BNWL-1962 UC-32

MASTER

COBRA-IV-I: An Interim Version of COBRA for Thermal-Hydraulic Analysis of Rod Bundle Nuclear Fuel Elements and Cores

March 1976

Prepared for the Energy Research and Development Administration under Contract E(45-1):1830

and

for the Nuclear Regulatory Commission

BNWL-1962

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE

1

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any imformation, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

PACIFIG NORTHWEST LABORATORY operated by BATTELLE for the ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION Under Contract E(45-1)-1830

17 2.

Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22151 Price: Printed Copy \$1000; Microfiche \$2.25

BNWL-1962 UC-32

COBRA-IV-I: AN INTERIM VERSION OF COBRA FOR THERMAL-HYDRAULIC ANALYSIS OF ROD BUNDLE NUCLEAR FUEL ELEMENTS AND CORES

🐔 NOTICE 🔨

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It has been reproduced from the best available copy to permit the broadest possible availability.

- NOTICE

by C. L. Wheeler C. W. Stewart R. J. Cena D. S. Rowe A. M. Sutey

March 1976

Approved by

Trent, Manager D. S. Fluid and Thermal Engineering Section Engineering Technology Department

BATTELLE Pacific Northwest Laboratories Richland, Washington 99352

E

ABSTRACT

The COBRA-IV-I computer code uses the subchannel analysis approach to determine the enthalpy and flow distribution in rod bundles for both steadystate and transient conditions. The steady-state and transient solution schemes used in COBRA-IIIC are still available in COBRA-IV-I as the implicit solution scheme option. In addition to these techniques, a new explicit solution scheme is now available which allows the calculation of severe transients involving flow reversals, recirculations, expulsion and reentry flows, with a pressure or flow boundary condition specified. Significant storage compaction and reduced running times have been achieved to allow the calculation of problems involving hundreds of subchannels.

i

THIS PAGE WAS INTENTIONALLY LEFT BLANK

CONTENTS

ABSTI	RACT		i
LIST	OF F	IGURES	v
LIST	OF T	ABLES	V.
1.0	INTR	ODUCTION	1
2.0	SUMM	ARY	3
	2.1	EXPANDED COBRA CAPABILITY	3
	2.2	ADVANCED NUMERICAL CAPABILITY	4
3.0	CONS	ERVATION EQUATIONS AND NUMERICAL SOLUTION ALGORITHMS	
	FOR	FLUID AND ENERGY TRANSPORT	7
	3.1	BASIC EQUATIONS	7
	3.2	IMPLICIT NUMERICAL SOLUTION	0
	3.3	EXPLICIT NUMERICAL SOLUTION	3
4.0	THER	MAL TRANSPORT	9
	4.1	FUEL ROD HEAT TRANSFER	9
	4.2	HEAT TRANSFER THROUGH CONDUCTING WALLS	4
	4.3	COOLANT AXIAL CONDUCTION MODEL	6
5.0	CONS	TITUTIVE RELATIONSHIPS	7
6.0	PROG	RAM DESCRIPTION	9
	6.1	ORGANIZATION	9
	6.2	LARGE BUNDLE CAPABILITY	1
		6.2.1Allocation and Compaction36.2.2Iterative Solution36.2.3External Devices3	1 5 5

CONTENTS (Continued)

.

	6.3	US 6 6 6	SEF .3. .3.	2 3	DN Di Pi Pi	VEN ump rog rog	NIE D a Jra Jra	ENC anc am am	E IR SP GE	FE Ses PEC	AT Sta SE 1 -	UR Int T	RES - C - C	S.)pt Cc ie	ic de In	n P Ipu	Rec It	lin Ge	ner	isi era	ior iti	or	ig	Pr		gra		• • •	•		• • •	35 36 36 36
	6.4	M	4CF	IIN	ΕI	REC	QU I	[RE	ME	NT	S	•	•	•	•	•	•	•	• ·	•	•	•	•	•	•	•	•	•	•	•	•	37
7.0	COBR	4	INF	UT	D	ESC	R	[P]	10	N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	39
8.0	NOME	NCI	_A1	UR	E.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	77
ACKNO)WLED(GEN	٩E١	ITS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	81
REFER	RENÇË	Ŝ.		•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	83
APPEN	NDIX /	4		•	•	٠		•		•	•	•	•	•	•	•	•	•	•		•			÷	÷	•	•	•	•	•	•	A-1
APPEN	NDIX I	B	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	B-1
APPEN	NDIX (С.	• •	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C - 1
APPEN	NDIX I	D.	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	D-1
APPEN	IDIX I	E,	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-1
APPEN	NDIX I	F.	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	F-1
APPEN	NDIX (G	• •	•	•	•	•	•			•	•	•	•	•	•	•	•.	•	•	•	•	•	•	•	•	•	•	•		•	G-1

ı

LIST OF FIGURES

Figure Number		Page Number
1	Conservation Cells for Mass, Energy, and Momentum	15
2	Fuel Rod Noding Using Orthogonal Collocation	24
3	Single Node Model of Conducting Wall	25
4	COBRA-IV-I Flow Diagram	30
A-1	Subroutine RESTRT Available Code Options	A-8
A-2	Subroutine SCHEME Calculation Procedure	A-9
A-3	Subroutine XSCHEME Computational Procedure	A-12
B-1	Regional Application of Heat Transfer Correlations	B-2
C-1	Transverse Momentum Flux Geometry	C-2
C-2	Example of Gap Direction Angles	C-3
E-1	Samples of GEOM Rod and Channel Numbering Scheme	E-2
E-2	Definition of Wrap Starting Angle and Rotation Direction	E-5
G-1	Subchannel Layout and Wire Wrap Positions Looking in the Direction of Flow at the Inlet	G-1
G-2	Geometry of Thermal Model Sample Problem	G-16
G-3	U-Tube Manometer Model	G-73
	LIST OF TABLES	
I	Major Assumptions and Restrictions	9
2	EQUIVALENCE Relationships	33 [,]
3	Storage Location of EQUIVALENCE Variables	34

B-1Heat Transfer and Critical Heat Flux CorrelationsB-3D-1Listing of SPECSET Fixed InputD-4

COBRA-IV-I: AN INTERIM VERSION OF COBRA FOR THERMAL-HYDRAULIC ANALYSIS OF ROD BUNDLE NUCLEAR FUEL ELEMENTS AND CORES

1.0 INTRODUCTION

The objective of this report is to present an interim version of the COBRA-IV computer program being developed at the Pacific Northwest Laboratory by Battelle-Northwest. The COBRA-IV-I code is an extended version of the COBRA-IIIC subchannel analysis code which computes the flow and enthalpy distributions in nuclear fuel rod bundles or cores for both steady state and transient conditions. ⁽¹⁾

Development of the COBRA computer code through the COBRA-IIIC version was sponsored by the Atomic Energy Commission (AEC). Since the reorganization of the AEC, COBRA-IV has been under the sponsorship of both the Energy Research and Development Administration (ERDA) and the Nuclear Regulatory Commission (NRC). The ERDA sponsorship has been directed toward expanded code capability for the liquid metal fast breeder reactor, while the NRC sponsorship has been directed toward improved computational and two-phase modeling for application to water reactor safety.

The approach used in COBRA-IV-I is similar to that used in COBRA-IIIC. The basic idea is to divide the bundle or core of a reactor into computational cells. The balance laws of mass, energy and momentum for the fluid are written for each cell where the independent variables of enthalpy, pressure and velocity are appropriate averages. The cells may have fuel rods or other solid materials which in the present treatment act as sources or sinks of heat and momentum to the fluid. The transient thermal response of the fuel or solids is included and is interfaced with the hydraulics through heat transfer coefficients. The use of the computational cell concept allows subchannel analysis, core analysis and general flow field analysis to be considered in a unified approach. The primary differences

between the two programs are the level of detail included through averaging and the constitutive relationships used to close the set of equations.

COBRA-IIIC is currently in rather wide use for the thermal-hydraulic analysis of rod bundle fuel elements and cores for water, liquid metal and gas cooled reactors. COBRA users continually challenge its capability by attempting problems of increasing complexity. For example, design analysis for the LMFBR requires calculation of subchannel flow and temperature in a full 217-pin wire-wrapped bundle with provision for heat transfer to adjacent bundles or core structures. This must be accommodated by existing computers and be performed with reasonable computational time. Analysis for both liquid-metal and water cooled reactors requires the transient response of coolant flow and enthalpy to changes of inlet and exit pressure as the driving boundary condition. This can lead to flow reversals, coolant expulsion and reentry. Capability is also required for severe blockages where flow recirculation is possible. The application of COBRA-IV to water reactor safety currently requires more sophisticated two-phase flow modeling to account for relative motion of the liquid and vapor phases and the effects of thermal nonequilibrium. This is further complicated by the need to consider a wide range of pressure and velocity conditions. This poses a significant challenge to both the modeling of two-phase flow physical processes and the numerical procedure to solve the system of equations.

Significant progress has been made in the above areas; therefore, COBRA-IV-I is being published to provide interim capabilities to the user community. The report is structured primarily as a user manual with much of the fundamental equation and solution techniques deferred to the formal CÓBRA-IV documentation. It is hoped that this information will aid the COBRA-IV-I user in taking advantage of the new features now available in the code.

2.0 SUMMARY

Significant new capability has been added to COBRA since the publication of COBRA-IIIC. These can be grouped into two primary areas.

2.1 EXPANDED COBRA CAPABILITY

COBRA-IV-I includes all the previous capability of COBRA-IIIC plus significantly expanded computational capability described below.

- Very large bundles such as a full 217-pin wire-wrapped bundle can now be considered with typical running times of 5 minutes per wire wrap pitch on a CDC-7600. This has been made possible by using storage compaction techniques, auxiliary storage devices and an iterative solution procedure.
- The subchannel layout and card input for wire-wrapped bundles can be generated automatically by using an auxiliary program supplied with the code.
- The program size capability is easily changed by using an auxiliary program to generate a complete, consistent set of dimensions and common blocks according to user selected options. These can then be inserted in place of existing dimensions in COBRA to accommodate a wide range of problem sizes.
- Core analysis problems can now consider a thermally conducting wall which can conduct heat between two channels on opposite sides of the wall.
- The fuel rod heat conduction model now includes axial conduction and variable thermal conductivity. Also, each rod may now consist of several materials if desired. The storage requirement for the fuel model has been reduced by a factor of two with no loss in accuracy or increase in running time by using an orthogonal collocation numerical procedure.

 Correlations are now included to calculate the physical properties of superheated steam for water reactor applications. Heat transfer correlations are also included for subcooled, boiling and superheated conditions.

 "Dump and Restart" capabilities are now included. This allows problem solutions to be saved for subsequent use either to continue calculations or to provide an initial guess to a different problem. This feature can save significant computer time for similar problems.

 Line printer plotting capability is included to plot pressure drop, mass flux, enthalpy and/or crossflow versus axial position for all or a specified number of gaps and channels. While not suitable for hard copy, these plots can be of considerable aid in interpretating complex problems.

The two-phase flow model and implicit computational approach used previously for COBRA-IIIC are retained.

2.2 ADVANCED NUMERICAL CAPABILITY

A significantly improved numerical solution procedure has been developed for COBRA-IV to enhance its range of application. While still under development, it allows analysis of problems previously not possible with COBRA-IIIC. The basic approach uses a pressure-velocity method, which is an adaptation of the MAC methodology⁽²⁾ and the Chorin-Hirt iteration procedure.⁽³⁾ It differs from these approaches by an implicit coupling of the energy and momentum equation to account for convective influence on the time rate of change of density. The method is explicit relative to momentum convection; therefore, it requires a time step limitation to maintain computational stability. The algorithm under development is called the <u>Advanced Continuous-Fluid Eulerian (ACE) method</u>.

This advanced numerical capability is presently limited to incompressible, but thermally-expandable flows. Two-phase flows are limited to homogeneous, thermal-equilibrium conditions. Applications involving

compressibility, relative phase motion and thermal nonequilibrium are being pursued under contract with the Nuclear Regulatory Commission.

The advanced numerical procedures allow new capability as follows:

- Arbitrary plenum pressure and/or flow boundary conditions can now be used to drive transients.
- The numerical solution has successfully considered bouyancydominated flow redistribution, flow reversals, coolant expulsion, reentry and recirculation.
- Severe flow blockages can be considered.
- All of the expanded COBRA capability mentioned previously can be used for the advanced numerical procedures under the restriction of homogeneous two-phase flow in thermal-equilibrium.
- The advanced procedure can be started from an arbitrary initial condition, one of which is the implicit COBRA-IIIC type of solution.

The sections which follow describe the basic features of COBRA-IV-I with major emphasis on the program description. Full documentation of details on the mathematical models, numerical procedures, additional experimental comparison and verification are to be presented in future reports.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

3.0 CONSERVATION EQUATIONS AND NUMERICAL SOLUTION ALGORITHMS FOR FLUID AND ENERGY TRANSPORT

The foundations of the COBRA computer programs are the conservation equations used to describe fluid and energy transport and the numerical methods employed to solve them. The conservation of mass, linear momentum, and energy are described by balance laws written for an Eulerian control volume. These governing equations, with appropriate boundary conditions and constitutive relationships, are then put into a framework for numerical solution. To provide the greatest possible computational capability and maintain the efficient use of computing facilities, the COBRA-IV code contains two numerical methods. One is an implicit technique similar to that used in COBRA-IIIC; the other, an explicit method, is new. Both algorithms have an important function and, in general, the implicit scheme is used for steady-state and slow transient simulation. The explicit method is used for transients where flows are expected to reverse direction.

The following descriptions of the applied conservation equations and numerical solution algorithms center on the description of additions and changes that have been made to COBRA-IIIC. Therefore, many details of the derivations have been omitted; however, pertinent results are summarized in all instances.

3.1 BASIC EQUATIONS

The basic equations of the mathematical model are derived by applying the general equations of continuity, energy, and momentum to a subchannel control volume. These equations were derived by $Rowe^{(1)}$ for subchannels in COBRA-IIIC and are also applied in the present treatment. The equations are:

7

Continuity

 $A \frac{\partial \rho}{\partial t} + \frac{\partial m}{\partial x} + [DC]^{T} w = 0$

(1)

Energy

$$A \frac{\partial \rho h}{\partial t} + \frac{\partial m h}{\partial x} + [DC]^{T} h^{*} w = q'$$
(2)

Axial Momentum

$$\frac{\partial m}{\partial t} + \frac{\partial m u}{\partial x} + [DC]^{T} u^{*} w + A \frac{\partial P}{\partial x} = F$$
(3)

Transverse Momentum

$$\frac{\partial w}{\partial t} + \frac{\partial u^* w}{\partial x} + \frac{\partial v_y w}{\partial y} - [DC] P = c$$
(4)

In the above equations [DC] is a matrix operator which performs the lateral finite difference operation, $[DC]^T$ is the transpose of [DC] and performs a summing operation instead of differencing,[†] F is the axial friction and gravity force, c is the lateral friction force, and q' is the heat transfer from all sources.

The balance equations are not complete without enumerating the restrictions and approximations that were made in their derivation. It is impractical to list all approximations that have been made to "the most general" balance laws; however, it is desirable to provide relevant limitations for those who use the COBRA code. Table 1 provides a description of the more important assumptions and restrictions that have been introduced and cites 1) the corresponding equations where they were made and 2) the terms and/or restrictions in simulation capability that are involved.

In addition to the conservation equations, it is necessary to specify fluid properties and constitutive equations to form a closed set of equations for solution. In COBRA, specifications are required for axial and lateral friction or form losses, heat transfer coefficients, coefficients for turbulent exchange, slip ratio, and an equation of state for an incompressible, but thermally expanding fluid. This is written as:

$$p = p(h, P^*)$$

(5)

where P^* = reference pressure.

 $\frac{1}{[DC]}$ and $[DC]^{T}$ replace the notation [S] and [S]^{T} in Reference 1.

TABLE 1. Major Assumptions and Restrictions

١

۴.

Assumption or Restriction	Equations Involved	Effects							
Common to both numerical algorithms:									
Thermal equilibrium	A11	Requires equal phase temperatur							
Geometry constant in time	A11	Restricts problems that can be addressed							
Lateral turbulence model based on equal mass exchange	A11	w¦j = w'ji							
No turbulent mixing between axial nodes	A11	u' = 0							
Fluid properties are a function of h and the reference pressure	A11 .	Thermal expansion is included but compressibility (due to local pressure changes) is not							
$\delta p/\delta t$ neglected in the energy equation	Energy	No sonic propogation							
Negligible heat generation within the fluid	Energy								
Changes in kinetic energy assumed small	Energy	Only mechanisms for internal energy change are heat transfer,							
Neglect viscous dissipation	Energy	convection, and turbulent							
Neglect work against the gravity field	Energy								
Gravitational acceleration is the only body force	Momentum	Electromagnetic forces not considered							
Transverse body force neglected	Transverse momentum	No lateral buoyancy effects (restricts only when flow channel not vertical)							
Neglect surface tension contributions	Momentum	Requires equal phase pressures							
Fluid drag forces represented by wall friction and form drag	Momentum	Fluid-fluid shear neglected (turbulent momentum exchange is modeled, however)							
Neglect two of the six terms in the transverse momentum equation (see Appendix C for clarification)	Transverse momentum	Allows arbitrary lateral coupling of channels							
Flow area varies linearly between axial locations	A11	No step area changes							
For the explicit method:									
Homogeneous fluid	Momentum and energy	Equal phase velocities, i.e., ^u g = u ₁ V = V.							
Courant restriction	A11	ig i Maximum time step limited to Δt < Δx/u							
For the implicit method:									
Specified axial slip is an option; however, transverse slip is neglected	Momentum and energy	ug≠ u _l , Vg = V _l							
No reverse flow	A11	Stability							

3.2 IMPLICIT NUMERICAL SOLUTION

The implicit solution scheme is very similar to that used in COBRA-IIIC. The equations of change are solved using lumped parameter finite difference techniques. In the present treatment two new operators have been added, [S] and $[DW]^T$. The [S] operator is similar to [DC] except that [S] is the sum of two variables instead of the difference. The $[DW]^T$ operator performs the same function as $[DC]^T$ except that, where $[DC]^T$ orders subchannels by their connections, $[DW]^T$ orders subchannels and thermally conducting walls by their connections. This operator is necessary since COBRA-IV-I is capable of transferring energy between subchannels on opposite sides of a thermally-conducting wall.

Since the finite difference formulations of COBRA-IV-I differ but slightly from those given in Reference 1, the new formulations are only summarized here.

Continuity

$$\frac{A_{j}(\rho_{j}-\bar{\rho}_{j})}{\Delta t} + \frac{m_{j}-m_{j-1}}{\Delta x} = -[DC]^{T}w_{j}$$
(6)

Energy

Coolant Energy Equation

$$\frac{A'\overline{\rho}(h_{j}-\overline{h}_{j})}{\Delta t} + \frac{m_{j-1}(h_{j}-h_{j-1})}{\Delta x} + [DC]^{T}h_{j}^{*}w_{j} - h_{j}[DC]^{T}w_{j}$$

$$+ [DC]^{T}w'[DC]h_{j} + [DC]^{T}c[DC]^{T}_{j} + \underline{[DW]^{T}U_{w}(T_{wj}-T_{j})}$$

$$= \underline{Q_{A}} + q'$$
(7)

The underlined terms in equation (7) represent additional modes of heat transfer which were not available in COBRA-IIIC. The first underlined term accounts for energy transport between the coolant and a thermally-conducting wall. The second represents axial conduction in the fluid which is discussed in Section 4.3.

Axial Momentum

Differences in the derived axial momentum equation are the result of different algebraic manipulations of the basic equation.

The new form is:

$$\frac{m_{j} - \overline{m}_{j}}{\Delta t} + \frac{A' g_{c} (P_{j} - P_{j-1})}{\Delta x} = -K_{L}m_{j}^{2} - \left(\frac{m_{j} u_{j} - m_{j-1} u_{j-1}}{\Delta x}\right)$$
$$- [DC]^{T}u_{j} * w_{j} - [DC]^{T}w' [DC]u_{j} - gA' \rho \cos\theta$$

(8)

where

$$K_{L} = \frac{V_{\ell} T_{\phi}}{A_{j}^{2} 2D} + \frac{KV}{A_{j}^{2} 2\Delta x}$$

Using equation (6) and the following definitions and identities,

$$m_j^2 - m_{j-1}^2 = (m_j - m_{j-1}) 2m^+$$

equation (8) becomes:

$$P_{j} = P_{j-1} + \Delta x \left\{ - \left(K_{L} + \frac{(v_{j}'/A_{j} - v_{j-1}'/A_{j-1})}{A \Delta x} \right) \frac{m_{j-1}^{2}}{g_{c}} - \rho \cos \theta \right. \\ \left. - \left[DC \right]^{T} w' \left[DC \right] u_{j} + \frac{\rho_{j} - \overline{\rho}_{j}}{g_{c} \Delta t} \left(\frac{\Delta x}{\Delta t} + 2m^{+} (v_{j}'/A_{j}) + K_{L} 2m^{+} A' \Delta x \right) \right\}$$

$$+ \frac{1}{A'g_{c}} \frac{(\overline{m}_{j} - m_{j-1})}{\Delta t} + \Delta x \left[\left(\frac{\Delta x}{\Delta t} [DC]^{T} - [DC]^{T}u_{j}^{*} \right) \frac{1}{A'} + \left(K_{L}\Delta x + \frac{v_{j}^{'}/A_{j}}{A'} \right) 2m^{+} [DC]^{T} \right] w_{j}$$
(9)

Transverse Momentum

The transverse momentum equation is the same as that in COBRA-IIIC; however, the $\frac{\partial vyW}{\partial y}$ term in equation (4) has been approximated and the approximation may be used as an option. The transverse momentum equation is

$$\frac{w_{j} - \overline{w}_{j}}{\Delta t} + \frac{u_{j}^{*} w_{j} - u_{j-1}^{*} w_{j-1}}{\Delta x} + \frac{s}{\ell} c_{j} w_{j} = -\frac{s}{\ell} [S][DC]^{T} w_{j}^{2} \frac{\cos\theta}{\rho^{*}s^{2}}$$
$$+ \frac{s}{\ell} [DC]P_{j-1}$$
(10)

As was done in COBRA-IIIC, equations (9) and (10) are combined as the resulting set of equations is solved for the crossflow w. Using the matrix notation of Reference 1, equation (9) is written as

$$\{P_{j-1}\} = \{P_j\} - \{F\}\Delta x - [R_j] \{w_j\} \Delta x$$
(11)

where F_j consists of the terms contained inside the {}, and R_j contains the terms inside the [] in equation (9).

Equation (10) is rearranged and written as

$$[DC] \{P_{i-1}\} = [RP] \{w\} + \{FP\}$$
(12)

where

$$[RP] = \begin{bmatrix} \frac{1}{s_{\ell}} \left(\frac{1}{\Delta t} + \frac{u_{j}}{\Delta x} \right) + C_{j} \end{bmatrix}$$
(13)

تما

and

$$\{FP\} = \left\{ [S][DC] \left\{ \frac{w_j^2 \cos\theta}{\rho^* S^2} \right\} - \frac{s}{\vartheta} \left\{ \frac{\overline{w}_j}{\Delta t} + \frac{u_{j-1}^* w_{j-1}}{\Delta x} \right\} \right\}$$
(14)

Using equation (11), the pressure difference between subchannels at elevation j-1 can be written as

$$[DC] \{P_{j-1}\} = [DC] \{P_j\} - [DC] \{F\} \Delta x - [DC] [R_j] \{w_j\} \Delta x$$
(15)

Combining equation (15) with (12) results in the set of simultaneous equations of the form

$$[m_{j}] \{w_{j}\} = \{b_{j}\}$$
(16)

where

$$[m_{i}] = [DC] [R_{i}] \Delta xt [RP]$$
(17)

and

$$\{b_i\} = [DC] \{P_i - F \Delta x\} - \{FP\}$$
 (18)

To save storage, the coefficient matrix [m] of equation (16) is stored in a compressed form and the set of equations is solved by a Gauss-Seidel iteration scheme. The Gauss-Seidel method is an added internal iteration at each axial level and should not be confused with the external iteration scheme used in solving the implicit boundary value problem.

3.3 EXPLICIT NUMERICAL SOLUTION

As an alternate to the implicit solution scheme for calculating transients, a new explicit solution scheme has been developed. The explicit scheme allows the calculation of transients such as flow reversals, recirculations, and expulsion and reentry flows, with either an inlet flow or pressure drop boundary condition specified. The method is an extension of earlier pressure-velocity solution methods, such as MAC; (2) the main departure is the incorporation of an implicit energy equation rather than the explicit equation. This was necessary to properly account for mass/energy transport across computational cells when large density gradients exist.

In the explicit solution scheme, the basic conservation equations are written for the computational cells illustrated in Figure 1. These equations are:

Continuity (Implicit)

 $A \Delta x \frac{\partial p}{\partial t} + [DC]^{T} w_{j}^{n+1} \Delta x + m_{j}^{n+1} - m_{j-1}^{n+1} = E_{j}^{n+1}$ (19)

Energy (Implicit)

$$A\Delta x \frac{\partial \rho h}{\partial t} + [DC]^{T} h_{k}^{*} w_{j}^{n+1} \Delta x + m_{j}^{n+1} h_{j}^{*} - m_{j-1}^{n+1} h_{j-1}^{*} = Q_{j}$$
(20)

Axial Momentum (Implicit in pressure)

$$m_{j}^{n+1} = m_{j}^{n} - \Delta t M_{j} - A \frac{\Delta t}{\Delta x} g_{c} (P_{j+1}^{n+1} - P_{j}^{n+1})$$
(21)

Lateral Momentum (Implicit in pressure)

$$w_j^{n+1} = w_j^n - \Delta t W_j + \frac{s}{\ell} g_c \Delta t [DC] P_j^{n+1}$$
(22)

The term, E_j, in equation (19) represents the error in continuity caused by incorrect flows. The miscellaneous explicit terms in equations (20) through (22) are not important in the derivation and have thus been lumped into the variables Q, M and W, respectively. The star superscript in the enthalpy in equation (20) indicates the quantity is convected by the associated flow.

In addition, an equation of state relating density to enthalpy (or internal energy) and the reference pressure is defined.

$$\rho = \rho(h, P^*) \tag{23}$$

MASS - ENERGY

AXIAL MOMENTUM

LATERAL MOMENTUM

(DASH LINES INDICATE POSITION OF MASS ENERGY CELL)

FIGURE 1. Conservation Cells for Mass, Energy, and Momentum

لما

The following equation is derived from the energy equation (20) using equations (19) and (23).

$$E'_{j} = m_{j}^{n+1} v_{j}^{*} - m_{j-1}^{n+1} v_{j-1}^{*} + \Delta x [DC]^{T} w_{j}^{n+1} v_{k}^{*} - \Delta x \frac{\partial v}{\partial h} Q$$

- $\Delta x A' \frac{\partial v}{\partial h} \rho_{j}^{n} \frac{\partial P}{\partial t}$ (24)

In this case, E_j represents the volume dilation or volumetric error which is to be corrected by pressure adjustment. The time derivative is absent because an Eulerian cell does not change its volume.

To form the pressure correction equation, the momentum equations (21) and (22) can be substituted for the flows in equation (24). The derivative of the result with respect to cell pressure is

$$\frac{\partial E_{j}}{\partial P_{j}} = g \frac{\Delta t}{\Delta x} A \left[v_{j}^{*} + v_{j-1}^{*} + \frac{\Delta x^{2}}{A} \frac{s}{2} \left[DC \right]^{T} v_{k}^{*} \left[DC \right] \right] - A' \Delta x \rho_{j}^{n} \frac{\partial v}{\partial P} |_{h}$$
(25)

The solution is accomplished by the point relaxation method where the pressure is adjusted by means of equation (25) in each computational cell to bring the volumetric dilation, E'_i , to zero.

A computational cycle begins with the explicit calculation of tentative flows with the momentum equations (21) and (22) using either an initial guess for pressure or values from the previous cycle. Initial guesses for flows and pressures to be adjusted to their final values in the iterations to follow are now available.

The first step in the iteration is the calculation of the cell volume error, the dilation derivative, and any other required quantities from the initial guesses or last iterate values of the main variables. The amount of pressure change is calculated from equations (24) and (25) by

 $\delta P_{j} = \frac{-E_{j}}{\frac{\partial E}{\partial P}}$

16

(26)

This pressure change is employed to calculate incremental changes in flows and crossflows by use of derivatives of equations (21) and (24), respectively. The last step is the calculation of a new specific volume with equation (19) and a new enthalpy with equation (23). The iteration is terminated when the dilation, E'_j , is sufficiently small.

احا

THIS PAGE WAS INTENTIONALLY LEFT BLANK

4.0 THERMAL TRANSPORT

In addition to the thermal transport mechanisms available in COBRA-IIIC, three new models have been added to COBRA-IV-I. These consist of:

- a new fuel rod model in which the effects of axial conduction and variable thermal conductivity are included;
- 2. an axial thermal conduction model in the coolant; and
- a wall heat conduction model which allows for energy transport between channels on opposite sides of a thermally-conducting wall.

4.1 FUEL ROD HEAT TRANSFER

The fuel rod heat transfer model in COBRA allows the computation of the rod surface heat fluxes and internal temperature distributions based on the heat generation in the fuel and the surface heat transfer coefficient.

The heat transfer model and solution method in COBRA-IV-I have changed significantly from those used in COBRA-IIIC. The primary improvement to the model is the inclusion of axial conduction and the temperature dependence of fuel thermal conductivity; this inclusion provides greater detail and allows consideration of a wider class of problems. Circumferential heat conduction is ignored to maintain a reasonable number of fuel nodes. This assumption can be justified if the heat transfer coefficients and fluid temperature distribution around a fuel rod are rather uniform.

The method of solution has also been changed to the Method of Weighted Residuals (MWR) as a replacement to the finite difference scheme in the radial direction. $^{(4,5)}$ Finite difference is still used for time derivatives and axial space derivatives. In MWR, orthogonal collocation is employed to determine the form of the approximate polynomial solution. MWR affords a higher order of accuracy by using the roots of orthogonal polynomials as the nodal positions where the solution is evaluated. Computer storage is reduced by a factor of two with this method while the accuracy of conventional finite difference schemes and similar computing times is maintained.

The heat conduction model in COBRA-IV is derived from the two-dimensional heat conduction equation with temperature dependent thermal conductivity. This equation is written below for both planar and cylindrical geometry with the radial coordinate nondimensionalized using the relationship r = r'/R (r' = radial coordinate and R = fuel radius):

$$\rho c \frac{\partial T}{\partial t} = \frac{1}{R^2} \frac{1}{r^{a-1}} \frac{\partial}{\partial r} r^{a-1} K(T) \frac{\partial T}{\partial r} + \frac{\partial}{\partial x} K(T) \frac{\partial T}{\partial x} + q$$
(27)
a = 1 Planar

a = 2 Cylindrical

Equation (27) is reduced to a linear partial differential equation by introducing a new temperature related to T by Kirchoff's transformation:

$$\theta = \frac{1}{K_0} \int_{T_0}^{T} K(T) dT = G(T)$$
(28)

 $(K_{o} = conductivity at reference temperature T_{o})$

The temperature dependence of the fuel thermal conductivity is supplied by a user-specified polynomial approximation. Making this substitution for the radial and time coordinates produces the transformed equation:

$$\rho c \frac{K_0}{K(T)} \frac{\partial \theta}{\partial t} = \frac{K_0}{R^2} \frac{1}{r^{a-1}} \frac{\partial}{\partial r} r^{a-1} \frac{\partial \theta}{\partial r} + \frac{\partial}{\partial x} K(T) \frac{\partial T}{\partial x} + q$$
(29)

which is solved numerically in COBRA-IV by a combination of techniques.

First, the radial coordinate is approximated by the orthogonal collocation method of weighted residuals. In this method a polynomial expansion of the dependent variable is substituted into the differential equation and solved at N collocation points. In the present application, a symmetric polynomial is used:

$$\theta(r) = \sum_{i=1}^{N} (r^{2i-2}) d_i$$
 (30)

uí.

where d_i are the unknown coefficients of the expansion.

Evaluating this polynomial at the N collocation points defined by $Finlayson^{(4)}$ gives

$$\theta(r_{j}) = \sum_{i=1}^{N} (r^{2i-2}) |_{r_{j}} d_{i}$$

or, in matrix notation,

$$\{\theta\} = [Q]\{d\}$$

where

$$Q_{ji} = r^{2i-2} |r_j|$$

From equation (31), the first derivative and Laplacian are evaluated giving:

$$\frac{d\theta}{dr}\Big|_{r_{j}} = \sum_{i=1}^{N} \frac{dr^{2i-2}}{dr}\Big|_{r_{j}} d_{i}$$
(32)

and

$$\nabla^{2} \theta |_{r_{j}} = \sum_{i=1}^{N} \nabla^{2} (r^{2i-2}) |_{r_{j}} d_{i}$$
(33)

which, written in matrix notation with {d} replaced by $[Q]^{-1}{\theta}$, gives

$$\frac{d\{\theta\}}{dr} = [C][Q]^{-1}\{\theta\} = [A]\{\theta\}$$
(34)

and

$$\nabla^{2}\{\Theta\} = [D][Q]^{-1}\{\Theta\} = [B]\{\Theta\}$$

where

$$C_{ji} = \frac{dr^{2i-2}}{dr} \bigg|_{r_j}$$
 and $D_{ji} = \nabla^2 (r^{2i-2}) \bigg|_{r_j}$

Thus, the radial coordinate is represented by the orthogonal collocation approximation to the Laplacian (35). Additional terms in equation (29)

(31)

(35)

are approximated by conventional finite difference techniques with a fully implicit time derivative and a fully explicit axial derivative.

The final equation, which is applied at the N-1 interior collocation points within the fuel, is given below. The implicit terms have been grouped on the left and the explicit terms are on the right:

Fuel Interior (i = 1 to N-1)

$$\frac{\rho c K_{o}}{\Delta t K_{i}} \theta_{i}^{n+1} - \frac{K_{o}}{R^{2}} \sum_{L=1}^{N} B_{iL} \theta_{L}^{n+1} = \frac{\rho c K_{o}}{\Delta t K_{i}} \theta_{i}^{n} + q \qquad (36)$$

$$= \frac{2}{\Delta x^{2}(\frac{1}{K_{\ell-1}} + \frac{1}{K_{i}})} (T_{\ell-1} - T_{i}) + \frac{2}{\Delta x^{2}(\frac{1}{K_{\ell+1}} + \frac{1}{K_{i}})} (T_{\ell+1} - T_{i})$$

where n denotes previous time, l+1 and l-1 denote adjacent axial levels, and K_i is K(T) at radial position i.

The boundary conditions at the fuel and clad surfaces, N and N+1, respectively, are handled by a lumped parameter technique similar to that used in COBRA-IIIC. The time and axial derivatives are approximated by conventional finite differencing, whereas the radial derivative is approximated using the orthogonal collocation equation (34).

$$\frac{Fuel Surface (i = N)}{\frac{-K_o}{R^2} \sum_{L=1}^{N} A_{N,L} \theta_L = H_{gap} (T_N^{n+1} - T_{N+1}^{n+1})$$

(37)

where

$$\frac{1}{H_{gap}} = \frac{1}{h_{gap}} + \frac{t_{clad}}{K_{clad}}$$

Clad Surface (i = N+1)

$$\frac{(\rho c)_{clad}}{\Delta t} \frac{K_{o}}{K_{i}} \theta_{i}^{n+1} = \frac{(\rho c)_{clad}}{\Delta t} \frac{K_{o}}{K_{i}} \theta_{i}^{n} + \frac{K_{clad}}{\Delta x^{2}} (T_{\ell+1}^{n} - 2T_{i}^{n} + T_{\ell-1}^{n})$$
(38)
+
$$\frac{H_{gap}CR^{\star}}{t_{clad}} (T_{N}^{n+1} - T_{N+1}^{n+1}) - \frac{H_{surf}}{t_{clad}} (T_{N+1}^{n+1} - T_{fluid})$$

The set of equations (36, 37, and 38) defining the differential equation and boundary conditions is solved by an iterative procedure. The temperatures T_N^{n+1} and T_{N+1}^{n+1} appearing in the equations are evaluated via an iterative Newton-Raphson technique:

$$T_{j} = \hat{T}_{j} - \frac{G(T_{j})}{G'(\hat{T}_{j})} + \frac{\theta_{j}}{G'(\hat{T}_{j})}$$
(39)

where $^{\circ}$ denotes the previous iteration value, G is defined by equation (28), and G' is the derivative of G with respect to T. The term containing θ_j is substituted on the implicit side of the boundary equations with the other two terms evaluated explicitly from the previous iteration solution. Once the θ solution is determined, an inverse transformation is performed to obtain the true temperature solution.

Figure 2 shows the nodal positions for a 2nd order approximation in a cylindrical rod. Nodes i = 1 to i = 3 are positioned at roots of the specified polynomial expansion with node i = 4 at the clad surface.

*CR is the fuel-clad diameter ratio in cylindrical geometry and equals 1.0 for planar geometry.

FIGURE 2. Fuel Rod Noding Using Orthogonal Collocation

4.2 HEAT TRANSFER THROUGH CONDUCTING WALLS

The model uses a single node lumped parameter representation of the wall region as shown in Figure 3. The finite difference form of energy balance on the wall is

$$\left(\rho C_{p} \Delta Y\right)_{W} \frac{\left(T_{W} - \overline{T}_{W}\right)}{\Delta t} = -U_{i} \left(T_{W} - T_{i}\right) + U_{j} \left(T_{W} - T_{j}\right)$$
(40)

where the temperature and thermal properties of the wall are denoted by a w subscript.

The effective heat transfer coefficients ${\rm U}_{i}$ and ${\rm U}_{j}$ for subchannels i and j, respectively, are defined by the expression

$$\frac{1}{U_k} = \frac{1}{h_k} + \frac{\Delta y_k}{k_w}$$
(41)

where

- h_k = the subchannel surface heat transfer coefficient as calculated by subroutines PROP or HTCOR.
- $\frac{\Delta y_k}{k_w}$ = an input heat conduction parameter

 $(\rho C_p \Delta Y)_W = an$ input wall heat capacity parameter

In the implicit scheme, equation (40) is rewritten in the following form

$$\frac{(\rho C_{p} \Delta Y)_{w}}{\Delta t} + U_{i} - U_{j} \quad T_{w} - \frac{U_{i}h_{i}}{C_{pi}} + \frac{U_{j}h_{j}}{C_{pj}} = (U_{j} - U_{i}) \left(\frac{h_{o}}{C_{pi}} - T_{o}\right) \quad (42)$$
$$+ \frac{(\rho C_{p} \Delta Y)_{w}}{\Delta t} \quad \overline{T}_{w}$$

where \boldsymbol{h}_{o} and \boldsymbol{T}_{o} are reference values.

Considering each wall to be a non-flowing subchannel, equation (42) can be combined with equation (7). The resulting set of equations can be represented by

$$[A] \{x\} = \{b\}$$

(43)

FIGURE 3. Single Node Model of Conducting Wall

where

- [A] = an LxL coefficient matrix composed of all of the terms on the left side of the equal sign in equations (42) and (7).
- [x] = vector of unknown wall temperatures and subchannel enthalpies.
- {b} = vector of forcing functions composed of the terms on the right side of equations (42) and (7).
 - L = number of subchannels plus number of wall connections.

In the COBRA-IV-I code, equation (43) is solved using a Gauss-Seidel iteration procedure because, in order to reduce storage requirements, [A] is stored in a packed form similar to that used in the crossflow solution.

In the explicit scheme equation (43) is written in the form

$$\mathsf{T}_w^{\mathsf{N}+1} = (-\mathsf{U}_{\mathsf{i}} (\mathsf{T}_w^{\mathsf{N}} - \mathsf{T}_{\mathsf{i}}^{\mathsf{N}}) + \mathsf{U}_{\mathsf{j}} (\mathsf{T}_w^{\mathsf{N}} - \mathsf{T}_{\mathsf{j}}^{\mathsf{N}})) \frac{\Delta \mathsf{T}}{(\rho C_p \Delta \mathsf{Y})_w} + \overline{\mathsf{T}}_w$$

The heat transfer between the wall and the subchannel is included in the lumped explicit terms of equation (20).

4.3 COOLANT AXIAL CONDUCTION MODEL

The finite difference form of the coolant axial conduction model is

$$Q_{A} = \frac{-A_{j-1} C(T_{j} - T_{j-1})}{\Delta x^{2}} + \frac{A_{j} C(T_{j+1} - T_{j})}{\Delta x^{2}}$$

This term is carried explicitly in both the implicit and explicit formulations. In the implicit scheme, Q_A is evaluated using values of T_j and T_{j-1} from the previous external iteration. In the explicit scheme the values of T_i and \overline{T}_{i-1} are from the previous time step.
5.0 CONSTITUTIVE RELATIONSHIPS

In addition to the conservation laws several constitutive relationships must be specified to close the set of equations to be solved. These empirical and semiempirical correlations defining such phenomena as turbulent mixing, frictional losses, and two-phase flow have been retained as in the COBRA-IIIC code.

New correlations have been added to accommodate a broader range of application for the code. For example, the calculation of fuel rod temperatures in COBRA requires the specification of heat transfer coefficients at the clad surface. To meet this requirement for water cooled reactors, the correlations and basic selection logic contained in the RELAP4 computer program⁽⁶⁾ have been incorporated into the COBRA-IV-I code.

Selection of the appropriate heat transfer correlation is based on several criteria. The first is an evaluation of the physical state of the fluid to determine which regime of heat transfer is occurring (e.g., forced convection, film boiling, etc.). The second is the evaluation of the critical heat flux (CHF) and the clad temperature that would exist at this heat flux to determine whether the pre-CHF or post-CHF correlations are appropriate. The third criterion is the comparison of two or more calculated heat transfer coefficients to select the proper coefficient in regions where correlations overlap.

Another addition to COBRA is the inclusion of a routine to calculate the properties of superheated steam to allow computations over a wider range of conditions.

The constitutive relationships used in the program are described in more detail in Appendix B.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

6.0 PROGRAM DESCRIPTION

The organization of COBRA-IV-I has changed significantly from that of its predecessor, COBRA-IIIC, with the addition of many new subroutines and calculational procedures. The most striking difference is the addition of an explicit solution scheme as an alternate to the implicit solution scheme retained from COBRA-IIIC. Also, much storage compaction has been achieved through overlapping variable storage techniques and use of peripheral storage devices. Improved running time has also been achieved through code optimization and changes in the basic solution algorithm. These improved capabilities are discussed in this section.

6.1 ORGANIZATION

1

The overall organization of the code can best be described by the flow chart in Figure 4. Following initializing calculations in the main program, subroutine SETUP is called. SETUP reads the input, calculates subchannel variables and sets up connection logic defining the geometry of the subchannel array. The input is then printed in a format similar to that of COBRA-IIIC.

After returning to the main program the code begins calculations according to the user-selected implicit or explicit solution schemes. For most cases except a zero initial flow transient, the implicit solution scheme is called first to calculate the initial or steady-state conditions. As in COBRA-IIIC, subroutine SCHEME is called to carry out the implicit calculations. The overall calculational procedures used for the implicit calculations have been maintained as in COBRA-IIIC; however, the solution algorithm has changed from a matrix inversion technique to an iterative procedure which greatly reduced the computer core storage requirements of COBRA-IV-I.

The results of the steady-state calculations are printed by subroutine RESULT with a format similar to COBRA-IIIC, after which the transient calculations begin according to the user-selected implicit or explicit solution schemes.

FIGURE 4. COBRA-IV-I Flow Diagram

When performing explicit transient calculations, subroutine XSCHEM is called. This new subroutine performs the calculations with either an inlet flow or pressure drop boundary condition, and can consider reverse flows not possible with the implicit solution scheme.

The results after user-selected intervals are printed in subroutine RESULT with the calculations continuing until the end of the transient. When the calculations are completed, the solution is saved on tape or disc for subsequent processing if desired.

A description of the subroutines used in COBRA is given in Appendix A, along with flow charts of the implicit and explicit solution schemes.

6.2 LARGE BUNDLE CAPABILITY

One of the main objectives of the COBRA-IV developmental effort was to decrease the computer core storage requirements and execution time of COBRA-IIIC in order to handle large bundles. This has been accomplished through the use of a number of storage compaction schemes and code optimization techniques, including:

- elimination of the large triple-nested DO loops from COBRA-IIIC;
- replacement of many external subroutine calls with more efficient internal statement functions;
- replacement of the implicit matrix crossflow solution with an iterative solution;
- an option to use peripheral storage devices (disc or drum) to temporarily store most of the calculational variables.

The following sections describe some of the specific changes made to reduce storage and running time.

6.2.1 Allocation and Compaction

Storage within COBRA has been compacted significantly by using EQUIVALENCE statements and by reducing the size of matrices containing a significant number of zeros. Tables 2 and 3 summarize the present EQUIVALENCE relationships used in the main storage area of COBRA. They are listed in blocks since portions of the core are overwritten several times with variables as required during input, execution, and output.

The first block is used to store input. Once input is read and printed, the DATIN vector is written to disc (or drum) to be saved for later use if needed. In the second block, variables dimensioned in the axial direction are equivalenced to a large vector SAVEAL. This vector is also equivalenced in Block 4 to SAVEA1, SAVEA2 and SAVEA3 which correspond to the

spatial variables at axial positions J-1, J and J+1, respectively. SAVEAL and the equivalenced variables in Block 4 are used to transfer the axially dimensioned variables between core and disc (or drum) for large problems.

In the third block, arrays required for temporary variable storage are equivalenced to Block 2 variables not required during intermediate calculations. A significant reduction in core storage requirements has been achieved through this procedure.

One other type of equivalencing, not shown in Table 2, is the case where doubly-dimensioned arrays are equivalenced to singly-dimensioned variables having the same definition as the doubly-dimensioned array. This procedure significantly reduces the running time on a CDC-7600 machine because much of the arithmetic needed to locate the variable can be done outside of DO loops.

The layout of the common storage area LARGE 1, which contains most of the variables discussed in Table 2, is shown in Table 3.

TABLE 2. EQUIVALENCE Relationships

BLOCK	. 5QUIV	ALENCE	DESCRIPTION
	DATIN(1)	UB(1,61) ⁽¹⁾	BLOCK 1
	AC(1)	DATIN(1)	Input Data
	PW(1)	STUW(1,61)	
	PH(1)	AP(1,61)	Dimensioned by Channels (MC)
	OC(1)	QPRIM(1)	мс ⁽²⁾ ≖ 18
1	OR(1)	V(1)	Dimensioned by Rods MR = 7
	HINLET(L)	VPA(1)	
	FINLET(1)	VISC(1)	Dimensioned by Channels
	TINLET(1)	VISW(1)	MC = 18
	LC(1,1)		Dimensioned by Channels
	GAPS(1,1)	PERIM(1)	and 4 Connections
	DIST(1,1)	AAA(1,4)	(18 x 4)
		CAVEAL (3.)	
	W(1,1)	SAVEAL(I)	PLOCK 2
•	WOLD(1,1)	SAFEAL(25)	
	BEIA(1,1)	SAVEAL (49)	Variables
	DSAVE(1,1)	SAVEAL (73)	Variabies
	GAP(1,1)	SAVEAL (121)	Dimensioned by Gaps (MG)
	TRF(1,1)	SAVEAL(145)	MG = 24
	TWALL(1,1)	SAVEAL(169)	Dimensioned by Wall
	TWOLD(1,1)	SAVEAL(172)	MW = 3
	CHFR(1,1)	SAVEAL(175)	
	CCHANL(1,1)	SAVEAL(193)	Dimensioned by Rods
2	FLUX(1,1)	SAVEAL(211)	MR = 18
	HSURF(1,1)	SAVEAL(229)	
	MODE(1,1)	SAVEAL(247)	
	TROD(1,1,1)	SAVEAL (265)	Dimensioned by Rods and Fuel Nodes (MN * 6) (6 x 18) = 100
	P(1,1)	SAVEAL(373)	
	F(1,1)	SAVEAL (391)	
	RHO(1,1)	SAVEAL(409)	•
	HOLD(1,1)	SAVEAL(427)	
	A(1,1)	SAVEAL(445)	
	DHYD(1,1)	SAVEAL(463)	Dimensioned by Channels
	н(1,1)	SAVEAL(481)	MC = 18
	FOLD(1,1)	SAVEAL(499)	,
	RH00LD(1,1)	SAVEAL(517)	
	RHOBAR(1,1)	SAVEAL(535)	
	UB(1,1)	SAVEAL(553)	
	STUW(1,1)	SAVEAL(571)	
	AP(1.1)	SAVFAL (589)	

For location in Common Storage Area see Block 2 and Table 3. See Program SPECSET (Appendix D) for description of dimensioning parameters. (1)(2)

TABLE 2. Continued

BLOCK	EQUIV	LENCE	DESCRIPTION
	MARK(1,1)	BETA(1,1)	
	(1)1170	BSAVE(1,1)	
	US(1,1)	PSI(1,1)	
	USW(1,1)	PSI(1,1)	
	SP(1,1)	TRF(1,1)	
	IFTYP(1,1)	CHFR(1,1)	
	RSTW(1,1)	P(1,1)	
	TERM2(1)	STUW(1,1)	
	DTJJ(1)	BSAVE(1,2)	
	DPK(1)	STUW(1,2)	
	-WSAVE(1)	BSAVE(1,3)	BLOCK 3
	FLUW(1)	STUW(1,3)	Temporary Variable Storage
3	SUML(1)	VISC(1)	
	SUMX(1)	VISCW(1)	(In order as variables are
	TERM1(1)	VISCW(1)	stored in COMMON, see
	OPDX(1)	CON(1)	(abic b)
	STWJM1(1)	CON(1)	
	UHUX(1)	CP(1)	
•	SUMR(1)	CP(1)	
	DFDX(1)	FSP(1)	
	OPWP(1)	FSP(1)	
	HJMO(1)	FSP(1)	
	STWJ(1)	FSP(1)	
	PH1(1)	FSP(1)	
	8(1)	WP(1)	
	CIJ(1)	WP(1)	
	WPP(1)	WP(1)	
	WPP(1)	WP(1)	
	AAH(1)	AAA(1,1)	
	ištar(1)	FDIV(1)	
	IFDIV(1)	FOIV(1)	COMMON/BGR ID/
	SAVEA1(1)	SAVEAL(1)	BLOCK 4
	· SAVEA2(1)	SAVEAL(607)	SAVEAL Storage variables
4	SAVEA3(1)	SAVEAL(1213)	Used to store axial infor-
	SAVERES(1)	SAVEA2(1)	mation at the J-l, J and J+l axial levels.

