.3708 24 R Avg. 1.850 0.0126 1.781 Avg. 0.0984 1.781 25 R 2,824 1.781 Low 0.0193 Low 0.0053 1.771

TABLE 11-20 (Continued)

s.

×

\*

| Slab | Section | Distance from<br>Top of Log<br>(m) | Sample<br>Type | Orien-<br>tation | Sample.<br>No. <sup>(a)</sup>             | Burnoff<br>(%)                            | Reaction<br>Rate<br>(%/h)                                               | Density<br>x $10\frac{3}{3}$<br>(kg/m <sup>3</sup> )             |
|------|---------|------------------------------------|----------------|------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|
| (1)  | D       | 0.229 - 0.305                      | Comp.          | Radial           | 28 C<br>29 E<br>30 C<br>32 C<br>33 E      | 1.430<br>0.622<br>4.454<br>2.039<br>2.394 | 0.0068<br>0.0052<br>0.0048<br>0.0053<br>0.0066                          | <br>1.780<br>1.766<br>1.784<br>1.777                             |
|      |         |                                    | Tens.          | Radial           | 28 R<br>29 R<br>32 R<br>33 R              | 1.873<br>1.806<br>1.804<br>0.830          | 0.0128<br>0.0123 High 0.0128<br>0.0123 Avg. 0.0083<br>0.0085 Low 0.0048 | 1.780<br>1.784 High 1.784<br>1.781 Avg. 1.779<br>1.781 Low 1.766 |
| 3    | E       | 0.762 - 0.838                      | Comp.          | Radial           | 36 C<br>37 E<br>40 C<br>41 E              | 1.655<br>0.649<br>2.310<br>2.610<br>0.749 | 0.0078<br>0.0055<br>0.0064<br>0.0082<br>0.0063                          | <br>1.775<br>1.774<br>1.773<br>1.775                             |
|      |         |                                    |                | Axial            | 243 E<br>245 E<br>247 E<br>249 E          | 0.646<br>3.164<br>1.393<br>1.899          | 0.0052<br>0.0027<br>0.0066<br>0.0067                                    | 1.782<br>1.783<br><br>1.784                                      |
|      |         |                                    | Tens           | Radial           | 250 E<br>251 E<br>253 E<br>255 C<br>36 B  | 0.828<br>0.875<br>4.341<br>3.082<br>2.415 | 0.0064<br>0.0070<br>0.0047<br>0.0063<br>0.0053                          | 1.780<br>1.779<br>1.782<br>1.778<br>1.782                        |
|      |         |                                    | 10110.         | Audit            | 37 R<br>40 R<br>41 R<br>44 R              | 4.170<br>0.753<br>3.780<br>2.862          | 0.0107<br>0.0077<br>0.0073<br>0.0099                                    | 1.782<br>1.782<br>1.783<br>1.787                                 |
|      |         |                                    |                | Axial            | 243 E<br>245 E<br>247 E<br>249 E<br>251 E | 1.675<br>0.506<br>1.614<br>1.407<br>0.562 | 0.0015<br>0.0021<br>0.0015<br>0.0033<br>0.0023                          | 1.786<br>1.783<br>1.783<br>1.784<br>1.784                        |
|      |         |                                    |                |                  | 253 E<br>255 E<br>257 E<br>259 C          | 1.930<br>3.961<br>1.056<br>2.818          | 0.0017<br>0.0061<br>0.0044 High 0.0107<br>0.0054 Avg. 0.0055            | 1.782<br>1.782<br>1.783 High 1.787<br>1.783 Avg. 1.781           |
|      |         |                                    |                |                  | 261 C                                     | 3.438                                     | 0.0053 Low 0.0015                                                       | 1.782 Low 1.773                                                  |

ŧ

,

TABLE 11-20 (Continued)