IABLE 3. Storage Location of EQUIVALENCE Variables

Common / LARGE 1 / SAVEAL(36966),⁽¹⁾ QPRIM(18), V(18), VPA(18), VISC(18), VISW(18), HFILM(18), CON(18), CP(18), FSP(18), PERIM(18), HPERIM(18), WP(24), AAA(7,24)

Number Axial Levels	(MX) = 61	Number Gap Connections	(MG) =	24
Number Channels	(MC) = 18	Geometry, Square Array	(MO) =	7

(1) The size of SAVEAL is computed as the number of storage locations needed to accommodate all equivalenced variables (W through AP) at one axial level (606), times the total number of Axial Levels (61).

6.2.2 Iterative Solution

Another significant compaction of storage is the reduction of the crossflow coefficient matrix AAA(K,K) to an equivalent AAA(L,K) matrix, where K is the number of gap connections and L is either 7 for square arrays or 5 for hexagonal arrays. This was made possible by replacing the matrix solution algorithm with an iterative solution technique. Any row of AAA has no more than 7 nonzero elements. The diagonal elements AAA(K,K) are transferred to AAA(1,1) and succeeding nonzero values fill in rows 2 through 7 by using the gap location array LOCA.

The array LOCA, dimensioned as LOCA(L+1,K), is used to store gap connection information. The first row, LOCA(1,K), is the gap number K. The next rows, LOCA(2,K) through LOCA(L,K), give the adjacent gap numbers. The last row, LOCA(L+1,K), gives the number of gaps adjacent to gap k; or, in terms of the array, it gives the number of nonzero elements in LOCA(1,K) through LOCA(L,K) for each K. The storage savings resulting from this technique can be appreciated when it is realized that the storage requirements for AAA are reduced from 419,904₁₀ to 3240_{10} for a full 217-pin LMFBR bundle.

6.2.3 External Devices

The user has the option of "rolling" axially dimensioned variables between core and disc (or drum) as the iteration procedure successively sweeps the channel. This is required for large problems to keep core storage within present machine capability. The rolling procedure is accomplished by using two storage devices. One disc is read for previous iterate information while updated information is written to the other. The input/output identification is then swapped for the next iteration. The same discs used to store the first record are used for DATIN array storage.

6.3 USER CONVENIENCE FEATURES

Several user-related features have been added to COBRA, which simplify the operation and handling of the code. Several of these are discussed here.

6.3.1 Dump and Restart Option

A problem "dump and restart" option incorporated in COBRA-IV-I allows the calculated solution to be saved (dumped) and retrieved (restarted). This option can be used either to continue calculations on a solution or to use a previous solution as an intitial guess in a new calculation.

This option is valuable when performing parametric studies because it greatly reduces the number of calculations for subsequent runs. Many types of restarts are possible; however, the bundle geometry must be the same between the saved and restarted run. The restart options are illustrated in the discussion of subroutine RESTRT in Appendix A.

6.3.2 Program SPECSET - Code Redimensioning Program

To minimize the computer core storage requirements of COBRA, an auxiliary program was developed to redimension the code. Program SPECSET performs this function by redefining the dimension statements used by the code. Input to SPECSET defines the maximum problem size and desired code options used in determining the size of COBRA's dimensioned arrays. SPECSET generates card images of COBRA's common blocks and dimension statements and also calculates the necessary parameters for a complete set of equivalence statements consistent with the new dimensions. The program is described in detail in Appendix D.

6.3.3 Program GEOM - Code Input Generation

The auxiliary program GEOM calculates COBRA input for hexagonal rod bundles. Input to the program defining the bundle geometry is used to generate cards or card images of a majority of the required COBRA input. The subchannel and rod layouts (Groups 4 and 8) and the wire wrap information (Group 7) are all calculated by the GEOM routine. An option in COBRA allows this input to be read from an alternate device on which the GEOM output may be stored. A description of the program and the input instructions are given in Appendix E.

6.4 MACHINE REQUIREMENTS

The machine size requirements for COBRA are problem-dependent due to the code redimensioning and peripheral storage options available. The code has been set up and run on CDC-6000 and 7000 machines using FORTRAN-IV.

The central memory requirement for the published version is $202,000_8$ words. In addition, peripheral devices are required for input, output and four scratch units. The largest version of the code executed to date was dimensioned for a full 217-pin wire-wrapped bundle requiring 275,000₈ words of central memory. The code is also set up to utilize large core memory (LCM) on CDC-7600 machines so that central memory requirements do not represent a practical limit to problem size.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

.7.0 COBRA INPUT DESCRIPTION

The COBRA-IV-I input has expanded to accommodate the increased capabilities and options in the code. An attempt was made to make IIIC input decks compatible with COBRA-IV-I; in most instances, a few card changes will suffice in converting IIIC decks.

The input instructions in this section are ordered as the input is encountered by the code. An identifying label is assigned to each data card or card type (if multiple cards read). A list of the variables and the format under which they are read follows. The label is composed of the name of the subroutine where the read takes place and the relative order of occurrence in that subroutine, (e.g., COBRA.1). Optional data are included in the order they are encountered, with the criterion for inclusion into the data deck stated in the description.

Beginning with card label SETUP.1, the data are clustered into 12 groups similar to the IIIC groups. Each group is accessed by reading a group control card of the form

READ(I2,1), NGROUP, N1,N2,N3,N4,N5,N6,N7,N8,N9 where NGROUP = Group number

N1-N9 = integer options used in the group.

The group cards are labeled in the usual way, (e.g., SETUP.2). The labeling of data read within that group follows the convention of appending a sequence number to the group label, (e.g., SETUP.2.3 is the label of the third card or card type read in Group 2).

Several user-specified empirical correlations are input to COBRA. To clarify which correlation is desired, the empirical correlations are described in Appendix B. To further assist the user in setting up the input, many of the calculation parameters have been set to a default value which will be used by the code if the user leaves the parameter input field blank. The parameters which have defaulted values are specified in the input instructions and the default value is given. Since most parameters with default values affect the "stability" of the solution, it is recommended that the

default value be used until familiarity with each parameter is reached. As an aid to the user, a description of the important code variables is presented in Appendix F. Finally, a number of sample problems have been included in Appendix G showing many of the options described in this report.

It is hoped that the information provided will aid the user in utilizing COBRA-IV-I to its fullest potential.

INPUT INSTRUCTIONS

DATA CARD OR GROUP CONTROL CARD

Card Label	Variables		Format and Explanation
COBRA.1	MAXT		FORMAT (15)
			Must be the first data card of the input deck. Read only once.
	MAXT	=	The computer time limit (sec ₈) allowed for problem calculations. Computer CP time limit must be greater than
•		4	MAXT to allow for printing of results if MAXT is exceeded. Negative MAXT
×			indicates a "Restart" problem from a previously stored solution.

RESTRT.1

NJUMP, NA, IT, NTT, TTT Format (415, F5.0)

Optional input - MAXT negative

Restart options, where:

NJUMP

= Restart flag. NJUMP = 0; continue calculations on a previous steady-state or transient solution, do not read in any additional data. NJUMP = 1, new problem calculation with a previous solution as the first computational guess or continue calculations on a previous solution reading additional data from subroutine setup. NJUMP = 2, read dump tape, print input and results then STOP. NJUMP = 3, same as NJUMP = 0, but all the input data is printed.

Card Label	Variables	Format and Explanation	
	NA	= Number of additional iterations for implicit solution scheme. May be reset in setup if NJUMP = 1.	
	IT	<pre>= l, begin a transient solution at time zero from a previous steady-state solu- tion, must read in transient data from setup. For other restart cases, IT = 0.</pre>	
	NTT	= Number of additional time steps allowed, regardless of IT. May begin a transient or continue a transient.	
	ТТТ	= Total additional transient time (sec).	
SETUP.0	KASE, Jl, TEXT Format (215,17A4)		
	Case control card,	where:	
· · · · · · · · · · · · · · · · · · ·	KASE	= Problem case number. K > 0, begin case with core initialized to zero. K < 0, use previous case solution as first guess. K = 0, STOP.	
	J1	Print option for input data. J1 = 0, print only new input data. J1 = 1, print all input data. J1 = 2, print only operating conditions. J1 = 10, print all input data, then stop.	

Card Label	Variables	Format and Explanation
	TEXT	= Output text for problem identification,
		maximum 68 characters.
* * * *	BEGIN GROU	IP INPUT DATA * * * *
SETUP.1	GROUP 1 PROPERTY T	ABLE Format (1015)
•	N1	= NPROP, number of property cards to be read.
	N2	= ISTEAM. N2 = 0, no superheated steam properties. N2 = 1, N1 superheated steam properties are calculated.
	N3	<pre>= Superheated steam property range. Not applicable if N2 = 0. Default, for N3 = 0, Code calculates N1 superheated steam properties from the saturation temperature at the system pressure to 1500°F. For N3 = 1, Code calculates N1</pre>
		properties over a temperature range specified by DTMAX (SETUP.1.2).
SETUP:1.1	PP(I), TT(I), VVF(KKF(I), SSICMA(I) (I = 1 to N1) Form	(I), VVG(I), HHF(I), HHG(I), UUF(I), nat (E5.2, F5.1, 7F10.0)
- ,	Read in Nl saturat	ed liquid and vapor property cards, where
	PP	= system pressure (psia)
	TT	= Temperature (°F)
	VVF	= Liquid specific volume (ft ³ /lb)
	VVG	= Vapor specific volume (ft ³ /1b)

Card Label	Variables	Format and Explanation
	HHF	= Liquid enthalpy (Btu/lb)
	HHG	= Vapor enthalpy (Btu/lb)'
	UUF	= Liquid viscosity (lb/ft-hr)
	KKF .	<pre>= Liquid thermal conductivity (Btu/hr- ft-°F)</pre>
	SSIGMA	= Surface tension (lb _f /ft)
SETUP.1.2	<u>DTMAX</u> Format (Find the optional Input -	5.3) N2 = 1 and N3 = 1
	DTMAX	<pre>= The temperature range over which the superheated steam properties are to be calculated. DTMAX = (T - T satura- tion), where T is the maximum tempera- ture desired. Default for N3 = 0 is T = 1500°F.</pre>
SETUP.2	<u> GROUP 2 FRICTION</u> Format (1015)	FACTOR AND TWO PHASE FLOW CORRELATION
	Nl	<pre>= J2. The Subcooled Void Formation Correla- tion. N1 = 0, no subcooled voids. N1 = 1, subcooled voids are calculated using Levy's subcooled void model.</pre>
۲	N2	 J3. The Void Fraction Correlation. N2 = 0, the homogeneous model. N2 = 1, Modified Armand Model. N2 = 5, the slip model, must read in a slip ratio. N2 = 6, read in number of terms and coefficient for up to a 6th order polynomial function of void fraction versus steam quality.

Card Label	Variables	Format and Explanation
	N3 =	<pre>J4. Two Phase Friction Multiplier. N3 = 0, The Homogenous Model. N3 = 1, Armand Model. N3 > 4, read in number of terms and coefficients for up to 6th order polynomial function of the two phase multiplier versus quality.</pre>
	N4 =	NVISCW. Wall Viscosity Correlation. N4 = 0, no heated wall correlation in friction factor. N4 = 1, include heated wall correlation in friction factor.
	N5 =	LAMNF, laminar friction factor. N5 = 0, no laminar correlation. N5 = 1, read in up to 4 sets of laminar friction factor correlation constants.
	N6 =	Rod-to-coolant single phase heat transfer coefficient option. N6 = 0, Dittus-Boelter Correlation used. N6 > 0, read a user-supplied correlation.
SETUP.2.1	AA(I), BB(I), CC(I) Turbulent friction sets where:	(I = 1 to 4) Format (12F5.3) factor coefficients. Read up to 4
• •	AA, BB, CC =	the constants of the correlation in the form $f = AA(R_e)^{BB} + CC$. The 4 sets correspond to up to 4 subchannel types.

Card Label	Variables	Format and Explanation
SETUP.2.2	AAL(I), BBL(I), CCL	<u>.(I)</u> (I = 1 to 4) Format (12F5.3)
·	Optional input - N5	5 = 1.
	Laminar friction fa	ctor coefficients.
	AAL, BBL, CCl =	Constants for laminar friction factor correlation. Same specification as SETUP.2.1.
SETUP.2.3	$\underline{AII(I)} (I = 1 to 4)$	Format (12F5.3)
	Optional Input - N6	5 > 0
	АН	Coefficients for a single phase heat transfer correlation of the form:
· · ·	· .	h = (K/D) (AH(1) $R_e^{AH(2)}Pr^{AH(3)} + AH(4)$) For N6 \leq 0, AH(I) defaults to 0.023, 0.8, 0.4 and 0.0 for AH(1) through AH(4), respectively.
SETUP.2.4	$\underline{NV}, \underline{AV(I)} (I = 1 to)$	7) Format (I5, 7E10.5)
·	Optional Input N2	> 4.
	Slip ratio and void	fraction correlation, where:
	NV -	polynomial order for the void fraction correlation if N2 = 6. If N2 = 5, NV is not used.
	AV =	If N2 = 5, $\Lambda V(1)$ is a single term slip ratio. If N2 = 6, read AV(I), I = 1 to NV coefficients for up to 6th order polynomial function of void fraction versus steam quality.

Card Label	Variables	Format and Explanation
SETUP.2.5	$\underline{NF, AF(I)} (I = 1)$	to 7) Format (I5, 7E10.5)
· · · · · · · · · · · · · · · · · · ·	Optional Input -	N3 > 4
	Two phase friction	n multiplier, where:
	NF	= The number of terms for the polynomial function of quality.
,	AF	= Constants for up to 6th order poly- nomial function of the two-phase friction multiplier versus steam quality.
SETUP.3	GROUP 3 AXIAL HEA	T FLUX TABLE Format (10I5)
	NI	<pre>= NAX, number of entries in heat flux table.</pre>
SETUP.3.1	<u>Y(I), AXIAL(I)</u> (I = 1 to N1) Format (12F5.3)
	Axial heat flux t	able, where:
	Ŷ	= Relative position (X/L) at which heat flux is given, where L is the total length of the bundle. Must include 0.0 and 1.0 as end points.
	AXIAL	= Relative heat flux at (X/L). (Local flux/ average flux).
SETUP.4	GROUP 4 CHANNEL L	AYOUT AND DIMENSIONS Format (1015)
	N1	= Number of data cards of subchannel information to be read. One card for each subchannel, unless already assigned
	•	(e.g., restart case).

٢

Card Label	Variables	Format and Explanation
	N2	= Total number of subchannels, regardless of N1.
	N3	 Option to specify N3 relative direction angles for crossflow between adjacent subchannels.
	N4	= Number of thermal connections.
	N5	<pre>= Logical unit from which card set SETUP.4.1 is to be read. N5 = 0, read from input deck. N5 > 0, read cards from logical unit N5. Recommend N5 = 9 if cards are not specified.</pre>
	N6	<pre>= Logical unit from which card set SETUP.4.3 is to be read. N6 = 0, read from input deck. N6 > 0, read cards from logical unit N6. Recommend N6 = 9 if cards are not specified.</pre>
SETUP.4.1	[N, I, AC(I), PW(I L = 1 to 4], I = 1), PH(I), [LC(I,L), GAPS(I,L), DIST(I,L), to N1] Format [I1, I4, 3E5.2, 4(I5, 2E5.2)]
	Read N1 cards of C	hannel Geometry, where:
	N	Subchannel type. If blank or zero, type 1 is assigned. If N > 0, type N is assigned. N ≯ 4. The subchannel type indicates the appropriate friction factor correlations to be used. (SETUP.2.1, SETUP.2.2).
	I	= Subchannel identification number.
	AC	= Nominal subchannel area (in ²).
	PW	<pre>= Nominal subchannel wetted perimeter (in).</pre>

48

ŵ

Card Label	Variables	Format and Explanation
	РН	= Nominal subchannel heated perimeter (in).
	LC nu	= Adjacent subchannel identification mber, for up to 4 subchannels adjacent to subchannel I. If the subchannels are input with ascending identification numbers, only connec- tions LC(I,L) > I need be read in.
	GAPS	The nominal GAP width between subchannel I and the adjacent subchannel specified by LC (in).
	DIST	<pre>= Centroid-to-centroid distance between the adjacent subchannels specified by LC (in). Required only if N1 = 3 in Group 10 (SETUP.10).</pre>
SETUP.4.2	[KW, RHOLCP(KW), JKW(KW) RWALL(2,K 2E5.2, 2(I5,E5.2)	WIDTH(KW), IKW(KW), RWALL(1,KW), W), KW = 1 to N4] Format [2X, I3,]
	Optional Input -	N4 > 0
	Thermal connection connections.	n data for subchannels with thermal wall
	KW	= Thermal connection number.
	RHOLCP	= Wall heat capacity parameter (Btu/ft ² -°F).
	WIDTH	<pre>width of wall (in). Heat conduction area = WIDTH x DX.</pre>
· .	IKW,JKW	= Subchannel numbers adjacent to wall.

†See Appendix B for definitions.

	DATA CARD OR GROUP	CONTROL CARD (Continued)
Card Label	Variables	Format and Explanation
	RWALL(1,KW),	
· · ·	RWALL(2,KW) =	Conductive resistance of the wall associated with the IKW and JKW subchannels, respectively (ft ² -sec- °F/Btu).
SETUP.4.3	<u>K, ANGLE(K)</u> Format	[5(I5, F5.0)]
	Optional Input - N3	> Ů
	Read N3 pairs of va	lues, where:
· •	K =	GAP no. for which the directed cross- flow is specified.
	ANGLE =	Relative direction of positive cross- flow through GAP K, in positive degrees.
SETUP.5	GROUP 5 SUBCHANNEL	AREA VARIATION Format (1015)
	N1 =	NAFACT, number of subchannels for which area variation tables are to be read.
	N2 =	NAXL, number of axial locations for subchannel area variation.
	Ń3 =	NARAMP, the number of iterations for gradual insertion of area variations. If blank or zero, NARAMP - 1. For a "restart" case, NARAMP must be reread if desired.

Card Label	Variables	Format and Explanation
SETUP.5.1	$\underline{AXL(I)}$ (I = 1 to 1	N2) Format (12F5.3)
•	Table of axial loca	ations, where:
	AXL	Axial location (X/L) where subchannel area variations will be specified. Read in N2 values which apply to all subchannels specified in SETUP.5.2.
SETUP.5.2	[I,(AFACT(L,J), L =	= 1 to N2), J = 1 to N1] Format (I5/(12F5.3))
	For N1 subchannels locations correspon	read area variation factors at N2 axial nding to (AXL), where:
•	I	 Identification Number of a subchannel for which area variations are being specified. Read according to (I5) format, then skip to the next card and read a complete set of factors (AFACT) corresponding to the AXL locations. Repeat until factors for N1 subchannels are read.
- ·	AFACT =	= Relative subchannel area (Ai/A _{nominal}) at each axial level (AXL).
SETUP.6	GROUP 6 GAP SIZE VA	ARIATION TABLE Format (215)
ĸ	N1 -	 NGAPS, number of GAPS for which GAP variation tables are to be read.
	N2 =	NGXL, number of axial locations for GAP variation.

.

	·	
Card Label	Variables	Format and Explanation
SETUP.6.1	$\underline{GAPXL(L)} (L = 1,$	N2) Format (12F5.3)
	Table of axial loc	ations, where:
	GAPXL	= Axial locations (X/L) where GAP variations will be specified. Read N2 values which apply to all GAPS K specified in SETUP.6.2.
SETUP.6.2	<u>[K,(GFACT(L,LL)</u> , L Format (I5/(12F5.3	= 1 to N2), LL = 1 to N1]
	For N1 GAPS read G (GAPXL), where:	AP variations at N2 axial locations
	K	= GAP identification number of GAP to be varied. Read K [Format(I5)], then skip to next card and read N2 GAP variation factors. Repeat until factors for N1 GAPS are read.
SETUP. 7	GFACT	<pre>= GAP variation factors for GAP K. Read N2 values for each K corresponding to each GAPXL location. GFACT = (GAP₁/GAP_{nominal}) AND SPACER DESIGN INFORMATION</pre>
	Format (1015), whe	re:
	NĪ	= J6. N1 = 1 specifies wire wrap input only. N1 = 2 specifies grid spacer input only. N1 = 3 specifies both wire wrap input and grid spacer loss coefficient input.
	N2	= Number of GAPS for which wire wrap crossing data is supplied.
		· · · ·

52

يل.

	Card Label	<u>Variables</u>	Format and Explanation
	•	N3	= NGRID, number of axial locations for grid spacers.
		N4	= NGRIDT, number of grid types for which data will be supplied.
		N5	= NRAMP, number of iterations over which the grid loss terms are to be ramped into the solution. For a "restart" case, NRAMP must be reread if desired.
		N6	<pre>= Logical unit that card sets SETUP.7.2 and SETUP.7.3 are to be read. N6 = 0, read from input deck. N6 > 0, read from logical unit N6. Recommend N6 = 9 if cards are not specified.</pre>
	SETUP.7.1	PITCH, DIA, THICK	Format (3E10.5)
		Optional Input - N	1 = 1 or 3
2		Wire wrap specific	cations, where:
•		PITCH	= Wire wrap pitch (in).
		DIA	= Rod or cladding outer diameter (in).
		THICK	= Wire wrap diameter (in).
	SETUP.7.2	K, DUR(K), XCROSS	(K,L) (L = 1 to 2) Format (I5, 2E5.2)
		Optional Input - N	1 = 1 or 3
		Wrap crossing data	a, where:
		κ.	= GAP number.

5.3

Card Label	Variables	Format and Explanation
	DUR	= The effective fraction of a pitch length for forcing crossflow. Recommended value is derived from the equation DUR = ΔX/PITCH
	· · ·	where
		∆X = the axial node length (in). PITCH = the wire wrap pitch (in).
•	XCROSS	 The wire wrap crossing angle. XCROSS is calculated by dividing the angle (θ) between the GAP and wire (at the bundle inlet) by 360°. The value is positive if the wrap is moving from a smaller to a higher number subchannel and negative if otherwise. If the wire wrap is on a GAP boundary at the bundle inlet, XCROSS = ±1.0 not zero.

SETUP.7.3

<u>NWRAPS(I)</u> (I = 1 to NCHANL) Format (1015)

Optional Input - N1 = 1 or 3

Wrap inventory where:

NWRAPS

The number of wires initially in each subchannel. Read an integer value of the number of wires present at the bundle inlet. For wires located on the GAP boundary, the wrap is assumed to be in the subchannel into which it is proceeding. Read 10 values per data card until the inventory for all subchannels are read.

Card Label	Variables	Format and Explanation
SETUP.7.4	GRIDXL(I), IGRID(I) (I = 1 to N3) Format [6(E5.2.I5)]
·	Optional Input - N	1 = 2 or 3
	Axial location of location	grids and the type of grid at each axial
· · ·	GRIDXL	= The relative location (X/L) of grid spacers.
	IGRID	= The grid type at axial location GRIDXL.
SETUP.7.5	[(J, CD(J,I), K, F Format (15, E5.2,	<pre>XFLOW(K,I) , II = 1 to NCHNL), I = 1 to N4] I5, E5.2)</pre>
	Optional Input - N	1 = 2 or 3
	Read the loss coef desired, in each s	ficient and forced crossflow, if ubchannel for each grid type.
• •	NCHANL	= Total number of subchannels. Read data for all subchannels for grid type 1, then repeat for succeeding grid types.
•	J	Identification number of subchannel for which data are being supplied.
•	CD	Loss coefficient in subchannel J for grid type I.
	К	= GAP associated with subchannel J, through which forced diversion cross- flow is specified. If blank, no forced crossflow.
	FXFLOW	= Fraction of axial flow which is diverted through GAP K for grid type I. If blank, no forced crossflow.

<u>Card Label</u>	<u>Variables</u>	Format and Explanation
SETUP.8	<u>GROUP 8 ROD L</u> Format (1015)	AYOUT AND FUEL PROPERTIES
	N]	= The number of cards of rod data to be read. One card for each rod modeled. For RESTART cases or multiple case runs, it is only necessary to read new rod input.
	N2	= NROD, the total number of rods to be modeled regardless of N1.
	N3	<pre>= NC, order of approximation used in fuel model. N3 = 0, no fuel model. N3 = 2, 2nd order collocation solution. N3 = 3, 3rd order collocation. N3 > 3 or N3 = 1 is illegal.</pre>
	N4	= NFUELT, the number of fuel materials for which thermal properties are to be specified. Not applicable if N3 = 0. If blank, NFUELT = 1 is assigned.
	N5	= NCHF, critical heat flux option. N5 = 0, No CHF calculations are performed. N5 = 1, BAW-2 correlation is used. N5 = 2, the W-3 correlation is used.
·	N6 .	= NQAX, additional fuel model options. Not applicable if N3 = 0. N6 = 0, no addi- tional options. N6 = 1, variable thermal conductivity only. N6 = 2, axial conduc- tion only. N6 = 3, both axial conduction and variable thermal conductivity. N6 = 2 or 3 also specifies fluid axial conduc- tion.

	Card Label	Variables	Format and Explanation
		N7 =	NHTC, heat transfer correlation option. N7 = 0, Dittus and Boelter or other correlation specified in SETUP.2.2 input is used throughout. N7 = 1, use a complete boiling and nonboiling correlation package similar to that of the RELAP-4 computer code.
		N8 =	NRODTP, option for axially varying fuel material. N8 = 0, each fuel rod is constructed of a single material and no axially varying data are read. N8 > 0, must read fuel zone information (SETUP.8.4), for each fuel type N.
·		N9 =	Logical unit from which card set SETUP.8.1 is to be read. N9 = 0, read from input deck. N9 > 0, read from logical unit N9. Recommend N9 = 9 when not reading from cards.
	SETUP.8.1	<u>N, I, DR(I), Radial</u> Format [I2, I3, 2E5	<pre>, [LR(I,L), PHI(I,L) (L = 1 to 6)] .2, 6(I5, E5.2)]</pre>
	. , ,	Read in Nl cards of N =	<pre>rod input data, where: The fuel shape and fuel material options. N = 0 or positive, cylindrical fuel specified. N = negative, plate fuel specified. The</pre>

property configuration of Fuel I.

absolute value of N determines the material

	Card Label	Variables	Format and Explanation
			<u>For N8 = 0</u> (Axially uniform fuel) ABS (N) corresponds to one of N4 mate- rials (SETUP.8.2) of which Rod I is made.
		•	<u>For N8 > 0</u> (Axially varying fuel zones) ABS (N) corresponds to one of N8 mate- rial configurations specifying the fuel material versus axial height (SETUP.8.4).
			Note: If any rod is specified to have axially varying properties (N8 > 0), all rods (including axially uniform rods) must have an axial configuration specified (SETUP.8.4).
•		I =	Rod identification number.
		DR =	Outer rod diameter (in). If cladding around rod, DR is the cladding outer diameter.
		RADIAL =	The radial power factor for rod (I) as a fraction of the average rod power (Group 11).
		LR =	Identification numbers of subchannels surrounding rod (I). Read in up to 6 subchannels.
		PHI =	The fraction of the total rod power input to adjacent subchannel (i.e., fraction of the outer rod perimeter facing subchannel identified by LR).

Card Label	Variables	Format and Explanation
SETUP.8.2	KFUEL(I), CFUEL(I), RCLAD(I), TCLAD(I),	$\begin{array}{l} \mbox{RFUEL(I), DFUEL(I), KCLAD(I), CCLAD(I),} \\ \mbox{HGAP(I)} & (I = 1 \ to \ N4) \ \mbox{Format} \ (9E5.2) \end{array}$
	Optional Input N4	> 0 and NC $>$ 0
	Material properties materials for which	. Read N4 cards corresponding to N4 thermal properties are specified. Each
	fuel rod consists o	f one or more of these materials. For
	fuel rod consists o N8 = 0, the fuel ty	f one or more of these materials. For

material type(I).

KFUEL	= The thermal conductivity of the fuel (Btu/hr-ft-°F).
CFUEL	= Specific heat of fuel (Btu/lb-°F).
RFUEL	= Fuel density (lb/ft ³).
DFUEL	= The fuel diameter (in).
KCLAD	<pre>= Thermal conductivity of cladding (Btu/hr-ft-°F).</pre>
CCLAD	= Specific heat of clad (Btu/lb-°F).
RCLAD	= Density of cladding (lb/ft ³).
TCLAD	= Cladding thickness (in).
HGAP	= Fuel-Clad Gap conductance coefficient (Btu/hr-ft ² -°F).

~

<u>Card Label</u>	Variables	Format and Explanation
SETUP.8.3	$\underline{TREF, BK(I)} (I = 2)$	2 to 4) Format (F10.0, 3E10.4)
	Optional Input - NC	C > 0 and NQAX = 1 or 3
	Variable thermal co specified by the fi	onductivity. Only applies to the material rst card of SETUP.8.2.
· · ·	TREF . =	= The reference temperature where K = KFUEL(1) (°F)
	ΒΚ =	<pre>The coefficients for up to 3rd order polynomial approximation for thermal conductivity versus temperature of the form: K(I) = KFUEL(1) * [1 + BK(2) * (T - TREF) + BK(3) (T - TREF)² + BK(4) (T - TREF)³]</pre>
SETUP.8.4	<pre>[NZONE(I), (ZEND(I, I = 1 to N8] Forma</pre>	<pre>K), IZTYP(I,K), K = 1 to NZONE(I)), t [I5/(6(E5.2,I5))]</pre>
	Optional Input - N8	8 > 0
	Option to specify a read in a fuel zone N (SETUP.8.1).	xially varying fuel materials. Must configuration table for each rod type
	NZONE =	The number of axial zones to be read for a table of fuel material versus axial distance for fuel type I.
	ZEND =	Relative axial location (X/L) of the end of a fuel zone. If fuel type I is axially uniform, ZEND(I,1) = 1.0.

Card Label	Variables	Format and Explanation
	ΙΖΤΥΡ	= Type of material in fuel zone ending at ZEND. Each IZTYP corresponds to a material specified in SETUP.8.2. Only material type 1 can have variable thermal conductivity.
SETUP.9	GROUP 9 CALCULA	TIONAL VARIABLES Format (1015)
	N]	<pre>= NSKIPX, output print option. N1 = 0 or 1, print all axial levels. N1 > 1, print every N1 axial levels.</pre>
	N2	= NSKIPT, output print option. N2 = 0 or 1, print all time steps. N2 > 1, print every N2 time steps.
· .	N3	= K11, specifies the solution algorithm to solve the problem. N3 = 0 specifies the III-C implicit solution scheme for both steady-state and transient calculations. N3 = 1 specifies an
		implicit steady-state and an explicit transient with a ∆P boundary condition. N3 = 2 specifies a standing start explicit transient with a zero flow
		initial condition, and a ∆P boundary condition. N3 = 3 specifies an implicit steady-state and an explicit transient
	· · ·	with the inlet flow boundary condition. N3 = 4 specifies a standing start explicit transient with a zero flow initial condition, and an inlet flow
		boundary condition.

Card Label	Variables	Format and Explanation
	N4	= IROLL, problem roll option. N4 = 0, no roll option, all variables reside in core at all times. N4 = 1, only 3 axial levels of information J - 1, J and J + 1 are stored in core at one time.
	N5	 ITSTEP, maximum time step table. N5 = 0, maximum transient time step is FDT (SETUP.9.3) for all time. For N5 > 0, read in N5 pairs of (time. vs. max. time step) information for variable maximum time steps. Used only for K1170.
SETUP.9.1	Z, TTIME, WERRX, W DAMPNG, ACCELY, AC	<u>ERRY, FERROR, KIJ, SL, FTM, THETA, USDON,</u> CELF Format (16 E5.0)
	Z	= The total axial length (in).
	TTIME	= Total transient time (sec).
	WERRX	= The external crossflow convergence limit. Defined for implicit crossflow solution as the maximum allowable error in iterative crossflows at any axial level. If any error is greater than WERRX, the solution procceds through another iterative sweep over the entire bundle. Default is 1.E-2.
· · ·	WERRY	The internal crossflow convergence limit. Convergence limit for the iterative Gauss- Seidel solution scheme at axial level J. Default is 1 E-3
<u>Card Label</u>	Variables	Format and Explanation
-------------------	-----------	---
	FERROR	= The external axial flow convergence limit. Defined for the implicit axial momentum equation as the maximum allowable error for iterative axial flows. If error is greater than FERROR, another iterative sweep of the entire bundle is made. Default is 1.E-3.
· ·	KIJ	 Turbulent crossflow resistance factor. Default is 0.5.
	SL	= Transverse momentum parameter. Default is 0.5.
	FTM	= Turbulent momentum factor. Default is 0.0.
	ТНЕТА	= The bundle orientation. Blank or zero is vertical, otherwise read in to the nearest degree the angle away from the vertical (degrees).
	USDON	<pre>= Specifies the contribution of velocity from the donor and receiver subchannels in U* calculation. USDON = 0, U* = 1/2 [U(J) + U(I)] where J and I are donor and receiver subchannels. USDON = 1.0, U* = U(J) where J is the donor subchannel. Any value between 0.0 and 1.0 is acceptable. Default, USDON = 0.0.</pre>

Card Label	Variables	Format and Explanation
	DAMPNG	= DAMPNG factor for iterative SP term. $SP(I,J)^{N} = DAMPNG*SP(I,J)^{N} + (1 - DAMPNG)$ $*SP(I,J)^{N-1}$ where N and N-1 are the present and previous iterations, respec- tively.
	ACCELY	= Crossflow solution accelerator. $W(K,J)^{N} = ACCELY*W(K,J)^{N} + (1 - ACCELY)$ $*W(K,J)^{N-1}$ where N is the iteration no. Default is 1.6.
	ACCELF	= DAMPNG factor for iterative axial flow. $F(I,J)^{N} = ACCELF*F(I,J)^{N} + (1 - ACCELF)$ $*F(I,J)^{N-1}$ where N is the iteration no. Default is 1.0.
SETUP.9.2	NDX, NDT, NTRIES,	ITRY, ITRYM Format (515)
	NDX	= Number of axial nodes.
	NDT	= Total number of time steps allowed. For implicit transients the time step size is (TTIME/NDT). For explicit transients, the time step size is problem-dependent with NDT and TTME being the limits on the total number of time steps and length of the transient.
	NTRIES	= The maximum number of external iterations allowed in implicit solution scheme, regardless of WERRX and FERROR. Default is 20.
	ITRY	= The maximum number of internal iterations allowed in implicit solution scheme, regardless of WERRY. Default is the maximum of 20, 2 * number of gaps.

Card Label	Variables	Format and Explanation
	ITRYM	= The minimum number of iterations in the internal crossflow solution for implicit solution scheme, regardless of convergence. Default is 5.
SETUP.9.3	FCOUR, FDT, XZER	R, YZERR, THX, THD, ACCEL1, ACCEL2 Format (12E5.0)
	Optional Input -	K11 > 0
	Parameters for th	ne explicit solution scheme
	FCOUR	= The courant time step limitation parameter. Default is 0.5. FCOUR = $\frac{(velocity) \Delta T}{\Delta X}$
	FDT	= The maximum time step regardless of FCOUR. Must read in. No default.
	XZERR	= The iterative flow field convergence limit in the explicit solution scheme. Default is l.E-2.
•	YZERR	= The iterative energy equation convergence limit in the explicit solution scheme. Default is 1.E-4.
	ТНХ	 The integrated liquid level 1s printed for each channel at each time step. THX=0. No liquid level printout. Default is THX=0.
	THD	 I. Optional interface sharpening para- meter, equivalent to the downward liquid velocity. Default is 0.
•	ACCEL1	= Acceleration factor on current pressure change. Default is 1.3.

Card Label	Variables	Format and Explanation
· · · ·	ACCEL2	= Acceleration factor on pressure change from last iteration. Default is 0.
SETUP.9.4	NTRYX, NTRYY, KNOF	LO, JNOFLO Format (10IJ)
	Optional Input - K	11 > 0
	Additional paramet	ers for explicit solution
	NTRYX	= The maximum number of allowable iteration in the flow solution of XZERR. Default is 50.
.	NTRYY	= The maximum number of allowable iterations in the energy equation regardless of YZERR. Default is 20.
·	KNOFLO, JNOFLO	No crossflow permitted through gap number KNOFLO or less at and above the axial node JNOFLO. Default for both is O.
SETUP.9.5	$\underline{YT(I)}, FT(I)$ (I =	1 to N5) Format (12E5.0)
	Optional Input - N	5 > 1
	Read in N5 pairs o versus time, where	f values for a table of time step size
• •	YT	= Time (sec) for maximum time step. Must include time = O.
· · · · ·	FT -	Maximum time step (sec) allowed at this time.

SETUP.10

GROUP 10 TURBULENT MIXING CORRELATION Format (1015)

N1

= NSCBC. Single-phase turbulent mixing option. Several forms of the equation for turbulent crossflow W' are possible:⁺ 1) W'_K = ABETA * ($S_K\overline{G}$) 2) W'_K = ABETA * Re ** BBETA * ($S_K\overline{G}$) 3) W'_K = ABETA * Re ** BBETA * (\overline{DG}) 4) W'_K = ABETA * Re ** BBETA * (S_K/Z_K)(\overline{DG})

where the constants ABETA and BBETA (SETUP.10.1) are applied to the equation selected by N1. (See Appendix D for definition of variables.)

N1 = 0, use equation 1
N1 = 1, use equation 2
N1 = 2, use equation 3
N1 = 3, use equation 4

N2

 NBCC, the option for two-phase mixing.
 N2 = 0 or 1, two-phase mixing assumed to be the same as subcooled. N2 > 1, read in N2 pairs of data for a table of two-phase mixing Beta versus steam quality.

+For discussion of empirical correlations see Appendix B.

.

<u>Card Label</u>	Variables	Format and Explanation
	N3 =	J5, an option for radial thermal conduction mixing. N3 = 0, no thermal conduction. N3 = 1, read thermal geometry factor, GK for radial thermal conduction.
SETUP.10.1	ABETA, BBETA Forma	t (12F5.3)
	ABETA, BBETA =	Constants coefficients for the turbulent mixing correlation selected, (see N1). BBETA is blank if N1 = 0.
SETUP.10.2	XQUAL(I), BX(I) (I	= 1 to N2) Format (12F5.3)
	Optional Input - N2	> 1
	Read in table of va where:	lues of mixing Beta versus steam quality,
	XQUAL =	Steam quality.
	BX =	The mixing Beta at the corresponding steam quality.
SETUP.10.3	<u>GK</u> Format (F5.3)	
	Optional Input - N3	=]
	GK =	Geometry factor for radial thermal conduction mixing.
SETUP.11	<u>GROUP 11 OPERATING</u> Format (1015)	CONDITIONS AND TRANSIENT FORCING FUNCTIONS
	N] =	IH, option for specified inlet enthalpy or temperature. $NI = 0$, HIN (SETUP.11.1) is the inlet enthalpy. $NI = 1$, HIN is the inlet temperature. $NI = 2$, read in an inlet enthalpy for each subchannel. NI = 3 read in an inlet temperature for
. · · · ·		each subchannel

Card Label	Variables	Format and Explanation
	N2	IG,-option to specify inlet mass flux. N2 = 0, GIN (SETUP.11.1) is the inlet mass flux for each subchannel. N2 = 1, GIN is the average bundle mass flux but the subchannel flow is split to give equal DP/DX across the first axial node. N2 = 2, GIN is the average bundle mass flux, but flow is split by flow fractions supplied in (SETUP.11.3).
· · · · · · · · ·	N3	= Transient forcing function for system pressure. Read in NP pairs or values for a table of system pressure factor versus time.
	N4	= Transient forcing function for inlet enthalpy or temperature. Read in NH pairs of values for a table of inlet H or T factor versus time.
	N5	= Transient forcing function for inlet mass flux or pressure drop. Read in NG pairs of values for a table of mass flux factor or ΔP versus time.
	N6	= Transient forcing function for average heat flux. Read in NQ pairs of values for a table of heat flux factor versus time.
• •	N7	= K10, an option for pressure drop boundary condition transients. If K11 (SETUP.9) is equal to 1 or 2, the transient forcing function for inlet mass flux (N5) becomes a transient pressure drop table. If K10 = 1, the tabular values are a fraction of the steady-state pressure drop.

Card Label	<u>Variables</u>	Format and Explanation
	N8	= Transient forcing function for exit enthalpy. Read in NHX pairs of values for a table of exit enthalpy factor versus time.
SETUP.11.1	PEXIT, HIN, GIN,	AFLUX, HOUT, DPS Format (6F10.0)
	Operating condit	ions, where:
	PEXIT	= The system pressure, (psia).
	HIN	= Inlet enthalpy (Btu/lb) or temperature (°F) depending on N1. If HIN is negative, the inlet enthalpy will be either the absolute value of HIN or the last calculated first node enthalpy if the flow has reversed.
	GIN	= The inlet mass flux (MLB/hr-ft ²) to be distributed by the N2 option.
	AFLUX	= The average heat flux (MBtu/hr-ft ²).
	HOUT	= The exit enthalpy. If HOUT is specified, and the flow reverses, the "new" exit enthalpy will be HOUT. Otherwise, for HOUT blank, the "new" exit enthalpy will be the calculated exit enthalpy before reversal (Btu/lb).
	DPS	= An option to specify a pressure drop rather than a flow boundary condition in the steady-state implicit solution scheme. The code iterates on the total inlet flow rate until the calculated pressure drop is close to DPS (psi).

Card Label	Variables Format and Explanation
SETUP 11 2	HINIFT(I) (I = 1 to NCHANI) Format (12F5 0)
	$\frac{\operatorname{III} \operatorname{REE}(1)}{\operatorname{III} \operatorname{III} \operatorname{III} \operatorname{III} \operatorname{III} \operatorname{IIII} \operatorname{IIII} \operatorname{IIII} \operatorname{IIII} \operatorname{IIIII \operatorname{IIII} \operatorname{IIIII} IIIII \operatorname{IIIIII \operatorname{IIIIII \operatorname{IIIIII \operatorname{IIIIII \operatorname{IIIIII \operatorname{IIIIII \operatorname{IIIIIIII$
	uptional input NI = 2 or 3
	Inlet enthalpy or temperature, where:
	<pre>HINLET = The inlet enthalpy (N1 = 2) or inlet temperature (N1 = 3) of each individual subchannel; read one value for each subchannel.</pre>
SETUP.11.3	FINLET(I) (I = = 1 TO NCHNL) Format (12E5.0)
>	Optional Input - N2 > 2
	Inlet flow rate, where:
	FINLET = The individual subchannel inlet flow (F(I)/FTOTAL) for each individual subchannel.
SETUP.11.4	YP(I), FP(I) (I = 1 to N3) Format (12E5.0)
	Optional Input - N3 > 1
· .	Pressure transient table, where:
	YP = Transient time (sec) when factor is applied.
• • •	FP = Fraction of steady-state <u>System</u> <u>Pressure</u> at transient time (YP).
SETUP.11.5	YH(I), FH(I) (I = 1 TO N4) Format (12E5.0)
	Optional Input N4 > 1
	Enthalpy or temperature transient table.
	YH = The transient time (sec) when factor is applied.
· ·	<pre>FH = The fraction of inlet enthalpy (N1 = 0 or 2) or the fraction of inlet temperature (N1 = 1 or 3) at the transient time (YH).</pre>
	71

Card Label	Variables Format and Explanation
SETUP.11.6	YG(I), FG(I) (I = 1 to N5) Format (12E5.0)
	Optional Input - N5 > 1
·	Inlet flow or pressure drop boundary condition transient table.
	YG = The transient time (sec) when factor is applied.
	<pre>FG = The fraction of steady-state inlet flow at the transient time (YG) if inlet flow boundary condition is specified [K11 (Group 9) = 0, 3 or 4]. For pressure drop boundary conditions</pre>
· · · · · · · · · · · · · · · · · · ·	<pre>(K11 = 1 or 2), FG is either the fraction of the steady-state pressure drop (N7 = 1) or FG is the pressure drop in psi (N7 = 0) at the transient time (YG).</pre>
SETUP.11.7	YQ(I), FQ(I) (I = 1 to N6) Format (12E5.0)
	Optional Input N6 > 1
	Heat flux transient table.
	YQ = The transient time (sec) when factor is applied.
• • •	FQ - The fraction of steady state heat flux at the transient time (YQ).

Card Label	Variables	Format and Explanation
SETUP.11.8	YHX(I), FHX(I)	(I = 1 to NHX)
	Optional Input	N8 > 1
	Exit enthalpy tr	ansient table.
	ҮНХ	= The transient time (sec) when factor is applied.
	FHX	= The fraction of steady state exit enthalpy (HOUT) at the transient time (YHX) to be used if the flow reverses.
SETUP.12	GROUP 12 OUTPUT	OPTIONS FOR CALCULATIONS Format (1015),
、	where:	
•	N1	<pre>= NOUT, print option. N1 = 0, print subchannel data only. N1 = 1, print subchannel data and crossflows only. N1 = 2, print subchannel data and fuel rod temperatures only. N1 = 3, print subchannel data, crossflows and fuel rod temperatures.</pre>
	`N2	= NPCHAN, an option for subchannel data printout. N2 = 0, print all subchannel data. N2 > 0, read N2 subchannel identification numbers of subchannels to be printed.
	N3	= NPROD, an option for fuel rod heat flux and/or temperature printout. N3 = 0, data for all rods are printed if called for by N1. N3 > 0, read in N3 rod identification numbers of rods to be printed. If NCHF (SETUP.8) is >0, CHF data is also printed along with the rod data.

cara Laber Variables Format an	d Explanation
N4 = NPNODE, a temperatu fied by N interior using the print roc cladding to 7, N4 lemperatu	n option for interior fuel node re printout for all rods speci- 3. Option only applies if rod temperatures are calculated fuel model (GROUP 8). N4 = 0, centerline, rod surface and surface temperature. N4 = 3 equally spaced interior rod mes are printed along with the
cladding	surface temperature.
N5 = NPGAP, an out if ca crossflow GAP numbe	option for GAP crossflow print- lled for by Nl. N5 = 0, print for all GAPS. Nl > 0, read rs of GAPS to be printed.
NG = NSKPLT, a NG = 0, n plot data 4 sets of for the f	n option for transient plotting. o plots are printed. N6 > 0, every N6 time steps. Must read maximum and minimum coordinates our variables plotted. (SETUP.12.6).
N7 = NPLTCH, o for by N6 N7 > 0, r plotted.	ption to plot channels if called . N7 = 0, plot all subchannels. ead subchannel numbers of those
N8 = NPLTGP, a if called gaps. N8 plotted.	n option for GAP crossflow plotting for by N6. N8 = O, plot all > O, read GAP numbers to be

Card Label	Variables Format and Explanation
SETUP.12.1	$\underline{PRINTC(I)} (I = 1 \text{ to } N2) \text{Format} (24I3)$
	Optional Input N2 > 0
	PRINTC = Read subchannel identification numbers of N2 subchannels for which data is to be printed. N2 = 0, print all subchannels.
SETUP.12.2	$\underline{PRINTR(I)} (I = 1 \text{ to } N3) \text{Format} (24I3)$
	Optional Input - N3 > O
	PRINTR = Read rod numbers of N3 rods for which heat flux and temperatures are to be printed if called for by N1.
SETUP.12.3	$\underline{PRINTG(I)} (I = 1 \text{ to } N5) \text{Format} (24I3)$
	Optional Input - N5 > O
· · · · ·	PRINTG = Read GAP numbers of N5 for which crossflows are to be printed if called for by N1.
SETUP.12.4	$\underline{IPLITCH(I)}$ (I = 1 to N7) Format (2413)
	Optional Input - N7 > 0
· · · · · ·	<pre>IPLITCH = Read subchannel numbers of N7 subchannels for which line plots are to be printed if called for by N6.</pre>
SETUP.12.5	<u>IPLTGP(I)</u> (I = 1 to N8) Format (24I3)
	Optional Input - N8 > 0
	<pre>IPLTGP = Read GAP numbers of those GAPS for which crossflows are to be plotted, if called for by N6.</pre>

Card Label	Variables	Format and Explanation
SETUP.12.6	$\underline{HIP(I), ZPT(I)}$ (I =	1 to 4) Format (12F5.0)
· ·	Optional Input - N6	> 0
	HIP, ZPT =	The maximum and minimum plot coordinates for the four kinds of plots available. The maximum and minimum are in the units of the variable plotted which are:
		HIP(1) } Mass flux (million lb/hr-ft ²) ZPT(1)
		HIP(2) } Enthalpy (1000 Btu/lb) ZPT(2)
		HIP(3) } Pressure Drop (psi) ZPT(3)
		HIP(4) },Crossflow (lb/sec-ft) ZPT(4)
		Mass flow rate, enthalpy and pressure drop are plotted for each subchannel specified (see N6 and N7). Crossflow is plotted for each GAP specified (see N6 and N8). If HIP(I) = 0, that

quantity is not plotted.

8.0 <u>NOMENCLATURE</u>[†]

A .	Axial flow area, (ft ²)
A'	Average area, (A _j + A _{j-1})/2, (ft ²)
C	Axial thermal conduction coefficient, (Btu/ft-sec-°F)
С	Thermal conduction coefficient, (Btu/ft-sec-°F)
с _р	Heat capacity, (Btu/1b-°F)
[DC]	Difference operator for subchannels
[DW]	Difference operator for subchannels and thermal-conducting walls.
[DC] ^T ,[DW] ^T	Transpose of difference operator
E	Dilation or continuity error, (lb/sec)
· E'/	Volume dilation or volumetric error, (ft ³ /sec)
f	Friction factor based on all liquid flow
G	Mass velocity, (lb/sec-ft ²)
g _c	Gravitational constant, (lb-ft/lb _f -sec ²)
h, h _{gap}	Heat transfer coefficient, (Btu/sec-ft ² -°F)
h	Subchannel enthalpy, (Btu/lb)
^h g, ^h f	Saturated vapor and liquid enthalpy, (Btu/lb)
K	Spacer loss coefficient
К _g	Geometry factor for conduction
L	Channel length, (ft)
l	Characteristic gap length in transverse momentum equation, (ft)
m	Flow rate, (lb/sec)
Ρ	Subchannel pressure, (lb _f /ft ²) = (lb/sec ² -ft)

†Dimensions are those used during calculations in the code.

P h	Heated perimeter, (ft)
Pw	Wetted perimeter, (ft)
Pr	Prandtl number
Q	Specific power-to-flow ratio, q' _i /m _i , (Btu/lb-ft)
q	Heat rate, (Btu/sec-ft ³)
q'	Heat flux per unit length, (Btu/sec-ft)
Re	Reynolds number
r	Radial coordinate
S	Subchannel gap spacing, (ft)
[S]	Summing operator - similar to [DC]
Т	Temperature, (°F)
t	Time, (sec)
^t clad	Cladding thickness, (ft)
u,	Axial subchannel velocity, (ft/sec)
U.	Overall heat transfer coefficient, (Btu/sec-ft ² -°F)
v	Mixture specific volume, (ft ³ /lb)
V ¹	Effective two-phase specific volume (equals v if subcolled), $(1-X)^2/\rho_f(1-\alpha) + X^2/\rho_g \alpha$ (ft ³ /lb)
٧	Specific volume of liquid, (ft ³ /lb)
v	Transverse velocity in subchannel, (ft/sec)
W	Diversion crossflow between adjacent subchannels per unit length, (lb/sec-ft)
W	Turbulent (fluctuating) crossflow per unit length, (lb/sec-ft)
Х	Quality, mg/(mg + m _f)
Δx	Axial node length, (ft)

ΔY	Width of thermally-conducting wall, (ft)
Z _{ij}	Effective centroid distance, (ft)
α.	Void fraction, $A_g/(A_g + A_f)$
β	Turbulent mixing parameter, (Dimensionless)
Ŷ	Slip ratio, (u _g /u _f)
ρ	Two-phase density, $\rho_{g} \alpha + \rho_{f}(1-\alpha)$, (1b/ft ³)
^ρ α³ ^ρ f	Saturated vapor and liquid density, (lb/ft^3)
τ _w	Wall shear stress, (lb _f /ft ²)
φ	Two-phase friction multiplier
μ	Viscosity, (lb _f /ft-sec)

Superscripts

*	Convected quantity
-	Previous time quantity
n, n+1	Time step index

<u>Subscripts</u>

j-l, j, j+l	Axial levels
k	Laterally convected quantity
W	Thermal wall property

THIS PAGE WAS INTENTIONALLY

LEFT BLANK

ACKNOWLEDGEMENTS

The authors wish to express their appreciation to Dr. Joe Hopenfeld of ERDA/RRD and Dr. L. S. Tong of NRC/RSR for their direction and support of the COBRA program. In addition, the authors gratefully acknowledge the efforts of C. A. McMonagle in incorporating the RELAP heat transfer package, J. M. Cuta for the many hours spent exercising and debugging the code, G. D. Seybold for his programing assistance, A. J. Currie for editing assistance, and the Graphics and Technical Publications Sections of PNL for preparation of the final report.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

REFERENCES

- 1. D. S. Rowe, <u>COBRA-IIIC</u>: A Digital Computer Program for Steady-State and Transient Thermal-Hydraulic Analysis of Rod Bundle Nuclear Fuel <u>Elements</u>, BNWL-1695, Battelle-Northwest, Richland, WA, March 1973.
- F. H. Harlow, et al., <u>The MAC Method, A Computing Technique for Solving Viscous Incompressible</u>, <u>Transient Fluid-Flow Problems Involving Free</u><u>Surfaces</u>, LA-3425, Los Alamos Scientific Laboratory, Los Alamos, NM, March 1966.
- 3. C. W. Hirt and J. L. Cook, "Calculating Three-Dimensional Flows around Structures and over Rough Terrain," <u>Journal of Computational Physics</u>, vol. 10, pp. 324-340, 1972.
- 4. B. Finlayson, <u>The Method of Weighted Residuals and Variational Principles</u>, Mathematics in Science and Engineering Series, vol. 87, Academic Press, New York, NY, 1972.
- R. J. Cena, N. F. Sather, and D. S. Rowe, "Predicting Fuel Rod Temperature Response by Orthogonal Collocation," <u>ANS Transactions</u>, vol. 21, pp. 205-206, June 1975.
- 6. K. V. Moore and W. H. Rettig, <u>RELAP4: A Computer Program for Transient</u> <u>Thermal-Hydraulic Analysis</u>, ANCR-1127, Aerojet Nuclear Company, Idaho Falls, ID, December 1973.

APPENDIX A

SUBROUTINE DESCRIPTION

APPENDIX A

SUBROUTINE DESCRIPTION

Subroutine AREA (J, JX)

This subroutine calculates subchannel area and gap spacings by using the tabular list of area and gap variations supplied as input. A linear interpolation is used to select values from these tables. When wire wrap mixing is included AREA corrects the subchannel flow area and hydraulic diameter according to the wire wrap inventory. J and JX are the calculation level and the axial node. For nonrolled problems J = JX, for rolled problems $J \leq 2$.

Subroutine BVOID (I)

This subroutine calculates the bulk void fraction used in the implicit solution scheme according to a correlation selected by the user. Several correlation forms are provided requiring arbitrary constants read from input. These are provided so that the user can select the correlation form and coefficients that are most applicable to the particular problem.

This subroutine is not used in the explicit solution because there the homogeneous model is used exclusively.

Subroutine CHF (JSTART, JEND)

At the completion of the subchannel flow and enthalpy calculation an optional call to subroutine CHF is provided to calculate critical heat flux ratios over the portion of the channel denoted by J = JSTART through J = JEND. The critical heat flux ratio CHFR(N,J) and critical channel CCHANL(N,J) are calculated for each rod N at position J. CHFR(N,J) is also searched to determine the minimum critical heat flux ratio MCHFR(J), critical rod MCHFRR(J) and critical channel MCHFRC(J) at each axial location J. The data is printed as part of the fuel temperature and heat flux output.

Subroutine CHF1 (N, I, J, JX)

CHF1 uses the B&W-2 correlation and the coolant properties of the Ith channel to calculate the critical heat flux of the Nth rod at the JXth axial node.

Subroutine CHF2 (N, I, J, JX)

CHF2 uses the W-3 correlation and the coolant properties of the Ith channel to calculate the critical heat flux of the Nth rod at the JXth axial node.

Subroutine CHRCOR (I, N, J, JX)

CHFCOR calculates the critical heat flux used by HCOOL. Three correlations are included, and the system pressure is used as the basis for selecting the appropriate correlation.

Subroutine CLEAR (STATUS)

Subroutine CLEAR is used to zero COMMON prior to execution. It is not called for each case. The size of any common area to be zeroed is computed using a system routine LOCF (for CYBER). Other machines will need to compensate for the use of LOCF in order to zero core, if necessary.

- STATUS = Identifies a flag which may be selectively used to zero common for each case in multiple case execution passes.

 - = "YES", common is zeroed = "NO", common is not zeroed.

PROGRAM COBRA

The main program performs variable initialization either by setting the variable to zero or by calling the RESTRT routine which initializes variables to the values saved from a previous run. It also controls input and output via the subroutine SETUP and RESULT, and it directs the solution approach by calling either SCHEME (steady-state and implicit transient) or XSCHEME (explicit transient). The transient boundary conditions and forcing functions are also set in COBRA at the beginning of each time step.

Subroutine CURVE (FX, X, F, Y, N, J, ISAVE)

This subroutine performs linear interpolation of tabulated data. The variables in the argument list are defined as:

- FX = Quantity to be found
- X = Independent variable
- F = Input array of values of the dependent variable
- Y = Input array of values of the independent variable
- N = Number of F values in table
- J = Error signal
- ISAVE = Table search switch. For ISAVE = 1, a complete table search on the independent variable is done. For ISAVE = 2, the location in the table which brackets the independent variable is known from a previous call to curve and the table search is not performed.

Subroutine DIFFER (IPART, J, JX)

Subroutine DIFFER is divided into 4 parts as indicated by the variable IPART.

Part 1 is used to calculate the right hand side of equation (7) which is designated DHDX(F) and is an initial estimate of the enthalpy gradient $\{dh/dx\}$. For the steady-state and scheme transient calculations, dh/dxconsists only of the energy change due to axial conduction and energy transport from the rods. For the XSCHEME transient, dh/dx contains all forms of energy transport and is truly the steady-state energy gradient dh/dx. When the wall heat transport model is used the overall wall-tocoolant heat transfer coefficient UWALL along with a coefficient to convert coolant temperature to enthalpy is also calculated in Part 1.

Part 2 calculates the crossflow resistance C_{ij} and the transverse momentum flux term.

Part 3 calculates the pressure coefficient K used in equation (9) and designates it DPK(I). It also calculates the other components of the pressure gradient without the division crossflow terms as defined by equation (9) and designates it as DPDX(I).

Part 4 calculates the complete pressure gradient $\{dp/dx\}$ including the crossflow terms and designates it DPDX(I).

Subroutine DIVERT (J, JX)

This subroutine sets up the coefficient matrix [AAA] and the vector {B} such that

$$[AAA] * \{w_i\} = \{B\}$$

and then solves the set of equations for w. The solution is performed in DIVERT using the Gauss-Siedel iterative solution method. The convergence criterion used is that, if all w_k satisfy

$$\frac{|w_{k} - w'_{k}|}{(\bar{w}/|w_{k}|)^{2} + |w_{k}| + .001} \leq e$$

where

 w_{k} = most recent estimate of w

w' = previous estimate of w

$$\bar{w} = \sum_{k=1}^{n_k} w_k / n_k$$
 = average cross flow in a given plane k=1

then it is assumed that the solution has converged. This criterion was chosen because it allows for tight convergence on the relatively large crossflows while maintaining loose convergence on the relatively small crossflows.

Subroutine DUMPIT

This subroutine is used to store all labeled and blank common on logical unit 8. This routine allows the user to save the current computed values, look at the results and, then, if desired, continue the solution.

Subroutine FORCE (J, JX)

Subroutine FORCE is provided to specify forced diversion crossflow at selected gaps and at selected axial positions. If a forced crossflow is specified, the variable FDIV = 1.0; otherwise, FDIV = 0. Subroutine FORCE includes two options for forced crossflow mixing. One option is the wire wrap mixing model for which FORCE computes a forced crossflow when a wire crosses a gap. The other option is for a specified flow fraction diverted from one subchannel to an adjacent subchannel by grid spacers.

Subroutine HCOOL (I, N, J, JX, HTC, IMODE)

HCOOL is the primary subroutine used in the determination of a heat transfer coefficient. As such, it contains the logic to determine which regime on the boiling curve is appropriate. HCOOL calls HTCOR to obtain the surface coefficient from specific correlations, and CHFCOR to obtain the critical heat flux.

The variables in the call list are given below:

- I channel number
- N rod number
- J calculation level
- JX axial location
- HTC heat transfer coefficient calculated in HTCOR

IMODE. - flag to designate regions on the boiling curve

Subroutine HEAT (NSS, JB, NHT, JX3)

Subroutine HEAT consists of three parts indicated by NHT. Part 1 calculates the heat flux of each rod at all axial levels based on the rod power. If the fuel model is used, the internal rod temperatures are also calculated here. Part 2 calculates the heat input to each individual subchannel using the heat flux from Part 1. Part 3 calculates the average fluid temperature and average heat transfer coefficient used in the fuel conduction model. NSS indicates from which routine HEAT is called. NSS = 0, SCHEME, NSS = 1, XSCHEM. NSS = 2, initialization in COBRA. JB = the calculation level and JX3 is the axial location.

Subroutine HTCOR (HTC, TSURF, IN, N, J, RE, DE, IPART)

HTCOR calculates a heat transfer coefficient by the correlation specified in the call list.

The arguments in the call list are:

HTC - heat transfer coefficient

- TSURF rod surface temperature
 - I channel number
 - N rod number
 - J calculation level
 - RE Reynolds number
 - DE hydraulic diameter

IPART - flag to designate a particular correlation

Subroutine ISWAP (I, J, K)

This routine is used in conjunction with the roll option to interchange the input and output logical unit designations; i.e., logical unit I becomes logical unit J, and logical unit J becomes I. K is a file positioning switch. If K equals 1, then both I and J are positioned at the beginning of the first record. If K is not equal to one, then both I and J are positioned at the start of the second record.

Subroutine LOAD (X, Y, Z, MIN, MAX, LIMIT, STEP, IMAGE, CARD, LU)

LOAD is used to replace redundant logic within subroutine SETUP. It is designed to allow the loading of input data only after the group card parameters have been verified.

- X = First variable to be loaded. (Step = 1)
- Y = Second variable to be loaded. (Step = 2)
- Z = Third variable to be loaded. (Step = 3)
- STEP = The number of variables to be loaded sequentially. (1<STEP<3)
- MIN = The maximum allowable sets of (X,Y,Z) which can be loaded.
- MAX = Identifies the number of sets of (X,Y,Z) the user attempts to load.

If (MAX>MIN), then a dummy read is used to account for remaining cards. This allows subsequent input to be edited.

- LIMIT = Identifies the maximum number of data values per card which can be loaded via the formatted IMAGE.
- CARD = Input card counter; for labeling which card may be in error.
 - LU = Input device used for reading input data.

Subroutine LOADL (X, Y, Z, MIN, MAX, LIMIT, STEP, IMAGE, CARD, LU)

LOADL is identical in function to subroutine LOAD, except that (X,Y,Z) are variables which may be allocated to Level 2, (large core memory) on a CYBER-7600 system. This routine is used regardless of the system on which COBRA is being run and the necessary storage allocations are provided by Program SPECSET.

Subroutine LIMITS (NUM, MIN, MAX, GROUP, CARD, ERROR)

This routine is designed for use within subroutine SETUP to enhance the editing of input data. Its function is to guarantee that the number of values read into an array are within the dimensioned limits of the code. If not, the parameter, NUM, is changed only for the convenience of editing; however, the case will be terminated after the input is edited. In addition, a limit of twenty-five accumulated errors are allowed, after which the editing will cease.

- NUM = Input parameter to be checked
- MIN = Minimum allowable value for NUM
- MAX = Maximum allowable value for NUM
- GROUP = Card group identifier for editing diagnostics
- CARD = Input card counter; for labeling which card may be in error
- ERROR = Alphanumeric flag for editing. If ERROR = "yes", the code will terminate following the editing of input data.
 - with terminate for lowing the earting of input

Subroutine MIX

Subroutine MIX calculates the thermal mixing parameters w', which is designated by WP(k). Since completely general correlations for mixing have not been developed for single and two-phase mixing, this subroutine is set up so that improved correlation functions can be included when they become available. The approach used is to separate the mixing into boiling and nonboiling regions. For nonboiling conditions, several correlation forms are included as shown in Appendix F. For two-phase flow, the single phase correlations may be assumed, or the mixing rate may be specified as a function of quality.

Subroutine PBOUND (JUMP)

This routine is used to modify the inlet flow rate for the steadystate solution until all subchannel pressure drops are approximately equal to the specified pressure drop DPS. JUMP is the convergence indicator. For JUMP not equal to 2, the inlet flows are modified by the following algorithim:

 $FINLET(I) = 1 + \frac{(DPS - \Delta P(I))}{2(DP(I) - \overline{h})} FINLET (I)$

where:

 $\Delta P(I)$ = overall pressure drop of the Ith channel h = average gravational head of all channels.

Subroutine PROP (IPART, J, JX)

This subroutine consists of two parts. The first part calculates the saturated fluid properties as a function of the system reference pressure.

The second part calculates all the liquid or superheated fluid properties as a function of temperature and limits these to saturated values during boiling. The second part also calculates, if called for, the convection heat transfer coefficient used in Levy's subcooled void model.

Subroutine RESTRT (NTSTRT, ISTART)

This routine initializes variables to the values that were saved by subroutine DUMPIT/from a previous solution.

The first function of RESTRT is to retrieve the previously saved solution and initialize common to the stored values. Next, a RESTRT data card is read defining the type of restart desired. In addition to the restart data read, certain values from the previous solution dictate how the solution may be restarted. The flow chart in Figure A-1 illustrates the RESTRT options available in the code.

Subroutine RESULT (NT)

All printing and/or line plotting of the results is done by this subroutine. NT is the current time increment number.

Subroutine ROLLIT (J, JX, SAVEA1, SAVEA2, SAVEA3, NWR, NDXP1, LUO, LUI)

This subroutine is used in conjunction with the roll option to input and output temporary storage values of the axial dependent variables. J is the current calculation level, and JX is the physical axial level. The variables SAVEA1, SAVEA2 and SAVEA3 are vectors of length NWR, which are equivalenced to the axial dependent variables at the axial levels J-1, J, and J+1, respectively. NDXP1, LUO, and LUI are the number of axial nodes plus one, the output logical unit and the input logical unit, respectively.

Subroutine SCHEME (NTRIES, JUMP, ISTART, MAXT, NJUMP)

This subroutine performs the steady-state and implicit transient numerical solution. Given a set of boundary and initial conditions, it carries the calculations through the bundle in a stepwise manner.

The calculational procedure is best illustrated by the flow chart shown in Figure A-2. First the enthalpy h(x) is calculated and an estimate for m(x) is made for the first iteration only. The crossflow w(x) and axial flow m(x) are then calculated. Any value of w(x) or m(x) not converged to within a selected tolerance is sufficient to set the nonconvergence flag JUMP to 1. Following the flow and crossflow calculations, the pressure P(x) and pressure difference [D]P(x) is calculated. The procedure is repeated stepwise up the bundle until the exit is reached. If the flows and crossflows have converged (JUMP = 2) or the maximum allowable number of iterations is reached, control is returned to the main program. Otherwise the bundle is swept again using new estimates for flows in the calculations.

FIGURE A-1. Subroutine RESTRT Available Code Options

A-8

A-9

Regardless of convergence, a minimum number of iterations is required depending on the fuel model options employed:

Minimum I Iterat	Number ions	Fuel Model Options
2		No fuel model
3		Fuel model without RELAP type heat transfer package
· 4		Fuel model with heat transfer package
variables	in the ar	gument list are defined as:
NTRIES	- Maximum has not and the	number of iterations allowed. If the solution converged after NTRIES the results are output calculations stop.
JUMP	- Converg	ence indicator
ISTART	- Starting restart	g iteration number. May be other than 1 for cases.
MAXT	- Maximum exceeds	allowed elapsed real time. If computer CP time MAXT, the results are output following the current

NJUMP - Procedure indicator. If NJUMP = 0, the run is a standard run or simple restart; if it equals 1, then the run is a restart run with new input.

Function SCQUAL (I, J)

This routine is used to calculate the subcooled quality for the Ith channel at the Jth axial node using Levy's subcooled void model.

Subroutine SETUP

The

This subroutine is used to input data, check the input data against dimension limits and produce a listing of the input.

Subroutine SPLIT

Subroutine SPLIT divides the subchannel flow rates at the inlet of the bundle to give equal pressure gradients across the first node by assuming that there is no spatial acceleration component of pressure drop.

Subroutine TEMP (TT, N, JJ, IFLAG, ISS, JXX)

Subroutine TEMP calculates internal rod temperatures based on a thermal conduction model, using the orthogonal collocation method of

weighted residuals. For rod N at axial level JXX, the conduction equation is solved for the unknown rod temperatures TT. Either the cylindrical (JJ = 1) or plate (JJ = 2) fuel option is used and either steady-state (ISS = 1) or transient (ISS = 0) calculations are performed. Convergence errors are signified by IFLAG.

Subroutine VOID

Subroutine VOID calculates the subcooled void fraction, bulk void fraction, density, effective specific volume for momentum, two-phase friction gradient multiplier velocity and energy transport velocity. Several correlations are included in this subroutine that the user can select by option. These are provided as an example with the thought that the users will set up correlations that are most applicable to their particular problems. This subroutine is not called from the explicit solution scheme.

Subroutine XSCHEM (IPART)

Subroutine XSCHEM carries out the explicit transient solution. Its function is equivalent to SCHEME for the implicit solution. A normal call to XSCHEM (IPART = 2) advances the solution one complete time step and computes the duration of the next time step. For the running start options, the steady-state implicit solution is first calculated. The resulting subchannel flows are then used to determine the maximum time step allowed for the explicit transient by a call to XSCHEM (IPART = 1). Otherwise, an input value for the maximum allowable time step is used for the first time step.

One pass through XSCHEM with IPART = 2 results in three channel sweeps. The first computes tentative flows and also updates fuel temperatures, if a fuel model is used. The second sweep is iterated for the actual flow/pressure field solution until the maximum dilation in any one cell is sufficiently small. The last channel sweep finds the maximum Courant number in the mesh for computing the next time step. The flow chart in Figure A-3 illustrates the computational procedure in XSCHEM.

FIGURE A-3. Subroutine XSCHEME Computational Procedure

APPENDIX B

CONSTITUTIVE RELATIONSHIPS

APPENDIX B

CONSTITUTIVE RELATIONSHIPS

SUPERHEATED STEAM PROPERTIES

A subroutine has been added to COBRA to calculate the properties of superheated steam from atmospheric pressure to 2400 psia and from the saturation temperature to 1500°F.

Calculation methods from several sources have been used to evaluate enthalpy, specific volume, specific heat, saturation temperature, thermal conductivity, and viscosity as functions of pressure and temperature. It is assumed that local pressures are sufficiently near the reference pressure such that the properties are a function of reference pressure and temperature only. Given the reference pressure, arrays for the properties are evaluated from the saturation temperature to 1500°F. Subchannel properties are evaluated by interpolation of the property arrays during computation. When reference pressure transients occur, the steam property arrays are reinitialized at prescribed percent changes in reference pressure.

Enthalpy and specific volume are evaluated with the relationships used in the Keenan and Keys tables of 1936,(1) and the specific heat is evaluated as $\Delta h/\Delta T$. Agreement with the 1967 ASME STEAM TABLES(2) is within 1% for enthalpy and specific volume, and within 4% for the specific heat. The viscosity and thermal conductivity are calculated by the equations listed in the 1967 ASME Tables where applicable. In regions not covered by these relationships, the recommended data interpolation given by McClintock and Silvestri(3) is used. The equations are also extended in use from the recommended temperature limit of 1292°F to 1500°F. Agreement with tabular values in the 1967 ASME Tables is within the ±6% range established for these curves.

The calculation of fuel rod temperatures in COBRA requires the specification of heat transfer coefficients at the clad surface. To meet this requirement, the correlations and basic selection logic contained in the RELAP4 computer program have been used.(4)

Seven regions are considered: forced convection, subcooled and nucleate boiling, forced convection vaporization, transition boiling, transition pool boiling, film boiling, and pool film boiling. The schematic in Figure B-1 shows the relative regions of applicability for each on a heat flux versus temperature plot. The correlations used for each regime are listed in Table B-1.

In addition to the stated correlations, a minimum heat transfer coefficient of 5 $Btu/hr-ft^2-$ °F is assumed.

A - B Forced co	nvection
-----------------	----------

1n q

<u>^</u>

5

B – C	Subcooled and nucleate boiling, ar	۱d
	forced convection vaporization	

- C D Transition boiling and transition pool boiling
- D E Film boiling, low pressure film boiling and pool film boiling

FIGURE B-1. Regional Application of Heat Transfer Correlations

Three critical heat flux correlations are used. The correlations and criteria for selection are shown in Table B-1. Additionally, a minimum value of 90,000 Btu/hr-ft², the presumed value for a stagnant fluid, is assumed. When the mass flux is less than $2x10^5$ lbm/hr-ft², the critical heat flux is interpolated between 90,000 Btu/hr-ft² and the value cal-culated via the appropriate correlation at a mass flux of $2x10^5$ lbm/hr-ft².

The selection of the appropriate heat transfer correlation is based on three conditions. The first is an evaluation of the physical state. For example, if the clad temperature is below the saturation temperature, the forced convection regime is appropriate. The second is the evaluation of the critical heat flux and the clad temperature that would exist at this heat flux. Comparison determines whether pre-CHF or post-CHF correlations are appropriate. The third criterion is the comparison of two or more calculated heat transfer coefficients in order to select the proper coefficient in regions where correlations overlap. <u>TABLE B-1</u>. Heat Transfer and Critical Heat Flux Correlations

HEAT TRANSFER CORRELATIONS

PRE CHF

forced convection - Dittus and Boelter^(a) subcooled and nucleate boiling - Thom^(b) forced convection vaporization - Schrock and Grossman^(c)

POST CHF

transition boiling - McDonough, Milich and King^(d) stable film boiling - Groeneveld^(e) low pressure film boiling - Dougall and Rohsenow^(f) pool film boiling - Berenson^(g) transition pool boiling^(h)

CRITICAL HEAT FLUX CORRELATIONS

```
1. P/psia < 725
Modified Barnett<sup>(i)</sup>
```

```
2. 725 < P/psia < 1000
```

interpolation between ${\sf Barnett}^{(j)}$ and modified ${\sf Barnett}$

3. 1000 < P/psia < 1300

```
• Barnett<sup>(j)</sup>
```

```
4. 1300 < P/psia < 1500
interpolation Barnett<sup>(j)</sup> and B and W-II<sup>(k)</sup>
```

```
5. P/psia > 1500
B and W-II<sup>(k)</sup>
```

(a) M. Jacob, <u>Heat Transfer</u>, vol. 1, New York, Wiley & Sons, 1957.

- (b) J. S. Thom, et.al., 'Boiling in Subcooled Water During Flow Up Heated Tubes or Annuli', <u>Proc. Instn. Mech. Engrs.</u>, vol. 180, part 36, 1966, pp. 226-246.
- (c) V. E. Schrock and L. M. Grossman, <u>Forced Convection Boiling Studies</u>, Final <u>Report on Forced Convection Vaporization Project</u>, TID-14632, 1959.
- (d) J. B. McDonough, W. Milich, and E. C. King, <u>Partial Film Boiling with Water</u> <u>at 2000 psig in a Round Vertical Tube</u>, MSA Research Corp., Technical Report 62, NP-6976, 1958.
- (e) D. C. Groeneveld, <u>An Investigation of Heat Transfer in the Liquid Deficient</u> <u>Regime</u>, AECL-3281 (Rev.) December 1968; revised August 1969.
- (f) R. S. Dongall and W. M. Rohsenow, <u>Film-Boiling on the Inside of Vertical</u> <u>Tubes with Upward Flow of the Fluid at Low Qualities</u>, MIT-TR-9079-26, 1963.
- (g) P. J. Berenson, 'Film-Boiling Heat Transfer from a Horizontal Surface,' <u>J. of Heat Transfer</u>, vol. 83, August 1961, pp. 553-558.
- (h) K. V. Moore and W. H. Rettig, 'RELAP-4: A Computer Program for Transient Thermal-Hydraulic Analysis' Aerojet Nuclear Co., ANCR-1127, December 1973.
- E. D. Hughes, <u>A Correlation of Rod Bundle Critical Heat Flux for Water in the Pressure Range 150-725 psia</u>, IN-1412, July 1970.
- (j) P. G. Barnett, <u>A Correlation of Burnout Data for Uniformly Heated Annuli and</u> <u>Its Use for Predicting Burnout in Uniformly Heated Rod Bundles</u>, AEEW-R 463, 1966.
- (k) J. S. Gellerstedt et al., 'Correlation of Critical Heat Flux in a Bundle Cooled by Pressurized Water; <u>Two Phase Flow and Heat Transfer in Rod Bundles</u>, Symposium proceedings of Winter Annual Meeting of the American Society of Mechanical Engineers, Los Angeles, California, November 1966, pp. 63-71.

COMPUTER PROGRAM CORRELATIONS

To carry out a solution, empirical and semiempirical correlations must be selected for input to the computer program.

Friction Factor

The friction factor correlation is assumed to be of the form

 $f_i = a(R_{e_i})^b + c$

where a, b, and c are specified constants that depend upon the subchannel roughness and geometry. (5) Since these constants can be influenced by different subchannel roughnesses and the pitch-to-diameter ratio, (6) the program can accept up to four sets of constants that correspond to four subchannel types which may be assigned to the subchannels of the bundle. For example, subchannels next to a flow housing may be given a different friction factor from those subchannels within the bundle.

The friction factor is also corrected for wall viscosity by using the relationship(6)

$$\frac{f}{f_{iso}} = 1 + \frac{P_h}{P_w} \begin{bmatrix} \frac{\mu_{wall}}{\mu_{bulk}} & -1 \end{bmatrix}$$
(B-2)

(B-1)

where μ_{wall} is evaluated at the wall temperature which is calculated from

 $T_{wall} = T_{bulk} + \frac{q'}{P_{h}h}.$ (B-3)

This correction is based on the assumption that the total perimeter consists of two regions--one heated and the other unheated--and that the heated portion has uniform heat flux. The heat transfer coefficient is calculated from

$$\frac{hD}{k} = 0.023 \left(\frac{GD}{\mu}\right)^{0.8} \left(\frac{C_p^{\mu}}{k}\right)^{0.4}$$
(B-4)

where bulk fluid properties are used. Alternate forms for equation (B-4) may be specified from input. (See SETUP.2.3.)

Two-Phase Friction Multiplier

Several correlations are available for the two-phase friction multiplier. Three are presently included in the program.

Homogeneous Model

 $\phi = 1.0$

$$\phi = 1.0 X < 0.$$

$$\phi = \frac{\rho_f}{\rho} X > 0.$$

Armand⁽⁷⁾

α <u>≤</u> 0

$$b = \frac{(1-\chi)}{(1-\alpha)^{1.42}} \qquad 0.39 < (1-\alpha) \le 1.0 \qquad (B-6)$$

$$b = 0.478 \frac{(1-\chi)^2}{(1-\alpha)^{2.2}} \qquad 0.1 < (1-\alpha) \le 0.39$$

$$b = 1.730 \frac{(1-\chi)^2}{(1-\alpha)^{1.64}} \qquad 0. < (1-\alpha) \le 0.1$$

Polynomial Function

where the coefficients are supplied as input.

Spacer Loss Coefficient

The pressure drop from spacers is lumped into an effective loss coefficient which may be defined (6) in terms of all liquid flow as

$$\Delta P = \frac{K}{2\rho} \left(\frac{m}{A}\right)^2 \tag{B-8}$$

For two-phase flow, the same coefficient is used but is modified by the two-phase specific volume for momentum. This pressure drop loss coefficient is converted to a pressure gradient loss coefficient at the location of the spacer by dividing the calculation increment Δx ; therefore,

$$\kappa_i = \frac{K}{\Delta x}$$
(B-9)

Void Fraction

Four ways of specifying void fraction are presently included in the program:

(B-5)

(B-7)

Homogeneous Model

 $\alpha = 0$

X ≤ 0.

 $X \leq 0$.

X > 0.

 $X \leq 0.$

X > 0.

(B-11)

(B-12)

$$\alpha = \frac{Xv_g}{(1-X)v_f + Xv_g} \qquad X > 0. \qquad (B-10)$$

Slip Model

 $\alpha = 0.$ $\alpha = \frac{Xv_g}{(1-X)v_f\gamma + Xv_g}$

where $\boldsymbol{\gamma}$ is a specified slip ratio.

Modified Armand^(7,8)

 $\alpha = 0.$

$$\alpha = \frac{(0.833 + 0.167 \text{ X})\text{Xv}_{g}}{(1-\text{X})\text{v}_{f} + \text{Xv}_{g}}$$

Polynomial Function

$$\alpha = 0.$$
 $X > 0.$
 $\alpha = a_0 + a_1 X + a_2 X^2 + ... a_n X_X X < 0.$ (B-13)

Subcooled Void Fraction

Two options are presently included. Subcooled void formation may be ignored or it may be included by using Levy's subcooled void model.(9) Levy's model calculates the true quality in terms of the equilibrium quality and the quality at which bubble departure starts. It is given by:

$$X = 0$$
 $X_e < X_d$
 $X = X_e - X_d \exp(\frac{X_e}{X_d} - 1)$ $X_e/X_d < 1$ (B-14)

where X_{Δ} is the equilibrium quality and

$$\begin{split} x_{d} &= \frac{C_{p}\Delta T}{h_{fg}} \\ \Delta T &= \frac{q}{P_{h}h} - QP_{r}Y_{B} & 0 < Y_{B} \leq 5 \quad (B-15) \\ \Delta T &= \frac{q}{P_{h}h} - 5Q(P_{r} + \log(1 + P_{r}(\frac{Y_{B}}{5} - 1))) & 5 < Y_{B} \leq 30 \\ \Delta T &= \frac{q}{P_{h}h} = 5Q(P_{r} + \log(1 + 5P_{r}) + \frac{1}{2}\log(\frac{Y_{B}}{30})) & 30 < Y_{B} \quad (B-16) \\ Q &= \frac{q}{P_{h}V}C_{p}\sqrt{\tau_{W}V} & (B-17) \\ \tau_{W} &= \frac{f_{V}}{8}\left(\frac{m}{A}\right)^{2} & (B-18) \\ Y_{B} &= \frac{0.015}{\mu} \sqrt{\frac{\sqrt{0D}}{V}} & (B-19) \end{split}$$

The heat transfer coefficient h is calculated from equation (B-4). The use of Levy's model may not apply universally since the use of a single phase heat transfer coefficient is not always compatible with experimental measurements.(10)

Single-Phase Turbulent Mixing

μ

Several forms of equations for specifying the turbulent crossflow are included. The presently available forms in COBRA for calculating w' include:

 $w'_{k} = \beta s_{k} \bar{G}$ (B-20) $w'_{k} = a Re^{b}s_{k} \bar{G}$ (B-21) $w'_k = a \operatorname{Re}^b \overline{D} \overline{G}$ (B-22) $w'_{k} = a \operatorname{Re}^{b} \frac{s_{k}}{z_{\nu}} \overline{D} \overline{G}$ (B-23)(B-24)

where Re = $\frac{\overline{G} \ \overline{D}}{\overline{I}}$

$$\bar{D} = 4 (A_{i(k)} + A_{j(k)})/(Pw_{i(k)} + Pw_{j(k)})$$
(B-25)

$$\bar{G} = (m_{i(k)} + m_{j(k)})/(A_{i(k)} + A_{j(k)})$$
(B-26)

B-7

$$\bar{\mu} = \frac{1}{2} (\mu_{i(k)} + \mu_{j(k)})$$

and a and b are input constants. Since a definitive mixing correlation does not exist and other forms are available, (11,12,13) the user should set up correlations of his choice.

Also included in the subcooled mixing is the thermal conduction. When it is included, the conduction coefficient is given by

$$c_{k} = \left(\frac{k_{i(k)} + k_{j(k)}}{2}\right) \frac{s_{k}}{z_{k}} K_{g}$$
(B-28)

(B-27)

where K_g is a geometric correction factor. Note that the distance z_k is used in both equations (B-23) and (B-28). This is the centroid-to-centroid distance between subchannels. Care should be taken to select this value for its intended use. For example, z_k could be selected as the effective mixing distance.

Two-Phase Turbulent Mixing

Complete information concerning mixing during boiling is not available. It is known, however, that mixing is strongly dependent on quality; therefore, COBRA is set up to accept β as a tabular function of quality. When the quality of two adjacent subchannels is different, the calculations use a quality calculated from the mean mixed enthalpy of the two subchannels.

Transient Correlations

In the present version of COBRA, steady-state correlations are assumed to apply to transients. This assumption should be thoroughly evaluated for transient analyses.

Critical Heat Flux Correlations

Subroutine CHF presently contains two internal functions denoted CHF1 and CHF2 which calculate the critical heat flux by using the B&W-2 and W-3 heat flux correlations, (14) respectively. An input option is provided to allow the user to select either of these correlations. Reference 14 summarizes the details of these two correlations. Other correlation options can be easily set up the same way.

To implement the nonuniform axial flux factor into COBRA a finite increment integration scheme is used. Given the axial flux factor at location X_i of the form,

$$F = \frac{C}{q'(X_{j})(1 - e^{-C(X_{j} - X_{j0})})} \int_{X_{0}}^{X_{j}} q''(X)e^{-(X_{j} - X)} dX$$
(B-29)

where C is a constant, consider the integral to be a summation of finite integrals each taken over the calculation increment ΔX . Over each ΔX assume a constant value of the heat flux q"(X). The integral from X - ΔX to X is

$$q'(X) \int_{X-\Delta X}^{X} e^{-C(X_{j}-X)} dX = \frac{q''(X)}{C} e^{-CX_{j}} [e^{CX} - e^{C(X-\Delta X)}]$$
(B-29)

and the entire integral taken as a summation over the increments of ΔX from X_{jo} to X_{j} is

$$F = \frac{e^{-CX_{j}} \sum_{j=J_{0}+1}^{J} q''(X_{j})(e^{CX_{j}} - e^{CX_{j-1}})}{q''(X_{j})[1 - e^{-C(X_{j}} - X_{J_{0}})]}$$
(B-31)

where $X_{JO} = 0$ is the axial location of the start of integration. For B&W-2 it is the channel inlet and for W-3 it is the start of local boiling defined by the Jens-Lottes correlation.⁽¹⁴⁾

APPENDIX B

REFERENCES

- 1. J. H. Keenan and F. G. Keys, <u>Thermodynamic Properties of Steam</u>, Wiley, New York, 1936.
- C. A. Meyer, R. B. McClintock, G. J. Silvestri and R. C. Spencer, <u>The 1967 ASME Steam Tables</u>, The American Society of Mechanical Engineers, New York, 1967.
- 3. R. B. McClintock, and G. J. Silvestri, <u>Formulation and Iterative</u> <u>Procedures for Calculation of Properties of Steam</u>, The American Society of Mechanical Engineers, New York, 1968.
- 4. K. V. Moore and W. H. Rettig, <u>RELAP4: A Computer Program for</u> <u>Transient Thermal-Hydraulic Analysis</u>, ANCR-1127, Aerojet Nuclear Company, Idaho Falls, ID, December 1973.
- 5. J. P. Waggener, "Friction Factors for Pressure Drop Calculations," Nucleonics, Vol. 19, p. 145, 1961.
- 6. L. S. Tong, "Pressure Drop Performance of a Rod Bundle," <u>Heat</u> <u>Transfer in Rod Bundles</u>, ASME, pp. 57-69, 1968.
- A. A. Armand, "The Resistance During the Movement of a Two-Phase System in Horizontal Pipes," Translated by V. Beak, AERE Trans. 828. Izvestiya Vsesojuznogo Teplotekhnicheskogo Instituta (1), pp. 16-23, 1946.
- 8. W. A. Messena, <u>Steam-Water Pressure Drop and Critical Discharge</u> <u>Flow - A Digital Computer Program</u>, HW-65706. Hanford Atomic Products Operation, Richland, Washington, June 17, 1960.
- 9. S. Levy, <u>Forced Convection Subcooled Boiling--Prediction of Vapor</u> <u>Volumetric Fraction</u>, GEAP-5157. General Electric Co., Atomic Power Equipment Dept., San Jose, California, April 1966.
- 10. S. Y. Ahmand, "Axial Distribution of Bulk Temperature and Void Fraction in a Heated Channel with Inlet Subcooling," <u>Journal of</u> <u>Heat Transfer</u>, pp. 595-609, November 1970.
- J. T. Rogers and N. E. Todreas, "Coolant Mixing in Reactor Fuel Rod Bundles--Single-Phase Coolants," <u>Heat Transfer in Rod Bundles</u>, ASME, pp. 1-56, 1968.
- 12. L. Ingesson and S. Hedberg, "Heat Transfer Between Subchannels in a Rod Bundle," Paper No. FC 7.11, 4th International Heat Transfer Conference, Versailles, France, 1970.

 J. T. Rogers and R. G. Rosehart, "Mixing by Turbulent Interchange in Fuel Bundles. Correlations and Inferences," ASME Paper No. 72-HT-53, 1972.

14. L. S. Tong, Boiling Crisis and Critical Heat Flux, TID-25887, 1972.

APPENDIX C

TRANSVERSE MOMENTUM FLUX MODEL

APPENDIX C

TRANSVERSE MOMENTUM FLUX MODEL

An optional transverse momentum flux term is included in COBRA-IV-I. The form of this term is still experimental and it should be used with caution.

In the derivation of the transverse momentum equation for COBRA-IIIC, the flux of transverse momentum through the sides of the control volume was neglected. Physically, however, at least part of the crossflow carries (jets?) across intervening channels and acts as an additional momentum source to adjacent crossflows.

Consider the control volume for gap K in Figure C-1. To evaluate the transverse momentum flux term, it is assumed that the total momentum flux through the lateral surfaces A and B is equal to the sum of the K direction momentum flux through gaps L, M, N and O. This assumption becomes increasingly approximate as the axial-to-lateral flow area ratio increases. The flux of K momentum through gap L can be computed by

Flux =
$$\left(\frac{s}{\ell}\right) \frac{w_{L}^{2}}{\rho_{L} s_{L}^{2}} \cos\theta_{L}$$

where

 $\theta_L = \alpha_L - \alpha_K$

 $\alpha_i = i^{th}$ gap direction angle (See Figure C-2 for definitions.)

For a given gap K, the vector operator $\{S\} \{DC\}^T$ collects the contribution from all adjacent gaps

Total =
$$\left(\frac{s}{k}\right)$$
 {S}{DC}^T $\frac{w^2}{\rho_s^2}\cos\theta$

In regular cartesian geometry, this operation forms the exact centered finite difference analog to $\partial \rho v^2 / \partial y$. In a rod bundle, it is only an approximation which is most accurate when the gap space is close to the subchannel hydraulic diameter. Test runs have shown that the use of the transverse momentum term produces an effect in the right direction but the results have not been compared to experimental data.

An example of the way the gap direction angles must be input is shown in Figure C-2.

*Transverse momentum flux through gap K calculated as the sum of momentum flux through gaps L, M, N and O in the direction of gap K.

RULES

- 1. Choice of 0^0 direction is arbitrary.
- 2. Choice of positive angle clockwise or counterclockwise is arbitrary.
- 3. Gap direction vector must be from subchannel i to j where i < j.
- 4. Gap must be specified in positive degrees.
- 5. Once 0^0 and positive angle direction are chosen, all other gap direction angles must be consistent and conform to Rule 3.

FIGURE C-2. Example of Gap Direction Angles

C-3

APPENDIX D

PROGRAM SPECSET

APPENDIX D

PROGRAM SPECSET

This auxiliary program is used to redimension COBRA in order to minimize the computer core storage requirements. In this way, COBRA utilizes only that portion of core necessary to solve a particular problem. The SPECSET routine has three main functions:

- to automatically set up a consistent set of dimensions for COBRA compatible with the user-specified problem size;
- 2. to calculate the relative storage location of the variables equivalenced to the vector SAVEAL;
- 3. to allocate storage in large core memory (LCM) on CDC-7600 machines, if desired.

The first function is accomplished by performing a character-by-character search through a complete set of COBRA specification statements for dummy dimension parameters. Each statement is written to an output file with the dummy parameters replaced by integer values calculated or specified from the user-supplied input defining the problem size.

The second function is required because the storage scheme in COBRA uses equivalencing to overlap array storage. The storage scheme is best explained by a simple example.

Consider two doubly-dimensioned arrays, A and B, which must be physically dimensioned A(2,2) and B(2,2). These arrays could be stored using a statement of the form

COMMON A(2,2), B(2,2)

which would store the data sequentially in the following manner:

A(1,1), A(2,1), A(1,2), A(2,2), B(1,1), B(2,1), B(1,2), B(2,2).

However, to transfer data easily between peripheral storage and core, arrays are overlapped so that they are stored as

A(1,1), A(2,1), B(1,1), B(2,1), A(1,2), A(2,2), B(1,2), B(2,2)

This is accomplished by using the following "code" dimensions and equivalence statements:

COMMON	SAVEAL(8)	. •	
DIMENSION	A(4,2), B(4,2)		
EQUIVALENCE	(SAVEAL(1), A(1,1)),	(SAVEAL(3),	B(1,1))

Since many variable arrays are stored in this manner, SPECSET is required to calculate the required "code" dimensions and equivalence starting locations which are consistent with the "physical" dimensions.

The third function is accomplished by simply removing a C from column 1 on all level 2 statements if storage in LCM is desired. If not, the level 2 statements are considered to be comments.

The input to SPECSET is in two sections. The first section contains dummy card images of all COBRA COMDECKS, as shown at the end of this appendix in Table D-1. This data set must be available for input from logical Unit 10.

The data in the second section consist of 18 parameters which define the problem size and code options required. With the exception of the first data card, the order in which the data are specified is immatcrial.

The first card must contain the characters LCM in the first three columns if large code memory on a CDC-7600 is to be utilized for variable storage. If large core memory is not desired or the code is to be run on some other system, the first card can be blank. The remaining 17 cards specify the value of the dimensioning parameters using the form

Columns 1 and 2 3 4 through 8

"parameter"

"x x"

where "parameter" consists of a two-letter code and "x x" is its required numerical value. All 17 parameters must be specified and the numerical values must be greater than zero.

The required parameters are:

- MP Maximum number of cards in property table, axial heat flux table, and forcing function versus time tables
- MC Maximum number of subchannels
- MG Maximum number of subchannel gap connections

ML - Maximum number of axial locations for gap and area variation

- MX Maximum number of axial nodes plus one
- MN Number of fuel collocation points plus three
- MT Maximum number of fuel types

MR - Maximum number of fuel rods

ME = MX if no storage on peripherals

D-2

- ME 3 for storage on peripherals (this implies that axial values will be rolled in COBRA)
- MZ Maximum number of axial locations for grid spacers

MK - Maximum number of grid spacer types

- MA Maximum number of subchannels that can have area variations
- MW Maximum number of wall connections
- MY Maximum number of axial fuel type divisions
- MO Maximum width of AAA array (7 for square arrays, 5 for triangular)
- MI Maximum number of connections to a channel (thermal + flow)
- MS Maximum number of gaps that can have gap spacing variations.