Distance from Reaction Density Sample No.(a)  $x 10^{-3}$ (kg/m<sup>3</sup>) Top of Log Sample Orien-Burnoff Rate Slab Section (%/h) (m) Type (%) tation (3) F 0.838 - 0.91445 E 0.0073 Comp. Radial 4.362 1.774 0.858 0.0031 47 E 1.766 48 C 1.690 0.0082 1.766 49 E 0.0050 1.947 1.768 52 C 1.254 0.0059 ----1.784 257 E 0.579 0.0045 Axial 259 E 1.025 0.0036 1.785 1.786 261 E 3.426 0.0039 263 E 0.0046 1.483 1.784 265 E 0.839 0.0067 1.782 267 E 1.222 0.0058 -----269 C 4.404 0.0047 1.782 Tens. Radial 45 R 0.789 0.0081 1.780 48 R 2.944 0.0106 1.786 49 R 0.0053 2.411 1.776 52 R 0.780 0.0080 1.777 Axial 263 E 0.480 0.0020 1.787 265 E 1.462 0.0013 1.787 267 E 1.074 0.0021 1.787 1.786 269 E 2.147 0.0041 271 E 0.811 0.0033 1.785 273 E 4.197 0.0065 1.784 275 E 3.768 0.0058 1.786 277 E 1.112 0.0046 High 0.0106 1.784 High 1.787 279 C 1.784 2.250 Avg. 0.0052 Avg. 1.781 0.0020 281 C 0.0071 1.781 Low 1.766 Low 0.0013 4.5501 G 0.914 - 0.991Comp. Radial 53 E 0.0054 1.772 0.642 0.0084 1.764 56 C 3.264 0.0084 57 E 2.675 1.775 1.771 60 C 2.860 0.0047

TABLE 11-20 (Continued)

ι

3

.

| Slab | Section | Distance from<br>Top of Log<br>(m) | Sample<br>Type   | Orien-<br>tation | Sample<br><sub>No</sub> (a)                                                                                  | Burnoff<br>(%)                                                                                                             | Reaction<br>Rate<br>(%/h)                                                                                                                    | Density<br>x 10 <sup>-3</sup><br>(kg/m                                                                                | )                                     |
|------|---------|------------------------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| (3)  | (G)     | (0.914 - 0.991)                    | (Comp.)<br>Tens. | Axial<br>Radial  | 271 E<br>273 E<br>275 E<br>276 E<br>277 E<br>279 E<br>281 E<br>283 C<br>53 R<br>56 R<br>57 R<br>60 R         | 1.565<br>1.399<br>3.004<br>1.743<br>0.846<br>1.382<br>2.023<br>0.915<br>0.812<br>4.248<br>0.712<br>2.715                   | 0.0055<br>0.0066<br>0.0062<br>0.0084<br>0.0068<br>0.0043<br>0.0042<br>0.0073<br>0.0083<br>0.0127 High 0.<br>0.0073 Avg. 0.<br>0.0073 Avg. 0. | 1.787<br><br>1.780<br>1.754<br>1.778<br>1.778<br>1.778<br>1.778<br>1.778<br>1.774<br>.0127<br>1.780<br>.0068<br>1.777 | High 1.787<br>Avg. 1.776<br>Low 1.754 |
|      | Н       | 0.991 - 1.067                      | Comp.<br>Tens.   | Radial<br>Radial | 61 E<br>62 C<br>64 C<br>65 E<br>.68 C<br>61 R<br>64 R<br>65 R<br>68 R                                        | 1.588<br>0.666<br>0.684<br>4.614<br>1.150<br>4.377<br>0.677<br>3.417<br>0.684                                              | 0.0075<br>0.0048<br>0.0058<br>0.0077<br>0.0054<br>0.0132<br>0.0068 High 0.<br>0.0066 Avg. 0.<br>0.0070 Low 0.                                | .0132 1.783<br>.0048 1.783                                                                                            | High 1.783<br>Avg. 1.778<br>Low 1.768 |
| 5    | I       | 1.524 - 1.600                      | Comp.            | Radial           | 69 E<br>72 C<br>73 E<br>76 C<br>77 E<br>285 E<br>286 E<br>287 E<br>289 E<br>291 E<br>293 E<br>295 E<br>297 C | 1.956<br>0.524<br>2.865<br>2.691<br>0.920<br>1.225<br>4.589<br>1.007<br>1.977<br>4.823<br>0.607<br>2.509<br>1.627<br>1.966 | 0.0093<br>0.0083<br>0.0047<br>0.0130<br>0.0077<br>0.0100<br>0.0049<br>0.0060<br>0.0069<br>0.0053<br>0.0112<br>0.0077<br>0.0070<br>0.0093     | 1.787<br>1.792<br>1.789<br>1.799<br>1.790<br>1.800<br>1.796<br>1.800<br>1.792<br>1.792<br>1.795<br>1.795              |                                       |

· )

TABLE 11-20 (Continued)

, Q

8

**1** 

TABLE 11-20 (Continued)