AAF NEWPU, YANKSSS *CD SPECS MC= HG= MYS MNa HRE MER MDa MLS MZ= Mwa MYS MTS MOIE NTE NIE MKS AAE MTS MS= M1= +CD -SPEC1 DIFENSION AC(MC), PW(MC), PH(MC), DC(MC), DR(MR), HINLET(MC),FINLET(MC),TINLET(MC), 1 Z LC(MC,4),GAPS(MC,4),DIST(MC,4), DATIN(N2) 3 EQUIVALENCE (DATIN(1), UB(1, ME)), (DATIN(1), AC(1)), 1 (Pw(1),STUW(1,ME)),(PH(1),AP(1,ME)), 2 (CC(1), UPHIM(1)), (DH(1), V(1)), (HINLET(1), VPA(1)), 3 (FINLET(1), VISC(1)), (TINLET(1), VISCH(1)), 4 (LC(1,1), HFILM(1)), (GAPS(1,1), PERIM(1)), (DIST(1,1), AAA(1,N3)) CLCM LEVEL 2,DATIN, AC, PW, PH, DC, DR, HINLET, FINLET, TINLET, LC, CLCH 1 GAPS, DIST +CD SPEC2 COMMON IK(NG), JK(MG), X(MX), ANGLE(MG), FACTOR(MG), LENGTH(MG), AXIAL(MP),Y(MP),UH(HC),ALPHA(MC),GUAL(MC),NHTC,TMH(MC), 1 SURPH(MC), WIDTH(NW), IKW(NW), JKW(MW), UWCP(2, MW), 2 3 UMALL(2,HW),HWALL(2,HW),PHOLGP(MW) ٠, KIJ,AFLLX,Z,THETA,PI,NAX,I3,I2,IERROR,J1,J2,J3,J4, 1 J7, ATCIAL, GAX, ELEV, FERRUR, ITERAT, SLDX, DIGC, CXGC, IDIGC, GC, SL, CX, SLDXI, SLGOX, SLGOX2, DX41, SLCXDT, DX2, DXCT, PIN, PCUT, FDT, 2 3 FCCURAK11/ITRAP/XZERR/YZERRALUD/LUI/IRCLL/DT/PEXIT/K12/DXI/ 4 SLDT, SLDT2, SLGC, AP2IDT, DXICT, NHR, WERRX, WERRY, ITRY, ITRYM, 5 ACCELY, ACCEL1, ACCEL2, ISTORE, NAAA, NAAAP1, ACCELF, DAMPNG, NAAH, NAAHP1, HININ, USDON, ITUP, DPS, FCHK, FCHK1, EXTRA(100) 6 *.END1 COMMON /LCCP/ NCHANL,NK,NDXP1,NTRYX,NTRYY,NWK,NROD,NDX *, END2 COMMEN /LARGE1/ SAVEAL(M2), OPRIM(FC), V(FC), VPA(FC), VISC(MC), VISCH(MC)+HFTLM(HC)+CON(MC)+CP(MC)+FSP(MC)+ PERIM(MC), HPERIM(MC), WP(MG), AAA(MU, HG) 2 *,END3 COMMON /LARGE3/ AN(MC), OHYDN(MC), LOCA(NI, MG), NHRAP(MC), NWRAPS(MC), VP(MC), T(MC), ILOCS(N1, MC) 1 *, END4 INTEGER LAEVAS(M2) EULIVALENCE (SAVEAL, LAEVAS) REAL IDTGC, LENGIM, KIJ

CLC4 .CLC4 CLC4 *CD	SF		EV EV EV	E1 E1 E1	•	51 51 51	, , L , L	S A A	4 v E V N	E.	a' S	.																																								
	1	D	IM	EN	• S	10	3N				P HI A S		1 .0 11	; (, ;	۱ بر ا بر			HECE	() 	, i , i Y (, м С Ц (м	E D 1 M); (); ;();	۶ F ۲ ۲ ۳ E	();	+ + + + + + + + + + + + + + + + + + + +	1 E U	,	-E - F (~)	۱ () () ()	R P C L ~ E	-0 -0 -)) () () (M	1	, ד , ד ו	E)	, ,											
	122	5	9U	I	/ A	LE	N	С.	E			- (1	, , , , ,	1 1 1 1) ; ; ; ; ;	S S S		V S V V	E A N E A		(A (M L ~ N	U () S ()		;),	() () ()	F 19) C 1 1		5A /	V 1	E) SS		() A E	N V A A	Р Е- С)) 4((N	, (; L ; X	Ni))	G)) /)) ,	•						
CLCM	4 5 6		τv	EL		2		P				H H	0 () ()	0 1 1	, 1 , 1 , 1		1	, S S	1 A A	V E	E A		V ((E A Ni Ni	4L 4) Z))	N I	N (31	ן י ני	(H	R i	40	1	À)	H • 1	() S#	V	1 E) Al	, s L (A N	V E	E /)]	λL),	. (,	N	Ţ)	,		
CLCM CLCM CLCM CLCM				EL EL EL	•	2,		7 7 7 7	₩0	0																																										
CLCM CLCM CLCM CLCM		1111		21 21 21 21	•	2121		F(R) A C(EL HC	0	L()	·																																							
CLCM CLCM CLCM CLCM		1.8 1.8 1.8	E V E V E V E V	EL EL EL	•	2, 2, 2, 2,		U S Al	8 1 U 9 H C	₩ B	A F	ì																																					•			
±CD .	۶P 1 2	EC D1	:4. [7]	EN	S	IC	N				* (8 5 G 4	¦ M j A i P	1 V (ı E M	- E (^ l /) 1 1	, , , E	x (F (UU E : / 1	_C)) (F A	м S L	i I L	۹۴ ۲۹) ۲۹)	:E !1 !1),,	• 8 • 8 • 9	38 E) E)	E T 	T T	() fil iv(M 1 F (C L		M 1 1	E , i) (Me	, E)	, E)													
	123	E	ii.	ĪV	Ą	ι.ε	N	C	1		(+ (+ (+	E SR	1 T I F	ן 4 (, 1 1	51))	A) ,	ve si si		E	EAA)) [(() ()	1 M	(4))	»())))	∟د (() (.0 (((T	(1 S P A	, 1 A \ (1 L) /E . (, (1 1	9 1) ,	4 \ / 3 / 3 1 3	√£ 1) 5A),	▲ • • •	SE	() 4 \ 4 [V {	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) A M L) L 7(0 (M)) N Y	15)))) /	0				
	4		VI VI	EL EL		2,2,	1 	۱۰ ۱۰ ۱۰		D A	() r .	. M.	ن د	L () (1	,	1) (, 2	À	•	E	A L	, (N	L : ;		}																							
CLCH CLCH #CD	S P		V 5		s	2,2,	(T) N	5 / 6 /	SP AL	, L		F	U R	4 L (/)) 		ы	F).		c	н		at	,	M.	1.	. M	۰ ۲	,	. 1	51			•	× 1		M	5	١.												
	1 2 1	EG	<i>ا</i> ل	ĪV	4 1	.E	N (Cê		1			U E F U	() () ()	1	+ + + + + + + + + + + + + + + + + + + +	N M 1 1	4 E) /) v v	E E E	4 L A L A 1	5 U	M M	F 9 0))))	+1	•	년 (11) (11) (11) (11) (11) (11) (11) (11			N	F L C	T) () 1)	7 F 1 #	1	ж)	1	34	E V) E: A 1	AL	. ((M	MF	8) 1))),				
CLCM	3	IN Le	TE	G	E1 2	ł)	4	NL	() (] -	Ū F	DI T	E (Y F	1	1	1	1	, S) ,	C	v h	Ē	4 L 2 ((1	M 1	н 1))	,	ì	T	F (D	(i	• ·		1	5	, s	3 4	v	E	ΑĽ.	. (M	Q :	55	•				
CLCH CLCH CLCH CLCH		LE LE LE	V 8 V 8 V 8 V 8	: L : L : L		2,	C F T F		H U Q	4/ X D R/	۲ ۲																																									
CLCM ČLCM *CD 8	} Pi	LE Ec	V 8 V 8 6 G 1		2 2 4	2 +	1 4 6		T [0]	¥ F E	3																																			;	•					
•	1 2	C	0 t	121	0	i ,	/8	: G	R	11)/	(1 1 1	I D (D X M	() [] []	~ Z (~) /) Z P	,) I	А ,# ¹ Т [−]	G F C C C F	1) (DMW	, 6 8	N (,	5 A 4 K 7 (1) M	D X	T F()		16 (V (C	, (R	N (M (C (5 1 5) 5 5	· Y • •	F F P	E / XF G /	, A ; L ; 2	۹۹ (2)	4 4 1	M (G	1G 1 G	T ,	H M	X)	;K),	,	DI	A	,	

DNRFLX(MX) DIMENSION EQUIVALENCE (DNBFLX(1), MBAR(1)) COMMENZICENT/ ICOUNT CLCH LEVEL 2, DABFLX CLCM LEVEL 2, IGHIU ***CD SPEC7** COMMON /BAREA/ AFACT(ML,MA),GFACT(ML,MS),AXL(ML),GAPXL(ML), NARAMP, NAFACT, NAXL, NGXL, NGAPS, NCH (MA), NGAP (MS) 1 *.END6 COMMON /LARGE4/ IDAREA(MC), IDGAP(MG), GAPN(MG) *,END7 CLCH LEVEL 2, IDAREA +CD SPECE OPDX(MC), CHOX(MC), OFDX(MC), RSTW(M1, ME) DIMENSION (CHOX(1),CP(1)),(DFOX(1),FSP(1)),(DPOX(1),CON(1)), EQUIVALENCE (P(1,1), RSTW(1,1)) 1 CLCH LEVEL 2, CPDX, DHOX, DFDX, RSTW *CD SPECS COPNON JPRCP1/ PP(MP),TT(MP),VV8(MP),HHF(MP),HHG(MP), VVF(MP), KKF(MP),SSIGMA(MP),AA(4),E8(4),CC(4),UUF(MP), 1 2 HGPT(HP), TPCUT(PP), CPPUUT(MP), KPCUT(MP), UPQUT(MP), VPOUT(MP), DTMAX, PREFUL, GCRIT, AAL(4), BBL(4), GCL(4), 3 HPHOP, NVISCH, NTYPE (MC), ISTEAM, LAMNF 4 *,END8 REAL KPOUT, KKP +CD SPEC10 COPMON /PRCP2/ PREF, TF, VF, VG, HF, HG, UF, KF, SIGMA, HFG, VFG, RHOF, RHOG, AF(7), AV(7), NV, NF, JBUIL(MC), AH(4) 1 *,END9 REAL KF *CD SPEC11 COMMON /HIXI/ ABETA, BBETA, XQUAL (MP), BX(MP), GK, FTM, NBBC, J5, NSCBC ⇒, END10 *CD SPECI2 COMMON /FUEL/ KFUEL(MT), KCLAD(MT), RFUEL(MT), RCLAD(MT), CFUEL(MT), CCLAD(MT), TCLAD(MT), TFLUID, HGAP(MT), LR(MR, 6), 2 PHI(MR,6),RADIAL(MR),D(MR),POWER,OFLEL(MI),BK(4) FLXX(MR), TREF, ZEND(MT, MY), TOLDR(MN, MR), IDFUEL(MR), 3 ū NHAX, NC, INTYP(HR), NZONE(MT), IZTYP(MT, MY), NRCDTP *, EN011 REAL KEUEL, KCLAD CLCH. LEVEL 2. KEUEL **CD** SPEC13 COMMON /BCHF/ MCHFR(MX),MCHFRC(MX),MCHFRR(MX),NCHF,NCHFX **EN012 REAL MCHER *CD 8PEC14 DIMENSION US(M1,ME),USH(M1,ME),TERM1(MC),TEHM2(MC), CPK(MC), APP(M1, ME), FLOW(MC), B(MG), CIJ(MG), 1 MARK(MI, ME), SP(MI, ME), DPNP(MC), IFUIV(MG), 2 ISTAR (HG) + HJMC (HC) + AAH (N7) + ILCC (N8) + HPP (HG) 3 EQUIVALENCE (US(1,1), USW(1,1), PEI(1,1)), (TERM1(1), VISCW(1)), (TERM2(1),STU+(1,1)), (DPK(1),STU+(1,2)), 1 CAPP(1,1), AP(1,1)), (FLUW(1), STUW(1,3)), 2 3 (B(1), +P(1), CIJ(1), +PP(1)), (MARK(1,1), BETA(1,1)), Δ (SP(1,1), TRF(1,1)), (AAH(1), AAA(1,1)), 5 (ILOC(1), ILOCS(1,1)), (0P+P(1), FSF(1), HJMO(1)), (ISTAH(1), IFCIV(1), FDIV(1)) 6 LEVEL 2, US, USH, TERMI, TERM2, DPK, APP, FLCH, B, CIJ, MARK, WPP CLCM CLCM LEVEL 2, SP, AAF, ILOC, OPHP, HJMO CLCM LEVEL 2, ISTAH, IFDIV

D-6

*CD SPEC15 DIMENSION SAVEA1(H1), SAVEA2(H1), SAVEA3(H1), SAVRES(N5) 1 (SAVEA1(1), SAVEAL(1)), (SAVEA2(1), SAVEAL(NK)), ENLIVALENCE (SAVEA3(1), SAVEAL(NW)), (SAVRES(1), SAVEA2(1)) 1 LEVEL 2, SAVEA1, SAVEA2, SAVEA3 CLC4 CLCH. LEVEL 2, SAVRES +CD SPEC16 DIMENSION SUMX(MC),SUML(MC),SUMR(MC),SIMJ(MC),STMJM1(MC) EQUIVALENCE (SUML(1), VISC(1)), (SUMR(1), CP(1)), (SUMX(1), VISCH(1)), (STHJ(1), FSP(1)), 1 (91wJM1(1),CUN(1)) 2 CLCM LEVEL 2, SUML, SUMP, SUMX, STHU, STHUH1 *CD SPEC17 DIMENSION AAAPRO(N7), APRM(M2), LOCA1(N6) EQUIVALENCE (444(1,1),444PRM(1)),(M(1,1),WPRM(1)), (LCCA(1,1),LCCA1(1)) 1 LEVEL 2, AAAPRM, WPRM, LOCAL CLCM DIFENSION USHPRM(MG), USPHM(MG), BETPRM(MG), SPPRM(MG), AOLDFH(MG), U8PRM(MC), APPFRH(MC), WSAVE(MG), 1 2 OTII(MG); DTJJ(MG) EQUIVALENCE -(WSAVE(1), USAVE(1,3)), (DTII(1), USAVE(1,1)), (DIJJ(1), BSAVE(1,2)), (USMPRM(1), LSW(1,1)), (USPRH(1), US(1,1)), (BETPRH(1), BETA(1,1)), 2 3 (SPPRM(1), SP(1,1)), (WCLUPM(1), WCLD(1,1)), (UHPRM(1),UH(1,1)), (APPPRM(1),APP(1,1)) LEVEL 2, USAPRH, USPRM, BETPRM, SPPRM CLCM LEVEL 2, WELCPM, USPRM, APPPHM, MSAVE CLCM CLCM LEVEL 2, DTII, DTJJ +CD SPECI8 DIMENSION A1(M2), AAA1(N7), BSAVE1(M2), PSI1(M2), LOCA1(N6), B(MG), BETA1(M2) 1 EQUIVALENCE (A1(1), A(1,1)), (AAA1(1), AAA(1,1)), 1 (BSAVE1(1), BSAVE(1,1)), (PSI1(1), PSI(1,1)), (B(1), wP(1)), (LCCA1(1), LCCA(1,1)), (BETA1(1), BETA(1,1)) 2 LEVEL 2, A1, AAA1, BSAVE1, PSI1, LOCA1, 8, BETA1 CLCM *CD SPEC19 CUMMEN/INMAIN/ UUTPUT(12), PRINT(12), TEXT(17), CATE(2), TIME(2), TDUMY(10), PHTOT, TTIME, ETIME, HIP(4), ZPT(4), 1 2 YP(MP), FP(MP), YG(MP), FG(MP), YH(MP), FH(MP), YO(MP),FO(MP),YY(MP),F1(MP),FHX(MP),YHX(MP), 3 HOUT, NHX, NOUT, NPCHAN, NPGAP, NPNEDE, NPRUD, NPLTCH, c PRINTN(10), NPLTGP, NSKPLT, NSKIPT, NSKIPX, MN, MR, MC+HG+MP+MX+HW+MY+ME+MZ+MK+MS+FA+M1+MT+HL+NP+ 6 7 NG, NQ, NH, ICKT, IM(MS), JM(MS), MAXT, NJUMP, INP(10), JMP(10), IB, IH, IG, IFINH, IFOUTH, K10, 8 NDT, NDTP1, KASE, NTRIES, ITSTEP, THX, THD, KNOFUC, JNOFLO +, HIN, TIN, GIN, ZZ, DXX *, END13, SIGNAL(18), H1, H2, H3, H4, H5, H6, H7, H8 PHINTC(MC), PRINTG(MG), PRINTR(MR), IPLTCH(MC), COMMON /LARGE2/ IPLTGP(MG), HEXIT(MC), ABAR(MC) *. EN014 IN FEGER PRINTC, PRINTG, PRINTN, PHINTR LOGICAL PRINT CLCM LEVEL 2, PRINTC *CD SPECZO DIMENSION SAVEA1(M1), SAVEA2(M1), SAVEA3(M1) CLCM LEVEL 2, SAVEA1, SAVEA2, SAVEA3

```
*CD SPEC21
      DIMENSION PHI(MC)
    .
       EQUIVALENCE(PHI(1), FSP(1))
CLCM LEVEL 2, PHI
*CO SPEC22
       DIMENSION F(MP), Y(MP)
+COHDECK SPEC23
CLCM LEVEL 2.SPC23,ISPC23,SPC24,ISPC24,SPC61,ISPC61
CLCM LEVEL 2.SPC72,ISPC72,SPC12,ISPC12,SPC20,ISPC20
+CD SPEC24
CLCH LEVEL 2,X,Y,Z
*CD SPEC25
CLCM LEVEL 2, VARS
*CD SPEC26
CLCH LEVEL 2, ISTORE, STORE, STORES, LOGICL
+CD SPEC27
                               . -
                                    • • •
CLCH LEVEL 2,A,B
LAST
```

APPENDIX E

(c)

PROGRAM GEOM

APPENDIX E

PROGRAM GEOM

Program GEOM automatically calculates, and makes card images of, COBRA input data for input card groups 4, 7, and 8, for hexagonal rod bundles. It can be used to generate:

- subchannel areas, wetted perimeters, heated perimeters and the subchannel connection logic required in Group 4;
- the gap direction angles input in Group 4 when the transverse momentum flux model is used;
- the relative wirewrap crossing information for the wire wrap model in Group 7;
- the initial wire wrap inventory for Group 7;
- the fuel rod diameter, radial power factor (if supplied) and rodto-channel connection data for Group 8;
- an option to calculate geometries that either include or omit the corner subchannels.

The input to this program consists of a maximum of eight data cards plus an optional rod power distribution. The subchannel and rod numbering scheme and by GEOM is demonstrated in Figure E-1.

There are two general input forms available to the user. Under the first option, the user specifies the subchannel area, wetted perimeter, and heated perimeter for typical internal, side and corner subchannels. Under the second option, the code calculates the areas and perimeters from the overall bundle geometry. A description of the GEOM input follows.

OPTION 1 - USER SPECIFIES AREA AND PERIMETER DATA

Card 1 (15,18A4)

This is a header card and contains a 1 in column 5 and an alpha-numeric title in columns 6 through 77.

Card 2 (3F5.3)

This card contains the area $(in.^2)$, wetted perimeter (in.) and heated perimeter (in.) of an interior subchannel.

Card 3 (3F5.3)

This card is the same as Card 2 but the information is for the side subchannel.

FIGURE E-1. Samples of GEOM Rod and Channel Numbering Scheme

E-2

Card 4 (3F5.3)

Same as the above but for a corner subchannel.

Card 5 (4(2F5.3))

This card contains the gap width (in.) and the centroid-to-centroid distance (in.) for

- 1. interior interior connections
- 2. interior side connections
- 3. side side connections
- 4. corner side connections

Card 6 (611)

This card contains six switches which specify the amount and form of the output from GEOM. The name, value, and function of each switch is shown below.

Name	Value	Function
IOUT(1)	.GT.0	Area and gap connection data for COBRA Group 4 are output.
IOUT(2)	.GT.O	Gap direction angles for COBRA Group 4 are output.
IOUT(3)	.GT.0	COBRA Group 7 wire wrap data are output.
IOUT(4)	.GT.0	Rod to channel connection data for Group 8 are out- put.
NPUN	.EQ.O	The output is to be on the line pringer and on logical Unit 9.
	.NE.L	The output is on the punch as well as the above.
IRODP	.NE.0	Individual relative rod powers for Group 8 are to be read sequentially from logical unit IRODP. The card reader is logical unit 5. Logical unit 9 is also available.

Card 7 (15, 2F5.3, 315, F5.3, 15)

This card specifies additional model geometry information consisting of

1. number of rods in the bundle;

2. nominal rod diameter (in.);

3. nominal value of the rod power factor;

E-3

- 4. the subchannel friction factor typing parameter. If the typing parameter is zero, then all subchannels are assigned zero as the subchannel type. If it is one, then interior subchannels are TYPE 1, edge subchannel TYPE 2, and corner subchannel TYPE 3. If it is 2, then the subchannels are typed via the information supplied in the optional eighth data card;
- 5. the wire wrap direction indicator. One represents clockwise wrapping and zero, counterclockwise wrapping;
- 6. wire wrap starting angle (degrees). This is an integer value and therefore only valued to the nearest degree. The angle is measured counterclockwise from zero as shown in Figure E-2;
- 7. the effective wire pitch fraction for forcing crossflow (δ in COBRA Group 7);
- 8. corner subchannel switch. If it is zero, then the corner subchannels are omitted; if it is one, they are included.

Card 8 (15, 4(215))

This card is needed only if the subchannel friction factor typing parameter of card 7 is 2. It contains the number of subchannel types to be specified and the minimum and maximum subchannel number for each type.

Card 9

A blank card is read as the last data card to terminate the GEOM run.

OPTION 2 - AREA AND PERIMETER DATA CALCULATED IN GEOM

Card 1

Same as card 1 under Option 1.

Card 2

This is a blank card and signifies that Option 2 is to be used.

Card 3 (5E5.3)

This card contains

- 1. the rod pitch (in.)
- 2. rod diameter (in.)
- 3. pitch to diameter ratio
- 4. flat-flat I.D. duct dimension
- 5. Rod Packing Factor. This variable is limited to the range from zero to one. If it is one, then assembly tolerances are applied uniformly and the peripheral and interior gaps have the same dimensions. If it is zero, then the tolerances are applied only to the peripheral gaps and the interior gaps are assumed to have a width defined as the rod pitch minus the rod diameter.

a) Wire wrap starting angle = 0° counterclockwise rotation

b) Wire wrap starting angle = 90° counterclockwise rotation*

- 90° ----- 270° 180° -----
- c) Wire wrap starting angle = 90° clockwise rotation*

d) Wire wrap starting angle convention

*NOTE: When a wrap is initially on a gap the initial wrap inventory is determined by moving the wrap completely into the channel toward which it is moving. Compare b and c above.

> FIGURE E-2. Definition of Wrap Starting Angle and Rotation Direction

Only two of the first three variables of card 3 are needed and any one may be omitted.

Card 4

Same as card 6 under Option 1.

Card 5

Same as card 7 under Option 1.

Card 6

Same as card 8 under Option 1.

Card 7

Blank terminator card.

Under either of the above input options, the rod power distribution for the COBRA Group 8 cards will be uniform, and will have the value specified on card 7 under Option 1. The power distribution can be modified by sequentially reading in the relative rod powers under a 12F5.3 format from the logical unit specified in card 6 from Option 1 or card 4 under Option 2. If the card reader is selected, these data are read immediately preceding the blank terminator card in the input deck.

APPENDIX F

COBRA VARIABLES DESCRIPTION

COBRA-IV-I VARIABLES DESCRIPTION

Variable (Dimension)	Condeck	Subroutine	Definition
A(M1.ME)	SPEC 3	AREA	Local succhannel area, ft ² (a)
AA(4), BB(4), CC(4)	SPEC 9	input	Coefficients for up to 4 turbulent friction factor correlations. (Group 2) ^(b)
AAA(MO,MG)	SPEC 2	COBRA	Crossflow coefficient matrix for the equation: [AAA]*{W} = {B}
AAAPRM (N7)	SPEC 17	DIVERT	Vector storage of AAA.
AAH (N7)	SPEC 14	SCHEME	Term used in solution of energy equation.
AAL(4), BBL(4), CCL(4)	SPEC 9	input	Coefficient for up to 4 laminar friction factor correlations. (Group 2)
ABAR (MC)	SPEC 19	XSCHEM	Exit density, lb/ft ³ .
ABETA, BBETA	SPEC 11	input	Mixing parameters used in calculating turbulent crossflow. (Group 10)
ACCEL1	SPEC 2	input	Acceleration factor used in explicit transient flow field solution. (Group 9)
ACCEL2	SPEC 2	input	Acceleration factor used in explicit transient flow field solution. (Group 9)
ACCELF	SPEC 2	input	External acceleration factor for axial flow. (Group 9)
ACCELY	SPEC 2	input	Internal acceleration factor for crossflow solution. (Group 9)
AC(MC)	SPEC 1	input	Subchannel area, in ² . (Group 4)
AF (7)	SPEC 10	input	Coefficients of NF th order polynomial function of two-phase friction multiplier versus quality. (Group 2)
AFACT (ML,MA)	SPEC 7	input	Relative subchannel area variation. (Group 5)
AFLUX	SPEC 2	DIFFER	Average heat flux, MBtu/hr-ft ² . (Group 11)
AH(4)	SPEC 10	input	Constants for heat transfer coefficient equation. (Group 2)
ALPHA (MC)	SPEC 2	VOID	Bulk void fraction in two-phase flow.
ANGLE (MG)	SPEC 2	input	Gap orientation angle, radians. (Group 4)
AN (MC)	SPEC 2	SETUP	Subchannel area, AC/144, ft ² .
AP2IDT	SPEC 2	XSCHEM	0.5 * AP2(I,J)/DT
AP(M1,ME)	SPEC 3	XSCHEM	Storage for channel heat input.
APP (M1,ME)	SPEC 14	DIFFER .	Average of the area at the current node J and at the previous node, J-1, ft ² .
ATOTAL	SPEC 2	SETUP	Summation of subchannel flow areas, ft ² .
AV(7)	SPEC 10	input	Single term slip ratio or coefficients of NV ^{IN} order polynomial function of the bulk void fraction versus quality. (Group 2)
AXIAL (MP)	SPEC 2	input	Relative axial power distribution. (Group 3)
AXL(ML)	SPEC 7	input	Relative axial location of subchannel area variations. (Group 5)
B(MG)	SPEC 14	DIVERT	Implicit crossflow forcing function; see AAA.
BB(4)	SPEC 9	input	See AA
BBETA	SPEC 11	input	See ABETA
BBL(4)	SPEC 9	input	See AAL
BETA(M1,ME)	SPEC 3	DIFFER	Crossflow momentum flux and resistance.

(a) The dimensions listed represent the units employed during code calculations. The input instructions should be consulted for variable dimensions during input.

(b) See input instructions under specified group for more information.

٢-١

Variable (Dimension)	Comdeck	Subroutine	Definition
BK(4)	SPEC 12	input	Coefficients for up to 3 rd order polynomial function of full thermal conductivity versus temperature. (Group 8)
BSAVE(M1,ME)	SPEC 4	XSCHEM	Not used.
BX(G)	SPEC 11	input	Tabulated β values for two-phase mixing versus quality. (Group 10)
CC(4)	SPEC 9	input	See AA
CCL(4)	SPEC 9	input	See AAL
CCHANL(M1,ME)	SPEC 5	CHF	Channel number in which minimum CHF ratio occurs for rod N at axial location J.
CCLAD(MT)	SPEC 12	input	Specific heat of cladding material, Btu/lb-°F. (Group 8)
CD(MC,MK)	SPEC 6	input	Loss coefficient across grid type N in Channel I. (Group 7)
CFUEL (MT)	SPEC 12	input	Specific neat of fuel material, Btu/lb-°F. (Group 8)
CHFR(MT,ME)	SPEC 5	CHF	Minimum CHF ratio for rod N facing Channel I.
CIJ(MG)	SPEC 14	DIFFER	Crossflow resistance.
ĊON (MC)	SPEC 2	PROP	Thermal conductivity of coolant based on enthalpy, Btu/sec-ft~ ^c F.
CP(MC)	SPEC 2	PROP	Specific heat of coolant based on enthalpy, Btu/lb-°F.
CPPOUT(MP)	SPEC 9	STEAM	Specific heat of superheated steam for steam property table, Btu/lb-°F.
D(MR)	SPEC 12	SETUP	Rod Diameter, DR/12, ft ² .
DATE(2)	SPEC 19	DOY	Today's date.
DATIN(N2)	SPEC 1	SETUP	Peripheral storage vector for input variables.
DC(MC)	SPEC 1	SETUP	Hydraulic diameter of subchannel, 4*AC/PW, in.
DFDX(MC)	SPEC 8	SCHEME	df/dx, mass flow rate derivative.
DFUEL(MT)	SPEC 12	input	Diameter of fuel pellet, ft. (Group 8)
DHDX (MC)	SPEC 8	SCHEME	dh/dx, enthalpy derivative.
DHYD(M1, ME)	SPEC 2	AREA	Local subchannel hydraulic diameter, ft.
DHYDN(MC)	SPEC 2	SETUP	Nominal hydraulic diameter, DC/12, ft.
DIA	SPEC 6	input	Diameter of rod including clad, ft. (Group 7)
DIST(MC,4)	SPEC 1	input	Centroid-to-centroid distance between subchannels, in. (Group 4)
DPDX (MC)	SPEC 8	DIFFER	dP/dx, pressure derivative.
DPK(MC)	SPEC 14	DIFFER	Losses due to the frictional pressure drop and pressure drop across grid spacers.
DPWP (MC)	SPEC 14	DIFFER	Momentum exchange due to turbulent mixing.
DR (MR)	SPEC 1	input	Rod diameter including clad, in. (Group 8)
DT	SPEC 2	SETUP	Nominal time step, sec.
DTGC	SPEC 2	COBRA	DT*GC
DTII(MG)	SPEC 17	DIVERT	Temporary storage of coefficients of w in equation (9). Only values for subchannel IK(K) are stored.

Variable (Dimension)	Comdeck	Subroutine	Definition
DTJJ(MG)	SPEC 17	DIVERT	Same as DTII but for subchannel JK(K).
DTMAX	SPEC 9	input	Maximum temperature difference for superheated steam table, °F. (Group 1)
DTU		DIVERT	In line function which gathers all the coefficients of Wj in equation (11).
DUR (MG)	SPEC 6	input	Effective fraction of wrap pitch for forcing crossflow. (Group 7)
DX	SPEC 2	SETUP	Axial node length, ft.
DX2	SPEC 2	SETUP .	DX*DX
DX41	SPEC 2	SETUP	0.25/DX
DXDT	SPEC 2	COBRA	DX*DT
DXGC	SPEC 2	SETUP	DX*GC
DXI	SPEC 2	SETUP	1/DX
DXIDT	SPEC 2	COBRA	DX/DT
ELEV	SPEC 2	SETUP	Gravity; cosine (THETA)
ETIME	SPEC 19	COBRA	Elapsed transient time, sec.
F(M1,ME)	SPEC 3	SCHEME	Local subchannel mass flow, lb/sec.
F(MP)	SPEC 22	CURVE	Array for dependent variable in CURVE
FCOUR	SPEC 2	input	Courant number, U*∠t/∆x. (Group 9)
FDIV(MG)	SPEC 6	FORCE	A forced diversion crossflow switch
			<pre>= 0, forced crossflow absent = 1, forced crossflow present</pre>
FDT	SPEC 2	input	Maximum time step, sec. (Group 9)
FERROR	SPEC 2	input	Flow convergence criterion. (Group 9).
FG(MP)	SPEC 19	input	Forcing function for change in inlet mass velocity or pressure drop at transient time Y. (Group 11)
FH(MP)	SPEC 19	input	Forcing function, fractional change in inlet enthalpy at transient time YH. (Group 11)
FHX(MP)	SPEC 19	input	Forcing function, fractional change in exit enthalpy at transient time YHX. (Group 11)
FINLET(MC)	SPEC 1	SETUP	Subchannel inlet flow, 1b/sec.
FLOW(MC)	SPEC 14	DIFFER	Sum of flow at J and J-1 axial levels
<pre>FLUX(M1,ME')</pre>	SPEC 5	HEAT	Local heat flux, Btu/sec-ft ² .
FLXX(MR)	SPEC 12	TEMP	Local heat flux, Btu/sec-ft ² .
FOLD(M1,ME)	SPEC 3	COBRA	Mass flow from the previous time step, lb/sec.
FP(MP)	SPEC 19	input	Forcing function for system pressure at transient times YP. (Group 11)
FQ(MP)	SPEC 19	input	Forcing function, fractional change in average heat flux at transient times YQ. (Group 11)
FSP(MC)	SPEC 2	· PROP	Friction factor
FTM	SPEC 11	input	Turbulent momentum fáctor. (Group 9)
FT(MP)	SPEC 19	input	Maximum permissible time step at transient time YT. (Group 9)
FXFLOW(MG,MX)	SPEC 6	input	Forced crossflow due to grid spacers. (Group 7)
GAP(M1,ME)	SPEC 4	SETUP	Local gap spacing between adjacent channels, ft.
GAPN(MG)	SPEC 7	SETUP	Gap spacing, GAPS/12, ft.
GAPS (MC,4)	SPEC 1	input	Gap spacing between adjacent subchannels, in. (Group 4)
GAPXL (ML)	SPEC 7	input	Relative axial locations of gap width variations.

F-3

Variable (Dimension)	Comdeck	Subroutine	Definition
GC	SPEC 2	COBRA	32.2 lbn-ft/lbf-sec ²
GFACT(ML,MS)	SPEC 7	input	Relative gap width variation. (Group 6)
GK	SPEC-11	input	Kg, geometry factor for conduction. (Group 10)
GRID	SPEC 6	SETUP	Grid spacer switch = .true. grids present = .false. grids absent
GRIDXL(MZ)	SPEC 6	input	Relative axial location of grid spacer. (Group 7)
H(ML,ME)	SPEC 3	SCHEME	Local subchannel enthalpy, Btu/lb
HEXIT (MC)	SPEC 19	COBRA	Enthalpy at the bundle exit, 8tu/1b
HF	SPEC 10	PROP	Saturated liquid enthalpy at the reference pressure, Btu/lb.
HFG	SPFC 10	PROP	Latent heat of vaporization at the reference pressure, (HG-HF), Btu/lb.
HFILM(MC)	SPEC 2	PRÔP	Heat transfer coefficient.
HG	SPEC 10	PROP	Saturated vapor enthalpy at the reference pressure, Btu/lb.
НGЛР (МТ)	SPEC 12	input .	Gap conductance between fuel and cladding, Btu/sec-ft ² -°F. (Group 8)
HGPT(MP)	SPEC 9	STEAM	Enthalpy of superheated steam for steam property table, Btu/lb.
HHF (MP)	SPEC 9	input	Enthalpy of liquid for fluid properties table, Btu/lb. (Group 1)
HHG(MP)	SPEC 9	input	Enthalpy of vapor for fluid properties table, Btu/lb. (Group 1)
HINLET(MC)	SPEC 1	SETUP	Subchannel inlet enthalpy, Btu/lb.
HIP(4)	SPEC 19	input	Maximum plot coordinates for the four types of plots; paired with ZPT(4). (Group 12)
HOLD(M1,ME)	SPEC 3	COBRA	Local enthalpy at previous time step, Btu/lb.
HOUT	SPEC 19	input	Enthalpy of upper plenum, Btu/lb. (Group 11)
HPERIM(MC)	SPEC 2	COBRA	Heated perimeter, PH/12, ft.
HSURF(M1,ME)	SPEC 5	HEAT	Average surface heat transfer coefficient surrounding rod, Btu/sec-ft ^{2_} °F.
12	SPEC 2	COBRA	Designates input device (read statements).
13	SPEC 2	COBRA	Designates output device (write statements).
18	SPEC 19	COBRÁ	<pre>1/0 device to which current variables are dumped at end of job (see explanation of Dump and Restart option)</pre>
IDAREA(MC)	SPEC 7	SETUP	Identification number for a subchannel that has area variations.
IDFUEL (MR)	SPEC 12	input	Rod type for property designation. (Group 8)
IDCAP(MG)	SPEC 7	SETUP	Identification number for gap that has gap variation
IDTGC	SPEC 2	COBRA	1/(DT*GC).
IDTYP(MR)	SPEC 12	input	Fuel shape, cylinder or plate.
IERROR	SPEC 2	COBRA	Error flag: = 0, no problem > 1, print error messages
IFDIV(MG)	SPEC 14	SCHEME	Temporary storage for printing wire wrap forced crossflow data.
IFINH	SPEC 19	SETUP	Inlet enthalpy flag if flow reverses. 0 - inlet enthalpy specified

:

<u>ب</u>

1 - inlet h floated (takes last exit value).

Variable (Dimension)	Comdeck	Subroutine	Definition
IFOUTH	SPEC 19	SETUP	Exit enthalpy flag defined like IFINH.
IFTYP(M1,ME)	SPEC 5	COBRA	Fuel type identifier.
IG	SPEC 19	input	<pre>Inlet mass velocity option. (Group 11, N2) = 0, GIN is inlet mass velocity for each </pre>
			<pre>channel = 1, GIN is average inlet mass velocity, but subchannel flows are split to give equal dp/dx = 2, individual subchannel flow fractions are read in</pre>
IGRID(MZ)	SPEC 6	input	Grid spacer type number.
IH	SPEC 19	input	<pre>Inlet enthalpy option. (Group 11, N1) = 0, HIN is inlet enthalpy = 1, HIN is inlet temperature = 2, the inlet enthalpy for each subchannel</pre>
IK(MG)	SPEC 2	SETUP	Identifies subchannels on opposite sides of a gap paired with JK.
IKW(MW)	SPEC 2	input	Identified subchannels on opposite sides of a wall paired with JKW.
ILOC(N8)	SPEC 14	SETUP	Singly dimensioned ILOCS.
ILOCS(MC'NAAHP1)	SPEC 2	SETUP	Array to identify gaps and walls connected to subchannel I.
IM(MS)	SPEC 19	SETUP	Identifies subchannels on opposite sides of a gap that has gap variations. Paired with JM.
IMP(10)	SPEC 19	RESULT	Dummy variable used in printout of crossflow information.
IPLTCH(MC)	SPEC 19	input	Identification numbers of channels for which information will be plotted. (Group 12)
IPLTGP(MG)	SPEC 19	input	Identification numbers of gaps for which information will be plotted. (Group 12)
IROLL	SPEC 2	input	Data storage option. (Group 9, N4) = 1, ROLL option employed
ISTAR(MG)	SPEC 14	DIFFER	Number of the donor channel for crossflow through gap K.
ISTEAM	SPEC 9	input	Superheated steam properties table flag;
	•		<pre>= 1, superheated properties calculated. (Group 1, 32)</pre>
ITERAT	SPEC 2	SCHEME	Loop counter for the external iteration loop in SCHEME.
ITRAP	SPEC 2	XSCHEM	Calculational switch in XSCHEM.
ITRY	SPEC 2	input	Maximum number of Gauss-Siedel iterations. SCHEME. (Group 9)
ITRYM	SPEC 2	input.	Minimum number of internal iterations, SCHEME. (Group 9).
ITSTEP	SPEC 19	input	Number of elements in variable maximum time step table. (Group 9, N5)
IZTYPE(MT, MY)	SPEC 12	input	Identification number of the fuel type in each fuel zone. (Group 8)
31	SPEC 2	input	Directs print-out of input data, (case control card) = 0, print only new data = 1, print entire input = 2, print only operating conditions

F-5
Variable (Dimension)	Comdeck	Subroutine	Definition
J2	SPEC 2	input	Subcooled void option. (Group 2, N1) = 0, no subcooled voids = 1, Levy subcooled void model
J3	SPEC 2	input	<pre>Option for bulk void correlation. (Group 2, N2) = 0, homogenous bulk void model = 1, modified Armand, bulk void model = 5, homogenous model with specified slip ratio = 6, bulk void fraction input as an Nth order polynomial function of quality</pre>
J4	SPEC 2	input.	Input data option for two-phase friction- multiplier, (group 2, %3) = 0, homogeneous model = 1, Armandsfriction multiplier = 5, friction multiplier input as an Nth order polynomial function of quality
J5	SPEC 11	input	Radial thermal conduction option. (Group 10, N3) = 0, conduction absent = 1, conduction present
J6	SPEC 6	input	Flags type of spacer design. (Group 7, Nl) = 1, wire wraps = 2, grid spacers = 3, both
JBOIL(MC)	SPEC 10	PROP	Indicates axial location of onset of sub- cooled boiling in Subchannel I.
JK(MG)	SPEC 2	SETUP	see IK
JKW(MW)	SPEC 2	SETUP	see IKW
JM(MS)	SPEC 19	SETUP	see IM
JMP(10)	SPEC 19	RESULT	see IMP
к10	SPEC 19	input	Determines the type of △P transient. (Group 11, N7) = 0, pressure drop is given in psi = 1, pressure drop transient is a fraction of the steady-state pressure drop
кт	SPEC 2	1npul	Numerical solution option. (Group 9, N3) = 0, implicit solution = 1, explicit solution; pressure boundary condition, running start = 2, explicit solution, pressure boundary condition, standing start
	· ·	·	 a explicit solution, inlet flow specified running start a explicit solution, inlet flow specified standing start
K12	SPEC 2	SETUP	Set to one if gap orientation angles are used.
KASE	SPEC 19	input	Case number, (case control card)
KCLAD(MT)	SPEC 12	input	Thermal conductivity of cladding material, Btu/sec-ft-°F. (Group 8)
KF	SPEC 10	PROP	Saturated liquid thermal conductivity at the reference pressure, Btu/sec-ft-°F.

Variable (Dimension)	Comdeck	Subroutine	Definition		
KFUEL(MT)	SPEC 12	input	Thermal conductivity of fuel material, Btu/sec-ft-°F. (Group 8)		
KIJ	SPEC 2	input	Crossflow resistance coefficient. (Group 9)		
ККҒ (МР)	SPEC 9	input	Thermal conductivity of liquid for fluid properties table, Stu/hr-ft-°F. (Group 1)		
KPOUT(MP)	SPEC 9	STEAM	Thermal conductivity of superheated steam for Steam Property Table, Btu/sec-ft-°F.		
LAMNF	SPEC 9	input	>1, flags laminar flow friction factor correlation. (Group 2)		
LC(MC,4)	SPEC 1	input	Adjacent subchannel number. LC(I,J) is the Jth subchannel adjacent to Subchannel I. (Group 4)		
LENGTH(MG)	SPEC 2	SETUP	Centroid to centroid distance, DIST/12, ft.		
LOCA1(N6)	SPEC 17	DIVERT	Equivalenced to the LOCA array.		
LOCA(NO,MG)	SPEC 2	SETUP	Gap geometry array LOCA contains up to NAAA gap numbers adjacent to gap K.		
LR(MR,6)	SPEC 12	input	Identification number of subchannel facing rod N. (Group 3)		
LUI	SPEC 2	COBRA	READ/WRITE device for ROLL option.		
/ LUO	SPEC 2	COBRA	READ/WRITE device for ROLL option.		
М1	SPEC 19	COBRA	SPECSET paramenter, computed in SPECSET, width of SAVEA1, SAVEA2, and SAVEA3 arrays.		
МА	SPEC 19	COBRA	SPECSET parameter, maximum number of sub- channels that can have area variations.		
MARK(M1,ME)	SPEC 14	DIVER	Forced gap identifiers.		
MAXT	SPEC 19	input	Maximum execution time on the computer.		
MC	SPEC 19	COBRA	SPECSET parameter, maximum number of subchannels.		
MCHFRC (MX)	SPEC 13	CHF	Number of the subchannel in which the minimum CHF ratio occurs.		
ME	SPEC 19	COBRA	SPECSET parameter, set to 3 for storage on peripherals (see explanation of ROLL option), otherwise equal to MX.		
MG	SPEC 19	COBRA	SPECSET parameter, maximum number of gaps.		
МК	SPEC 19	COBRA	SPECSET parameter, maximum number of grid spacer types.		
MĽ.	SPEC 19	COBRA	SPECSET parameter, maximum number of axial locations for gap and area variations.		
MN	SPEC 19	COBRA	SPECSET parameter, number of fuel collocation points plus three.		
MODE(M1,ME)	SPEC 5	HCOOL	Identifies heat transfer mode.		
MP	SPEC 19	COBRA	SPECSET parameter, maximum number of cards in Steam Property Table.		
MR	SPEC 19	COBRA	SPECSET parameter, maximum number of rods.		
MS	SPEC 19	COBRA	SPECSET parameter, maximum number of gaps that can have gap spacing variations.		
MT	SPEC 19	COBRA	SPECSET parameter, maximum number of fuel types.		
MW .	SPEC 19	COBRA	SPECSET parameter, maximum number of wall		
мх	SPEC 19	COBRA	SPECSET parameter, maximum number of axial nodes plus one.		

F-7

Variable (Dimension)	Comdeck	Subroutine	Definition
MY	SPEC 19	COBRA	SPECSET parameter, maximum number of axial fuel type divisions.
MZ	SPEC 19	COBRA	SPECSET parameter, maximum number of axial locations for grid spacers.
NAAA	SPEC 2	COBRA	Maximum width of the AAA matrix, (five for hexagonal, seven for square arrays).
NAAAP1	SPEC 2	COBRA	NAAA + 1
NAAH	SPEC 2	COBRA	Maximum number of connections to a channel plus one.
NAAHP1	SPEC 2	COBRA	NAAH + 1
NAFACT	SPEC 7	input	Total number of subchannel area variations. (Group 5, N1)
NARAMP	SPEC 7	input	Number of iterations for inserting area variations. (Group 5, N3)
NAX	SPĒC 2	input	Number of elements in axial heat flux table. (Group 3, N1)
NAXL	SPEC 7	input	Number of axial positions for subchannel area variations. (Group 5, N2)
NBBC	SPEC 11	input.	Two-phase mixing option. (Group 10, N2) < 2, same as subcooled > 2, 3 is a function of quality.
NC.	SPEC 12	input	Fuel collocation option. (Group 8, N3) = 0, no fuel model = 2, second order collocation = 3, third order collocation.
NCHANL	SPEC 2	input	Number of subchannels. (Group 4, N2)
NCHF	SPEC 13	input	Input data option for CHF correlation. (Group 8, N5), = 0, no CHF calculations = 1, B&W-2 CHF correlation = 2, W-3 CHF correlation.
NCHFX	SPEC 13	COBRA	Selects the critical heat flux correlation on basis of system pressure for the RELAP4 boiling heat transfer correlations package.
NCH(MA)	SPEC 7	SETUP	Subchannel number in which area variation occurs.
NDT	SPEC 19	input	Number of time steps for transient. (Group 9)
NDTP1	SPEC 19	COBRA	Number of time steps plus one.
NDX	SPEC 2	input	Number of axial nodes. (Group 9)
NDXP1	SPEC 2	SETUP	Number of axial nodes plus one.
NF	SPEC. 10	input	Number of coefficients of polynomial function expressing bulk void fraction; see AF.
NG	SPEC 19	input	Number of elements in mass velocity transient table (see YG, FG). (Group 11, N5)
NGAP(MS)	SPEC 7	SETUP	Gap number in which gap width variation occurs.
NGAPS	SPEC 7	input	Total number of gaps for which gap variations occur. (Group 6, N1)
NGRID	SPEC 6	input	Number of grid spacers. (Group 7, N3)

Variable (Dimension)	Comdeck	Subroutine	Definition
NGRIDT	SPEC 6	input	Number of grid spacer types. (Group 7, N4)
NGTYPE	SPEC 6	FORCE	Grid type number.
NGXL	SPEC 7	input	Maximum number of axial positions for gap variations. (Group 6, N2)
NHTC	SPEC 2	input	Heat transfer correlation option. (Group 8, N7) = 0, correlations based on subcooled flow = 1, RELAP boiling flow correlation package
ИНХ	SPEC 19	input	Number of elements in exit enthalpy transient table (see FHX, YHX). (Group 11, N8)
NJUMP	SPEC 19	RESTRT	Flag for restart option. = 0, no restart = 1, problem is restarted
NK	SPEC 2	SETUP	Number of gap connections.
NOUT	SPEC 19	input	Output option. (Group 12, N1) = 0, subchannels only = 1, subchannels and gaps = 2, subchannels and rods = 3, all three
NP	SPEC 19	input	Number of elements in pressure transient tables, (see YP, FP). (Group 11, N3)
NPCHAN	SPEC 19	input:	Output option, number of channels to be printed (if zero, print all). (Group 12, N2)
NPGAP	SPEC 19	input	Output option, number of gaps for which infor- mation will be printed. (Group 12, N5)
NPLTCH	SPEC 19	input	Output option, number of channels for which information will be plotted. (Group 12, N7)
NPLTGP	SPEC 19	input	Output option, number of gaps for which infor- mation will be plotted. (Group 12, N8)
NPNODE	SPEC 19	input	Output option, radial nodes for which fuel temperatures will be printed (minimum = 3, (maximum = 7), or (NPNODE = 0). (Group 12, N4)
NPROD	SPEC 19	input	Output option, number of rods for which infor- mation will be printed. (Group 12, N3)
NPROP	SPEC 19	input	Number of cards in Steam Properties Table. (Group 1, N1)
NQ	SPEC 19	input	Number of elements in power transient table (see YG, FG). (Group 11, N6)
NQAX	SPEC 12	input	<pre>Input option for variable thermal conduc- tivity of fuel and axial conduction. (Group 8, N6), = 0, no added options = 1, variable conductivity = 2, axial conduction = 3, variable conductivity and axial conduction</pre>
NRAMP	SPEC 6	input	Number of iterations to insert the affect of grids or wires. (Group 7, N5)
NROD	SPEC 2	input	Number of rods. (Group 8, N2)
NRODTP	SPEC 12	imput	Axially varying fuel zone flag. (Group 8, N8) = 0, no axially varying zones > 0. axial zones present

<u>Variable (Dimension)</u>	Condeck	Subroutine	Definition
NSCBC	SPEC 11	input	Subcooled mixing option, (Group 10, N1) = 0, β = W/SG = a = 1, W/GS - a(Re)b = 2, W/GD - a(Re) ^b = 3, W/GS - (S/ZIJ) a(Re) ^b
NSKIPT	SPEC 19	input	Output option. Print every NSKIRT time steps. (Group 9, N1)
NSKIPX	SPEC 19	input	Output option. Print every NSKIPX axial nodes. (Group 9, Nl)
NSKPLT	SPEC 19	input	Output option. Plot every NSKPLT time steps. (Group 12, N6)
NTRIES	SPEC 19	input	External iteration limit for implicit solution. (Group 9)
NTRYX	SPEC 2	input	Iteration limit for explicit flow field solution. (Group 9)
NTRYY	SPEC 2	input	Iteration limit for explicit energy solution. (Group 9)
NTYPE (MC)	SPEC 9	input	Flag for channel type for friction factor
NV	SPEC 10	input	Number of coefficients of polynomial function expressing two-phase friction multiplier; see AV.
NVISCW	SPEC 9	input .	Option for wall viscosity correction to friction factor. (Group 2, N4) = 0, no correction = 1. correction used
NWK	SPEC 2	input	Number of wall connections. (Group 4, N4)
NWR	SPEC 2	COBRA	Maximum number of connections to a channel (thermal + flow).
NWRAP (MC)	SPEC 2	input	Initial wrap inventory for each subchannel.
NZONE (MT)	SPEC 12	input	Number of fuel zones.
OUTPUT(12)	SPEC 19	RESULT	Array used to print output.
P(M1,ME)	SPEC 3	SCHEME	Relative pressure at axial location J in subchannel I, lb/ft2.
PERIM(MC)	SPEC 2	COBRA	Wetted perimeter, PW/12, ft.
PEXIT	SPEC 2	input	System operating pressure, psia. (Group 11)
PH(MC)	SPEC 1	input	Subchannel heated perimeter. in. (Group 4)
PHI(MC)	SPEC 21	VOID	Two-phase friction pressure gradient multiplier.
PHI(MR,6)	SPEC 12	input	Fraction of the heated perimeter of rod N facing subchannel I. (Group 8)
PHTOT	SPEC 19	SETUP	Total heated perimeter, ft.
PI	SPEC 2	COBRA	Constant π , PI = 355./113
PIN	SPEC 2	COBRA	Pressure drop (psi) for pressure boundary condition.
PITCH	SPEC ⁶	input	Pitch length of wire wrap, ft. (Group 7)
POUT	SPEC 2	XSCEM	Exit pressure, lb/ft ² .
POWER	SPEC 2	COBRA	Value of FQ at appropriate transient time.
PP(MP)	SPEC 9	input	Pressure array in the fluid property table, psia. (Group 1)
PREF	SPEC 10	input	System reference pressure, psia. (Group 11)

F-10

Variable (Dimension)	Comdeck	Subroutine	Definition
PREFOL	SPEC 9	COBRA	Reference pressure from previous time step.
PRINT(12)	SPEC 19	SETUP	Logical variable directs output of selected input data groups.
PRINTC(MC)	SPEC 19	input	Identification numbers of subchannels for which information will be printed. (Group 12)
PRINTG(MG)	SPEC 19	input	Identification numbers of gaps for which crossflow information will be printed. (Group 12)
PRINTN(10)	SPEC 19	SETUP	Array for radial fuel node printing.
PRINTR(MR)	SPEC 19	input	Identification numbers of rods for which infor- mation will be printed
PSI(M1,ME)	SPEC 4	XSCHEM	Lateral resistance coefficient storage array.
PW(MC)	SPEC 1	input	Subchannel wetted perimeter, in. (Group 4)
QAX	SPEC 2	HEAT	Local axial power factor, obtained by inter- polation at (X-DX/2) from relative axial heat flux table.
QCRIT	SPEC 9	CHFCOR	Critical heat flux calculated using RELAP4 heat transfer correlation package for boiling flow.
QPRIM(MC)	SPEC 2	HEAT	Heat input to channel based on PHI and surface heat flux, Btu/sec-ft.
QUAL (MC)	SPEC 2	VOID	Local equilbrium quality based on enthalpy, (h - h _f)/h _{fa} .
RADIAL (ME.)	SPEC 12	input	Radial power factor of rod N. (Group 8)
RCLAD(MT)	SPEC 12	input	Density of clad material, 1b/ft ³ . (Group 8)
RFUEL (MT)	SPEC 12	input	Density of fuel material, lb/ft ³ . (Group 8)
RHOBAR(M1,ME)	SPEC 3	XSCHEM	Axial resistance coefficient storage.
RHOF	SPEC 10	PROP	Saturated liquid density at the reference pressure, 1/vf, 1b/ft ³ .
RHOG .	SPEC 10	PROP	Saturatcd vapor density at the reference pressure, 1/vg, 1b/ft ³ .
RHOLCP(MW)	SPEC 2	DIFFER	Total wall heat capacity, Btu/ft ² -°F. (Group 4)
RHO(M1,ME)	SPEC 3	SCHEME	Density, 1b/ft ³ .
RHOOLD(M1,ME)	SPEC 3	COBRA	Density from the previous time step.
RWALL(2,MW)	SPEC 2	DIFFER	Wall thermal resistance, ft ² -sec-°F/Btu. (Group 4)
SAVEA1 (M1)	SPEC 14	SETUP	Dummy array that stores the variables for the J - 1 level (see explanation of ROLL option).
SAVEA2(M1)	SPEC 14	SETUP	Dummy array that stores the variables for the J level in the ROLL
SAVEA3(M1)	SPEC 14	SETUP	Dummy array that stores the variables for the J + 1 level in the ROLL.
SAVEAL (M2)	SPEC 2	SETUP	Equivalenced variable for peripheral storage of axially dimensioned variables.
SAVRES(M1)	SPEC 14	SETUP	Equivalenced to SAVEA2 and SAVEA3.
SIGMA	SPEC 10	PROP	Surface tension of saturated liquid at the reference pressure, lb _f /ft.
SIGNAL(18)	SPEC 19	SETUP	Alphanumeric variable that names the sub- routine in which a program-detected error occurs.

Variable (Dimension)	Comdeck	Subroutine	Definition
SL	SPEC 2	input	Transverse momentum parameter. (Group 9)
SLDT	SPEC 2	COBRA	SL/DT
SLDT2	SPEC 2	COBRA	SL/DT/DT
SLDX	SPEC 2	SETUP	SL*DX
SLDXDT	SPEC 2	SETUP	(SL/DX)*0.5/DT
SLDXI	SPEC 2	SETUP	SL/DX
SLGC	SPEC 2	SETUP	SL*GC
SLGDX	SPEC 2	SETUP	(SL/CX)*GC
SLGDX2	SPEC 2	SETUP	SLGD%/DX
SP(M1,ME)	SPEC 14	SCHEME	Cumulative interchannel pressure difference.
SSIGMA(MP)	SPEC 9	input	Liquid surface tension for fluic property table, lb _f /ft. (Group 1)
STUW(M1,ME)	SPEC 3	XSCHEM	Calculation term in XSCHEM.
STWJM1 (MC)	SPEC 16	XSCHEM	Intermediate calculation in XSCHEM.
STWJ(MC)	SPEC 16	XSCHEM	Intermediate calculation in XSCHEM.
SUML (MC)	SPEC 16	XSCHEM	Intermediate calculational variable in XSCHEM.
SUMR (MC)	SPEC 16	XSCHEM	Intermediate calculational variable in XSCHEM.
SUMX (MC)	SPEC 16	XSCHEM	Intermediate calculational variable in XSCHEM
SURFH(MC)	SPEC 2	HËAT	Surface heat transfer coefficient, Btu/sec-ft ² -°F.
T (MC)	SPEC 2	PROP	Coolant temperature based on enthalpy, °F.
TCLAD(MT)	SPEC 12	input	Cladding thickness, ft. (Group 8)
TDUMY(10)	SPEC 19	RESULT	Output array of rod temperatures.
TERM1 (MC)	SPEC 14	DIFFER	Temporary storage of the pressure loss coefficients K in equation (11).
TERM2(MC)	SPEC 14	DIFFER	Temporary storage of $v'_i/A_i/A'$ of equation (11).
TEXT(17)	SPEC 19	SETUP	Alphanumeric array; case title (case control card)
TF	SPEC 10	PROP	Saturated liquid temperature at the reference pressure, °F.
TFLUID	SPEC 12	HEAT	Average temperature of fluid surrounding rod.
ТНЕТА	SPEC 2	input	Orientation of subchannel, degrees. (Group 9) = C°, vertical
THICK	SPEC 6	input	Diameter of wire wrap, ft. (Group 7)
TIME(2)	SPEC 19	TODS	Clock time.
TINLET(MC)	SPEC 1	SETUP	Subchannel inlet coolant temperature, °F.
T(MC)	SPEC 2	PROP	Coolant temperature based on enthalpy, °F.
TMH(MC)	SPEC 2	HEAT	Correction to coolant temperature for fluid conduction heat transfer, °F.
TOLDR(MN,MR)	SPEC 12	HEAT	Previous iteration rod temperatures for the axial conduction, °F.
TPOUT (MP)	SPEC 9	STEAM	Temperature of superheated steam for steam property table, °F.
TREF	SPEC 12	input	Reference termperature for variable conduc- tivity of fuel, °F. (Group 8)
TRF(M1,ME)	SPEC 4	XSCHEM	Equivalenced to SP, and calculated variable in XSCHEM
TROD(MN,N4,ME)	SPEC 5	HEAT	Fuel temperature of rod N, at fuel node M, at axial location J, °F.
TTIME	SPEC 19	input	Total transient time, sec. (Group 9)
			F-12

+-12

Variable (Dimension)	Comdeck	Subroutine	Definition		
TT (MP)	SPEC 9	input	Temperature for fluid properties table, °F.		
TWALL(M1,ME)	SPEC 4	PROP ·	Temperature of the wall, °F.		
TWOLD(M1,ME)	SPEC 4	COBRA	TWALL from previous time step, °F.		
UB(M1,ME)	SPEC 3	SCHEME	Local velocity of coolant, ft/sec.		
UF	SPEC 10	PROP	Saturated liquid viscosity at the reference pressure, lb/ft-sec.		
UH(MC)	SPEC 2	VOID	Effective enthalpy transport velocity, ft/sec.		
UPOUT(MP)	SÉPC 9	STEAM	Viscosity of superheated steam for steam property table, 1b/ft-sec.		
US(M1,ME)	SPEC 14	DIVERT	Axial velocity transported by crossflow through Gap K, ft/sec.		
USPRM(MG)	SPEC 17	DIVERT	Vector storage of US array.		
USW(M1,ME)	SPEC 14	DIVERT	u*w of equation (12).		
USWPRM(MG)	SPEC 17	DIVERT	Vector storage of USW array.		
UUF(MP)	SPEC 9	input	Viscosity of liquid for fluid property table, lb/ft-hr. (Group 1)		
UWALL(2,MW)	SPEC 2	DIFFER	Total wall resistance including surface coefficient, Btu/sec-ft ² -°F. (Group 4)		
UWCP(2,MW)	SPEC ²	DIFFER	UWALL/heat capacity of coolant, lb/sec-ft ² . (Group 4)		
V(MC)	SPEC 2	PROP	Liquid specific volume based on enthalpy, ft ³ /lb.		
VF .	SPEC 10	PROP	Saturated liquid specific volume at the reference pressure, ft ³ /1b.		
VFG	SPEC 10	PROP	Difference of saturated vapor and liquid specific volumes at the reference pressure (VG-VF), ft ³ /lb.		
VG.	SPEC 10	PROP	Saturated vapor specific volume at the reference pressure, $ft^3/1b$.		
VISC(MC)	SPEC 2	PROP	Viscosity of the coolant, based on enthalpy, lb/ft-sec.		
VISCW(MC)	SPEC 2	PROP	Wall viscosity correction to friction factor, lb/ft-sec.		
VPA(MC)	SPEC 2	SCHEME	Two-phase specific volume divided by the subchannel area at the previous node, ft/lb.		
VP(MC)	SPEC 2	VOID	Two-phase specific volume for momentum, ft ³ /1b.		
VPOUT (MP)	SPEC 9	STEAM	Specific volume of superheated steam for Steam Property Table, ft ³ /1b.		
VVF(MP)	SPEC 9	input	Specific volume of liquid for fluid properties table, ft ³ /lb.		
VVG(MP)	SPEC 9	input	Specific volume of vapor for fluid properties table, ft ³ /lb.		
W(M1,MÉ)	SPEC 4	DIVERT	Crossflow, lb/ft-sec.		
WBAR (MX)	SPEC 6	DIVERT	Average crossflow at any axial level, lb/ft-sec.		
WERRX	SPEC 2	input	External crossflow convergence criterion for implicit solution. (Group 9)		
WERRY	SPEC 2	input	Internal crossflow convergence criterion for implicit solution (Group 9)		

2

F-13

Variable (Dimension)	Comdeck	Subroutine	Definition
WIDTH(MW)	SPEC 2	input	Width of wall connection. (Group 4)
WOLD(M1,ME)	SPEC 4	COBRA	Crossflow from previous time step, lb/ft-sec.
WP(MC)	SPEC 2	DIFFER	Turbulent crossflow, lb/ft-sec.
WPRM(M2)	SPEC. 17	DIVERT	Vector storage of the W array.
X(MX)	SPEC 2	SETUP	Axial distance from inlet, ft.
XCROSS(MG,2)	SPEC 6	input	Relative angle/360° of wire wrap gap crossing.
XQUAL (MP)	SPEC 11	input	Tabulated quality for two-phase mixing, paired with BX. (Group 10)
XZERR	SPEC 2	input	Convergence criterion for explicit flow field solution. (Group 9)
Y(MP)	SPEC 2	input	Relative axial location for axial heat flux table. See AXIAL, (Group 3).
Y (MP)	SPEC 22	CURVE .	Independent variable array in CURVE.
YG(14P)	SPEC 19	input	Time axis for mass velocity forcing function, paired with FG. (Group 11)
YH(MP)	SPEC 19	input	Time axis for enthalpy forcing function, paired with FP. (Group 11)
YHX (MP)	SPEC 19	input	Time axis for exit enthalpy forcing function. (Group 11)
YP (MP)	SPEC 19	input	Time axis for pressure forcing function paired with FP. (Group 11)
YQ(MP)	SPEC 19	input .	Time axis for power forcing function, paired with FQ. (Group 11)
YT(MP)	SPEC 19	input	Time axis for changing maximum time step function, paired with FT. (Group 9)
YZERR	SPEC 2	input	Convergence criterion for explicit energy solution. (Group 9)
Z.	SPEC 2	input	Total axial length, in. (Group 9)
ZEND(MT,MY)	SPEC 12	input	Axial location of end of a fuel zone. (Group 8)
ZPT(4)	SPEC 19	input	Minimum plot coordinates for the four types of plots, paired with HIP(4). (Group 12)

1/*****

APPENDIX G

SAMPLE PROBLEMS

. . . .

APPENDIX G

SAMPLE PROBLEMS

7-PIN WIRE-WRAPPED BUNDLE

To illustrate the use of GEOM and to provide a benchmark for the forced flow mixing problem, a 7-pin wire-wrapped problem is included. The geometry is shown in Figure G-1. This 7-pin bundle has 0.23-inch diameter fuel pins on a 0.286-inch pitch (0.056-inch gap spacing). The wire wraps are assumed to start at the top and move clockwise with one rotation every 12 inches. The bundle is 36 inches long to allow flow though three pitch lengths. Uniform radial and axial power is assumed with a heat flux of 0.5 x 10⁶ Btu/hr ft². The inlet temperature is 800°F and the mass flux is 3.0×10^6 lb/hr ft².

7-PIN WIRE-WRAPPED BUNDLE SAMPLE PROBLEM INPUT

1 GECM SETUP FCH 7 PIN SAMPLE PROBLEM 0146.3613.3613 0222.6759.3613 0090.2740.120 056 .056 .056 .056 1 11 7 .230 1. 1 60 .06

. 1 .	-7=PIN	WIRE WRAP S	AMPLE PROBLE	n -	
1 3	0		0.0 7.03 7%		45 43 012 3 8
16E=6 550	• •0100 • •0180	1 1000000 ₀ 0	00 303010 00 319 44	2212,90 .8591	44.60 .01219
400-5 600	0182	E 100000.	00 335.01	2220.50 .8038	43.79 .012
.0012 650	0184	2 409870.0	00 350 49	2227 60 7558	42,98 ,01181
3.E-3 700	.0185	6 178120.0	00 365.88	2234.10 .7138	42.18 .01162
.0067 750	.0187	0 83102.0	00 381,19	2240.20 .6767	41,39 .01143
.0139 800	0188	5 41266.	396.43	2245,80 .6437	40,62 ,01124
.0241 840	0189	7 24533.	408.58	5544 40 .9146	40.00 .01109
10404 BB0	0190	9 15040.	420.69	2253.90 .5980	39,39 .01094
.0655 920	0192	4519.	432.77	2257.60 .5778	
.0826 940	• • 0192	7 7645	458.80		
1035 980	0193	13 , D100.	444 (0)	2301 80 5504	17 G1 -01054
15311000	0104		430.03		\$7.61 .01048
.19591020		2 3782.	462.87	2256.10 5338	37.42 .01040
23951040	0195	9 2798.	465.88	2267.60 5259	37.03 .01033
.29141060	0196	5 2326.	474 88	2269.20 5183	36,74 ,01025
352610A0	.0197	1 1944.	480.88	2270,80 ,51.10	36.46 .01018
42451100	.0197	8 1632.	485,28	2272.30 .5004	36,03 _01006
.50871120	. 0198	S 1376.	492.87	2273.80 .4970	35,89 ,01002
.60681140	. 0199	1 1156.	498,87	2275,20 .4904	35.41 .00995
.72061160	.0199	8 992	504+86	2276,70 .4540	35.55 .00987
.85211180	0500	5 847.5	5 510,00	22/8,20 ,4778	10 10 00013
1.0031200	• •0201 • 0201	1 /2014	4 - 310405 2 - 544 AK	-5219+00 · +4/17	34,70 .00972 11 43 .00914
4.2281400	0208	2 189.1	576.95		32.11 .00896
7.7571500		9 107.4	607.21	2301.10 .3995	30.84 .00858
13.401600	0215	7 64.6	53 637.70	2308.50	29.61 .00819
14.781619	.0216	5 59.3	34 643.40	2310.20 .1779	29,38 .00812
124 22145	.0238	8 8,52	810.92	2351.70 .3094	23.64 .00612
2	j . O	0	-	•	
,316 -,25		31625	,316 -,25	.316	
3 3	2				
0 1	1.	- 1 .			
4 17	2 12	_	9	· · ·	:
	18	770 0	9 04	1	
14		*CJA * *A1	30	·	
.0	r r			•	
36.					
36			•		
10 0) 0	0			
.02	-				
11	L 0				
60.	•	800.	3, ,5		
-1 ^{.5}	1 °'3				
1 7 12					

7-PIN WIRE-WRAPPED BUNDLE SAMPLE PROBLEM RESULTS

N9

•0

• ()

, 0

ωÚ

œ ()

ŧû.

.1

•0

• 0

INPUT FOR CASE

T-PIN HIRE HRAP SAMPLE PROBLEM

CATE 04/21/76 0 TIME 12.43.54 1

SUMMAR	Y CF	INPUT	OP11	ONS					
GROUP	N1	54	N 3	. N4	15	Ná	N7	N8	N
1	30	●0 ¹	•0	•0	• 0	• 0	-0	•0	• 0
5	Û	0	Õ	=0	` ₩ 0	• 0	- 0	÷0	= 0
3	2	, 0	⇒Q	•0	⇒0	• 0	-0	÷0	• 0
4	12	12	= Q	• 0	9	= 0	•0	e 0	= 0
7	1	18	= 0	2	= 0	9	• 0	• 0	• 0
8	7	7	#U	ψÛ	= 0	•0	• 0	9 0	. 9
9	⇔()	= 0	# 0	# 0	• 0	• Û	- Q	e O	e O
1 Ú	ð	Û	0	• Ŭ	# 0	•0	• ()	• 0	۹Û

1

<u>م</u>

FLUID PROPERTY TABLE

11 12

ρ	ľ	VF	∀ G	HF	FG	VISC.	KF	SIGMA
,0	500,00	.01801#	*****	303,76	2204,80	,92350	45,43000	.01238
, Ó	550,00	.018014	******	319.44	2212.90	85910	44.00000	01219
· • 0	BUU.00	.018284	*******	315.01	2220.50	.80380	43.79000	01200
. 0	550,00	.018424	09870.00000	350.49	2227,60	.75580	42,98000	.01181
. 0	700.00	.018561	78120.00000	365.88	2234.10	.71360	42.18000	.01162
. 0	750.00	.01870	83102.00000	381.19	2240,20	.67670	41.59000	01143
• 0	b00,00	.01885	41266.00000	396.43	2245.80	.64370	40.62000	.01124
.0	540.00	.01897	24533.00000	408.58	2249.90	.61980	40.00000	.01109
.0	640.00	.01909	15060.00000	420.09	2253.90	59800	39.39000	01094
•]	\$20.00°	01921	9519.00000	412.77	2257.60	.57760	38,79000	.01078
• 1	440.00	.01927	7645.00000	438.80	2259.30	.56830	38,50000	01071
• [400.00	.01933	6100.00000	444.03	2201.10	. 55720	50 CUUUU	01065
• 1	980.00	01940	5026.00000	450.85	5545.80	.55040	37,91000	.01056
• 2	1000.60	01946	4111.00000	456.86	2264.40	.54190	37.61000	.01048
• 5	1020.00	.01952	3392.00000	462.87	2266.10	.53380	37.42000	.01Û40
• 5	1040.00	01959	2798.00000	468.88	2267.60	.52590	37.03000	.01033
3 ه	1060.00	.01965	2326.00000	474.88	2598.50	.51830	36.74000	.01025
.4	1080.00	01971	1944.00000	480,88	2270.80	.51100	36,46000	.01018
. 4	1100.00	•01978	1632.00000	486.88	2272.30	.50040	36.03000	.01006
• 5	1150.00	.01985	1376.00000	492.87	2275.80	.49700	15.89000	.01002
. 6	1140.00	.01991	1166.00000	498.87	2275.20	.49040	35,61000	,00995
۰7	1160.00	• 01998	992.00000	504,86	2276.70	.48400	35, 33000	,00987
. 9	1180.00	02005	847.50000	510.86	2278.20	.47780	\$5,05000	,00979
1.0	1500.00	.02011	726,90000	516,85	2279.60	.47170	34.78000	,00972
5.1	1300.00	•02046	356,30000	546,85	2280.70	•44 420	33.42000	.00934
4,2	1400.00	.02085	189,10000	576.95	5543°40	.45040	32,11000	00896
7.8	1500.00	.02119	107,40000	607.21	2301.10	.39950	30,84000	,00858
13.4	1600.00	.02157	64.63000	637.70	2308.50	.38110	29,61000	.00819
14.8	1619.00	.02165	59,34000	643.40	2310.20	.37790	29.38000	.00815
124.2	2145.00	.02388	8.52200	810.92	2351.70	.30940	23.64000	.00612

FRICTION FACTOR CORRELATION CHANNEL TYPE 1 PRICT # _316+RE++(+,250) + +,0000 CHANNEL TYPE 2 FRICT a .316+RE++(...250) + ...0000 CHANNEL TYPE 3 FRICT # .316+RE++(+.250) + +.0000 -316+HE++(-250) + -.0000 CHANNEL TYPE 4 FRICT # WALL VISCOCITY CORRECTION TO FRICTION FACTOR IS NOT INCLUDED SINGLE PHASE HEAT THANSFER CORRELATION HFILM = K/D(.023+RE++(.800)+PR++(.400) + 0.000) THU-PHASE FLOW CORRELATIONS NO SUBCOOLED VOID CORRELATION HOMOGENEOUS HELK VOID MODEL HOROGENEOUS FOREL FRICTION MULTIPLIER HEAT FLUX DISTRIBUTION X/L RELATIVE FLUX ရ ရ 0.000 1.000 1.000 1,000 SUBCHANNEL INPUT DATA CHANNEL TYPE AREA NETTED HEATED HYDRAUL IC (ADJACENT CHANNEL NO., SPACING, CENTROLD DISTANCE) NQ. (SU-IN) PERIM. PERIM. DIAMETER (IN)(1) (IN) .014600 .361300 .361300 .161639 1 1. £ 3, 055, 000) (8, 1056, 0,000) (0000, 000) = 000) (000, 0.000) .014600 2 1 .361300 .J=:300 .161539 (4, ,056, -,000)(9, ,056, -,000)(-0, +,000, -,000)(-0, -,000, -,000) .014600 3 1 .361300 .301300 .161639 (5, 056, + 000) (10, 056, + 000) (+0, + 000, + 000) (+0, + 000, + 1000) a .014600 3613C0 .361300 .161639 5 .361300 .161639 (6, .056, -.000)(11, .056, -.000)(-0, -.000, -.000)(-0, -.000, -.000) .014600 . 361300 -5613C0 6 .014600 .301300 .151639 (8, 056, 000)(12, 050, 000)(00, 000, 000)(00, 000)(00, 000) 7 .031200 , 249900 . 441300 .131382 8 031200 .949900 401300 .131382 9 949900 481300 .031200 .131382 10 .031200 949900 .481300 .131382 (12, .056, .000)(.00, .000, .000)(.00, .000)(.000, .000)(.000)(.000, .000)11 .031200 .949900 .401300 .131382 949900 (+0,-,000,-,000)(-0,-,000,-,000)(+0,-,000,-,000)(-0,-.000,-.000) 12 1 .031200 .481500 .131382 WIRE WRAP SPACER DATA FUR FORCED DIVERSION CROSSFLOW MIXING

÷ 1

WRAP PITCH ■ 12.0 INCHES WRAP THICKNESS # .0500 INCHES

WRAP	CRC	19 5 I N	IG D	ATA	•						
G 4	1P	308	CHĄ	NNE	L /	4]X]NG			RELAT	IVE	LOCATIC
NE	۱.	PAI	A N	G,	P	ARAMET	ER		OF WR	AP C	RUSSING
. 1	Ĺ	(1		2 j -		.0600		.2500	, de	,750	0
ż	2	()		6)		.0000		.5840		084	0
3	3	(i		7)		.0600		.9170		417	Ó
4	4	(ž		3)				.4170		.917	0
9	ċ	(2		8)		,0600		.0840	,	584	0
t	2	()	1.	43		.0600		.5840		084	0
1	7	(3	5	9)		.0600		.2500	•	,750	0
8	3	(4		5)		,0600	ı –	.7500	10	250	0
ç)	t 4	1 1	0)		.0600	•	4170	•	1917	0
10)	1 5		6)		.0600		.9170		417	0
11	L	(5	i, 1	1)		0600		.5840		.084	0
12	2	(6	. 1	2)		.0600		7500	÷	250	0
8 4	5	1 7		8)		.0600		.2500	e ()	.000	0
14	1	(7	. 1	5)		0600		.0840	æ 0	000	0 .
19	5	0 8	0	9)		.0600		4170	æ ()	000	0
10)	(9	0 1	0)		.060ü		5840	• 0	.000	Ò
17	1	ζ 1ό	, 1	1)		060C		7500	9 0	000	0
18	ļ	(11	. 1	2)		.0606		4170	e ()	ĴUÚO	ù
INITI	AL	WRAP	IN	VEN	TORY	FOR E	ACH	SULCHA	NNEL	•	
0	1	0	-	1	0	1	1	Ô.	´ o ¯	0	
1	2	-		*		-	-	7		-	

ROD INPUT DATA FRACTION OF POWER TO ADJACENT CHANNELS (ADJ. CHANNEL NO.) RUD TYPE DIA RADIAL PUNER (IN) FACTOR NU, NÜ. ,1667(4) ,1067(5) ,1667(3) 1 1 \$300 1.0000 ,1657(1) .1667(2) ,1607(6) 3333(12) =0,0000(=0) =0,0000(=0) ,3333(7) 2 \$2300 1,0000 1 .1667(1) .1667(ė) 3 "S200 1.0000 ,1667(1) .16671 2) 3333(7) _3333(8) #0.0000(=0) #0.0000(=0) 3333(9) ∞0.0000(∞0) ∞0.0000(∞0) 4 .5300 1.0000 \$1067(2) ,3535(8) 1 .1667(3) .3355(10) .0000(.0) .0000(.0) 5 .2300 1667(3) 4) ,3335(9) 1 1,0000 .1667(.3333(11) -0.0000(-0) -0.0000(-0) .1667(5) 6 .2300 1.0000 .1007(4) 33335(10) 1 .3333(12) -0.0000(+0) +0.0000(-0) 33335(11) 7 ,2300 .1007(5) ,1667(C) 1.0000 1

INFULLI OULUTION WITH INLET FLOWS SPECIFIED

CALCULATION PARAMETERS Lateral Resistance factor (S/L) parameter Turbulent Momentum Factor	5000 5000	CHANNEL LENGTH Number of Axial Nudes	36,0000 INCHES 36
CHANNEL CHIENTATION ROLL OPTION (0 - NC ROLL)	•0.0000 DEGREES 0	TOTAL TRANSIENT TIME NUMBER OF TIME STEPS NOMINAL TIME STEP	++++++++ SECCNUS
DATA FOR IMPLICIT SDLUTION			· ·

EXTERNAL ITERATION LIMIT	20
INTERNAL ITERATION LIMIT	36
CONVERGENCE FACTORS	21
EXTERNAL (DW/W)	. 1000
INTERNAL (DW/W)	0010
FLOW COFZEN	.0100

MIXING CCHRELATIONS. Subcooled Mixing, beta # .0200 Boiling Mixing, beta 19 Assume as subcoolec

OPERATING CUNDITIONS

1

SYSTEM PRESSURE	6	60.0	PSIA	•
INLET ENTHALPY	8	396 84	BTUZLB	
AVG. MASS VELCCITY		3,000	MILLION	LU/(HRASGFT)
INLET TEMPERATURE		800.0	OLĜREES	F
AVG. HEAT FLUX	6	.500000	MILLION	BTU/ (HR=SGFT)
UNIFORM INLET TEN	PER	ATURE		
UNIFORM THIFT MAS	9 W	EL DETTY		

MINIMUM INTERNAL ITERATIONS	5
FRACTION DUNOR CELL USTAR	.0000
ACCELERATION FACTORS	· · ·
CRESSFLOW SOLUTION	1.6000
LATERAL CELTAPP	.8000
FLOW	1.0000

FORCE POINT SUMMARY

JX			G A	PS F	CRCE	DAT	JX
3	\$	2	5	6	11	14	. v
5		1	7	8	12	13	
7		3	4	9	10	1.5	
9.		2	5	6	1.1	16	
11	-#	1	7	8	12	17	
13	*	3	4	9	10	18	
15	*	· 2	5	6	11	14	
17	* .	1	7	8	12	13	
19	÷	3	4	9	10	15	
51	*	2	5	h,	11	16	
23	n	. 1	7	8	12	17	
25		3	4	9	10	18	
27	4	2	5	6	11	14	
29	¢	1	7	8	12	13	
31		3	4	9	10	.15	
33	₿·	2	5	6	11	16	
35	†	1	7	ß	12	17	

 $^{\pm i}$

DATA FROM ITERATIVE SOLUTION

TERATION	TOTAL INTERNAL	LAST NO	DE DUT	MAXIPUP	ERROR		
NO I	ITERATIONS	OF CONVE	RGENCE	INTERNAL	EXTERNAL	FLOW	ENTHALPY
5 . A		H	F			·	
1	1251	37	37	211,6830	,9994	.3360	.0176
2	931	37	37	404.6058	2,9988	2175	0232
3	848	· 37	37	22.0061	9087	1323	.0050
4	905	37	37	1119,4201	.4867	.0753	,0012
5 '	864	37	37	228,0563	.4647	0453	0011
6	827	37	37	42.3220	.3015	0237	.0011
· ۲	752	37	37	. 3540	2143	0154	.0007
8	651	37	16	.1339	.1119	.0123	.0004
Q	576	Û.	0	.071 <i>î</i>	.0664	0093	,0003
10	429	0	0.	,0496	0477	0089	0002

DATE 04/21/76 TIME 12.44.11 0

1

ι.

MASS	BAL	ANC	CE =						ENERGY	PALANCE .	•	
	MAS	35 F	FLOW	TA	•	. 14	905E401 L	HISEC	F	LOW ENERGY	ก้าก	.59088E+03 810/8EC
	MAS	18 F	FL (IN	ci	. T	. 1	49056+01	8/SEC	•	ENERGY ACC	FD	-17554E+03 ATH/SEC
	MAS	88 F	FE diw	FL		27	7325-10 11	BISEC		INH ENERGY		.766515403 ATU/SEC
,	:		-	.		50 4 1			ENE	RGY ERROR		.800455=01 BIN/SEC
CHAN	EL	EN1	I HALI	Pγ	TEMPER	RATURE	DENSITY	EQUIL	V010	FLOW	MASS FLUX	
(40,	.) ((01)	/LH)	(DEG	(F)	(L8/FT3)	GUALITY	FRACTION	(LB/SEC)	(MLB/FR#FT	2)
1	L	51	17.79	5	1202	99	49,70	0,000	0.000	.0675	2.3772	
ĩ	2	51	15.39	9	1195	11	49,75	0,000	0.000	0907	3.2222	
!	5	5	17,6	4	1202	53	49.70	0.000	0.000	0673	2,3890	
6	ų	51	19.1	4	1207	55	49.66	6.000	0.000	0912	3,2392	
ç	5	52	20.19	9	1211	15	49.03	0.000	0.000	.0698	2,4786	
(6	51	18.5	7	1205	74	49.68	0,000	0.000	0907	3.2217	
7	1	51	11.29	9	1181	43	49.86	0,000	0.000	.1880	3.1242	
ŧ	3	51	11.00	3	1150.	57	49.87	C.000	0.000	1857	3.0862	•
ç	7	51	12.21	6	1184,	68	49.84	0.000	0.000	1807	1520.2	
11)	51	14.1	3	1190	91	49.79	0.000	0.000	1565	2.5999	
1 5		51	14.1	2.	1190	89	49.79	U.000 .	0.000	1382	2,2955	
17	2	51	12.7	8	1166	17	49.83	0.000	0.000	.1641	2,7264	·

G--8

CHANNEL RESULTS

UATE 04/21/76 0 TIME. 12.44.11 1

CASE 1 TOPIN WIRE WRAP SAMPLE PRUBLEP

BUNDLE AVERAGED RESULTS

CISTANCE	OELTAPP	ENTHALPY	TEMPERATURE	DENSITY	EGUIL,	VOID	FLOW	MASS FLUX	VELCCITY	AREA
(19.)	(PSI)	(810768)	(DEG=F)	(LB/CUPFT)	QUALITY	FRACTION	(LB/SEC)	(ML8/HR=F12)	(FT/SEC)	(SG=IN)
0.0	11.0919	374.13	200.00	53.03	0.000	0.000	1,4905	3.0000	15.7083	.25750
1.0	10.7709	399.70	810.78	52,96	0.000	0.000	1.4905	3,0000	15,7353	.25756
2.0	10.4570	402.98	821.55	52.87	0.000	0.000	1.4905	3,0000	15.7622	25750
3.0	16.15-6	405.25	632.33	52.78	0.000	0.000	1.4905	5.0000	15.7891	.25756
4.0	9, 8159	409.52	845.11	52.69	0.000	0.000	1,4905	3.0000	15.8161	25756
5.0	9.5315	412.80	853.92	52.60	0.000	0.000	1.4905	3.0000	15.8451	.25750
6.0	9.21+9	410.07	864.74	52.51	0.000	0.000	1,4905	3.0000	15.8701	.25756
7.0	P. 9136	419.34	875.55	52.42	0.000	0.000	1,4905	3.0000	15.6471	25756
A . A	8,5991	422.62	8H6 38	52.33	0.000	0.000	1.4905	3.0000	15,9242	25756
9.0	8.29.62	425,49	897.22	52.24	0.000	0.000	1.4905	3.0000	15.9512	.25756
19.0	7 9423	429.10	906.06	52.15	0,000	0,000	1.4905	3.0000	15.9784	.25/50
11.9	7.6794	432.44	918.90	52.07	0,000	0.000	1.4905	3.0000	16.0054	.25756
12.3	7.3562	435.71	929,75	51.98	0.000	0.000	1,4905	3.0000	10.0326	.25756
1500	1.0634	439.98	940.61	51,89	0.000	0.000	1,4905	3,0000	16.0596	.25756
14.0	6.7564	442.26	951.46	51.80	0,000	0.000	1.4905	3.0000	16.0874	.25750
15.0	6.4476	445,53	962,32	51.71	0.000	0.000	1,4905	3.0000	16.1150	.25756
10.0	0.1341	448.60	975.19	51.61	0.000	0.000	1,4905	3,0000	10.1459	.25756
17.0	5.8.509	452.07	984.07	51.52	0.000	0,000	1,4905	3.0000	16.1758	2575 0
18.0	5.5177	455.35	994.46	51,43	0.000	0.000	1.4905	3.0000	16.2039	,25758
1400	5.2149	. 455.62	1005.05	51.34	0.000	0.000	1.4905	3,0000	16.2311	.25756
50.0	4.9018	461.89	1016.74	51.25	0.000	0.000	1,4905	3.0000	10,2595 -	.25750
51.0	4 5 9 A 7	465.16	1027.63	51.16	0.000	0.000	1.4905	3.0000	16,2685	.25750
22.0	4.2858	468.44	1058.52	51.07	0.000	0.000	1,4905	3.0000	16.3190	,2575a
r. So O	3.9827	471.71	1049.45	50,97	0.000	0.000	1,4905	3.0000	16.3482	.25750
24.0	3,6712	474,98	1060.34	50,89	0,000	0,000	1,4905	3.0000	16.3750	,25750
25.0	3,3090	478,26	1071.26	50,80	0.000	0.000	1.4905	3.0000	10.4035	.25756
26.0	3,0582	481.53	1082.17	50.71	0.000	0.000	1.4905	-3.0000	16.4321	.25756
27.0	2.7564	484.80	1093,08	50,62	0.000	0,000	1.4905	3.0000	16.4627	.25756
28.0	2.4452	488.08	1103,99	50.52	0.000	0.000	1.4905	3.0000	16.4447	.25750
29.0	2.1438	491.35	1114,92	50.43	0.000	0 <u>+</u> 0 Ú 0	1,4905	3.0000	16.5255	.25750
50.0	1.8320	494,62	1125,84	50.33	0.000	0.000	1,4905	3.0000	10.5558	.25750
51.0	1.5310	497.90	1136,75	50.25	0.000	0.000	1,4905	3.0000	16.5844	.25756
32.0	1.2192	501,17	1147.67	50.16	0.000	0.000	1,4905	3.0000	10.6140	.25750
55.0	,9175	504.44	1158.60	50:06	0.000	0.000	1.4905	3.0000	16.6455	.25750
54.0		507.71	1169,52	49,97	0,000	0.000	1.4905	3.0000	16.6771	.25750
35.0	.3053	510,99	1180.43	49,88.	0.000	0,000	1,4905	3,0000	16.7077	25756
30.U	0,0000	514,26	1191,36	49,79	0.000	0.000	1.4905	3.0000	16.7373	.25750

÷!

. .

CHANDRA	÷ Vestu te									
CASE	1 7-PI	N HIRE WRAP	SAMPLE PROB	LEM				DATE 04/2	1/76 0 TI	4E 12,44.11
TIME =	0.00000 SEC	DNDS PHE	SSLHE = 60	.U PSIA	DĂTA	FOR CHANNE	L 1			
DISTANCE	E DELTA+P	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VOID	FLQM	MASS FLUX	VELOCITY	AHEA
(IN.)	(PSI)	(BIU/L8)	(DEG+F)	(L8/CU+FT)	DUAL JTY	FRACTION	(184860)	(MŪ\$/H8=F12)	(FT/8EC)	(SG-1N)
0.0	11.0813	396.43	- AUO,CO	53,05	0.000	0.000	.0845	3.0000	15,7083	.01460
1.0	10,9024	\$00,52	813,47	52.94	0.000	0.000	.0835	2 .9660	15.5637	.01460
5.0	10.4486	404.57	826,79	. 52,63	0.000	0.000	.0703	3.0039	15.7957	.01214
5.0	10.0520	408.92	841.13	52.71	0.000	0.000	.0703	3,0045	15.8348	.01214
4.0	9,8299	412.83	· 654.03	52,60	0.000	0.000	.0850	3.0195	15,9466	.01460
5.0	9,4597	416.21	865,21	52.51	0.000	0.000	.0890	3.1601	10.7181	.01400
6.0	6*502	419.00	874.41	52.43	0.000	0.000	.0702	2,4989	15,8883	.01214
7.0	8.8170	422.10	884.68	52.34	0.000	0.000	.0593	2,9013	15.7148	01214
8.0	8.5966	424,45	892,45	52,28	0.000	0.000	.0841	2.9868	15.2692	.01460
9.0	5,3751	427.05	901.07	52.21	0.000	0.000	.0351	3.0211	16.0731	.01460
10,0	7,9798	430.98	914.07	52,10	0.000	0.000	0703	3.0040	16.0150	.01214
11.0	7.7492	435.09	927,70	51.99	0.000	0.000	.0669	2.8567	15.2020	• 61214
12.0	7,3694	439,26	941.53	51,88	0.000	0.000	,0859	3.40511	16.3356	.01400
15.0	7.1646	442.78	953,21	51,79	0.000	0.000	.0856	3.0408	10,3105	.01460
14.0	6.7410	446,61	945,95	51,68	0.000	0.000	.0720	3.0752	16,5297	.01214
15.0	6.3368	450,73	979,59	51,55	0.000	0.000	.0727	3.1036	10.7237	.01214
16.0	6.1284	454.11	990.87	51,46	0.000	0.00.0	.0876	3,1105	16.7905	.01460
17.0	5,7599	457.09	1090./5	51,38	0.000	0.000	.0913	3,2401	17.5168	.01460
18.0	5,5085	459.46	1006.96	51,32	0.000	0.000	.0150	3,0756	16.6475	.01214
19.0	5.1181	195.20	1017,76	51,25	0.000	0.000 .		3.0214	16.3775	.01214
20.0	4.4002	454.24	1024,56	51,19	0.000	0.000	.0852	3,0261	16,4218	.01460
21.0	4.6800	456.70	1032,75	51,11	0.000	0.000	.0858	3,0460	10.5539	.01460
55.0	4.2850	470.56	1045.61	51.00	0.000	0.000	.,0710	3,0316	16,5109	.01 <i>2</i> 14
57.0	4.0552	474.60	1059.08	50,90	N.000	0.000	.0476	. 2,8659	15.7501	.V1∠14
24.0	3.6767	478 71	1072.76	50.79	0.000	0.000	.0868	3;0803	16.8460	.01460
25.0	3.4746	482.18	2084.34	50.70	0.000	0,000	.0865	3.0722	10.8330	•0146U
50.0	3,0511	485.98	1047.00	5ú,58	0,000	0.000	.0728	3,1098.	17.0776	.01214
51.0	2.6449	490.05	1110.59	50,46	0.000	0.000	.0735	3,1405	17.2875	.01214
24.0	2.4415	493.41	1121.79	50,36	000.0	0.000	.0885	3,1409	17.3231	.01460
29.0	2.0734	446.36	1131,64	50,29	000 <u>0</u>	0.000	.0919	3.2644	18.0315	.01466
30.0	1,8250	498.75	1139.61	50,23	0.000	0.000 -	.0724	3.0945	17,1131	•01ë14
51.0	1,4350	501,50	1148.78	50.15	0,000	0.000	.0710	3_0306	16,7869	01214
32.0	1,2203	503,56	1155,45	50.09	0.000	0.000	.0652	3.0254	16,7795	.01400
53.0	1.0019	506.02	1165.87	50.02	0.000	0.000	.0856	3,0405	16.8860	,0146Ú
34.0	.6018	509.89	1176.75	49.90	0,000	0.000	.0710	3,0329	10,8822	.01214
35.0	.3050	513,92	1190,21	49.80	0.000	0.000	.0591	2,9495	10.4524	.01214
\$6.0	0.000	517.75	1505.68	49.70	0.000	0.000	.0675	2,8836	10.1167	.01214

ŗ.

CHANNEL RESULTS CASE £ 7-PIN WIRE WRAP BAMPLE PROBLEM DATE 04/81/76 0 TIME 18.44.11 1 60.0 PSIA TIME . O.OOOOO SECONDS PRESSURE a DATA FOR CHANNEL 1 DELTAP FLOW MASS FLUX VELCCITY ANEA DISTANCE ENTHALPY TEMPERATURE CENSITY EGUIL. VCID (IN_) (PSI) (BTU/LH) (DEG=F) (LB/CU=FT) QUALITY FRACTION (LB/SEC) (HLB/HR+FT2) (FI/SEC) (SU-JN) 396.43 800.00 15,7083 .02874 11.0850 53.05 0.000 0.000 .1663 3.0000 0.0 10,9085 399.27 809.36 52.97 1578 2,8472 14,9303 .02674 0,000 0.000 1.0 819,46 10.4492 402.34 52,89 0,000 0.000 1458 2,8758 15.1048 .02027 2,0 10,0415 . 405,66 830,39 52.80 0,000 0,000 .1453 2.8662 15.0801 .02027 3.0 841.63 2.7699 14.5994 4.0 9.0306 409.07 52,70 0.000 0.000 .1535 .02674 5.0 2.6796 15.2034 9,4268 412.28 852,22 52,61 0.000 0.000 .1596 .02674 0.000 0.000 2.0772 15.2117 6.0 9,2110 414.98 861.12 52,54 .1732 +03150 869.82 3.0029 15,8980 8 8513 417.01 7.0 52.47 0.000 0.000 .18ú7 . U \$120 8,5950 876.31 1835 3.0489 16,1636 8.0 420.18 52.40 0.000 0.000 .03120 422.92 887,39 52.32 .1840 3.0572 16.2306 9.0 8.3345 0.000 0.000 .03120 426.15 895,08 1890 3,1402 10.6993 10.0 7.9872 52,23 0.000 0.000 .03120 429.33 908.60 0.000 1847 3.0665 16.3447 7.7748 52.15 0,000 .03120 11.0 920,61 10,4590 12.0 7.3683 433.02 52,05 0.000 0.000 .1710 3.0841 .02674 15.7015 7,1647 436,85 933,52 0.000 1628 2.9363 .02874 51,95 0,000 11.0 6.7421 440.67 946.19 51.84 0,000 0.000 .1470 2.9113 15,5984 .02627 14.0 15,5457 444.71 959 . 60 1467 2.8954 .02027 6.3407 51.74 0,000 0.000 15.0 6,1281 448.43 971,96 51.62 0.000 1551 2,7979 15.0554 .02874 16.0 0.000 15.6438 0.000 2:9015 17.0 5.7236 451.84 981.29 51,52 0,000 .1608 .02074 992.19 .1733 2,8769 15.5434 .03120 10.01 5.5113 454.51 51.45 0.000 0.000 2,0014 16,1722 1000.87 51,38 .1800 .03120 19.0 5.1526 457.12 01000 0.000 4.8976 459.63 1069.21 51.31 .1814 3.0147 16.3195 .03120 20.0 0.000 0.000 16,3237 4.6382 462.34 1018.25 51.24 0.000 .1812 3,0113 .03120 0.000 21.0 3.0871 16.7661 4.2920 465.57 1028,98 51.15 0.000 0.000 .1858 .03150 22.0 1039,59 3.0142 16,4011 468.76 .1814 .03120 4.0810 51.05 0.000 0.000 53.0 16,5518 3,0361 24.0 3,6758 472,48 1052,00 50,95 0,000 0.000 .1683 .02674 2,8975 15.8274 50.85 .16.06 .02874 25.0 3.4744 476.34 1004.26 0.000 0.000 480.18 1077.67 \$ \$ 462 5.8838 15.7830 .02627 26.0 3.0521 50.75 0.000 0.000 2.6794 15,7959 1459 .02527 2.6494 484.22 1091.15 50.64 0.000 21.0 0.000 487.91 1103.44 50,53 .1544 2,7857 15,3153 .02874 2.4411 0.000 58.0 0.000 1114.72 .1604 2,8929 15.9362 .02074 491.29 50.42 0.000 50.0 2.0364 0.000 493,91 1123,48 0.000 11727 2,8690 15,8276 .03180 1.8277 50.35 0.000 30.0 16.4702 2.9816 1.4698 496.49 1132.06 50.29 .1794 .03150 \$1.0 0.000 0.000 3,0096 16.6457 .03120 1.2175 498.94 1140.24 50,22 0.000 0.000 .1811 32.0 10.6845 3,0119 .9587 501.63 1149.20 .1813 .03120 53.0 50.14 0.000 0.000 1159.88 3,1017 17.2140 504.82 0.000 .1867 .03120 \$4.0 .6067 50.05 0.000 3,1174 17,3338 35.0 .3036 508,04 1170.59 49.96 0.000 0.000 .1876 .03150 3.1242 17,4036 .1880 .03120 0.0000 511.29 1181.43 49.86 0.000 0.000 36.0 .

; · ·

ÇASE	1 7•P1	N WIRE WRAP	SAMPLE PROB	LEM				DATE 04/	1/76 O TI	ME 12.44.1	1 1
TIME #	0.00000 SEC	UNDS PRE	536HE # 60	•0 P 8IA	DATA	FOR CHANNE	ų 13				
DISTANCE	DELTAPP	ENTHALPY	TEPPERATURE	DENSITY	EGUIL.	VOID	FLOW	MASS FLLX	VELCCITY	AREA	
(14,)	(184)	(61U/L8)	(DEG=F)	(LB/CU=FT)	QUALITY	FRACTION	(L873EC)	(MCB/HH=EIS)	(FT/SEC)	(8G-IA)	
Q . 0	11.0778	196.43	800,00	53.05	0.000	0.000	.1520	5.0000	15,7083	.02021	
1.0	10,5192	399.52	810,18	52.96	0.000	0.000	1523	\$.0041	15.7550	.02627	
5.0	10,4485	405*93	820,42	52,88	0,000	0.000	,1581	2.8521	14.4823	.02874	·
3,0	10,0429	405.66	830,38	52,80	0,000	0,000	•1e34	2,9477	15.5091	.02874	
4.0	9,8283	408.57	839,32	52.72	0.000	0.000	.1769	5.9388	15,4842	03120	
5.0	9.4686	411.03	845.08	52,65	0,000	0.000	.1626	3.0553	16.1202	. 63120	
6.0	9,2112	413,71	856,94	52,57	0.000	0,000	.1860	3,0912	10.5526	.03120	
7.0	8,9503	416,51	866,18	52,50	0.000	0.000	.1859	3.0890	16,1450	.03120	
8.0	8,0027	419.76	876,94	52.41	0,000	0.000	.1903	3,1617	16,7578	.03120	
9.0	8,3911	422.94	887,46	52,32	0.000	0.000	,1855	3,0819	16,3616	.05120	
10.0	7.9839	426.61	844.61	52,22	0.000	0.000	.1714	3,0450	10.4467	.02874	
11+0	7.7806	430.42	912,23	52.12	0.000	0.000	,1:630	2,9403	15,6706	.02074	
14.0	7.3570	434,22	454.65	52.02	0.000	0.000	.1477	2.4157	15.5545	.02021	
13,0	0,7565	450.25	A28 1A	21.91	0.000	0.000	.14D0	2.0400	13,2005	.02021	
14.0	0./444	441.40	950.49	51.01	0.000	0.000	1556	2.1460	13,0000	02674	
13.0	0,3407	447,30	AC1 10	51.72	0.000	0.000	1 0 U V	6 4 9 0 C C	1212000	02074	
10.0	0,12/0	440.04	970,00	31.03	0.000	0.000	1700	2 0103	13,4040	+U31CU	
17.0	5.7071	450,04	779,21	51.53	D 000	0.000	48877	2 4 70 7 7 7 0 1 1 1	10,1100	• U 3 1 2 0	
10 0	242130	,433 614	401 01	21047	0.000	0.000	8 1 1 1 1 1 A 11 1 1	3 0134	10,2021	.03120	
1410	7.2343	433,04	440,01	51+41	0.000	0.000	•1c[3	3 8 4 1 2 0	10 . 2103	• U 3 1 2 U	
20.0	4 50 KG	434.03	100/860	21133	0.000	0.000	* 100£	340741	10.7440	• U 3 1 4 U	
21+0	4.0404	40 <u>6</u> ,66	111/ 03	51.60	0.000	0.000	1201	3,0203	10,4030	603140 603140	
21 0	4.6709	403.73	800087 80008	51014	0.000	0.000	1414	3 9 1 5 1 7	10,0703	+V2014 ()2870	
20 0	9.0000 1	467,10	1042.70	50 03		0.000	1471	2 0014	10,0749	4VCD14	
	3,0030	177 61	1022 10	20476	0.000	0.000	•1418 1048	5 4 7 V 1 G	1290500	8VE061	
26 0	J46567 1 Amaj	477404	1004 20		0,000	0.000	1661	2 8021	1210334	406067 (2x7)	
27 0	2 6405	1131 60 101036	1001.00	20016	0.000	0.000	4442	2 9080	1563430	80E074 02876	
28.0	2 6309	484697		5050£ 60.6/	0,000	0.000	1776	2.4AUU	15,4521	02074	
29.0	2 0851	440 AQ	1110 03	50,04	C 000	0.000	1864	2 6070	14 1942	03120	
40.0	1 8100	107 15	1118 25	50147 6A 30	6 000	0.000	1423	\$ 0287	16 6947	63120	
31.0	1.5721	495.01	1127 21	50.37	0,000	0.000	1824	. J. 6337	16.7456	.03120	
52.0	1,2271	494.01	1117 88	50,32	0.000	0.000	.1479	- 3.1007	17,2650	-04120	
11 0	4 6 6 7 8 1 11 8 8 1	501 40	1148 UÅ	50464 60 15	0.000	0,000	1 H U 1	3,1682		44120	
34.0		565.09	1160 77	50 115	0.000	0,000	1711	3.0868	17.1340	.02824	
15.0	8000E	5036V7	1171 41	40.01	0,000	0.000	1672	1.0166	14.7865	8V6974 . 62874	
35.0	0 0000	543 74	1186 17	47173 //0 A7	0.000	0 000	1 A U 1	3.0103		106074 "b2674	
2010	V 6 V C U V		1100411	5 V 6 V 2	0.000	04000	11041	F 1 0 0 0	*******	1VEU14	

 \mathbf{r}^{t}

\$

DIVERSION CROSSFLOW BETWEEN ADJACENT CHANNELS, W(I,J), (LB/SEC-FT).