٤

۰,

| Slab        | Section | Distance from<br>Top of Log | Sample | Orien- | Sample                                                                        | Burnoff                                                                                      | Reaction<br>Rate                                                                                                                 | Density<br>$x 10^{-3}$<br>$(bc/m^3)$                                                                                       |
|-------------|---------|-----------------------------|--------|--------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| <u>SIAD</u> | Section |                             | Туре   |        |                                                                               | (%)                                                                                          | (%/11)                                                                                                                           |                                                                                                                            |
| (5)         | (I)     | (1.524 - 1.600)             | Tens.  | Radial | 69 R<br>72 R<br>73 R<br>76 R<br>77 R                                          | 1.128<br>4.492<br>3.009<br>0.876<br>4.218                                                    | 0.0177<br>0.0180<br>0.0088<br>0.0138<br>0.0081                                                                                   | 1.796<br>1.800<br>1.798<br>1.796<br>1.797                                                                                  |
|             |         |                             |        | Axial  | 283 E<br>285 E<br>287 E<br>291 E<br>293 E<br>295 E<br>297 E<br>299 C<br>201 C | $1.511 \\ 4.677 \\ 4.764 \\ 0.650 \\ 3.263 \\ 5.062 \\ 1.401 \\ 2.289 \\ 5.289 \\ 2.445 \\ $ | 0.0062<br>0.0091<br>0.0093<br>0.0065<br>0.0033<br>0.0078<br>0.0058<br>0.0054 High 0.018<br>0.0117 Avg. 0.008<br>0.0035 Low 0.003 | 1.806<br>1.806<br>1.802<br>1.804<br>1.802<br>1.804<br>1.801<br>1.803 High 1.806<br>5 1.802 Avg. 1.801<br>3 1.802 Low 1.796 |
|             | J       | 1.600 - 1.676               | Comp.  | Radial | 80 C<br>81 E<br>84 C<br>85 E                                                  | 1.822<br>5.209<br>0.543<br>2.023                                                             | 0.0088<br>0.0088<br>0.0086<br>0.0096                                                                                             | 1.794<br>1.799<br>1.800                                                                                                    |
|             |         |                             | Tens.  | Axial  | 299 E<br>301 E<br>303 E<br>305 E<br>307 E<br>308 E<br>309 E<br>311 C<br>80 R  | 1.338<br>4.638<br>2.495<br>2.015<br>1.569<br>1.183<br>6.143<br>0.734<br>4.794                | 0.0107<br>0.0057<br>0.0118<br>0.0062<br>0.0077<br>0.0082<br>0.0079<br>0.0091                                                     | 1.792<br>1.799<br><br>1.791<br>1.792<br>1.788<br>1.790<br>1.783<br>1.802                                                   |
|             |         |                             |        |        | 81 R<br>84 R<br>85 R                                                          | 2.214<br>2.382<br>2.561                                                                      | 0.0348<br>0.0374<br>0.0075                                                                                                       | 1.798<br>1.801<br>1.805                                                                                                    |