CASE 1 7-PIN WIRE ARAP SAMPLE PROBLEM

DATE 04/21/76 0 TIME 12.44.11 1

TIME = 0.00000 SECONDS

2

•			•								
AXIAL	205E	K(1, 2)	*(1, b)	HC . 1/ 7)	W(20 3)	W(2, 8)	WC 3, 4)	H(5, 9)	h(4, 5)	W(40 80)	n(5, 6)
0.0 =	1.0	. .0759	.04533	•,02625	.04140	.00617	.03774	.00160	.01805	.01740	• • • • • • • • • • • • • • • • • • • •
1.0 -	2,0	.44709	51054	•,07839	•,00063	.21379	•,21126	.38340	- C1786	•,37037	.41451
2.0 -	3.0	.26613	• • 20103	06467	.04212	.21967	.18588	.26720	.09015	28739	.31042
🛥 0 ه قر	4.0	.21099	• • 46955	.08518	.24681	•13551	•.20241	.21467	- 51535	.18943	004575
4.0 -	5,0	.21502	- 34789	08537	,08895	.12284	-13019	.21873	• • 19539	.10685	·15640
5.0 -	6.0	•20512	■ . 07567	20102	,21561	.11377	,19369	, 1895 4	. 2540€	.21579	•.21111
6.0 =	7,0	.37058	• 15559	• •20444	.21702	011844	.04296	16815	• • 17192	.21721	■.140/8
7.0 🖷	P0	+08587	.20859	- 47190	.51740	•.20050	.21746	.12498	.18445	,19971	🖷 🔒 式 G G C O
8.0 =	9.0	.16275	•18524	, ,35958	.38216	• • 20446	.21888	,12174	e03544	.17699	●•1/668
9.0 •	10.0	P.20966	, 25598	.13071	.02884	47514	,52269	⇒ •50035	.21870	.12732	■10€00
10.0 -	11.0	-,18551	17255	05435	.16541	- 36125	,38559	. 20343	.22005	.12430	.057.2
11.0 -	15°0	₽。25523	* °19931	.21304	9,20998	.13224	08980	• • 47448	.52431	⇒ °50005	.51669
15°n -	13.0	≈ a17175	⊳ .(3685	.21207	e,18628	05585	.16477	e 55974	, 38663	e.2u394	• C ∈ Ū ∪ Ü
13.0 -	14.0	.18662	►•51 <u>8</u> 11	19520	• . 25464	.21385	• \$1069	.13560	.09035	• 47432	• b c 4 c 4
14.0 -	15.0	.03825	e 022ú15	.17391	e.17049	.21272	• • 18798	.05883	.16442	■, 35946	.38673
15.0 -	16.0	.21720	₹ ₀52375	a12726	.18640	.19550	* °522°	•21432	• . 21154	•13278	.04071
16.0 -	17.0	.21872	-,38645	•15283	03799	.17322	. 17234	.51365	• • 19076	.059Ub	1639A
17.0 -	18.0	,52402	** 09109	P.20196	ą 21749	<u>12882</u>	18564	.19664	₹a25867	.21501	21157
18.0 -	19.0	.38602	0.10487	⊳ ,20594	.21934	<u>,12393</u>	0 3 7 7 3 o	e 17430	•,17518	.21576	• • 1 4 1 7 0
19.0 •	50.0	.09108	021105	. 47658	<u>。52459</u>	≈ ;20259	.21793	.15888	.18411	• 9 8 8 5 1	≈ ,d≈125
50°0 -	21.0	,16430	• • 19177	•.36279	, 38696	≈ ,20782	•55089	*1538 0	, C 30 B 1	.17607	• 17716
21.0 •	55.0	e ,21155	.26314	.12613	.09193	- 47861	,52572	₽,20267	.21856	.13071	•162°H
55°0 a	23.0	• . 19135	.17891	.05336	.16596	e.3623	, 38775	e • 509 65	9 < 5 3 3 8	.12489	* ひきこうば
23.0 -	54.0	# 26386	• 18142	.21202	· 21091	,12559	09081	= . 47690	.52588	• * 50550	.219=4
24.0 m	25.0	· . 17931	005470	a 2 8 6 7 5	0,18951	.05132	. 16631	•,36353	.38877	₽ ₽20625	B2<272
25.0 9	26.0	.18101	80055 • °	020364	026179	.21470	■ ₈ 21061	.12779	.0914B	••47634	₀526EÜ
50 10 m	27,0	03472	+*55561	17958	∞.17700	.21544	-,18905	.05362	. 16643	∞,30302	, <u>j</u> ec in
27:0 *	28.0	.21933	P.52568	.12737	.18243	.50138	.25959	.21441	.51114	012020	.04136
59.0 •	29.0	.22104	••38729	o12450	.03483	.17777	e.17571	,21452	••18929	a 05470	· .18504
29:0 -	30.0	.52516	■ ∎09098	s°50035	,21896	•12721	.18454	19845		.21450	•,21155
30.0 -	31.0	,38605	e • 16394	-,20417	.21967	e 12455	,03510	e17648	• 17475	e 2 1 4 1 0	malt4/5
31.U ·	32,0	a 09075	°51190	••47365	.52414	₽ ,20107	21827	12691	₀ 18468	.19910	• 25cc2
52.0 ·	33.0	.16367	.19082	•.35950	.38521	⇔,20507	,21945	15359	.03695	.17461	-17307
35,0 m	34.0	-,21234	.25763	13018	. 08831	0,47396	,52112	-,2011d	.21721	.12723	.18624
\$4.0 .	35.0	-,20144	014931	.07506	\$17H3	•.35246	.36957	₽.21803	.23360	.11144	e04124
35.0 -	36.0	• 15849	,12085	,05616	,09685	∞,28805	,31110		.19518	,09851	.07440

, . .

• 1 :

:*

DIVERSION CHOSSFLOW BETWEEN ADJAGENT CHANNELS, W(1,J), (LB/SEC.FT),

CASE T 7-PIN WIRE WRAP SAMPLE PROBLEM

TIME # 0,00000 SECONDS

AXIAL	ZONE	Ft 5, 11)	H(6, 12)	n(7, 8)	WC 7, 12)	W(8,	9) ×(9, 10)	WE 10+ 113	n(11, 12)
0.0 .	1.0	••00061	.00902	.01277	.06264	.048	30	.05288	· 00026	- .05110
1.0 #	2.0	21107	.04760	.26582	- 19931	.603	02	93189	,56839	29122
2.0	3.0	=,21392	.05981	413272	* .19151	437	03	75122	47807	,19532
3.0 -	4.0	- 44277	.20536	19355	#.21072	499	98	87500	1.02927	•57773
4.0 -	5.0	- 34037	=,20805	19276	-18042	320	66	63095	79971	47257
5.0 -	.6 + 0	1392 a	. 46756	18199	- 54540	.193	68	.55529	93673	1,03891
6.0 ·	7.0	.06219	+,35841	\$15192	- 44714	.190	35	36169	67734	.86399
7.0	8.0	.21553	15454	152823	=1.C3341	.171	54	,19382	56884	95661
8.0 -	9.0	-21612	.05200	43432	. 79988	.141	51	19017	.37177	.69021
9.0 •	10.0	,19849	21412	1:02789	e .95713	.522	45	16855	19382	.57404
10.0 *	11.0	.17609	.21396	79610	● •68999	.428	82	.13864	19017	.37510
11:0 •	12.0	.12700	.19653	95298	# ,57535	1.022	61	,51981	16650	
12.0 -	13.0	.12466	•1753u	.68747	•.37711	,792	17	42606	,13699	19142
13.0 -	14.0	20068	a12705	.57386	- .19601	.949	13	1.01818	.51844	.16906
14.0 -	15.0	# .2046∃	12346	,37580	•.19223	.684	52	,78919	.42449	.13757
15.0 -	13.0	• . 47513	- 50140	.19643	# .16936	,573	40	.94649	1.01451	.51899
16.0 •	17.0	# . 36118	•.20640	,1927S	• 13780	.375	29	.68265	.78741	.42481
17.0 -	18.0	.13036	•.47638	.1690G	-,52007	196 م	98	.57443	.94571	1.01405
18.0 -	19.0	05729	n,3 6277	.13814	• • 42531	, 193	13	.3760\$.68288	•7868e
19.0 •	50.0	.21552	+12 <u>0</u> 14	052097	=1.01442	, 16Bi	69	.197ù9	.57509	
50° 0 -	21.0	+51962	0557 4	.42711	+ 78743	137	58	.19310	,37654	.68271
21.0 -	22.0	. 20064	.21557	1.01021	- 94482	• 520	35	,16748	,19655	a 57 577
55*0 •	23.0	.17711	o21762	78913	-,68311	.426	38	,13740	19342	.\$7506
23.0 •	24 . u	.12997	*50584	,94591	57356	1,017	38	•2059	.16807	.19576
24.0 -	25.0	.12524	•17990	.68461	•.37569	,788	99	42549	.13709	19598
25.0 •	50.0	- ,20154	12859	.57187	e a 19465	944	92	1,01701	,51892	,16850
20.0 -	27.0	• • 20472	,12414	:37433	**18510	, 683/	23	.78894	,42452	13955
27.0 -	56*0	47557	•.20051	.19460	•.16909	.570	00	.94485	1.01654	_51830
28,0 -	29.0	- ,36141	• • 50448	,19173	-,13852	+373	38	.68580	.78859	.42434
50°0 -	30.0	.13059	47421	.16986	-,51785	.195/	45	.57120	,94621	8.01494
59,0 -	31.0	.05578	••\$5931	13864	- °4\$414	•1950	05	.37458	.08361	.78703
51.0 -	32.0	.21469	.13179	.51836	-1,01227	.170	55	19582	.57245	.94482
52.0 -	33.0	,21427	.05817	42464	-,78579	138	5 7	.19244	37477	.68173
33.Q -	34.0	.19558	.51221	1:01049	•,94515	.515	23	.16692	,19651	.57376
34.0 -	35.0	15882	.21447	76075	69706	,3759	93	,10564	,20776	,43571
35.0 .	36.0	,13341	.17264	60920	-,55791	.3000	05	.07216	.16228	34784

.;

ITERATIONS = 10

SPECIFIED NUMBER OF TIME STEPS COMPLETED

CONMON DUPPED TO TAPE 8

THERMAL MODELING

Since thermal modeling capabilities have been increased substantially over COBRA-IIIC, a separate sample problem is necessary. This problem is intended to illustrate the following features of the COBRA-IV thermal model:

- axial conduction in both the coolant and fuel;
- conducting wall model;
- axially heterogeneous fuel types, including a "blank" zone;
- use of the steady-state equal pressure drop model.

The geometry shown in Figure G-2 consists of a three-rod configuration immersed in flowing liquid sodium surrounded by a thermally conducting can. The can is cooled by an outer annular region of liquid sodium. Each rod consists of a central UO2 fuel zone with a stainless steel zone on each end. The last 10 inches of the model is a "blank" zone, free of rod material.

After the steady state is calculated, the model is subjected to a short transient which represents an immediate power shutoff, followed 1/2 second later by a linear pressure drop decay to zero assembly Δp at 1-1/2 seconds. The steady state is calculated with the new option to specify the pressure drop, and the transient is computed with a pressure drop boundary condition.

STEEL

FIGURE G-2. Geometry of Thermal Model Sample Problem

L

THERMAL MODEL SAMPLE PROBLEM INPUT

	10000)								•					
	1		1	FUEL T	HEMAL	MODE	L TES	IT						•	
		20					• • • •								
	526-0			01801	90	19999	. 7	13.76	22	04.81		0215	45-41	01238	
	1 15 41	960.0		AIGTI		A 1 8 0	د ۱/	1.0.0 0 10 1.0.0 0 10	22	A4403		6603	18 30	010613	
	145.00					01000		EA 85		C 1 1 0 4		63376	77 04	90100JE	
	13240			01440		3020.	4	20.02	~ ~ ~ ~ ~ ~	02010		.5504	3/ • 41	,010530	,
·	<u>18r.+/</u>	1000.	· .	01446		4111.	. 4	50,80	22	64,44		.5419	37 : 61	.010480	•
	- 20E+0	1050		01925		3395.	4	62.87	22	66.06		.5338	37.42	.010403	
	515+0	1046.		01959		2798.	4	68.88	55	67.65		.5259	. 37.03	,010327 '	
	-298+0	1060.		01965		5356.	4	74.88	52	69.22		.5183	36.74	010251	
	352+0	1080.		01971	•	1944	4	50.88	22	70.75		.5110	36.46	.010175	
	4/6+0	1100.		01975		1612.	4	86.88	22	72.27		5004	36.03	010050	
	5.1F+0	1120-				1276.		0 2 . 0 7	22	72.76			15.80	.010022	
		11200				13/01		09 97	25	13410 78 74		4 G O (I	75	000000	
	1914-10 1914-10	11404		91771		11004		10.01	66	/3+24			32+01	.009948	
	125.40	1100.	•	01440		445.0	2	04.50	. 22	16.10		.4840	32+33	.004870	
	620+0	1140.		02002		847.5	5	10.80	25	78.15		.4778	35.05	009794	
	19841	1500.		02011		726.9	5	16,85	55	79,60		.4717	34.78	.009718	
	517+1	1300.		02046	•	356.3	5	46.85	- 25	86,72		.4442	33.42	009337	
	42E+1	1400.		102082		189.1	5	76.95	22	93.86		.4204	32.11	.008956	
	142+1	1500.		02119		107.4	6	07.21	23	01.10		. 1995	30.84	008575	
	14842	1600.		02157		64.63		17.70	28	04.47		. 1811	29.61	.008194	
	- 1	14240	. •	A 3 1 5 G		50 1/		31110	52			1770	27101	008121	
	1 36 4 2	10114	•	05103	a e	37134		42,40	23	10117		• 3//7	27.30	10001E3	
	144 3	142ª	•	02300	7.3	2123	8	10.95	د ۲	21.0/		. 3044	23.04	000119	
	2					1									
	.310	- - 25													
	문제 🔒	•1.													
	3	. 8													
	0.	U.	.1665	i. 0.	.1667	.5	.3333	1.25	. 5	1.25	. 6666	.5			
	. 5657	0.	1.	0.	••••	• -			•••		•	• -			
	u	7		- u	7			•					•		
		.9017	1 574	1 571	2	712	-1 S	τ	712	1 5	4	712			
	1	3 5 5 M	18318 18318	20212	2	176	2 1 1		176		•		1.0	•	
	2	R . 394		5.010	د		3.1	4	9313	901			•		
	5	2.594	0.545	5.010	4	+ 5 / 3	7 • 7	•							
	4	6.244	6.545	5.010			_	_							
	• 5	5.322	9.423	1.	6	1.	4.71	7	· 1.	4,71					
	5	5,326	9,425	1.	7	1 .	4.71				•				
	7	2.356	9.425	1.											
	1	464	4.06	2	8.14	5	8.14		•					• •	
	5	. 424	4.06	3	8.14		8.14								
		424	4.06		A.14	7	A.14								
		9-6-4	200	120.	7	240	4	150	2	310					
	-		۶. ۳	1601	ر .	2404		1300	a	EIV.					
	9	270.		130.	0	2100	· •	C/V.							
	5	- 4	4												
	0.	•79	•8	1.									•		
	1								•						
	· 1.	1.	1,43	1.43											
	Ś			•										•	
	1.	1.	1.25	1.25											
	3	•••		•••										•	
	, , , , , , , , , , , , , , , , , , , ,	1	1 26	1 25											
	4.9	1.0	1963	1953											
	. 4														
	1.	1.	1.45	1.25											
	5	6	4												
	0,	,79	.8	1.											
	1														
	· 1.	1.	2.37	2.37					•						
		· 1.	2.37	2.37										•	
	**	• •	~ , , ,												
		۰.	3 1-	3 7 4					•						
	1.	1.0	e . 37	6.37											•
	. 4														

1, 2,33 2,33 1. -5 1. 1. 2,33 2,33 6 1. 2.33 2.33 1. . 3 7 2 3 ,0125 1,7292 5,8152 3 •5 •75 1 5 ,75 3 a .75 5 2. 2. 6 7 2. •5 •75 1 2 3 .75 .75 4 0. 5 Û, 6 7 ů., 0. 1 ٥. 2 3 0. 0. 4 5 1. 6 1. 7 1. 8 0 3 - 3 3 2 3 ٥ 1 1.. 1.5 1.1 3,4160 6.67 167 1.0 2.4167 5 1,1667 4.4166 1. 1,1667 3. 1. 0.5 2.4166 3.4167 1.958 .0671152. .836 12. .122 489. .0821000. 12. 122 489. 836 12. 122 489. 082 500. 1472, -,5299-3 ,2338E=6=,2169E=10 4 567 1.7917 20 1 1067 2.6667 2 3 1. 0 9 48. 1. .5 ,25 0. ٥. 400 24 .4 .01 10 0 Ô, 1 .02 •5 11. 3 0 0 3 3 1 1 •4 15. 1200. .12 516. 1.6 1100,1100,1100,1100,1000,1000,1000. Q . 1. 1 . .5 1.5 Ú. 5. 0. .001 0. 0. 1. 12 3 3 1 40 5 1 Û, ,5 .45 0.

THERMAL MODEL SAMPLE PROBLEM INPUT (Continued)

THERMAL MODEL SAMPLE PROBLEM RESULTS

INPUT	FOR	ÇASE	1		₽L	IEL TH	EMAL	MODEL	TES	T	•	DATE	04/21	/76 0 TIME	12.28	.04 1	
SUMMAN	4Y CP	INPUT	CPT	TONS							· .						
GROUP	N 1	~ ^ Ž	N3	N4	۸5	NO	N7	N8	N9								
1	20	⇒ 0	=0	=0	= 0	= 0	=0	• 0	• 0		•	,					
2	= 0	•0	# ()	= 0	1	# 0	=0	= 0	πÓ								
3	8	i ⇒ ()	•0	= 0	•0	•0	= 0	•0	• 0					•	•		
4	7	7	9	3	= 0	• 0	= 0	•0	= 0								
5	4	4	•0	# Ü	÷ ij	ΦŲ	= 0	• Q	= 0								
6	6	4	= 0	• ()·	= 0	- 0	•0	= 0	• 0					•			
7	2	•0	3	3	= 0	•0	÷0	= 0	•0								
	3	3	2	3	· 0	3	0	1	• 0					i -			
9	0	20	1	= ()	, 0	= 0	• 0	⇔ 0	= ()								
10	0	0	1	⇔Q	= 0	= 0	•0	= ()	• 0								
11	3	1	0	0	3	3	1	•0	• 0								
- 12	3	3	1	4	# 0	40	= 0	• 0	= 0								
FLUED	oord	2019 4															· ·
7 G VI D	FRUP		WELE	VE		VC		LL EF		FC	VIEC		* 5	81644			
•	٥	500 0	0	*r 418419	104049	0000	0	303 3	16	2204 88	9216	6 JIS	43000	.01238			
	. 1	960.0	- C -	01911	6180	. 0000	0	444.8	1 2	2261.09	.55920	0 18.	20000	.01063			
	. 1	980.0	0	01940	5026	.0000	0	450.6	ŝ	2262.78	5504	0 37.	91000	.01056			
	2	1000.0	0	01946	4111	.0000	õ	456.8	56	2264.44	.54190	0 37.	61000	.01048	. •		
6	2	1020.0	0 .	01952	3382	0000	0	462.8	17	2260,06	.5338(0 37.	42000	.01040			
	2	1640.0	0.	01959	2798	.0000	0	468.8	8	2267.65	.5259	0 37.	03000	.01053			
	- 3	1050.0	0.	01965	2359	.0000	Ŭ.	474.8	88	5599.55	.51830	0 36.	74000	.01025			-
(4	1050.0	0.	01971	1944	.0000	0	480.8	88	2270.75	51100	0 36.	46000	.01018			•
	.5	1100.0	0.	01978	1652	.0000	0	485.0	:8	2272.27	.3004(0 36.	03000	.01008			•
· •	5	1120.0	0 .	01985	1376	.0000	0	492.8	7	2273.76	.49700	0 35.	89000	.01002			
	, h	1140.0	0.	01991	1100		0	498.8	37	2275.24	.49040	0 35.	61000	.00995			
a	7.	1100.0	0 •	01998	992	.0000	Ņ	504.8	6	2276.70	.48400	0 35.	33000	.00957			
4	, 9	1180.0	0 .	02005	847	.5000	0	510.8	56	2278.15	.4778(0 35.	05000	.00979			
1.	.0	1200.0	0 .	11050	726	9000	0	516,8	15	2279.60	.4717(0 34,	78000	.00972			
ζ.	1	1300.0	0 .	02046	356	. 3000	0	540.8	5	5559 15	.4442(0 33.	42000	.00934			
ų, 	đ	1400.0	0 0	02042	189	.1000	0	576.9	15	2293.86	,4204(0 32.	11000	.00096			
7.	.0	1000.0	U	02119	107	.4000	v	607.2	1	2361.10	.3995(U 30.	64000	.00858			
14.	0	1000.0	0.0	02157	64		U	03/,7	0.	4308.47	.38110	0 29.	61000	⁸ 00914			•
15.	5.0	1619.0	0	0.2165	59	+ 5400	U ,	043.4	0	2310.19	. 3779(U 29.	29000	.00815			• .
120.	. V	∠1 4⊃•0	0.01	05208	e	. 2612	3	e10*4	2	2351.07	. 3044(v ∠3.	640 00	.00012			

FRICTION FACTOR CORRELATION

SINGLE PHASE HEAT THANSFER CORRELATION

HFILM # K/D(,023+RE++(,800)+PH++(,400) + 0,000)

84.000*RE#*(=1.000) + =.0000)

OR WALL VISCOCITY CORRECTION TO FRICTION FACTOR IS NOT INCLUDED.

THUMPHASE FLOW CORRELATIONS NO SUBCOOLED VOLD CORRELATION HUMOGENEOUS BULK VOID MODEL HUYUGENEOUS MCDEL PRICTION HULTIPLIER

HEAT FLUX DISTRIBUTION X/L RELATIVE FLUX 0.000 0.000 167 0.000 .167 .500 .333 1,250 .500 1.250 .667 500 .667 0.000 1,040 0.000

	SUBCHANNE	LI	NPUT DATA					
	CHANNEL	TY	PE AREA	WETTED	HEATED	HYDRAULIC	(ADJACENT CHANNEL NO., SPACING, CENTHCID DISTANCE)	
	NQ.		(SQ=IN) PERIM.	PER1M.	DIAMETER		
0				. ([N]	(1N)	(EN)		
ï	1	1	.903700	1,571000	1.571000	2.300955	(2, 732,1,500)(3, 732,1,500)(4, 732,1,500)(-0,-,000,-,0	(00)
23	2	1	2 594000	6,545000	2,616000	1,585332	(3, 375,3,100)(4, 375,3,100)(-0,-,000,-,000)(-0,-,000,-,0	00)
0	3	1	2,594000	6.545000	2,616000	1,585332	(4, 375,3,100)(=0,=,000,=,000)(=0,=,000)(=0,=,000)(=0,=,000,=,0	00)
	4	1	2,594000	6,545000	2,616000	1,585332	- (=0,=,000,=,000)(=0,=,000,=,000)(=0,=,000,=,000)(=0,=,000,=,0	(U))
	5	1	2,356000	9,425000	1,000000	.999894	6 6,1,000,4,710) (7,1,000,4,710) (=0,=,000,=,000) (=0,=,000,=,0	00)
	6	1	2,356000	9,425000	1,000000	.999894	- (- 7,1,000,4,710)(- vy=,v3v,-,070)(- C,-,000,-,000)(- 0,-,000,-,v	00)
	7	1	2,356000	9,425000	1.000000	.999894	(-0, -, 000, -, 000)(-0, -, 000, -, 000)(-G, -, 000, -, 000)(-0, -, 000, -, 0	00)

SUBCHANNEL THE CONNECTION NO.	RMAL CONNECTION Hall Average Heat capacity (H/FT2+F)	DATA MIDTH GF CONNECTION (FT)	CHANNEL NO.	OCNEUCTIVE FESISTANCE (FT2=S+F/B)	CHANNEL NO.	CONDUCTIVE RESISTANCE (FT2=8=F7B)
1	.424	.338	2	8.1400	5	8,1400
2	.424	538	3	8.1400	6	8,1400
1	. 424	. 538	Ŭ.	E .1400	9	8.1400

GAP CHIENTATION (GAP NO, ANGLE) (1, 0,)(2, 120,)(3, 240,)(4, 150,)(5, 210,)(6, 270,)(7, 150,)(8, 280,) (9, 270,)(

X/L	AREA VI	ARIATICN	FACTORS	FCR	SUECHANNEL	(]
	(1)	(2)	(3)	(4)	
0.000	1.000	1,000	1.000	1.0	000	

.790	1.000	1,000	1.000	1,000
. 300	1.430	1.250	1.250	1,250
1.000	1,430	1,250	1,250	1,250

X/1_ GAF (1, 0,000 1,0 ,790 8,0	SFACING VARIA 2) (10 3) (000 1.000 1 000 1.000 1	TION FACTURS FO 10 4) (20 3) (0000 1000 0000 1000	R ADJACENT SLBC 2, 4) (3, 4) 1,000 1,000 1,000 1,000	HANNELS (I,J)		
E.S 008.	570 2,370 2 570 2,370 2	2,370 2,330 2,370 2,330	5°330 5°370 5°330 5°370			•
					•	
SPACER I LOCATION	IYPE.NC. 1 (X/L) .01	2 3 3 ,729 ,813	• •			
SPACEH T	TYPE 1					
CHANNEL NO.	DRAG CHANNE	L DRAG CHANNE CCEFF. NO.	L DRAG CHANNEL	L DRAG CDEFF.		
1	.500 2	,750 3	.750 4	.750		
5	5.000 6	2,000 7	2.000			
SPACER 1	TYPE 2			0046		
CHANNEL NO.	CCEFFS ND.	CCEFF. NO.	CUEFFA NCA	COEFFA	· · · ·	
· 1	,500 2	,750 3	.750 4	• 750 [°]		
5	0.000 0	0 ₉ 000 7	0.000		<u>а</u>	
SPACER 1	TYPE 3				•	
UTASNEL N()	CCEFF. NO.	CCEFF. ND.	COEFF. NC.	COEFF	•	
. 1	0,000 2	0,000 3	0,000 4	0.000		
2	1.000 0	1,000 F	18000			
ROD INPUT D		PINER ERACT		ADJACENT CHAN	ELS CAD.L. CHANNEL	
NO, NU.	(1)) FACTO	R	Len er runch to			
1 1	1,0000 1,500	0 8657(8) 4166(3)	4167(4) •()_0000(#0) #0_0000)_0000(#0) #0_0000	(m0) m0,0000(m0)
3 1	1,0000 ,500	0 ,1667(1) .4166(2)	.4167(3) -(0000(-0) -0,0000	(=0) =0.0000(=0)
THERMAL PRO	PERTIES OF FUE	L MATERIAL	2 ORDER OF C	OLLOCATION		
	FUEL	PROPERTIES		CLAD PROP	PERTIES	
NO. (8/	CUND, SP, H (HR=FT=F) (B/LB	(EAL DENSILY (FF) (LB/FT3)	UIA, CCND. (IN,) (8/HR##	SPS HEAT Tef) (b/luef)	(LB/FT3) (INA)	(B/HROFIZOF)
1	1.96 .067	0 1152.0	.8360 82.00	.1220	489.0 .0820	1000.00
21	12200 0122 0,00 00,00	20 489,0)0 ●0,0	0,00,00 0000,0	°1250 •0°0000	₩0*0 0*0000 494°0. *09€0	0.00 0.00
AXIAL CONDL	CTION CONSIDER	PED	7	-	· · ·	•

NONUNIFORM FUEL THERMAL CONDUCT: Reperence temp, 1472.0(P)/	IVITY (FUEL TYPE 1) K/K0 # 1, + =,529908+03+(T=T0) + _2]380E=06+(T=Tu)++2 + +	.2169UE+10+(T+T0)+03
AXIAL FUEL TYPE LAYGUT ROD NC, FUEL ZONE DESCR TYPE ZONES (X/2, RANGE) + FUE 1 4 (0,00 + ,17)+ 2 C	IPTION EL TYPE +17 = .67)= 1 (.67 = .79)=	2 { "79 =1,00)= 3 {	
EXPLICIT SCLUTICN WITH PRESSURE RUNNING START FROM IMPLICIT	DRGP SPECIFIEC SCLUTION		
CALCULATION PARAMETERS LATEMAL RESISTANCE FACTOR (S/L) PARAMETER TUREULENT MOMENTUM FACTOR CHANNEL CRIENTATION ROLL OFFIGN (0 = NC ROLLD	.5000 .2500 0.0000 0.0000 degree2 0	CHAANEL LENGTH Nufeer of Axial Nudes Axial Node Length Total transient tife Nufrer of tife Stefs Nominal tife Stef	48.0006 INCHES 24 2.0000 INCHES 1.6000 SECLNDS 400 .0025 SECLNDS
DATA FOR IMPLICIT SULUTION EXTERNAL ITERATION LIMIT INTERNAL ITERATION LIMIT CONVERGENCE FACTORS External (DM/H) INTERNAL (DA/H) FLON (OF/F)	20 20 .1000 .0010 .0100	MINIMUM INTERNAL ITERATIONS PRACTION DONON CELL USTAR Acceleration factlifs CROSSFLEW Solution Lateral Delta=P Flow	5 •0,0000 1,6000 .8000 1,0000
DATA FUR EXPLICIT SOLUTION Maximum time step Courant Number Iterative convergence factors Volume error iov/v). Enthalpy errup (on/m)	.0100 SECOND3 .4000 .0100 .0001	ACCELERATION PACILA PRACTION OF LAST CHANGE Iteration limits pressure iteration energy equation	1.0000 -0.0000 50 20
MIXING CORRELATIONS Surchled Pixing, beta m Hotling Pixing, beta is assum Conduction Mixing, geometry	0200 Med Same as Subcoclec Factor = "5000		
CPERATING CONDITIONS SYSTE* PRESSURE 15.0 INLET ENTHALPY 1200.0 AVG. MASS VELICITY 400 IMLET TEMPERATURE 0,0 AVG. MASS VELICITY 41000 IMLET TEMPERATURE 0,0 AVG. HEAT FLUX 120000 EXIT ENTHALPY 510.0 INDIVIDUAL SUBCHARNEL TEMPERA (1 = 1100.0) FLDAS SPLIT FCR EGUAL FRESSUR (1 = 7.405E+60.1) C.1 = 7.405E+60.1 (2 = 2.350E C.7 = 1.405E+60.1 FCHCING FUNCTION FOR PRESSURE) PSIA) HTU/LA) HTU/LA) MILLION LH/(HR-SGFT)) DEGHEES F) MILLION BTU/(HR-SGFT)) HTU/LA TURE SPECIFIED (CHANNEL-TEMP(= 1100,0) (4 = 1100,0) (5 =100 L GRADIENT (CHANNEL-FLGK) = 00) (3 = 2,350E+00) (4 = 2,100 0 IFFERENCE	RATURE) 30,0} (6 =1000,03 (7 =1000,0) 350E+003 (5 = 1,405E+03) (6 = 1,4	05E+00)
		•	

11+6	DEL IA-P		
(SEC)	FACTOR		
0.0000	1.0000		
.5000	1.0000	•	
1,5090	0.0000		
FORCING	FUNCTION FOR	HEAT	FLUX
TIME	HEAT FLUK		
(SEC)	FACTOR		
0,0000	1,0000		
.0010	6.0000		
5.0000	0.0000		

DATA FROM ITERATIVE SOLUTION

ITERATION	TOTAL INTERNAL	LAST NO	DE OUT	HAXIMUN	1 ERROR		
NO	ITERATIONS	OF CONVE	PGENCE	INTERNAL	EXTERNAL	FLOW	ENTHALPY
+ <u>+</u>		M	F				
1	372	25	. 55	175.3818		.1103	.0.121
2	405	25	25	61.4739	:6510	1927	.0031
5	434	25	25	3884,8431	.5271	.1276	.0023
4	451	25	25	817.9220	.2259	.0960	0015
5	452	25	25	120.2114	.1117	.0817	.0011
6	441	0	25	991,3829	.0715	0447	
7	427	0	25	60,3197	.0677	0293	0004
8	390	. 0	25	473.2161	.0338	0278	0003
9	375	0	25	63.7916	.0225	0120	.0002
10	363	0	0	144.5465	.0155	0075	.0001
11	313	0	. 0	41,7837	.0066	.0004	0000

÷

r

DATE 04/21/76 0 TIME 12,28,09 1

CHANNEL EXIT SUMMARY RESULTS CASE 1 FUEL THEMAL MODEL TEST

. :

MASS 54 MA MA ; MA	LANCE SS FLOW I SS FLOW DI SS FLOW E	N .22 UT .2 RER .22	099E+02 L 2099E+02 92UE=0E L	B/SEC LB/SEC B/SEC	È ENERGY F Ene	BALANCE - LOW ENERG ENERGY ADD LOW ENERGY RGY ERROR	Y IN DED 1 Y CUT B	10545E+05 BTU/SEC 3806E+03 BTU/SEC "10597E+05 BTU/SEC 566BE+02 BTU/SEC
CHANNEL	ENTHALPY	TEMPERATURE	DENSITY	EQUIL	VOID	FLOW	MASS FLUX	
(NO.)	(870768)	CUEG F)	(LB/F#3)	QUALITY	FRACTION	(LU/SEC)	(MLB/FR-FT2)	
Ĩ	489.44	1108,53	50.48	0.090	0.000	2,1388	1.2269	
ż	488.24	1104,55	50.52	0.000	0.000	4.2612	8516	
š	488.70	1105.09	50.50	0.000	0.000	4.2659	.8525	
4	489.16	1107.63	50.49	0,000	0.000	4.2707	8535	
5	460.12	1010.86	51.30	0.000	0.000	2.3874	5253	
6	460.15	1010.95	51.30	0.000	0.000	2.3875	.5253	
	460 18	1011.05	51.30	4.000	0.000	2.3676	5254	

CHANNEL	HESULTS	ENEL THEMAL	KODE: TEST			•			1.476 0 TIME	12.28.09	. 1
• • • • • •	•							0416 0478	877W V 180 E	888m04V1	•
JUNDLE	AVERAGED P	RESULTS									
DISTANCE	E DELTA-F	P ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VCID	FLOW	MASS FLUX	VELOCITY	AREA	
(111)	(P81)	(810768)	(DEG-F)	(L8/CU=FT)	QUALITY	FRACTION	(LB/SÉC)	(ML8/HR+F12)	(FT/SEC)	(SG=IN)	
0.0	1.5956	477.15	1067.57	50,93	0.000	0.000	22.0991	•1515	3,4663 15	.75.570	
2.0	1,4426	477.15	2067.57	50.93	0,000	0.000	22,0991	.7272	3,9064 15	.75370	
4.0 -	1.3516	477.15	1967,57	50.95	0,000	0.000	22.0991	.7272	3.9664 15	.75.170	
·6 . U	1,3207	.477.15	1067,57	50.53	0,000	0.000	22.0991	. ,7272	3.9664 15	.75370	
8.0	1,2597	477.15	1067.57	50.93	0.000	0.000	22.0991	,7272	3,9665 15	.75370	
10.0	1.1988	477.27	1067.96	50.92	0.000	0.000	22,0991	,7272	3,9667 15	.75570	
12.0	1.1378	477.42	1068,48	50.92	0.000	0.000	22,0991	.7272	3,9671 15	.75370	
14.0	1.0759	477.61	1069.11	50.91	0.000	0.000	22.0991	.7272	3.9675 15	.75370	
16.0	4 1.0159	477.84	1069.67	50.91	0.000	0.000	22.0991	7272	3,9680 15	75370	
17.0	9550	478.09	1070.70	50.90	0.000	0.000	22.0991	7272	3,9685 15	75370	
20.0	. 8940	478.54	1071.52	50.90	0.000	0.000	22.0991	7272	3,9690 15	15370	•
55.0	·F351	478.5A	1072.34	50.89	0.000	0.000	22,0991	7272	3,9695 15	75370	
24.0	.7722	478.83	1073.16	50,88	0.000	0.000	22.0991	.7272	3.9700 15	75370	
0.eS	.7113	479.06	1073,92	50,88	0.000	0.000	22.0991	,7272	3,9705 15	75370	
29.0	.6564	479,25	1074.56	50.87	0.000	0.000	22.0991	7272	3,9769 15	75370	
\$0.0	5895	479.40	1075.08	50.87	0.000	0.000	1000.55	7272	3.9712 15	75370	
32.0	.5286	479.52	1075.46	50,66	0.000	0.000	22,0991	7272	3,9715 15	75370	
34.0	4677	479.52	1075.47	50.86	0,000	0.000	22.0991	7272	3,9715 15	75370	
36.0	3550	479.52	1075.47	50.06	0.000	0.000	22.0991	,7272	3,9715 15	75370	
30.0	2992	479.52	1675.47	50,85	0.000	0.000	22,0991	7/197	3.8766 16	14272	
40.0	.2407	479.52	1075.47	50.81	0.000	0.000	22.0991	.6334	3,4024 18	08779	
42.0	.1804	479,52	1075.47	50.81	0.000	0.000	22.0991	6334	3 4624 18	.08779	
44.0	.1203	479.52	1075.47	50.81	0.000	0.000	22.0991	6334	3.4624 18	08779	
16.0	.0601	479.52	1375.47	50.81	0.000	0.000	22.0991	.6334	3,4624 18	08779	
18.0	6.0000	479.52	1.175.47	50.81	0.000	0.000	22.0991	.6334	3.4624 18	08779	

CHANNEL	RESULTS										
CASE	1 FI	JEL THEMAL	MODEL TEST					UATE 04/2	1/76 0 TI	ME 12.28.9	19 1
TIME #	0.00000 SEC	UNDS PRE	SSURE # 15	.0 PSIA	DATA	FOR CHANNE	L 1			· • ·	
DISTANCE	DELTA-P	EMTHALPY	TEMPERATURE	DENSITY	EGUIL.	VOID	FLDW	MASS FLUX	VELCCITY	AHEA	
(14,)	(PSI)	(#TU/L8)	(DEGOF)	(LB/CU+FT)	QUALITY	FRACTION	(LB/SEC)	(ML8/HR+FT2)	(FT/SEC)	(8G=IN)	
0.0	1,5894	485,88	1100.00	50,56	0,000	0.000	1.6824	,9651	5,3028	.90370	
2.0	1,4386	480.07	1044.47	50.50	0.000	0.000	1.7310	.4430	5.4559 1	.90370	
4.0	1.3762	486,86	1099 93	50,56	0.000	0.000	1 7412	.9968	5,4678	.90370	
6.0	1,3152	486 84	1099,88	50,56	0.000	0.000	1.7447	: 0009	5.4990	.90370	
e.u	1.2543	486 83	1039.65	50,56	0.000	0.000	1.7472	0023	5.5066	90570	
10.0	1,1935	487.04	1100.53	50,55	0.000	0.000	1.7493	3.0035	5.5142	90370	
12.0	1.1327	487.32	1101.46	50.54	0.000.	0.000	1.7515	1.0047	5,5217	90370	
14.0	1.0719	487.06	1102.61	50.53	0.000	0.000	1.7535	1.0059	5.5294	90370	
16.0	1.0111	485.07	1103.98	50.52	0.000	0.000	1.7556	1.0071	5.5372	.90370	
15.0	9503	488.50	1105.42	50.51	0.000	0.000	1.7576	1.0083	5.5451	.90376	
20.0	8895	488.92	1106.62	50.50	0.000	0.000	1.7597	1.0094	5.5530	90370	
22.0	1928	489.33	1108.18	50.48	0.000	0.000	1.7618	1.0106	5.5608	90370	
24.0	7680	489 73	1109,50	50.47	0.000	0.000	1.7638	1.0118	5,5687	90370	
26.0	.7072	490.08	1110.67	50.46	0.000	0.000	1.7659	1.0130	5.5764	.90570	
0.85	.6464	494.34	1111,56	50.45	0,000	0.000	1.7680	1.0142	5,5840	.90370	
30.0	.5857	490.53	1112,18	50.45	0.000	0.000	1.7703	1,0155	5.5917	90370	
0.52	.5248	490.63	1112.53	50.44	0.000	0.000	1.7733	1.0172	5.6014	.90570	
\$4.0	,4631	490.51	1112,11	50.45	0.000	0.000	1.7803	1.0213	5,6233	.90370	
30.0	,3074	490.36	1111.03	50.45	0.000	0.000	1,8111	1.0389	5.7199	.90370	
32.0	.2557	490.19	1111.05	50.46	0.000	0.000	1.8865	1.0098	5.5591	.90847	
40.0	,2443	489.92	1110.17	50.47	0.000	0.000	2.0807	. 8347	4.5944	1.29229	
42.0	,1799	489.78	1109.67	50.47	0.000	0.000	2.1225	.8514	4.6862	1.29224	
44.0	.1194	489.65	1109.25	50.47	000	0.000	2,1327	.8555	4.7084	1.29229	
46.0	,1596	489.54	1108.88	50.48	0.000	0.000	2,1364	.8570	4.7162	1.29229	
48.0	0,0000	489 44	1108,53	50.48	0.000	0.000	2.1388	.8580	4.7212	1.29229	
73

4. S. *.

CHANNEL Case	RESULTS I F	UEL THEMAL	MODEL TEST					DATE 04/2	21/76 O TI	ME 12.20.01
TIME =	0.00000 SEC	ONDS PRE	SSURE = 15	.0 PBIA	ĐĂTĂ	FUR CHANNE	L 2		· · ·	
DISTANCE	DELTAP	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELOCITY	AREA
(Ex.)	(PS1)	(870768)	· (DEG+F)	(LB/CU+FT)	QUALITY	FRACTION	(LB/SEC)	(MLB/HR=FT2)	(FT/SEC)	(SG=IN)
0.0 .	1.5917	486.88	1100,00	50 . 56	0.000	0,000	4.4178	.8829	4.8509	2.59400
5.0	1.4362	486,81	1099,75	50,56	0,000	0.000	4,4016	.8797	4.8330	2.59400
4.0	1,3756	486.73	1:099.51	50.56	0.000	0.000	4.3983	8790	4.8291	2.59400
0.0	1.3148	486.66	1:099.27	50.56	0.000	0.000	4,3971	.6787	4,8276	2.59400
A • 0	1.2540	486,59	1099.04	50.56	0.000	0.000	4,3963	.8786	4.8265	2.59400
10.0	1.1932	486.65	1099,22	50.56	0.000	0.000	4.3957	.8785	4.8260	2.59400
12.0	1.1324	486.74	1099.54	50.56	0.000	0.000	4.3950	.8783	4.8255	2.59400
14.0	1.0716	486.88	1100.00	50.56	0.000	0.000	4 3944	8782	4.8252	2.59400
16.0	1.0108	487.06	1100.01	50.55	0.000	0.000	4,3938	.8781	4.8251	2.59400
18.0	.9500	487.27	1101.29	50.54	0,000	0.000	4,3931	.8779	4.8249	2.59400
56.0	.889.2	487.48	1101.99	50.54	0.000	0.000	4.3924	.8778	4.8247	2.59400
55.0		487.69	1102,70	50.53	0.000	0.000	4,3916	.8776	4.8245	2.59400
24.0	.7677	487.90	1103.42	50.53	0.000	0.000	4,3908	8775	4,8242	2,59400
26.0	.7069	488,10	1104.08	50,52	0.000	0.000	4,3899	.8773	4,8238	2,59400
59.0	.6462	488,26	1104.62	50.51	0.000	0.000	4,3890	8771	4.8232	2.59400
50.0	.5855	488,39	1105,04	50.51	0.000	0.000	4,3880	.8769	4.8225	2.59400
15.0	.5248	488.47	1105,32	50.51	0.000	0.000	4,3867	8767	4.8213	2.59400
34,0	.4641	488,44	1105,20	50.51	0,000	0.000	4.3842	.8762	4.8184	2.59400
\$6.0	.3095	488.40	1105.07	50.51	0.000	0.000	4,3742	.8742	4.8073	2.59400
35.0	.2601	488.36	1104,96	50.51	0,000	0.000	4.3486	.8343	4.5880	2.70208
40.0	.2375	488,35	1104,90	50.51	0.000	0.000	4,2829	.6847	3,7655	3.24250
42.0	.1785	488.32	1104,82	50.51	0,000	0.000	4.2682	6824	3.7526	5.24250
44.0	.1191	488.30	1:04.74	50.51	0,000	0.000	4,2642	.6818	3.7490	3.24290
46.0	.0595	488.27	1104.65	50,51	0.000	0.000	4,2625	6815	3.7474	3.24250
48.0	0.0000	488.24	1104.55	50,52	0.000	0.000	4.2612	.6813	3.7462	3.24250

CHANNEL RESULTS CASE FUEL THEMAL MODEL TEST DATE 1 . 04/21/76 0 TIME 12.28.09 TIME # 0.00000 SECONDS PRESSURE # 15.0 PSIA DATA FOR CHANNEL DISTANCÉ DELTAP ENTHALPY TEHPERATURE DENSITY FLOW EGUIL. VOID MASS FLUX VELCCITY AREA (IN.) (PSI) (BTU/LH) (DEG=F) (LB/CU-FT) QUALITY FRACTION (LB/SEC) (ML8/HR=PT2) (FT/SEC) (SG-IN) 1000.00 0.0 1.6006 456.86 51.39 0,000 0.000 2,3875 .5253 2.8397 2.35600 1,4501 457.00 1000.46 51.38 0.000 .5253 2.8399 . 2.0 0.000 2.3875 2.15000 457.14 4.0 1.3890 1000.92 51,38 0.000 0.000 2.3875 .5253 2,8401 2.35600 457.27 2.8403 6.0 1.3278 1001.38 51.38 0.000 0.000 2.3875 .5253 2.35000 8.0 1.2667 -457.41 1001.83 51.37 0.000 0.000 2.3875 .5253 2.8405 2.35000 10.0 457.54 1002.28 ,5253 2.8407 1.2055 51.37 0.000 0.000 2,3875 2.35600 12.0 1.1444 457.68 1002.73 2.5075 .5253 2.8409 2.35000 51.37 ü.000 0.000 2.35500 14.0 1.0833 457.32 1003.18 51.36 0.000 0.000 2,3875 .5253 2.8411 457.95 1003.63 .5253 2,8413 2.35000 15.0 1.0222 51.36 0.000 0.000 2,3875 2,3875 .5253 2.8415 18.0 .9610 458.09 1004.08 51.36 2.35600 0.000 0.000 .8999 1004.54 2.3075 \$5253 2.8417 2.35600 20.0 458.22 51.35 0.000 0.000 22.0 .8388 458.36 1004.99 2.3875 .5253 2.8419 2.35000 51.35 0.000 0.000 24.0 .7777 458.50 1005.45 51.34 0.000 0.000 2.3875 .5253 2.8421 2.35600 1005.91 .5253 20.0 .7166 455.64 51,34 0.000 0.000 2.3875 2.6423 2.35000 458.77 ,5253 2.8424 24.0 .6555 1006.37 2.3875 2.35000 51.34 0.000 0.000 2.8426 .5944 458.91 1004.65 .5253 2.35000 30.0 51.33 0.000 0.000 2,3875 1007.29 32.0 .5333 459.05 51.33 0.000 2,3874 .5253 2.8428 2.35600 0.000 1007.74 \$4.0 .4722 459.19 51.33 0.000 0.000 2.3874 .5253 2.8430 2.35600 459.32 1009.20 .5253 2.8432 30.0 2.3874 2.35000 .4111 51.32 0.000 0.000 34.0 459.46 1004.65 2,3874 .5253 2.8434 2.35000 .3501 51.32 0.000 0.000 450 59 1007.10 5253 2.8435 40.0 .2443 51.32 0.000 2.3874 2.35600 0.000 2,8438 1009.54 42.0 .1832 459.73 2.3874 ,5253 2.35000 51.31 0.000 0.000.00 44.0 459.86 1009.99 2,3874 .5253 2.8440 2.35000 .1221 51.31 0.000 0.000

0.000

0.000

0.000

0.000

2.3874

2.3874

2.8442

2.8443

2.35600

2.35000

.5253

.5253

G-28

40.0

40.0

.0611

0,000

459,99

460.12

1010.43

1010.85

51.30

51.30

DATE

04/28/76

0

TIME 12.25.09 1

DIVERSION CROSSFLOW BETWEEN ADJACENT CHANNELS, W(I,J), (LB/SEC-FT).

CASE 1 FUEL THEMAL MODEL TEST

FIME = 0.00000 SECONDS

AXIAL ZONE	+(1, 2)	NC 1, 3)	W(1, 4)	W(2, 3)	H(2, 4)	W(3, 4)	w(5, 6)	N(5, 7)	w(6, 7)
0.0 - 2.0	09708	=. 047 : P	×.09730	a.00012	00024	=,00012	00001	••00001	••00001
2.0 - 4.0	02021	• • 02025	02029	0004	00009	-,00004	•.00000	• • • • • • • • •	• • 0 0 0 U O
4.0 . 0.0	-,00712	.00715	00717	.00002	-,00005	• 00002	••00000	•.00000	.00000
b.0 = 8.0	•.00484	.00488	00491	.0004	-,00007	00004	.00000	00000	• • 000N0
8,0 - 10,0	-,00426	.00435	• 00443	00009	-,00019	-,00009	.00000	00000	00000
10.0 - 12.0	00411	.00422	00431	-,00010	-,00021	-,00011	.00000	.00000	•00000
12.0 - 14.0	-,00406	-,00416	-,00424	00009	= 00020	-,00010	• " Ú0000	.00000	00000
14.0 - 16.0	.00404	00412	00417	●。C0ù06	00014	-,00008	.00000	.00000	.00000
15.0 - 15.0	- C0408	.00412	•.00411	.00001	- 000.04	-,00003	.00000	.0001	• COOUO
16.0 - 20.0	- 00415	.00413	00406	.00006	.00009	.00004	.00000	.00001	• 0 0 0 0 0
50.0 - 55.0	00423	•.00415	• . 00400	.00013	.00024	.00011	.00001	.00001	.U0001
22.0 - 24.0		• 00416	•.00395	.00020	,00037	.00018	.00001	•00005	00001
51.0 - 50.0	• . 00441	•.00420	•.00391	.00028	.00053	,00025	.00001	.00002	.00001
26.0 - 28.0	00457	■_0042B	•,00391	.00036	.00069	.00033	.00001	.00003	• UÚOÚI
23.0 - 30.0	• 00488	•,00454	•.00411	.0004 2	.00081	.00039	• 0 0 0 0 2	.00003	• 00002
30.0 - 32.0	-,00629	- .00595	00550	.C0044	•00084	.00040	•00005	.06004	•00002
32.0 = 34.0	01436	••01413	• 01380	.00031	.00058	.00028	•00005	a Ú Ú Ú Ú Ú 4	• CUOUS
34,0 = 36,0	-,06116	•.00153	06180	00036	00076	•.00040	00002	.00064	• 60005 ·
3n.0 ⇒38.0	15144	• 15u87	•.15018	. 00065	.00125	.00061	.00001	.00001	.00001
30.0 - 40.0	-,39005	 35861 	38702	r00150	;00295	800146	≈ ₂00003	00006	• 00005
4.).0 - 42.3	-,48450	• • 0 5 3 5 4	•.08243	.00111	,00216	.00106	.00001	.00002	a V U U U 1
. a5*9 ≈ 40°0	-,02125	#.0204A	01957	.00092	.00179	.00088	.00003	.00005	.00003
44.0 - 46.0	00814	••00747	■ 0006€4	.CUUA3	.00159	.00078	.00003	.00007	.00003
- 46.0 • 48.0	•.00546	•.00483	· . 00405	.00077	.00149	.00072	.00003	.00007	.00003

DATE 04/21/76 0 TIME 12,28,09 1

CASE 1 FUEL THEHAL MODEL TEST

0.0000 0.000

0,0000 0,000

TIME = 0.00000 SECUNDS TEMPERATURE DATA FOR ROD 1 (FUEL TYPE 1 - CYLINDER)

0.

0

RUD 0,0, - 1,000 (IN,) ZOME-(FUEL DIA,(IN,)) - 1-(,836) 2-(,836) 3-(,836) 4-(0,000)

TEMPEHAT	(UKES(Pa)
A CRELATIVE F	AAGIUS(R/A))
AXIAL ZONE HEAT FLUK TYPE MODE HOURF + FLUID CLAD T(1) TO	(2) T(3) T(4)
(I+), (MHTU/HR=FT2) (H/H=F=FT2) # (1.000) 1	657) (333) (0,000
0.0 - 2.0 - 0000 2 0 13796.4 1099.8 1099.8 1099.8 10	j97.8 1044.8 1099./
2.0 - 4.0 .0000 2 0 13800.1 1099.6 1099.6 1099.6 10	398.6 1099.6 1099.0
4.0 - 6.0 .0000 2 0 13801.3 1099.4 1099.4 1099.5 10	397.6 1099.6 1099.1
6.0 - 8.0 .0019 2 0 13802.0 1099.2 1099.3 1104.9 11	107.1 1108.6 1109.
8.0 - 10.0 .1057 1 0 13802.3 1059.6 1107.3 1306.2 15	363.7 2500.3 2690.4
10.0 - 12.0 .1405 1 0 13802.2 1100.2 1110.5 1374.5 23	152.7 3117.8 3402.0
12.0 - 14.0 .1744 1 0 13798.0 1101.1 1113.8 1441.2. 27	126.3 3691.6 4045.0
14.0 - 16.0 ,2080 1 0 13797,1 1102,1 1117,3 1507,9 30)99.2 4190.2 4576.0
16.0 - 18.0 .2249 1 0 13798.2 1103.2 1119.6 1541.9 32	284.8 4412.3 4801.
18.0 - 20.0 .2250 1 0 13799.3 1104.4 1120.8 1543.2 32	288:0 4415.4 4804.
20.0 - 22.0 ,2250 1 0 13600.5 1105.5 1121.9 1544.4 32	289.6 4416.6 4005.0
22.0 - 24.0 ,2249 1 0 13801.8 1100.6 1123.0 1545.2 32	289.6 4415.7 4804.
24.0 = 26.0 , 2080 1 0 13803.0 1107.6 1122.8 1513.3 31	06.9 4196.1 4581.
20.0 - 28.0 .1743 1 0 13804.3 1168.4 1121.1 1448.5 27	136.8 3701.3 4054.1
26.0 - 50.0 .1406 1 0 13805.6 1109.0 1119.2 1383.2 23	365.1 3131.4 3416.
30.0 - 32.0 .1059 1 0 13607.1 1109.3 1117.1 1315.9 19	196.8 2515.6 2706.
32.0 - 34.0 .0018 2 0 13809.9 1109.1 1109.2 1114.8 11	16.9 1118.5 1114.
34.0 - 36.0 .0000 2 0 13821.3 1103.8 1108.8 1107.0 11	109.0 1109.1 1104.
36.6 - 58.0 .0000 2. 0 13228.4 1163.5 1108.5 1104.6 11	108.6 1108.6 1108.6
18-0 • 40-0 0-9000 0-000 0	

G- 30

ITERATIONS = 11

44.0 - 46.0

46.0 - 48.0

a t Lo t Lo t

TINE 0.0000 SECENDS

ENTHALPY (THOUSAND BTU/LB) AND VOID (TENTHS)

CHANNEL 1	CHANNEL 2	CHANNEL 3	CHANNEL 4
"45 "50	.45 .50	.45 .50	.45 .5u
	* * ** ** ** ** ** ** ** **		
1 *************	*****	*********	**********
2 **************	*++++++++++++++++++++++++++++++++++++++		*************
<u> </u>	******	******	******
4 **************	=++++++++++++++++++++++++++++++++++++++	*****	*****
5 **************	*****	******	*************
D *++++++++++++++	*++++++++++++++++++++++++++++++++++++++	******	**************
7 **************	* * * * * * * * * * * * * * * * * * * *	*****	*********
8 *************	*++++++++++++++++++++++++++++++++++++++	*****	**********
9 *********	* * * * * * * * * * * * * * * * * * * *	*****	********
10 **************	******	***************	*********
11 ***************	*++++++++++++++++++++++++++++++++++++++	***************	****
12 ***************	**************	***************	****
13 ****	*********	***************	********
14 ****************	*****	*********	****
15 ***************	******	*****	*****
10 ***************	*****	********	*****
17 *++++++++++++++++++++++++++++++++++++	*****	********	*****
15 ***************	*****	********	******
19 ***************	**********	*********	*******
20 ***************	***********	****************	****
21 ***************	*********	*********	
* ************	*******	******	
* ***************	*************		
24 ***************	**************		*********
25 **************	**********		
* ** ** ** ** ** ** **	* ** ** ** ** ** ** ** ** **	* ** ** ** ** ** ** ** **	· · · · · · · · · · · · · · · · · · ·

TIME 0.0000 SECONDS

ENTHALPY (THOUSAND BTU/LB) AND VOID (TENTHS)

	CHANNEL 5		CHANNEL 6			CHANNE	L 7		CHANNEL			
	• 45	.50	4 5	,50	.45			.50	.45	•	• S U	
		** #		** ** ** *		** ** '**	** **	** ** *		** ** **	** ** ** *	
1 1	• • • •	*	* + + +	*	****			*			•	
2 4	t + + +	*	* * * *	*	****			*	*			
3 1	• • • •	¥	***	*	****				*		1 *	
4	• + + +		***	*	****			· · · · •			· *	
5 1	* * *		*+++	·	*+++		•	*	*		*	
6 1	• • • •		***	· •	****			*	*		19 *	
7 1	• • • •	*	* + + +	*	****		1 A.	*	A .		· •	
8 *	• • •		*++*	* .	****			*	*			
	* * *		- #+++	*	****			*	*		`	
10 +	· · · · · · · · · · · · · · · · · · ·		****	· · · · · · · · · · · · · · · · · · ·	*****				*		±	
11 +	* * * *		****	· · · · · ·	*****			· *			*	
12 .	****	, in the second s	****		*++++			*	•	· ·	•	
15 *	+ + + + ·	\$:	*+++	*	*****	-		* * .	*		*	
14 #	* * * *		****	* *	*****			*	*		*	
15 *	* * * *	÷.	****	*	*****	•		· •	•		*	
15 *	+ + + +	F	****	*	*****			*				
17 *	***		***	*	*****			*	*		, k	
1.4	***	4	****	*	*****			· •	A		*	
1.1		4	****		*****		•	• · ·	. *			
20	****	í.	****		*****			•	•			
21 .		4	****		*****				•			
22 -			****		*****				•			
24	****	1		· #	*****				- •	•		
ີ່ວິດ	****	-		*	****	•			•			
23.	····		****		*****			-	•			
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · ·		, , , , , ,		· · · · ·	- 			

DATA FROM EXPLICIT SOLUTION....

ND.	TIME	COURANT	VEL	OCITY COM	PONENTS .	TCTAL	VOLUME	
TRIES	STEP	NUMBER	U/DX	VIDY	(U/CX+V/DY)	TIME	ERROR	
11	.01000	*******	34,32	.34	34,3901	0.0000	- R	
6	.01000	.344	34,31	, 2.7	34,3982	.0100	.0044	
à	.01000	344	34.28	24	34,3861	.020û	,ÇÇûb3	
	.01000	.344	34.23	.23	34,3525	.0300	.0074	
ž	.01600	343	34.13	.25	34.2661	.0400	0090	
- - 1	.01600	. 381	33.95	.26	34.0947	.0500	0091	
5	.01600	.340	35.96	26	33.9605	0600	0088	
5	.01000	342	34.17	25	34,1736	.0700	0077	
5	01000	344	34.36	.24	34.3558	.0800	0077	
2	01000	345	14.51	.23	34,5113	.0900	.0076	
2	01000	346	14.64	.22	34.0449	.1000	0075	
· <u> </u>	.01000	148	14.76	.22	34.7626	.11.00	0073	
÷.	.01000		14.87	.24	34.8713	.1200	0070	
2 ·	01000	150	14.98		34.9766	1300	0068	
2	.01000	. 151	35.08	.20	35.0805	.1400	.0066	
<u>ء</u>	. 01000	152	75.18	.19	35,1817	1500	0064	
2	1	.151	15.28	19	35.2753	1600	.0063	
	01000		15.15	. 19	15.3549	1700	0062	
Č,	01000	354	35 41	. 19	35.4128	1800	0061	
e a	0100	6334	75 11	10	15 4410	1900	0060	
. 2	.01000	0354	37644	11	75 4743	2000	0059	
5	.01000	. 35,4	32,43	.14	.22.4312	8 E U U U	60024	

.

FUEL THEMAL MUDEL TEST

CHANNEL RESULTS

1

CASE

DATE 04/21/76 0 TIME 12.20.14 1

-	TIME #	,20000 SEC	ONDS PRE	.SSURE # 15	.0 PSIA	DATA	FOR CHANNE	L 1			
	DISTANCE	OELT4=P	ENTHALPY	TEMPERATURE	CENSITY	EGUIL.	V010	FLOW	MASS FLLX	VELOCITY	AREA
	(12.)	(PST)	(5TU/L8)	(DEG-F)	(LB/CU-FT)	QUALITY	FRACTION	(LB/SEC)	(MEBZHR#F12)	(FT/SEC)	(SG-IN)
	0.0	1.5952	486.88	1100,00	50,56	0,000	0.CDC	1.8736	1.0748	5,9052	.40370
	2.0	1,4403	486,87	1099.96	50,56	0,000	0.000	1.8689	1:0721	5.8905	.90370
	4.0	1,3823	486 84	1099,88	50,56	0.000	0.000	1.8614	1.0678	5,6667	90370
	5.0	1,3250	486,81	1099.78	50.56	0.000	0.000	1.8506	1.0616	5,8326	90570
	6.0	1.2702	486.78	1099.66	50.56	0.000	0.000	1.8360	1.0532	5,7865	90370
	10.0	1.2159	486.96	1100.27	50.55	0.000	0.000	1.8171	1.0424	5.7275	.90570
	12.0	1.1623	487.20	1101.08	30,55	0.000	0.000	1.7943	1.0293	5.6563	90370
	14.0	1.1090	487.51	1102.09	50.54	0.000	0.000	1.7694	1.0150	5,5789	90370
	10.0	1.0554	487.87	1103.30	50,53	0,000	0.000	1,7458	1.0015	5.5057	96370
_	18.0	1.0008	488,26	1104.59	50,52	0,000	0.000	1,7270	9907	5.4477	90570
နာ	20.05	9450	488.63	1105.83	50,50	Ú 000	0.000	1,7150	9838	5.4111	90370
ယ်	. 0,55	.3878	488.99	1107.03	50,49	0.000	0.000	1,7096	9807	5,3950	.90370
4	2a•0	16281	489.33	1108,19	50.48	0.000	0.000	1.7089	.9003	5.3941	.90370
	20.0	.7693	489.64	1109.21	50.47	0.000	0.000	1.7109	.9815	5.4014	. 90370
	54.0	.7087	489.87	1109,97	50.47	0,000	0,000	1.7141	.9633	5.4119	96370
	50.0	,6476	490,02	1110.50	50.40	0.000	0.000	1.7173	9851	5.4228	.90370
	52.0	.5861	490,11	1110.78	50.46	0.000	0.000	1.7206	.9870	5,4336	90370
	34.0	5244	489 97	1110.33	50.46	0.000	0.000	1,7263	.9903	5.4508	90370
	36.0	.4616	489.84	1109,69	50.47	0.000	0.000	1.7603	8.0098	5.5570	.90570
	38.0	. 5174	489.70	1109.43	50.47	0.000	0.000	1.8521	.9914	5.4563	.40647
	40.0	,2846	489.12	1109.15	50.47	0.000	0.000	1,9368	7777	4.2801	1.24229
	45.0	,2423	489.57	1108,98	50.48	0.000	0.000	1.9571	.7851	4.3205	1.59559
	44.0	.1802	489.51	1108,79	50.48	0.000	0.000	1.9640	.7879	4.3356	1.24554
	45.0	,1199	489.45	1108 58	50.48	0.000	0.000	1,9688	.7898	4.3461	1.29229
	48.0	. 0599	489.17	1108.32	50.48	0.000	0.000	1.9785	7937	4.3675	1.29229

1111

UEL	THEMAL	MODEL	TEST				DATE	04/21	

1 41.81.15.51 JHLT 0 471540

- CHANNEL RESULTS CASE 1 FUEL THEMAL MODEL TH

	TINE =	.20000 SEC	UNDS PRE	SURE = 15	.0 PSIA	DATA	FOR CHANNE	L 2			
	DISTANCE	PELTA-P	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VCID	FLOW	MASS FLLX	VELCCITY	AREA
	(14.)	(PSI)	(BTU/LP)	(DEG=F)	(LU/CU=FT)	QUALITY	FRACTION	(LU/SEC)	. (ML8/HK=F12)	(FT/SEC)	(SG=IK)
	0.0	1.5952	485.33	1100.00	50.56	0.000	0.000	4.4022	,3795	4.8338	2.59400
	5.0	1,4405	486.81	1099 76	50.56	0,000	0.000	4.3937	.8781	4,8242	2.59400
	4.0	1.3827	485,74	1099.52	50,56	u,000	0.000	4,3801	,8753	4.8091	2.59400
	5.0	1.3261	486.67	1099 28	50.56	0.000	0.000	4,3618	8717	4.7889	2,59400
	8.0	1.2706	486.60	1099.06	50,50	0,000	0.000	4.3402		4.7650	2.59400
	10.0	1.2162	486.06	1099,27	50.50	0,000	0.000	4.3171	.8627	4.7397	2.59406
	12.0	1.1525	486.77	1049.63	50,56	0.000	0.000	4,2944	.8582	4.7151	2.59400
	14.0	1.1090	486,92	1106,15	50,55	0.000	0.000	4,2736	.8541	4.6928	2.59400
	16.0	1.0551	487.12	1100.82	50,55	0.000	0.000	4,2558	.8505	4.6737	2.59400
	18.0	1.0004	487.35	1101.58	50.54	0,000	0.000	4,2409	8475	4.6580	2,59400
	20.0	7444	487.59	1102.36	50.54	0,000	0.000	4.2292	.8452	4.6457	2,59400
,	22.0	3872	487.82	1103.15	50,53	0.000	0.000	4,2204	8434	4.6367	2.59400
)	24.0	1456	485.07	1103,97	50,52	0.000	0.000	4,2145	.8423	4.6510	2.59400
•	20.0	7690	4AA.29	1104.72	50.51	0.000	0.000	4.2113	.8416	4.6281	2.59400
	26.0	7045	483.48	1105.34	50.51	0.000	0.000	4.2101	.8414	4.6275	2.59400
	30.0	.0474	488.62	1105.62	50,50	0.000	0.000	4,2102	.8414	4.6277	2.59400
	32.0	.5861	488.73	1106.16	50,50	0,000	0.000	4.2108	.8415	4.6266	2.59400
	34.0	.5246	488.70	1106.06	50.50	0.000	0.000	4,2105	.8414	4.6262	2,59400
	30.0	4632	488.66	1105,94	50.50	0.000	0.000	4.2002	.8394	4.6168	2.54400
	38.9	.3203	488.62	1105 60	50.50	0,009	0.000	4.1713	.8003	4,4016	2.70208
	40.0	.2834	488,54	1105.53	50.51	0.000	0.000	4.1441	.6626	3.6439	\$.24250
	42.0	.2395	488,46	1105,26	50.51	0,000	0.000	4,1393	.6618	3.6394	5.24250
	44.0	.1797	485.38	1105.02	50,51	0.000	C.000	4.1370	.6615	3.6578	5.24250
	46.0	.1198	488.32	1104.10	50.51	0.000	0.000	4.1354	.6612	3.0362	3.24250
	44.0	6599	488.26	1104.61	50.51	0.000	0.000	4.1318	.0006	3.6324	3.24250

CHANNEL RESULTS

CASE FUEL THEMAL MODEL TEST DATE 04/21/76 O TIME 12.20.14 1 TIME = .20000 SECONDS PRESSURE # 15.0 PSIA 'DATA FOR CHANNEL 5 DISTANCE DELTAP ENTHALPY TEMPERATURE DENSITY VOID MASS FLUX EGUIL. FLCW VELCCITY AREA (1~.) (PSJ) (DEG-F) (LB/CU-FT) UUALITY (MLB/HR-F12) FRACTION. (LB/SEC) (FT/SEC) (SG=IN) 0.0 1.5952 456.85 1000.00 0.000 0.000 2,3159 .5096 2.7540 2.35000 51.39 1,4549 . 457.00 1000.47 2.7406 5.0 51.38 0.000 0.000 2.3040 .5070 2.35600 2.25.90 2.7229 4.0 1.4005 457.14 1000.93 51.38 0.000 0.000 .5036 2.35600 1.3463 257.28 1001.39 2,7034 5.9 51.38 0.000 0.000 2.2124 .5000 2.15000 8.0 1,2918 457.41 1001.64 51.37 0.000 0.000 2,2560 .4964 2.6840 2.35000 10.0 1.2368 457.55 1002.30 51.37 0.000 2.2410 .4931 2.6664 2.35000 0.000 12.0 1.1909 457.69 1002.75 51.37 0.000 0.000 2.2284 .4903 2.6516 2.35500 457.82 14.0 2.2185 2.6400 2.35600 1.1240 1003.20 51.36 0.000 0.000 .4881 16.0 1.0661 457.96 1003.66 0.000 0.000 2.2:14 .4866 2.0317 2.35000 51.36 458.10 2.35000 18.0 1.0072 1004.12 51.35 0.000 0.000 2.2066 .4855 2.0202 .9476 1004.57 20.0 458.23 51,35 0.000 2.2037 .4849 2.6230 2.35600 0.000 2,35000 .4873 458.37 1005.03 0.000 5:5055 .4645 2.6213 55.0 51.35 0.000 2.2014 .4844 2.35600 24.0 . 4267 458.51 1005.49 2.6206 51.34 0.000 0.000 25.0 .7658 458.65 1005.96 2,2010 .4843 2.6203 2.35600 51.34 0.000 0.000 24.0 .7009 458.79 0.000 0.000 2.2008 .4842 2.0202 2.35000 1000.42 51.34 30.0 .0440 458,93 1006.08 51.33 0.000 0.000 2.2005 .4642 2.6201 2.35600 12.0 2,2002 2.0199 .5831 459.07 1007.35 51.33 0.000 0.000 .4841 2.35000 34.0 :5223 459.21 1007.01 51.33 0.000 0.000 5,1399 4840 2.0197 2.35000 2.1994 .4839 50.0 459.54 1005.26 0.000 2.0193 2.35400 .4616 51.32 0.000 35.0 .4010 459.48 1008.72 51,32 0.000 0.000 2.1989 .4838 5.6184 2.35000 2.1978 .483t 2.35000 40.9 .3404 459.62 1009.17 51,31 0.000 0.000 2.0170 45.9 459.75 2.1974 .4835 2.35000 .5450 1009.62 51,31 0.000 0.000 2,6175 .4835 44.0 .1815 455,89 1010.07 51.31 0.000 0.000 2.1974 2,6177 2.35000 .4835 45.0 .1210 160.05 1010.51 51.30 0.000 0.000 2.1975 2.6180 2.35000 48.0 .0605 460.15 1010.95 51.30 0.000 0.000 2,1970 .4630 2.6183 2.35000

£ 1]

DIVERSION CROSSFLOW BETWEEN ADJACENT CHANNELS, W(1,J), (L0/SEC-FT),

FUEL THEMAL MODEL TEST

DATE 04/21/76 0 TINE 12,20,14 1

1IME = .20000 SECONDS

1

AXIAL	ZONE	+(1, 2)	*(1, 3)	HC 1, 4)	HC 21 3)	H(2, 4)	HC -3, 4)	W(5, 6)	»(5, 7)	W(6, 7)
0.0 🖷	5.0	00124	■ ± 00340	00556	=.00222	00446	£5500 -	.00564	01114	.00550
2.0 -	4.0	•,00333	# • 007 m 3	-,01192	.00439	.00878	.00439	.00855	- 01690	= UU835
4.0 -	6.0	.00448	e.010#5	01717	• 00648	.01292	.00644	.01008	.01994	e,00980
5.0 -	8.0	= .00339	•.01157	▶.01968	· . CO534	.01660	.00827	01056	.02090	- 01034
A.0 🖷	10.0	.00057		01840	00972	- 01934	• 00962	.01014	80050	.00995
10.0 -	12.0	.00537	••00386	-,01396	- .0104Ż	•.02071	- 01030	.00901	01788	=,0utd7
15.0 -	14.0	. 01126	.00110	00495	01032	02055	.01024	-,00745		.00737
14.0 -	10.0	.01221	.00252	P.00650	.00951	01897	•.00948	-,00573	01145	,00571
16.0 -	18.0	.00827	.00019	00782	00815	-,01627	00813	. 00410	•.0062ž	00412
18.0 -	20.0	.00142	• 00446	-:01127	.00642	01281	00641	-,00271	00547	■.0ú276
- 20,0 m	25°0	≈ ₀00480	•.00935	01385	.00455	. 00911	= 00457	00164	00336	•.00171
22.0 -	54.0	■.i00816	· 01098	.01377	00279	00561	-,00284		•.00189	- 0009d
24.0 •	26.0	- .00855	••00992	.01127	•.00129	₹.00264	-,00136	• 00047	- .0úù99	•.00052
50.0 -	58.0	00720	••00747	•• 00770		00033	.00021	= 00023	•.00049	● .00026
28.0 •	30.0	₩ •00548	••00497	. 00443	.000h7	.00128	.00059	•.00011	-,00025	■.00014
30.0 •	32.0	•.00465	••00364	•.00257	.00119	.00232	.00112	• 00008	0G018	.00610
52.0 -	34.0	• • 10940	.00803	00659	.00155	.00304	.00147	•.00010	.00030	• 00011
34.() a	36.0	- 006673	U6466	● • 06249	.00230	.00456	.00224	-,00009	-,00020	■ 0 0 0 0 1 0
3n.0 -	38.0	•.18141	• 18064	17976	.00086	.00168	.00080	.00012	.00024	.00012
18°0 •	40.0	o.17116	e+17103	+ 17073	00054	.00045	.00018	÷00109	.00218	.00109
∿i),j) =	42.0	•.03510	••03513	* °C3468	00027		,00023	. 00024	••00046	00023
42.0 •	44.0	-,01279	••01273	01247	.00055	.00108	.00052	-,00075	······································	00071
44.0 🖷	46.0	•,00954	• . 00903		.00108	.00212	.00104	•,00070	. 00136	≂ ცსპსიგ
46 <u>,</u>) e	48.0	••02046	••01916	•• 01773	.00183	.00363	00179	• 00037	• • • • • • • • • • • • • • • • • • •	00032

G-37

CASE

DATE 04/21/76 0 TIME 12.20.14 1

CASE FUEL THEMAL MODEL TEST 1 .20000 SECCIDS TINE = TEMPERATURE DATA FOR ROD 1 (FUEL TYPE 1 - CYLINDER) RUD C.D. = 1.000 (IN.) 2CNE-(FUEL DIA.(IN.)) - 1-(.836) 2-(.836) 3=(.836) 4-(0.000) TEMPERATURES(F.) (RELATIVE RACIUS(R/R)) AXIAL ZONE HEAT FLUX TYPE MODE HSURF FLUID CLAD T(1) T(2) 1(3) T(4) * (HETU/HR=FT2) (10.) (8/H+F=FT2) * (1.000) (.667) (.333)(0.000) 1099.8 .0400 13947.5 1099.8 1099.8 1099.8 0.0 -2.0 2 0 1099.8 1099.8 5.0 . .0000 2 13916.6 1099.6 1099.6 1099.6 1099.6 1099.6 4.0 0 1099.8 1099.5 4.0 -.0001 2 1099.4 1099.4 1099.6 1099.6 . 6.0 Ü 13872.4 1099.6 ,0019 5.0 . 13815.3 1099.2 1099.3 1108.6 8.0 2 0 1104.9 1107.1 1109.2 8.0 -10.0 .1059 2495.3 1 0 13747.7 1099.6 1107.3 1304.3 1977.8 2040.0 10.0 -12.0 .1397 13671.9 1110.4 1372.2 2344.9 3111.2 3397.1 Ô 1100.2 12.0 -14.0 .1723 Û 13591.2 1101.0 1113.7 1438.6 2716.6 3683.5 4039.1 1 14.0 -16.0 .2047 0 13519.2 1102.0 1117.1 1505.0 3087.5 4180.5 4508.7 1 15.0 -18.0 .2208 0 13458.9 1103.1 1119.5 1538.9 3272.2 4401.6 4793.3 1 18.0 -.2208 1275.3 20.0 1 0 13412.0 1104.2 1120.7 1540.3 4404.9 4796.3 20.U -22.0 .2207 ٥ 13379.2 1105.3 1276.9 4406.1 4797.1 1 1151.6 1541.4 55.0 -.2209 24.0 0 13359.2 1106.4 1122.9 1542.3 3277.0 4405.2 4795.9 1 24.0 -26.0 .2048 1045.2 4186.3 4575.4 13369.6 1107.4 1122.7 1 0 1510.5 20.0 -20.0 .1718 ۵ 13347.5 1108.1 1121.0 1445.9 2727.1 3693,2 4048.1 1

1108.7

1109.0

1108.7

1100.5

1108.2

1119.1

1117.0

1109.0

1108.6

1108.3

1380.9

1514.0

1114.8

1109.0

1108.5

2357.3

1990.9

1116.9

1104.0

1108.0

3124.7

2510.5

1118,5

1104.1

1108.6

3410.8

2702.7

1119.1

1109.1

1106.6

G-38

ITERATIONS =

20.0 -

30.0 -

32.ú -

34.0 -

30.0 .

54.0 -

નાંગુત ન

42.0 -

44.0 •

46.0 -

30.0

32.0

34.0

36.0

38.0

40.0

42.0

44.0

46.0

48.0

.1395

.1064

.0037

.0n2č

.0019

0.0000

0,0000

0.0000

0.0000

0.0000

2

1

1

2

2

2

0.000

0.000

0.000

0.000

0.000

۵

0

0

U

0

0

0

0

0

0

13350.3

13355.5

13362.8

13381.4

12816.8

DATA FROM EXPLICIT SCLUTION

NU.	TIME	COURANT	VEL	OCITY COM	PONENTS	TCTAL	VOLUME		
THIFS	STEP	NUMBER	UVDX	V/OY	(U/DX+V/DY.)	TIME	ERROR		
5	.01000	.354	35,38	.19	35,3757	.2100	.0057		
5	• U: 000	.353	35,27	. 19	35,2700	2200	0052		
5	.01000	, 351	35.11	.15	39.1131	2300	0046		
S	.01000	.349	34,91	.19	34,9083	.2400	0038		
5 .	.01000	.347	34,66	.19	34.6630	.2500	0029		
2	.01000	.344	34. 59	.19	34,3981	.2600	.0021		
ź	.01000	.342	34.15	. 19	34,1576	2700	.0015		
2	.01000	.341	34.03	. 19	34.0719	.2800	.0017		
2	.01000	.340	33.94	. 19	34.0112	2900	.0023		
5	.01000	.339	33,85	.19	33,9413	.3000	.0028		
2	.01000	.339	33,77	.19	.33.8586	.3100	.0032		
2	.01000	.338	33,68	. 19	33.7752	.3200	.0033		
2	.01000	.357	33.58	.19	33.6739	.3300	.0033		
2	01000	.336	35,40	18	33.5781	.3400	.0032		
2	01000	335	33. 19	.18	33.4718	.3500	.0031		
2	.01000	.334	33,35	.18	33.3993	. 3600	.0030		
2	.01000	333	35,30	.17	33,3455	.3700	.0030		
2	.01000	.333	33.24	.17	33.2848	.3800	.0029		
2	.01000	.332	33,18	.17	33,2192	3900	.0029		
2	.01000	.332	33.11	.17	33.1507	4000	.0028		

G-39

۲

CHANNEL RESULTS FUEL THEMAL MODEL TEST CASE 1

. .

DATE 04/21/76 U TIME 12.28.20 1

TINE =	.40000 SEC	UNDS, PRE	534RE # 1	5.0 PBIA	DATA	FOR CHANNE	L 1	, ,		
DISTANCE	UELTA=P	ENTHALPY	TENPERATUR	E DENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELCCITY	AREA
(IN_{\bullet})	(PSI)	(HTU/L8)	IDEG=F)	(L8/CU+F1:	QUALITY	FRACTION	(LU/SEC)	(MLB/HR+FT2)	(FT/SEC)	(SG+IA)
0.0	1.5952	485,88	1100.00	50,56	0,000	0.000	1.7054	.9783	5,3752	,40370
2.0	1.4562	485,87	1099,45	50.56	0.000	0.000	1.7078	.9796	5.3826	. 40 570
4.0	1.3954	485.84	1099.87	50,56	0.000	0.000	1.7108	.9814	5,3920	,90370
6.Ú .	1.3345	485.81	1099.77	50.56	0.000	0.000	1.7141	9833	5.4024	90370
8 . J	1.2737	485.78	1099.65	50.56	0.000	0.000	1.7175	.9852	5.4130	.90370
10.0	1,2131	485,96	1100,26	50.55	0.000	0.000	1.7208	.9871	5.4240	90376
12.0	1.1526	487,20	1101.06	50.55	0.000	0.000	1.7240	.9590	5.4349	.50376
14.0	1.0923	487,49	1102,05	50,54	0,000	0.000	1,7272	9908	5,4458	90370
10.0	1.0322	487.85	1103.23	50.53	0.000	0.000	1.7302	9925	5,4566	\$0.570
18.0	.9723	488 22	1104,47	50,52	0.000	0.000	1.7332	.9942	5.4670	90370
50.0	.9126	488,58	1105.07	50.51	0.000	0.000	1,7358	,9957	5,4764	90370
55.0	.8530	488.93	1100,+4	50.50	0.000	0.000	1,7378	.9968	5,4838	.90570
24.0	.7937	489.27	1107,97	50.48	0.000	0.000	1,7386	.9973	5,4870	90570
25.0	.7345	489.57	1108.97	50.48	0.000	0.000	1.7379	. 4969	5.4863	.90370
23.0	.6755	489.79	1109.72	50.47	0.000	0.000	1,7353	.9454	5,4787	.903/0
50.0	.6166	489.95	1110.23	50.46	0.000	0.000	1.7310	,9929	5.4656	90370
32.0	5578	490.03	1110.50	50.46	0.000	0.000	1.7257	.9400	5.4494	•4u37ů
54.0	.4991	489.89	1110.04	50.47	0.000	0.000	1.7234	.9886	5.4414	•90370
36.0	.4395	489.75	1109,57	50.47	0.000	0.000	1.7481	1.0028	5.5190	.90370
34.0	.3003	489.60	1109.09	50.47	0.000	0.000	1,8351	.9823	5,4058	. 90847
40.0	.2703	489,51	1108.77	50.48	0.000	0.000	1,9169	.7689	4,2315	1.29229
45.0	.2304	466.44	1108,54	50.48	0.000	0.000	1.9322	.7751	4,2652	1-53558
44.0	+1711	489.37	1106.32	50.48	0.000	0.000	1,9377	•7773	4.2771	1.29229
46.0	•1137	489,31	1106.11	50.48	0.000	0.000	1,9418	.7790	4.2860	1.29229
40.0	.0567	429.25	1107.91	50.49	0.000	0.000	1,9460	.7806	4.2952	1.24224

CHANNEL	HESULTS		•		:					
CAŠE	1 F	UEL THEMAL	MODEL TEST					DATE 04/2	1/76 O TI	ME 12.28.20
TIME #	.40000 SEC	ONDS PRE	SSURE = 15	.0 PSIA	DATA	FOR CHANNE	L 2		•	
DISTANCE	DELTAP	ENTHALPY	TEMPERATURE	DENSITY	EGUILe	VOID	FLOW	MASS FLLX	VELOCITY	AHEA
(10.)	(PSI)	(ATU/LA)	(JEG=F)	(LA/CU-FT)	QUALITY	FRACTION	(L8/SEC)	(MLB/HR=FT2)	(FI/SEC)	(SG=IN)
U.n '	1.5952	486.38	1100,00	30,56	0.000	0.000	3.9805	,7955	4.3708	2.59400
2.0	1.4563	486,80	1099.75	50,56	0.000	0.000	3,9813	,7956	4.3714	2,59400
4.0	1.3954	486.72	1099.48	. 50.56	0.000	0.000	3,9826	7959	4.3727	2.59400
6.0	1.3345	486.55	1099.23	50,56	0,000	0.000	3,9845	.7963	4.3746	2.59400
8.0	1.2738	486,58	1099.01	50.57	0.000	0.000	3,9871	.7968	4.3775	2.54400
10.0	1.2131	486,65	1099.22	50.50	0.000	0.000	3.9907	.7975	4.3815	2.59400
12.0	1.1526	486.76	1099.60	50.50	0.000	0.000	3,9952	.7984	4.3060	2.59400
14.0	1.0923	486.92	1100.14	50.55	0.000	0.000	4,0009	.7996	4.3432	2.54400
10.0	1.0355	487.13	1100.64	50.55	0.000	0.000	4.0078	.8009	4.4014	2.59400
18.0	.9723	487.57	1101.03	50.54	0.000	0.000	4.0160	.8026	4.4110	2.54400
≥ 0,∎0	. 9127	487.01	1102.44	50.53	0,000	0.000	4.0257	.8045	4.4223	2.54400
55.0	*8551	487.36	1103,27	50.53	0.000	0.000	4,0368	,8067	4,4351	2.59400
54*0	.7938	488.11	1104.11	50.52	0.000	0.000	4.0494	.8092	4,4490	2.59400
2֥0	.7306	488.35	1104.90	50.51	0,000	0.000	4.0635	.8121	4.4657	2.54400
53.0	.6756	488,54	1105.55	50.51	0.000	0.000	4.0790	,8152	4.4833	2.59400
30.0	.6167	488.70	1106,06	50,50	0,000	0,000	4,0954	.8165	4,5018	2.59400
52.0	.5579	488,81	1106.43	50.50	0.000	0.000	4,1125	,8218	4.5200	2.59400
34.0	.4992	486.78	1100.30	50.50	0.000	0.000	4,1275	.8249	4.5573	C.59400
35.0	• 4 4 0 8	488.75	1106.26	50.50	0.000	0.000	4.1306	.8255	4.5406	2.59400
33.0	.3033	488.72	1106,14	50.50	0,000	0.000	· 4.1126	, 789€	4.3398	2.76200
40.0	.2691	468.06	1105.93	50.50	0.000	0.000	4.0956	,6548	3.6015	3.24250
42.0	• 552.0	488.59	1105.70	50.51	9.000	0.000	4.0992	.6554	3.6045	3.24250
4400	.1706	488,52	1105.47	50,51	0.000	0.000	4.1037	.0561	3.0083	3.24250
46.0	.1116	488.45	1105.23	50.51	0.000	0.000	4.1059	.6564	3.6101	3.24250
48.0	. USe7	488.38	1104.99	50.51	0.000	0.000	4.1052	.6563	3.6094	3.24250

CASE	RESULTS	VEL THEMAL	POCEL TEST			•		DATE 04/2	21/76 O TI	ME 12.28.2
TIME P	.40000 SEC	OND S PRE	SSLKE = 15	.0 PEIA	DATA	FOR CHANNE	£ 5			
DISTANCE	DELTA-P	ENTHALPY	TEPPERATURE	DENSITY	EGUIL.	VQ10	FLOW	MASS FLUX	VELCCITY	AREA
(1+*)	(851)	(日下しょしゃ)	(DEG-F)	(LB/CU+FT)	DUALITY	FRACTION	(LB/SEC)	(ML8/HR#FT2)	(FI/SEC)	(SG-IN)
0.0	1.5952	456.86	1000.60	51,39	0.000	0.000	2.0689	,4552	2,4608	2.35600
5.0	1.4675	457.02	1000,52	E1.38	0.000	Ó.000	2,0688	4552	2.4608	2,35000
4.0	1.4069	457.17	1001.63	51.38	0.000	0.000	2.0687	.4552 -	2.4609	2.35000
6,0	1.3463	457.31	1001,51	£1,38	0.000	0.000	2.0687	.4552	2.4611	2.35000
A.U	1.2856	457.46	1001,98	51.37	0.000	0.000	2,0689	.4552	2,4015	2,35000
10.0	1.2250	457,59	1002.44	51,37	0.000	0.000	2,0692	.4553	5.4051	2.35000
12.0	1.1644	457.73	1002.90	51.30	0.000	0.000	2.0698	.4554	2.4629	2.35000
14.0	1.103B	457.87	1003,35	51.36	0.000	0.000	2,0706	4556	2.4640	2.15000
16.0	1.0433	456.00	1003.60	51.36	0.000	0.000	2.0717	.4558	2.4055	2.35000
18.0	9427	458.14	1004.26	51.35	6.000	0.000	2.0732	.4562	2.4075	2.35606
50.0	•45555	456.28	1004.71	51,35	. 0.000	0.000	2.0751	.4566	2.4699	2.35000
55.0	.8618	458.41	1005.17	51,35	0.000	0.000	2,0775	.4571	2.4730	2.35000
24.0	48015	450.55	1005.65	51.34	0.000	0.000	2.0804 -	.4578	2.4766	2.35000
25.0	.7413	458.69	1006.09	51.34	0.000	0.000	2.0838	.4585	2.4808	2.35000
24.0	. 681Z	458.83	1006.55	51.34	0.000	0.000	2,0875	4593	2.4854	2.35000
30.0	.6214	458.97	1007.01	51.33	0.000	0.000	2,0916	.4002	2.4905	2.35600
32.0	\$5617	459,11	1007.47	51.33	0.000	0.000	2,0959	.4612	2.4958	2.35000
34.0	.5023	459.24	1007.93	51.32	0,000	0.000	2.1002	.4021	2.5011	2.35600
50.0	4431	454.38	1006.39	51.32	0.000	0.000	2.1045	.4031	2.5063	2.35600
30.0	. 3841	454.52	1008.84	51.32	0.000	0.000.	2,1062	.4639	2,5109	2,35600
40.0	.3254	459.65	1069,29	51.31	0.000	0.000	2.1103	.4643	2.5137	2,35600
45.0	.2319	459.79	1009,74	51.31	0.000	0.000	2.1121	.4647	2.5160	2.35000
44.0	.1737	459,92	1010.18	51,31	0.000	0.000	2,1135	.4650	2.5170	2.35600
46.0 .	•1157	460.05	1010.02	51.30	0.000	0.000	2.1144	.4652	2.5189	2.35000
48.0	.0578	460.18	1011.06	51.30	0.000	0.000	2.1147	.4653	2.5195	2.35000

DIVERSION CROSSFLOW BETWEEN ADJACENT CHANNELS, W(I,J), (LB/SEC+FT).