,

| Slab | Section | Distance from<br>Top of Log<br>(m) | Sample<br>Type | Orien-<br>tation | Sample<br><sub>No</sub> .(a)                                                  | Burnoff<br>(%)                                                                         | Reaction<br>Rate<br>(%/h)                                                                                                           | $ \begin{array}{c} \text{Density} \\ x \ 10^{-3} \\ (kg/m) \end{array} $                                               |
|------|---------|------------------------------------|----------------|------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| (5)  | (J)     | (1.600 - 1.676)                    | (Tens.)        | Axial            | 303 E<br>305 E<br>307 E<br>311 E<br>313 E<br>315 E<br>317 E<br>319 C<br>321 C | 0.562<br>4.573<br>4.736<br>1.166<br>3.036<br>5.376<br>1.617<br>4.691<br>3.375<br>1.764 | 0.0056<br>0.0090<br>0.0092<br>0.0048<br>0.0031<br>0.0083<br>0.0067<br>0.0092 High 0.0374<br>0.0034 Avg. 0.0100<br>0.0073 Low 0.0031 | 1.809<br>1.809<br>1.808<br>1.808<br>1.805<br>1.806<br>1.806<br>1.807 High 1.809<br>1.803 Avg. 1.800<br>1.802 Low 1.783 |
|      | K       | 1.676 - 1.753                      | Comp.          | Radial           | 88 C<br>89 E<br>92 C<br>93 E<br>313 E                                         | 3.628<br>2.022<br>1.755<br>6.563<br>1.073                                              | 0.0104<br>0.0098<br>0.0083<br>0.0112<br>0.0046                                                                                      | 1.794<br>1.800<br><br>1.807<br>1.799                                                                                   |
|      |         |                                    |                |                  | 315 E<br>317 E<br>319 E<br>321 E<br>323 E<br>325 C                            | 2.599<br>2.370<br>2.218<br>2.183<br>2.326<br>1.725                                     | 0.0123<br>0.0073<br>0.0109<br>0.0093<br>0.0110<br>0.0138                                                                            | 1.795<br>1.793<br>1.795<br>                                                                                            |
|      |         |                                    | Tens.          | Radial           | 88 R<br>89 R<br>92 R<br>93 R                                                  | 1.931<br>3.943<br>5.311<br>1.098                                                       | 0.0303<br>0.0110 High 0.0303<br>0.0117 Avg. 0.0119<br>0.0173 Low 0.0046                                                             | 1.799<br>1.803 High 1.807<br>1.807 Avg. 1.798<br>1.802 Low 1.785                                                       |
|      | L       | 1.753 - 1.829                      | Comp.          | Radial           | 96 C<br>97 E<br>100 C<br>101 E<br>102 C                                       | 2.431<br>0.906<br>5.060<br>3.877<br>1.425                                              | 0.0117<br>0.0076<br>0.0159<br>0.0110<br>0.0044                                                                                      | 1.807<br>1.807<br>1.807<br>1.815<br>1.803                                                                              |
|      |         |                                    | Tens.          | Radial           | 96 R<br>97 R<br>100 R<br>101 R                                                | 4.013<br>2.786<br>1.490<br>4.924                                                       | 0.0110<br>0.0082 High 0.0234<br>0.0234 Avg. 0.0116<br>Low 0.0044                                                                    | 1.809<br>1.805 High 1.815<br>1.808 Avg. 1.808<br>1.808 Low 1.803                                                       |

TABLE 11-20 (Continued)

(a) Lateral location; C = center, E = edge, and R = whole radius.

, **()** .

|                    |     |    |   | Imp | urity | Conc | entr | ation | (ppm | )  |    |      | Position in                 | 5.5-m Log               |
|--------------------|-----|----|---|-----|-------|------|------|-------|------|----|----|------|-----------------------------|-------------------------|
| Specimen<br>Number | A1  | Ba | В | Ca  | Cu    | Fe   | Pb   | Mg    | NЪ   | Si | Ti | v    | Distance<br>From Top<br>(m) | Edge<br>or<br>Center(a) |
| 6799-52-11         | 60  | 20 | 2 | 200 | <1    | 40   | 6    | <0.5  | <6   | 20 | 20 | 20   | 0.075                       | Е                       |
| 6799-52-34         | 20  | 20 | 2 | 100 | <1    | 10   | 60   | <0.5  | <6   | 80 | 2  | <0.5 | 0.250                       | С                       |
| 6799-53-43         | 20  | 20 | 2 | 100 | 8     | 10   | <6   | 1     | 20   | 40 | 40 | 20   | 0.85                        | Е                       |
| 6799-53-58         | 60  | 20 | 2 | 100 | <1    | 4    | <6   | 1     | <6   | 60 | 40 | 20   | 0.95                        | С                       |
| 6799-54-71         | <1  | 10 | 2 | 100 | <0.5  | <1   | <6   | 1     | <6   | 60 | 20 | 10   | 1.5                         | Е                       |
| 6799-54-98         | 100 | 20 | 2 | 200 | <1    | <1   | <6   | 1     | <6   | 60 | 10 | 8    | 1.8                         | С                       |
| Mean               | 43  | 18 | 2 | 133 | 2     | 14   | 15   | 0.8   | 8    | 63 | 22 | 13   |                             |                         |

TABLE 11-21 IMPURITIES FOUND IN STACKPOLE 2020 GRAPHITE

1

(a) C = center sample obtained at depth of 44 mm or greater from surface E = edge sample obtained within 44 mm of surface

ŧ.

.

## APPENDIX TOPICAL REPORTS PUBLISHED DURING THE QUARTER

Kovacs, W. J., "Preirradiation Report of TRISO and BISO Coated ThO<sub>2</sub> Particles for Irradiation Capsules HT-31 and HT-33," ERDA Report GA-A13923, General Atomic Company, November 1976.

Price, R. J., and L. A. Beavan, "Final Report on Graphite Irradiation Test OG-3," ERDA Report GA-A14211, General Atomic Company, January 1977.