CASE 1 FUEL THEMAL MODEL TEST

UATE 04/21/76 U TIME 12.20.20 1

TIME = .40000 SECONDS

	A×I ≥L	ZUNE	n(1, 2)	W(1, 3)	4 (1, 4)	W(2, 3)	H 2, 4) H	3, 4)	W(5, 6)	H(5, 7)	W(c, 7)
	0.0 -	5.0	• • • 0297	•,00262	-,00226	.00034	.00080	.00040	-,00004	● . C û U O 8	- ¿00003 .
	2.0 -	4.0	-,00333	•.00266	00197	.00075	00151	00077	.00008	00015	.000006
	4,0 +	6.0	-,00305	•.00203	00100	.00109	.00218	00110	- 00016	.00031	.00015
	6.0 =	8.0	+,00225	00091	00042	.00137	00273	00136	=,00023	• 00045	= 00022
	5,0 -	10.0	00107	00055	00217	.00160	.00318	.00158	• 00020	• 00040	■ UU020
	10.0 +	12.0	.00032	.00219	00407	00181	.00361	.00180	00007	.00014	• 00007
	12.0 -	14.0	.00189	.00398	.00608	\$0500	.00402	00200	.00014	.60028	00014
	14.0 -	16.0	00361	.00590	.00822	.00223	00446	.00222	00039	.00077	00039
	10.0 -	18.0	00554	.00804	01059	.00247	.00495	.00247	.00065	.00130	.00065
_	14.0 -	20.0	01785	01059	.01339	00274	.00550	.00275	.00091	.Cu183	.00091
ີ ເ	20.0 -	22.0	.01080	.01300	.01088	.00304	00611	.00306	00118	.00236	.00110
4	55.0 -	24.0	01456	.01726	.02123	.00336	00674	.00337	00143	.00287	60144
ω	24.0 ·	26.0	.01907	14550	.02034	.00368	.00735	.00367	.00168	.00336	.001nm
	26.0 -	24.0	.02390	.02777	.03169	00395	.00788	00392	.00189	.0037d	.00189
	24.0 -	30.0	.02806	.03213	03623	.00414	.00820	.00411	00207	.00413	00206
	30.0 -	32.0	.02986	.03401	.03818	.00423	.00841	.00417	81500	.00436	00217
	32.0 -	34.0	.02433	.02845	.03261	.00422	0084U	.00417	00225	.00449	.00224
	34.0 =	30.0	03342	02954	►.025EB	.00403	.00798	00393	.00225	.00447	.00255
	36.0 -	39.0	* .15960	15658	P.15350	.00313	00622	.00308	.00233	.00466	00233
	36.0 m	40.0	■。15009	• 14734	■.14450	.00275	.00546	,00270	.00265	.00525	.00200
	40,0 =	42.0	≈ .01907	.01675	• 01432	.00237	00469	.00231	.00152	.00302	.00150
	45.6 -	44.0	■ .00226	• • 0 0 0 3 4	.00170	00198	00391	00191	.00085	.00165	100002
	44,4 -	46.0	∞ • ∩ 0 2 9 3	•.00145	.00010	.00151	,00297	00144	.00035	.00070	.00034
	46.0 -	48.0	= 00b68	00565	+.00447	.00114	.00222	.00107	.00006	.00012	.00006

DATE 04/21/76 0 TIME 12,28,20 1

TIME = .40000 SECONDS TEMPERATURE DATA FOR ROD 1 (FUEL TYPE 1 - CYLINDER)

FUEL THEMAL MODEL TEST

ACO G.D. - 1.000 (IN.) ZONE-(FUEL DIA, (IN.)) - 1-(.836) 2=(,836) 3=(,836) 4=(0,000)

			• .			# :			TEMP	ERATURES ((F .)	
						# :			(RELATE	VE RADIUS	(R/R))	
AXTAL	2 ZUNE	HEAT FLUX	TYPE	■CIDE	HSURF	\$ 1	FLUID	CLAD	TC 11	T(2)	1(3)	T(4)
()	(h.,)	(MBTU/HR@F	FT2)	(8	1/H+F+F12)	# :			(1.000)	(,067)	(.333)	(0.000)
0.0	2.0	.0001	5	0	12885.5		1079.8	1099.8	1099.8	1099.8	1099.8	1649.8
2.ú	4.0	.0002	2	0	12893.5		1099 5	1099.6	1099.6	1049.6	1099.6	1099.6
4.0 -	6.0	.00.)3	2	0	12903.9		1049.3	1099.4	1099 5	1099.6	1099.6	1099.6
6.0 -	e.o	.0021	2	Ü	12916.6		1099.1	1099.3	1104.9	1107.1	1108.6	1109.8
8.0 -	• 19.0	.1018	1	0	12931.6		1099.6	1107.4	1302.5	1971.9	2490.2	2682.6
10.0 .	12.0	.1353	1	0	12947.5		1100.2	1110.6	1370.0	2337.1	3104.6	3391.6
12.0 -	14.0	,1681	1	0	12962.2		3101.0	1114.0	1436.2	2106,9	3675.3	4032.4
14.0 -	16.0	.2008	1	0	12982.9		1102.1	1117,5	1502,5	3075.9	4170.8	4500.9
16.0 -	18.0	.2175	1	0	13007.3		1103.2	1119,9	1536.3	3259,6	4391.3	4784.9
18.0 -	50.0	.2177	1	a	13033.8		1104.3	1120.9	1537.6	3262.7	4394.5	4767.6
50.0 -	55.0	.2180	1	C	13062.1		1105.4	1122.0	1538.7	3264.3	4395.6	4788.1
55.0 .	24.0	.2:84	1	C	13091.9		1106.4	1123.1	1539,5	\$264.4	4394.7	4787.0
54.0 .	50.0	.2ŭ24	1	Ŭ	13122.4		1107.4	1122.8	1507.8	3083.6	4170.0	4565.5
26.0 -	28.0	.1700	1	0	13153.2		1108.1	1121.0	1443.3	2717.4	3685.Ŭ	4041.
59.0 .	30.0	.1380	1	U	13183.8		1108.7	1119.1	1378.6	2349.6	3118,1	3405.3
- 50.0 -	32.0	.1044	1	0	13214.0		1109.0	1116.9	1312.0	1985.1	2505,5	2696.3
35.0 -	34.0	.0025	2	9	13243.1		1108.7	.1108.9	1114.6	1116.9	1118.5	. 1119.1
34.0 -	. 35.0	.0009	2	ŵ	13277.5	•	1108.4	1100.4	1100.4	1109.0	1104-1	1104.1
30.0 -	• 3ª • 0	.0310	2	0	12733.0		1108.1	1108.2	1108.5	1108.6	1108.6	11,08.6
35.0 -	40.0	0.0000	0.000	U								
40.0 -	42.0	0.0000	0.000	0								
42.0 -	44.0	0.0000	0.000	0								
44.0 .	46.0	0,0000	0,000	Ð								
46.0 -	48.0	0.0000	0.000	0								

ITERATIONS = 2

G-44

CASE 1

TIME ,4000 SECONDS

ENTHALPY (THOUSAND BTU/LB) AND VOID (TENTHS)

	CHANNEL 1		CHANNEL 2		CHANNEL 3		UHANNEL 4	
	. 45	.50	.45	.50	. 45	.50	.45	•5U
	* ** ** ** ** ** **		* ** ** ** ** ** **	** ** *			* ** ** ** ** **	
	1 *****	*	*************	*	******		************	*
	2 ****		#++++++++++++++++++++++++++++++++++++++	á.	******		*************	*
	3 *****	*	**********	*	*****	*	* * * * * * * * * * * * * * * * * * * *	
	4 ***********		***********	*	*******		* * * * * * * * * * * * * * * * * * * *	
	5 ****	*	**********	🔺 -	******	· · · · ·	**********	
	b *+*++*********	*	*****	*	*****	* .	**********	- 🏚
	7 *****	*	*****	*	* * * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *	•
	* *************	\$ -	*****	· 🔹	*************		* * * * * * * * * * * * * * * * * * * *	
	4 • • • • • • • • • • • • • • • • • • •	*	****	. 🔺	* * * * * * * * * * * * * * * * * * * *	*	*******	· A
1	6 **************	*	*****	*	*****	*	*****	
i	1 *****		* • • • • • • • • • • • • • • • • • • •		*****	*	*****	
ωi	d *++++++++++++++++++++++++++++++++++++	· 🔺	****	*	*****	*	****	*
i i	3 *****	*	****	*	****	*	****	
	4 **********		* • • • • • • • • • • • • • • • • • • •	*	*****		****	· •
i.	`> ***************		*-+++++++++++++++++++++++++++++++++++++	• 🚖	****	*	****	
1	D #++++++++++++++++++++++++++++++++++++	*	******	*	******	.*	******	•
۱	1 ****	*	* • • • • • • • • • • • • • • • • • • •	*	*************	* ·	*********	
1	6 * * * * * * * * * * * * * * * * * * *	*	* * * * * * * * * * * * * * * * * * * *		*********	*	*****	
1	9 *****	*	* * * * * * * * * * * * * * * * * * * *	· · · 🙀	******	*	*****	*
5	9 * * * * * * * * * * * * * * * * * * *	*	******	*	******	*	**********	
5	1 ****	*	* * * * * * * * * * * * * * * * * * * *	. 🔺	***************	° 👘	*********	*
2	2 * + + + + + + + + + + + + + + + + + +	. *	******	- *	******	*	* * * * * * * * * * * * * * * * * * * *	*
2	5. ***********	*	*****	. 🔺	******	*	*******	*
2	* * * * * * * * * * * * * * * * * * * *	ŧ	*++++++++++++++++++++++++++++++++++++++	· •	****	*	******	*
Ž	5 ****		****	÷.	******	*	*****	*
-	A #A #A AA #A #A #A	**	* ** ** ** ** **	** ** *	* ** ** ** ** **	** ** *		** ** *

TIME 4000 SECONDS

ENTHALPY (THOUSAND BTU/LB) AND VOID (TENTHS)

		CHANNE	i. 5			CHA	NNEL 6	1			CHA	NNEL	7			CHAN	NEL		
	.45	•		.50	.45				.50	.45	•	••		.50	.45	•			.50
•	- * *š (* ** **	. ** **			** **	88 8A	** **	** *	1 * * *		(海南 南)	s 4.*	\$h 64 8.		44.88	** **	** **	
1	****	•		Ŕ	* + + +					****					\$				
2	****			+	****				*	****			•	ŧ					* '
3	****				*+++		•			****	•			*	* .				
4	****			*	****				,	***				*	a _				
- 5	*+++			*	****				.	****									- X
6	****.		•	· ·	****				8	****				t t	16				N
7	****			*	*+++				*	****				. 🏚	¢				*
9	****			*	****				4	****			•	*			•		¢.
9	*****	· ·		1 🕴	****					*****				*					
10	****			•	*++++				*	*****		F		*	*				
11	*****			*	****				*	*****				*	\$	•			*
15	*++++			.	****				*	*****		•		*	\$				*
1.5	****			*	****					*****	•	,		*	*				۰.
14	*++++	•		4	*+++	•		•	•	*****					.				
15	**+++			Å	*****					****		,							
10	*+***			4	*+++				*	*****				*					¢.
17	*++++			4	****	• •			4 .	*****				. †	*				*
13	****			* .	*****				*	*****				*					۲
19	*++++			*	****				•	*****									A
50	*++++	-		ti i	****				ų.	*****				*	1 1				· · .
21	*****			\$	****				.	*****				\$	¢.			•	*
55	*++++			*	* † † † †			۰.	*	*++++				ţ.	*				
23	* + + + +			•	* * * * *				*	****	•			· 🔶	A				\$
2:1	*****				*****	•				*****	•			*	*	•			
25	*++++			¢,	*****				*	*****	•			*	•				*
	* * * *	* ** **	** **	** ** *	南 黄角	**	教会 	** **	**	* * *	** **	** **	**		* **	** **	** ***	** **	** *

DATA FROM EXPLICIT SOLUTION

.;

N().	TIME	COURANT	VEL	CCITY COM	PCNENTS	TCTAL	VOLUME
TRIES	STEP	NUMBER	UIDX	VIDY	(nicx+nidă)	TIME	ERROR
2	.01000	. 331	33,05	.17	33,0812	.4100	.0026
. 2	.01000	,330	32,48	. 17	33,0128	.4200	,0023
2	.01008	.329	32.41	. 17	32.9469	4300	0019
2	.01000	.329	32,85	.17	32,6847	.4400	.0015
2	.01000	328	32,79	.17	32.6271	4500	.0010
2	.01000	.328	32.74	.18	32.7761	4600	.0006
5	.01000	327	32.69	. 18	32.7308	4700	.0007
2	.01000	.327	32.65	.18	32.0908	.4800	.0011
. 5	.01000	.327	32,65	. 19	32.6569	4900	.0014
5	.01.000	327	32,65	.19	32.6554	.5000	.0017
2 ·	.01000	.327	32.04	.19	32.6506	.5100	.0066
2	.01000	.326	32.63		32.6408	.5200	0092
4	.01006	.325	32.60	.20	32.6100	5300	.0063
2	.01000	.326	32,55	.20	32.5600	.5400	.0082
3	.01000	.326	32.51	.20	32.5506	.5500	0077
2	01000	325	32,50	.19	32.5427	.5600	0092
4	.01000	325	32,49	.19	32.5294	.5700	.0080
5	.01000	325	32,47	. 19	32.4988	.5800	0086
4	.01000	. 324	32.41	.19	32.4326	5900	0074
2	.01000	.353	32,31	.19	32,3301	. 6000	.0084

UATE

0 TIME

12.28.26 1

04/21/76

CHARNEL RESULTS

CASE 1 FUEL THEMAL HIDEEL TEST

TIME =	.69000 SECU	NDS PRE	ISSURE 🖷 15	. PSIA	DAŢA	FOR CHANNE	LI			
CISTANCÉ	DELTA+P .	ENTHALPY	TEPPERATÜRE	CENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELOCITY	AREA
(10,)	(189)	(BTU/LA)	(DEG=F)	(LB/CU+FT)	GUALITY	FRACTION	(L8/8EC)	(ML8/HH#FT2)	(FT/SEC)	(86-IN)
0.0	1.4357	486,88	1100.00	50,54	0.000	Q.00a	1.4834	,8509	4.6754	,90370
2.0	1,3297	496.87	1099,95	50.54	0.000	ó.ova	1,4965	.8584	4.7166	.90570
4.0	1.2794	486,84	1099.67	50,54	0,000	0.000	1.5082	.8651	4.7535	.90370
6.0	1,2283	486.81	1099 75	50.50	0.000	0,000	1.5201	.8720	4.7909	.40370
8 . 0	1,1773	486.77	1099 83	50.50	0.000	0.000	1,5332	8795	4.8322	.90370
10.0	1.1267	486.96	1100.20	50,55	0,000	0.000	1,5476	6878	4.8782	. 40370
15.0	1.0763	487.21	1101.10	50.55	0.000	0.000	1.5628	.8465	4,9268	.40370
14.0	1,0262	487.51	1102.12	50,54	0.000	0.000	1.5781	,9054	4.9764	.90376
16.0	.9762	487.88	1103,35	50.55	0.000	0.000	1,5936	.9141	5.0256	.90570
18.0	.9591	488,26	1104.00	50.51	0,000	0.000	1.6084	,9226	5.0735	.90370
50.0	.8757	484,62	1105,82	50.50	0.000	0.000	1.6225	.9308	5.1192	.90370
55.0	.8249	488.97	1106.99	50.49	0.000	0.000	1.6358	,9385	5.1020	. 40370
24.0 '	.7735	489.31	1108.13	50,4U	0.000	0.000	1.6479	9453	5.2013	.90370
20.0	.7212	489.61	1109.11	50.47	0,000	0.000	1.6587	,9515	5.2365	.90.570
59.0	.6680	489.95	1109.83	50.47	0.000	0.000	1.6685	9570	5.2071	.90370
30.0	.6139	489,97	1110,31	50.40	0.000	0.000	1.6763	.9616	5.2930	.40370
25.0	a 5587	490.04	1110.54	50.40	0.000	0,000	1.6829	,9654	5.3142	. 40370
\$4.0	• 5025	489.39	1110,05	50.47	0.000	0.000	1,6892	,9590	5.3334	.90370
10.0	• 4449	489.75	1109,59	50.47	0.000	0.000	1.7050	.9784	5.3848	.90570
30.6	.3137	489.60	1109,09	50.47	0.000	0.000	1.7983	.9626	5,2974	. 46647
49.0	.2810	489.50	1108.76	50,48	0.000	0.000	1.8855	¥7564	4.1623	1.29224
4 et . ()	·23#5	499.43	1108.51	50.42	0.000	0.000	1.8972	.7611	4.1880	1.59554
14.0	,1777	489.36	1106.27	50.42	0.000	0.000	1.8942	.7599	4,1812	1.29259
46.0	•1183	489,28	1108.03	50,48	0,000	0.000	1.8867	•756B	4.1043	1.29229
48.0	.0593	489.21	1107.79	50.49	0.000	0.000	1.8757	.7524	4.1398	1.29229

1

	HESULTS	UFI THEMAL	MONEL TEST							
TTWE -	* * * * * * * * * * * * * * * * * * *		961.04 m 16	- A B914						INE 16460460
F 1 10			.000 <u>88</u> # 15	DIA LÂIN	, UATA	FUR GRANNE				
DISTANCE	DELTA=P	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	4010	FLOW	MASS FLUX	VELOCITY	AREA
(IV.)	(PSI)	(BTU/LB)	(DEG+F)	(LB/CU+FI)	QUALITY	FRACTION	(LB/SEC)	(MLB/HR+FT2)	(FT/SEC)	(80+1N) ·
0.0	1.4357	485.88	1100.00	50.56	0.000	0.000	3.4544	. 6904	3.7931	2.59400
5.0	1,3289	486.79	1099.71	50.50	0.000	0.000	3.4857	6966	3.8272	2.59400
4.0	1,2790	486.71	1099.44	50.56	0.000	0.000	3.5100	7032	3.8634	2.59400
6.0	1.2285	480.64	1099,19	50.56	0,000	0.000	3,5520	7098	3.8997	2 59400
8.0	1,1773	486.57	1098,95	50.57	0,000	0.000	3.5848	.7164	3,9355	2.59400
10.0	1.1267	486.63	1099,17	50.50	0,000	0,000	3,6168	.7228	3,9709	2.59400
15.0	1.0764	486.75	1099.56	50.56	0.000	0.000	3.6477	7290	4.0050	2,59400
14.0	1.0263	486.91	1100,12	50,54	0,000	0.000	3,6772	.7349	4.0378	2.59400
16.0	.9762	487.13	1100.63	50,55	0.000	0.000	3.7052	,7405	4.0091	2.59400
19.0	.9261	487.37	1101.05	50,54	0.000	0.000	3.7315	.7457	4.0985	2.59400
20.0	.8756	487.62	1102,48	50.53	0.000	0.000	3.7559	.7506	4.1259	2.59400
. 55.0	. 9549	487.88	1103,33	50,53	n, 000	0,000	3.7783	.7551	4.1512	2,59400
24.0	.7733	488.14	1104,19	50,52	0.000	0.000	3.7986	.7591	4.1742	2.59400
26.0	,7210	488.38	1105,00	50,51	0,000	0,000	3,8164	7628	4 1948	2.59400
28.0	.6678	488.57	1105.66	50.51	0,000	0.000	3.8331	.7660	4.2151	2.59400
50.Ú	.6136	488.73	1106,18	50,50	0.000	0.000	3.8472	,7689	4,2290	2.59400
25.0	,5584	488.84	1106,54	50,50	0.000	0,000	3,8595	.7713	4.2428	2.59400
34.0	.5023	488.82	1106,47	50.50	0,000	0.000	3,8694	.7734	4.2541	2.59400
.56.0	. 4452	488.79	1106,30	50.50	0.000	0.000	3.8737	7741	4.2585	2.59400
10.0	. 5173	488.75	1106,25	50,50	0.000	0.000	3,8502	.7487	4.0030	2.70208
40.0	2799	488.69	1106.05	50,50	0,000	0.000	3,8272	.6119	3,3050	3.24250
42.)	2356	488.63	1105.64	50.50	0.000	0.000	3.8282	.6120	3.3663	3.24250
44.0	.1771	486.57	1105.64	50.51	0.000	0.000	3.8327	6128	3.3701	3.24250
46.0	.1182	488,51	1105.03	50.51	0.000	0.000	3.8373	.6135	3.3740	3.24250
43.0	0591	483,44	1105.21	50.51	0.000	6.000	3.8417	.6142	3.3778	3.24250

1

CHARNEL I	RESULTS									
CASE	1 FL	UEL THEMAL	MODEL TEST					UATE 04/2	1/76 0 TI	ME 12.28.26
TIME #	.60000 SEC	UNDS PHE	SSURE # 15	.0 F8IA -	DATA	FUR CHANNE	LS	·		·
CISTANCE	GEL TA=P	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VOID	FLOW	FASS FLUX	VELOCITY	AREA
(12.)	(PSI)	(BTU/(B)	(DEG=F)	(LB/CU+FT)	QUALITY	FRACTION	(LB/3EC)	(ML8/HH+FT2)	(FI/SEC)	(SG=18)
0.0	1.4357	456.86	1000,00	51.39	0.000	0.000	1.6049	.3531	1.9088	2.35000
2.0	1.5481	457.04	1000,59	51.30	0,000	0.000	1,6289	.3584	1.9576	2.15000
4.0	1.2954	457.20	1001.12	51,38	0,000	0.000	1 6541	.3640	1.9078	2.35000
b.0	1.2459	457,35	1001.64	51.37	0.000	0.000	1.6800	.3697	1.9987	2.35000
8 . i)	1.1951	457,50	1002.13	51.37	. 0.000	0.000	1.7063	. 3755	5.0202	2.35000
10.0	1.1443	457.65	1002.61	51,37	0.000	0.000	1,7520	.3813	2,0619	2.35000
15.0	1.0935	457.79	1003.69	51.30	0.000	0.000	1.7592	.3071	2.0935	2.35000
14.0	1.0425	457.93	1003.55	51,36	0.000	0.00.	1.7850	.3928	2.1243	2.35000
10,0	.9912	458.06	1004.01	51,36	0.000	0.000	1.8102	,3983	2.1544	2.35600
10.0	.9395	455,20	1004.47	51.35	0.000	0.000	1.8344	. 4036	2,1834	2.35000
50.0	. 3374	458.34	1004.92	51,35	0.000	0.000	1.8573	.4087	2.2108	2.35000
55.0	.8546	458.48	1005.38	51.34	0.000	0.000	1.8787	.4134	2.2364	2.35600
24.4	.7813	453,01	1005.04	51.34	0.000	0.000	1.8984	.4177	2.2000	2.35000
50.0	.7272	458,75	1000,30	-51.34	0.000	0.000	1.9162	.4210	2.2814	2.35600
24.0	. 4725	458.89	1006.76	51,33	0.000	0.000	1.9321	.4251	2.3004	2.35000
30.0	.0167	459.03	1007.22	51.33	0.000	0.000	1.9454	.4262	2.3171	2.35000
32.0	•5604	459.17	1007.68	51.33	0.000	0.000	1.9579	.4308	2.3315	2.35000
34.0	.5034	459.51	1008,14	51.32	0,000	0.000	1,9680	.4330	2.3437	2.35600
35.0	.4457	459.44	1008.59	51.32	0.000	0.000	1.9765	.4349	2.3540	2.35000
51.0 .	.3375	459.58	1009.05	51,32	0.000	0.000	1,9834	. 4364	2.3024	2.35000
a 3 • 0	.3267	459.71	1009.49	51,31	0.000	0.000	1.9881	.4375	2.3085	2.35000
15.0	.2384	459.85	1009,94	51.31	0.000	0.000	1,9920	.4383	. 2.3729	2.55000
44.0	.1790	459.98	1010,38	51.31	0.000.	0.000	1.9947	.4389	2.3703	2.35000
40.0	.1194	460.11	1010.62	51.30	0.000	0.000	1,9962	.4392	2.3783	2.35000
48.0	.0597	460.24	1011.20	51.30	0.000	0.000	1.9966	.4393	2.3789	2.15000

0 TIME 12.28.20 1

UATE

04/21/76

DIVERSION CHOSSFLUA BETHEEN ADJACENT CHANNELS, H(1,J). (LB/SEC-FT).

CASE 1 FUEL THEMAL HODEL TEST

TINE = .60000 SECONDS

AXIAL	ZUNE	+(1, 2)	W(1, 3) W	(1, 4) HI	(20 3) H(2, 4) W(3, 4) H(5, 6) 46	5, 7) m	(6, 7)
0.0 -	2.0	.U1955	.02863	.03743	.00994	.01954	.00961	.01258	.02473	.01214
5.0 -	4.0	.02512	03650	.04789	.01239	02460	.01222	. 01564	.03100	.01537
4.0 -	6.0	02468	03607	04751	.01203	02404	01203	01555	.05104	.01549
6.0 -	8.0	02225	03247	.04380	.01102	80220	01108	01507	03014	•U150h
8.0 ·	10.0	01458	02935	03951	.01012	02029	01019	61476	.02454	01478
10.0 -	12.0	.01661	02615	03579	00949	01901	00953	.01455	02910	01455
12.0 -	84.0	"Ú]451	02317	.03287	.00904	01808	00906	.01431	.02860	.01430
14.0 -	16.0	1283	.0216s	.03051	.00867	.01734	00868	01398	.02743	01595
16.0 -	18.0	.01138	.01984	.02840	00832	01664	.00832	01354	.02705	01350
18.0 -	20.0	.01009	01825	.02643	.00796	.01591	00796	01299	02593	.01294
50.0 -	22.0	0.0898	.01670	.02456	.00756	.01511	00755	01231	02458	.01227
55°0 -	24.0	.00805	.01540	. (2275	.00711	.01420	00709	.01151	.02299	01140
54.0 m	26.0	.00731	.01415	02Ú99	.00600	.01319	00658	U1061	.02119	.01058
26.0 -	24.0	.00679	.01306	.01933	00605	01209	.00003	.00962	01923	.00960
- 0.85	30.0		.01204	.01766	00543	01085	00541	.00858	01716	00258
50,0 -	32.0	.00602 -	. 01089	.01579	.00475	00950	00474	.00754	.01508	00754
s.2.0 -	34.0	.00463	.00877	01589	00407	00816	00409	00650	01301	.00650
54.0 -	36.0		.01652	· . 01358	.00281	00559	00277	.00553	.01107	00554
ه () ځ	38.0	.17545	e.172db	• 17024	.06255	.00510	00254	.00477	.00957	.00480
38.0 .	40.0	- 16614	0.16418	· 16210	20202	00419	90200	00428	.00857	00424
10,0 ⊨	42.0	• 01671		-,01400	C0154	00307	00152	.00282	.00567	600×84
42.0 -	44.1)	. ú1u92	.01184	.01285	.00113	00554	00110	00199	.00400	.00200
44.0 -	46.0	.01831	01854	.01946	600068	00134	00064	.00132	00200	.00134
46.0 -	48.0	02361	.02360	.02368	00008	.00013	.00003	.00059	.00120	.00060

CASE 1 FUEL THEMAL MODEL TEST DATE 04/21/76 0 TIME 12.20.20 TIME # - 50000 SECONDS TEPPEHATURE DATA FOR RUD 1 (FUEL TYPE 1 . CYLINDER) ROD G.D. - 1.000 (IN.) ZCNE+(FUEL DIA.(IN.)) + 1+(,836) 2=(,836) 5=(_636) 4=(0,000) TEMPERATURES(F.) (RELATIVE RACIUS(R/R)) AXIAL ZONE HEAT FLUX TYPE MODE HSURF FLUID CLAD TC 1). T(ē) 1(3) 1(4) (INW) - (METU/HR+FT2) (8/H-F-FT2) + (1.000) (0.000) [.667] (333) .0001 0 11779.2 1099.8 1099.8 1099.8 1099.3 1044.8 0.0 -2.0 2 1099.8 2.0 -.0002 Ż 11861.0 1099.5 1099.5 1099.6 1099.3 1099.6 1099.6 4.0 -0 10003 2 1099.3 1099.6 4.0 . 6.0 11948.4 1099.3 1099.5 1099.0 1099.6 0 6.0 -2 1099.1 1099.3 1109.2 8.0 1500 Ô 12036.1 1104.9 1107.1 1108.6 12121.2 A.0 -10.6 .0985 1 0 1099.5 1107.5 1300.6 1966 2 2485.1 2678.0 3385,9 10.0 -12.0 ,1316 1 0 12201.2 1100.2 1110.8 1367.9 2325 .4 3097.9 12.0 . 1433.9 2697.6 4025.6 14.0 .1643 12272.5 1101.0 1114.3 1 0 3067.1 14.0 . 16.0 .1970 1 0 12341.2 1102.1 1117,9 1500.0 3064.5 4161.1 4553.0 1533.7 4776.4 15.0 -.2138 12404,8 3247.1 18.0 1 0 1103.2 1150'3 4380.8 10.0 -.2144 12461.4 1104.4 4779.4 20.G 1 -0 1121.4 1535.0 3250.2 4384.0 20.0 . 55.0 .2148 12510.7 1105.5 1122,5 3251.3 4385.1 4780.2 1 0 1536.1 - 0.55 12553.0 4774.0 24.0 .2150 1106.6 1123.5 1537.0 3251.9 4384.3 1 0 24.0 + 4557.6 26.0 .1989 1 0 12588.5 1167.5 1153.5 1505.3 307ë.1 4166.9 26.0 -4034.6 28.0 .1666 12617.6 1108.3 1121.4 1441.0 2701.3 3076.8 1 24.0 -50.0 .1342 12641.2 1108.8 1119.3 1376.5 2341.9 3111.4 3399.6 1 0 30.0 -2694.0 32.0 .1009 1 Û 12659.8 1109.1 1117.0 1310.2 1979.5 2500.4 32.0 -54.0 .0016 2 12673.9 1116.7 1119.1 1108.7 1108.9 1114,8 1118.5 34.0 -2 1105.0 1109.1 1109.1 36.0 .0001 12688.0 1109.4 1108.4 1108.9 9 2 30.0 -39.0 .0003 12154.3 1106.5 1108.6 1108.1 1108,1 1108.5 1108.6 υ

ITERATIONS = . 2

12.0 - 44.0

44.0 - 46.0

40.0

42.0

48.0

0.0000

0.0000

0.0000

0.0000

0.0000

C.000

C.000

0,000

0.000

0.000

0

Ú)

0

ü

0

: 1

38.0 -

40.0 -

46.1) =

DATA FROM EXPLICIT SOLUTION....

NU.	TIME	COURANT	VEL	CITY COM	PONENTS	TCTAL	VOLUME
TAIES	STEP	NUMBER	U/UX	V/DY	(U/CX+V/DY)	TIME	ERROR
3	.01000	.322	32.15	.18	32,1689	.6100	0078
2	.01000	.320	31.94	.18	31,9547	,6200	0091
4	.01000	.317	\$1.00	.18	31,0005	6300	0077
2	.01000	.313	31,33	.18	31.3433	.6400	.0083
3	.01010	.310	30.94	.18	30,4553	. 6500	0079
2	.01000	305	30.52	.18	30,5381	.6600	.0092
4	.01000	.300	30.03	.18	30.0419	.0700	0084
2	.01000	.245	29.53	.18	29.5391	.6800	.0087
4	.01000	.290	28,96	. 19	28.9723	. 6900	0090
. 5	.01000	284	28,38	.19	28.3982	.7000	.0092
4	.01060	278	27.74	.20	27.7603	.7100	0092
2	.01000	.271	27.10	.20	27.1197	7200	0092
4	01000	264	20.40	.20	20.4210	.7300	0092
2	.01000	.257	25.70	.20	25.7253	7400	0091
4	.01000	250	24,46	.20	24,9951	.7500	0090
2	.01000	.243	24,22	.19	24.2634	.7630	.0091
4	.01000	.235	23.40	.18	23.5225	.7700	0085
S	.01000	. 228	22.70	.17	22.7702	.7800	0090
4	.01000	.220	21,92	.16	22.0164	.7900	0079
2	.01000	.213	21.15	.16	21.2548	.8000	0088

)

CHANNEL	RESULTS		•			
CASE	1	FUEL THEMAL HODEL TEST		DATE	04/21/76 0 11	12.28.31

1

TIME ≢	.80000 SEC	UNDS PRE	159URE ₽ 15	O PSIA	DATA	FOR CHANNE	L- 1			
DISTANCE	DELTAP	ENTHALPY	TEMPERATURE	CENSITY	EGUIL.	· VOID	FLOW	MASS FLUX	VELCCITY	AHEA
(IV.)	(PSI)	(BTU/LB)	(DEG=F)	(L#/CU+FT)	RUALITY	FRACTION	(L8/SEC)	(ML8/HH=F12)	(FT/SEC)	(SG#1N)
0.0	1,1166	486.88	1100,00	50,54	0.000	0,000	.9208	.5282	5.9055	. 40370
5.0	1,0496	486,86	1099.94	50.50	0.000	0.000	9380	5381	2,9503	.90570
4.0	1,0017	486.83	1099.63	50,50	0,000	0.000	,9533	.5469	3.0040	.90370
6.0	,9529	485.79	1099.70	50.50	0,000	0,000	.9671	.5548	3,0480	.90370
8.0	.9045	486.75	1099.57	50.50	0.000	0.000	9 797	,5020	3,0876	.90370
10.0	.8568	486,99	1100.38	50,55	0.000	0.000	,9913	,5686	3.1245	. 90370
12.0	.8057	487.29	1101,38	50.54	0.000 -	0.000	1,0019	5747	3.1580	.40370
14.0	.7634	487,65	1102.57	50.53	0.000	0.000	1,0117	5804	3.1903	.40370
15.0	.7178	483.06	1103.95	50.52	0.000	0.000	1.0210	5857	3,2205	. 90370
18.0	. 5731	488.48	1105,35	50.51	0.000	0.000	1.0299	.5908	3.2491	.90570
50.0	• • 5 • 5 • 5	488.87	1100.65	50,50	6.000	0.000	1,0356	.5958	3,2774	.90370
22.0	.5861	489,23	1107.66	50.49	000.00	0.000	1,0474	.6008	3,3059	.90370
24.0	.5438	489,58	1109.02	50.48	0.000	0.000	1,0503	.6060	3.3347	.90370
26.0	.5022	489 87	1109,98	50,47	0.000	0.000	1.0654	,6112	3,3640	.40570
28.0	.4612	490.06	1110.62	50.46	0.000	0.000	1,0748	.0165	3,3434	.90570
30.9	.4207	490.17	1110.99	50.46	0.000	0.000	1,0842	. 6219.	3.4238	.90370
32.0	.3809	490.20	1111.10	50.46	0.000	0.000	1.0933	.6272	5.4526	. 40370
34.0	.3417	489.99	1110.39	50,40	0.000	0.000	1.1037	,6351	3,4851	90570
30.0	.3023	489.81	1109.78	50.47	0.000	0.000	1.1166		3,5255	.90370
30.0	• 5 3 5 3	489.63	1109.18	50.47	0.000	0.000	1.1935		3.5157	.96847
40.0	.2049	489.51	1105.78	50.48	0.000	0.000	1,2681	su87	2.7443	1.29229
45.0	.1695	489.43	1108.50	50.48	0.000	0.000	1.2893		2.8460	1.29229
44.1)	+1263	489.35	1108.25	50.48	0.000	0.000	1.5010	,5219	2.8717	1.24224
46.0	.0840	489.28	1108.01	50.48	0.000	0.000	1.3102	.5256	2.8918	1.29229
48.0	.0419	489.21	4107.77	50.49	0.000	0.000	1.3170	5285	2.9080	1 20230

:1

>

1

: :

C = 4 C = 5	SANEL - St	RESULTS	UEL THEMAL	MODEL TEST	. .	. •		. '	DATE 04/8	1/70 O TI	ME 12.20	,31
T L !	1 <u>E</u> =	60000 SEC	UNDS PRE	93URE 4 - 15	.0 PSIA	DATA	FOR CHANNE	L 2			•	
o t s	STANCE	DELTAPP	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VCID	FLOW	MASS FLUX	VELOCITY	ARLA	
1	(~ ,)	(181)	(810/63)	(DEG=F)	(LB/CU=FT)	GUALITY	FRACTION	(LB/SEC)	(MLB/HR=F12)	(FT/SEC)	(SG=1N)	í .
0	1.0	1.1166	486,88	1100.00	50.56	ù.u00	0 . 00ũ	2,0918	.4180	2.2968	2.59400	
č	.0	1,0490	486,75	1099,58	50.56	0.000	0.000	2.1220	.4242	2.3305	2.59400	
4	.0	1.0013	486.65	1099.22	50.50	0.000	0.000	2,1547	.4306	2.3656	2.59400	
•	• • •	.9529	486.55	1098.91	50.57	0,000	0.000	2,1863	.4369	2.4002	2.59400	
3	k ∎-ti	.9047	486.47	1098.65	50.57	0.000	0.000	2,2169	.4430	2.4357	2.59400	
10	.0	.4570	486.57	1098.90	50.57	0.000	0.000	2.2462	.4489	2.4659	2.59400	
13	.0	8100	486.72	1099.46	50.50	0.000	0.000	2.27.30	.4544	2.4465	2.59400	
14	.0	.7636	486.91	1100.11	50.56	0.000	0.000	2.2994	.4595	2.5249	2.59400	
. 16	.0	.7161	487.16	1100.93	50.55	0,000	0.000	2.3229	.4642	2,5511	2.59400	
> 1 ⁴	. 0	.6734	487.43	1101.83	50.54	0.000	0.000	2.3442	4085	2.5749	2.59400	
20	. 0	6295	487.69	1102.72	50,53	0.000	0.000	2.3633	.4723	2.5962	£.59400	
i 22	.0	.5863	487.96	\$103.60	50.52	0,000	0.000	2.3800	.4756	2.0150	2.59400	
24	.0	.5440	488.22	104,49	50.52	0,000	0.000	2.3945	.4785	2.6314	2.59406	
56	0	.5024	488.46	1105.29	50.51	0.000	0.000	2.4071	4811	6.6456	2.54400	
23	. 0	. 4614	488.66	1105.93	50.50	0.000	0.000	2.4181	4832	2.6580	2.59400	
5-0	. 0	4209	483.80	1100.41	50.50	0.000	0.000	2.4268	4850	2.6670	2.59400	
5-2	0	3811	488.49	1106.72	50.50	0.000	0.000	2.4344	4865	2.6763	2.59400	
54	. 0	.3417	488,84	1105.54	50.50	0.000	0.000	2.4414	4879	2.6838	2.59400	
50		3023	488.79	1100.36	50.50	0.000	0.000	2.4436	. 4884	2.6863	2.59400	
5-		.2343	488.74	1106.00	50.50	0.000	0.000	2.4198	.4042	2.5530	2.10000	
ធំព		2042	488.07	1105.97	50.50	0.000	0.000	2.3970	3832	2.1079	5.64650	
4		.1681	488.60	1105.76	50.50	0.000	0,000	2.3921	.3625	2:1039	5.246.50	
44	() (1261	488.54	1105.55	50.51	0.000	0.000	2.3912	.3823	2,1026	5.64650	
40	. 6	.0840	488.48	1105.34	50.51	0.000	0.000	2.3900	.3821	2.1015	3.24250	
4 d		.0420	488.42	1105.14	50.51	0.000	0.000	2.3859	.3619	2.1004	3.24250	

G-- 55

CHANNEL B	ESULIS										
CASE 1	L FL	EL THEMAL	HODEL TEST					DATE 04/2	1/76 0 11	ME 12.20.	, 51 1
TIME #	.80000 SECC	INDS PRE	SSURE = 15	0 PSIA	DAŢA	FOR CHANNE	L 5 _.			•	
OISTANCE	DEL TA-P	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELCCITY	AREA	
(18.)	(PSI)	(BTU/LB)	(0EG=F) ((L8/CU=FT)	QUALITY	FRACTION	(L8/3EC)	(HLG/HR=FT2)	(FT/SEC)	(Su+IA)	
Ů . 0	1.166	456.86	1086,00	51,39	0,000	0.000	.,5387	,1295	.7002	2,35000	
5.0	1.0649	457,16	1046.99	51,38	0.000	0.000	.6127	.1346	.7289	2.35000	
4.0	1.0175	457:37	1001.69	5:.37	0.000	0.000	.6363	.1400	.7570	2.35000	
6.0	.9697	457,54	1002,27	51.37	0.000	0.000	.6588.	.1450	.7838	2.35600	
8.0	•1518	457.70	1002.79	51.37	0.000	0.000	.6305	.1497	.8495	2.35000	
10.0	.8745	457,84	1003.28	51.36	0.000	0.000	,7 009	1542	.834Ú	2,35600	•
15.0	.8276	457,99	1003.75	51.36	0.000	0.000	1202	1585	.8571	2.35000	
14.0	.7810	458,13	1004.21	51.35	0.009	0.000	,7381	.1024	.8785	2.35c00	
10.0	,7349	458,26	1004.07	51,35	0.000	0.000	,7546	.1060	.8961	2.35000	
15.0	.+893	. 458,40	1005.12	51,35	0.000	0.000	.7696	.1643	.9101	2.35600	
50.0	.6441	458,53	1005.57	51.34	0.000	0.000	.7832	.1723	.9324	2.35000	
55.0	.5994	458.07	1006.01	51.34	0.000	0.000	•7955	.1750	.9471	2.35600	
54.0	•5550	458.80	1005,46	51.34	0,000	0.000	.8067	.1775	.9604	2:15000	
54.0	•2111	458,94	1006,91	51.33	0.000	0.000	8166	.1797	.9724	2.35000	
52.0	.467E	459.07	1007.36	51.33	0.000	0.000	.8256	.1817	.9831	2.35600	
30.0	• 15 12	459.21	1007.61	51.33	0.000	0.000	.8138	.1835	.9929	2.35000	
35.0	+ 1817	459.34	1008.25	51.32	0.000	0.000	.8413	.1851	1.0019	2.35000	
54.0	. 5391	459.47	1008.70	51.32	0.000	0.000	.8477	.1065	1.0095	2.35000	
35.0	.2970	459.61	1009,14	51.32	0.000	0.000	4.8537	.1878	1.0169	2.35600	
38.0	.2551	459.74	1009,58	51.31	0.000	0.000	. 8594	.1891	1.0237	2.35600	
40.0	•5135	459.87	1010.02	5i.3i	0.000	0.000	.2031	.1699	1.0282	2.35000	
42.0	1651	460.00	1010.45	51.30	0.000	0.000	.8051	.1903	1.0500	2.35000	
ચચ∗0	.1237	60.13	1010.88	51.30	0.000	0.000	. €865	.1907	1.0324	2.35000	
46.0	.0824	60.26	1011.32	51.30	0.000	0.000	. €676	.1909	1.0337	2.35600	
4ð.0	.0412	660.39	-011.75	51.29	0.000	0.000	6651	.1910	1.0344	2.35000	

DIVENSION CROSSFLOW BETWEEN ADJACENT CHANNELS, W(1,J), (LB/SEC-FT),

CASE FUEL THEMAL MODEL TEST 1

TIME # .80000 SECCNDS

4×I AL	ZUNE	n(1, 2)	W(1, 3)	HC 1, 4) 1	(2, 3)	H(2, 4)	W(3, 4)	W(5, 6)	N(5, 7)	H(0, 7)
0.0 -	2.0	.01264	.02300	.03303	.01168	.02292	.01126	.01413	.02772	.01359
2.0 -	4.0	.01870	.03218	04553	,01540	.03044	.01509	.01834	.03626	.01794
4. ₀ 0 🖷	6.0	.02066	.03460	.04862	.01602	.03180	.01586	.01828	.03039	.01813
6,0 -	5.0	.02139	03490	04862	.01550	.03082	01542	.01675	.03346	.01074
d.0 =	10.0	.02136	.03407	.04707	61444	.02874	01441	01485	.02974	01491
10.0 -	12.0	.02058	.03229	.04432	C1308	.02606	01309	01364	.02612	01311
12.0 -	14.0	.01917	.02913	.04061	01155	.02301	01158	01143	.02691	01150
14.00	16.0	.01721	.02651	.03612	00995	.01985	01000	.01004	11050	01009
16,0 =	18.0	.01477	.02278	.03108	.00641	01677	00846	00862	01766	33500
10.0 -	20.0	.01197	.01872	02574	06699	01393	00705	00774	01548	.00770
₹9 .0 -	55.0	.00893	.01451	.02033	.00572	.01139	00575	00678	01355	00079
22.ŭ #	24.0	.00576	.01029	01504	.00400	.00915	00462	.00592	.01183	00593
5a*0 -	26.0	.00274	.00641	.01029	.00369	.00734	00372	00513	.01026	00513
26.ŭ ●	28.0	•00058	.003.55	.00655	.00302	00598	00302	.00440	.00880	.00441
2H.0 -	30.0		. O O U U S	.00236	.00216	00418	00207	06381	.01764	00355
.50.0 =	32.0	■ ,00494	• 00369	• • 00232	.00104	.00202	.00102	.00336	00673	00330
35.0 -	34.0	• 00520	+.00475	•.00405	.00007	.00024	00020	.0027ú	.00531	.00261
ઉપ_શે ●	30.0	•.01541	01897	•.U2258	-,00439	-,00899	.00457	.00189	.00375	.00167
35.0 -	38.0	•.15196	-15190	•.15176	00047	.00101	• 00051	.00141	.00294	00155
39.0 -	40 . 0	14715	■.14651	-,14574	•.00001	≈. 00004	- 00001	•,00027	₩ , 00úh0	•.00033
40.0 •	42.0	= .03907		- 03996	60117	• 00238	.00120	.00030	.00059	.00030
⇒ 0.5+	44.0	•.02034	•.02131	- 05550	- .00163	-,00330	.00167	• 00008	00015	● , ປມັນປຽ
44.0 0	46.0	= .v1577	••01705	01826	· . C018C	.00363	•,00184	00047	•.00092	.00046
46.0 =	48.0	•.01287	01426	•.01558	•.00171	•.00344	•.00175	.00035	00070	 00054

04/21/76

DATE 0 TIME 12.20.31 1

1

12.28.31 1

CABE	1 FUEL THE	HAL MODEL TEST			<i>.</i>	DATE	04/21/76	0 TIME
TIME =	.80000 SECONDS	TEMPERATURE DATA FOR HOD	1	(FUEL TYPE	1 - CYLINDER)			

500 0.0. - 1.000 (IN.) ZCHE-(FUEL DIA.(IN.)) - 1-(.836) 2-(.836) 4-(0,000) 3=(,836)

				•	*		TEMP	ERATUPES	F.)	
	•	•.		,	t .		(RELATI	VE RACIUS	(H/H))	
AXIAL ZG	VE HEAT FLUX	TYPE	⊁C∂E	HSURF	* FLUID	CLAD	T(1)	T(ê)	1(3)	T(4)
(IV.)	("8TU/HR+	FT2)	(8,	/H+F+F12) i	h	•	(1.000)	(.667)	(.333)	(0.000)
0.0 - 6	2.0 .0006	2	0 .	8052.9	1099.6	1099.7	1099.8	1099.8	1099.8	1099.8
5*0 - 6	4.C .0009	2	ú	£150,£	1099.3	1099,5	1099.6	1099.6	1099.6	1099.6
4.0 • 4	5.0 .UO12	5	0	4254,E	1039,1	1099.2	1099.5	1044.6	1099.0	1099.6
- 6.0 = t	8500 0.8	5	0	635770	1098,8	1099.2	1104.9	1107.0	1108.6	1109.2
8.0 - 10	Y.0	. 1	D	8454.87%	1099,4	1109.1	1299.7	1960.3	2480.0	2673.8
10.0 - 12	.0 .1114	1	Э	8546.0	1100,2	1113.0	1366.9	2321.6	3091.2	3380.6
15.0 - 10	l.0 .1384	1	D	0021.6	1101.2	1116,9	1432.9	2687.5	3658,9	4019.1
14.0 • 16	+0 +1654	1	С	8704.8	1162.4	1120.9	1499.1	3052.0	4151.4	4545.5
16.0 - 16	.0 .1789	1)	8775.5	1103.6	1123.5	1532.8	3234.3	4370.5	4768.4
14.0 - 50	•1790	1	0	8839.2	1104.8	1124.5	1534,1	3237.4	4373.6	4771.4
50.0 - 55	.1789	1	ð	8096.1	1166.0	1125,5	1535.1	3239.1	4374.8	4772.2
55.0 - 54	•0 •1788	1	Q	8946.4	1107.1	1126.5	1535.9	3576*5	4373,9	4770.9
- 5ato 🖬 - 59	• • 1651	1	0	8-990	1168.0	1125.8	.1504.2	3060.4	4157.3	4550.1
- 50°0 - 58	+1379	1	0	9030.1	1168.7	1123.5	1439.8	2698,1	3668.6	4028.0
24.0 • 30	• 1107	1	0	9065.1	1109.2	1121.0	1375.2	2334,1	3104.8	3344.2
- 30.0 - 32	.0 .0830	1	Û.	9093.5	1169_4	1118,2	1309.0	1973.5	2495.3	2689.7
52.0 - 34	8000 .0008	2	Û	9113.1	1168.9	1109.0	1114.8	1116.9	1110.5	1119.1
34.0 - 36	• • 0 • • • • • • • • • • • • • • • • •	2	ί (9:25.6	1168.4	1106.4	1108.9	11.09.0	1109.1	1104.1
56.0 - 38	.0 .000 3	5	C	8749.0	1108.0	1108.1	1108.5	1108.0	1100.6	1108.6
18.0 - 40	0.0000	0,000	Ç						•	
40.0 - 42	·0 0.0000	0,ÚUU	U						· .	•
42.0 = 44	.0 0.0000	0.000	ũ						·	
44.6 = 46	0.000 U.OOO	0.000	Q							-
46.0 - 48	0.0000	0,000	0							•

ITERATIONS # 2

G-- 58

TINE .8000 SECENDS

ENTHALPY (THOUSAND BTU/LB) AND VOID (TENTHS)

CHANNEL 1	CHANNEL 2	CHANNEL 3	CHANNEL 4
.45 .50	.45 .50	.45 .50	.45 .50
* ** ** ** ** ** ** ** **			
***************	*++++++++++++++++++++++++++++++++++++++	*****	***********
2 +++++++++++++++++++++++++++++++++++++	*********	***************************************	*****
· · · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * * * * * * * * * *	*******	*****
4 **************	**********	**************	****
5 *************	*****	********	********
b *++++++++++++++++++++++++++++++++++++	*****	*****	********
7.*++++++++++++++++++++++++++++++++++++	********	********	*****
8 *************	*******	*****	*****
9 #++++++++++++++++++++++++++++++++++++	*********	******	******
10 **************	**********	******	********
[1] #++++++++++++++++++++++++++++++++++++	*++++++++++++++++++++++++++++++++++++++	*****	*********
12 ***************	**********	****************	**********
15 ***************	**********	******	***************
14 ***************	******	********	*****
15 *****************	*****	*****	*****
10 **+**	********	*****	*****
17 **++++**++++*******	*****	*****	************
18 ******************	**********	*******	*********
19 *******************	**-++++++++++++	*****	********
29 ******************	**-**************	********	*******
21 *******************	**-++++++++++++++++++++++++++++++++++++	********	*********
* ***************	**********	*******	*********
23 *++++++++++++++++++++++++++++++++++++	**********	*********	*************
24 ************************************	*********	***************	************
25 ********************	**********	*****	**********
油 非立 负角 点白 白晚 肉肉 角肉 白香 奇	* ** ** ** ** ** ** **		* ** ** ** ** ** ** **

۰. .

Ģ**-**59

TIME ,ROOD SECONDS

ENTHALPY ITHOUSAND BTUZLES AND WEID (TENTHS)

	CHANNEL S			CHANNEL 6		•	CHANNE	L 7	•		·.	CHAN	NEL	
	, 45	,50	, 45		.50	.45			, 5	0	.45	· -		.50
	* ** ** ** ** **	** ** *	* ** **	** ** ** *			** ** **	** **					** **	 ** *
1	***	. 🖷	****		*	*+++				*	*	. '		
5	***	í 🔺 🕯	****		, *	*+++				*	*			
3	***	*	*+++		*	****				*	*			*
4	*+++	*	****		*	*+++				*	*			
5	**** .	. 🔹	*+++		*	*+++				*	A			*
6	* * * *	*	*++*		*	****				*	#			*
7	* + + +	*	****		*	****				*	*			*
8.	* + + + +		*++++		*	**++*				*	*	•		* ·
9	* + + + +	*	**+++		* .	*++++		•		*	*			*
10	* + + + +	*	****		*	*****				#	*			*
11	* + + + +		* + + + +		' k	*++++				*	*			*
15	* * * * *	*	*++++		*	*****				*	*			*
15	* * + + +	*	* + + + +		*	*****				*	A			n 1
14	* + + + +		*++++		· *	*****				*	*			*
15	* * * * +	*	*++++		*	*++++				*	A			*
10	* + + + +	*	****		*	*****				A	k -			` #
17	****	· •	*+-++		*	*++++				•	*			
18	****	*	*+-++		۴.	*****					#			
19	* * * * *	*	*++++		*	*****				.	A			
50	* + + + +	· *	*++++			*****				#	A			
21	* * * * *	· 🛊	****		*	*****				#	A			*
55	* * * * * *	*	******		*	*****	,			*	A			
53	* + + + + +	• 🛊	*++++			**+**				h -	é .			
24	* * * * * *	4	*++++		· •	*****				A	é			#
25	* * * * * *	*	* * * * * *		*	*****				÷ '	*			*
		ana na an		** ** ** *										

•

DATA FHOM EXPLICIT SCLUTION

NO.	TIME	COURANT	VEL	COITY COM	PONENTS	TCTAL	VOLUME
THIES	STEP	NUMBER	UVDX -	V/DY	(U/CX+V/DY)	TIME	ERROR
4	.01000	.205	20.37	.16	20.4966	.8100	,0071
2	.01000	.197	19,60	.16	14,7342	8200	0086
4	.61000	.190	18.83	.15	18,9776	.8300	0064
5	.01000	.182	18.07	.15	18.2189	.8400	0083
4	.01000	175	17.32	.14	17.4678	.8500	0059
2	.01000	.167	10.57	.14	16,7159	.8600	0081
4	.010/0	.100	15.83	.14	15.9717	.6700	0057
2	.01000	.152	15.09	•14	15.2206	.8800	.0080
4	.01000	.145	14.36	.13	14,4873	8900	0058
2	.01000	.137	13,62	.13	13.7460	.9000	0082
4	01000	.130	12,88	.12	13.0060	9100	.0062
5	.01000	.123	12.14	.12	12,2617	.9200	.0084
4	01000	.115	11,40	.11	11.5131	9300	0067
2 .	.01000	108	10.65	.11	10,7570	9400	0087
4	.01000	100	9 89	.12	9,9890	9500	0072
2	.01000	560	9.11	.13	9.2099	. 4600	.0090
4	.01000	084	9,32	.13	8,4109	.9700	0077
2	.01000	.083	8.32	.14	8.3214	9800	.0093
ů	.01000	.091	9.07	.14	9.0745	9900	0082
2	.01000	049	9,93	.15	9,9346	1,0000	0090

CHANNEL RESULTS CASE 1 FUEL THEMAL MODEL TEST									DATE 04/21/70 0 TIME 12.28.30			
fine =	1.00000 SEC	GNDS PRE	SSUHE = 15	.0 PSIA	DATA	FOR CHANNEL	. 1					
DISTANC	E DELTA-P	ENTHALPY	TEMPERATURE	DENSITY	ECUIL.	V010	FLOW	MASS FLUX	VELCCITY	ANEA		
$(1 \cdot .)$	(PS1)	(BTUZLB)	(DEG=F)	(LB/CU+FT)	QUALITY	FRACTION	(LB/SEC)	(MLB/HR+FT2)	(FT/SEC)	(90-1N)		
0.0	7976	485.88	1100.00	50.56	0.000	0.000	.0382	.0219	.1205	90370		
2.0	7733	485.85	1099.91	50,56	0,000	0.000	0624	0 5 6 1	.1983	90370		
4.0	7462	485 82	1099.78	50,56	0,000	0.000	0850	.0488	2679	.90370		
0.0	7133	486.77	1099 63	50,50	0.000	0.000	1047	.0601	.3301	90370		
5.0	5901	480.73	1099 49	50.50	0 000	C.000	1231	.0706	.3879	90370		
10.0	6617	487.05	1100,61	53,55	0 000	0.000	.1404	0805	4425	90370		
12.0	6531	487.45	1101.91	57.54	0.000	0.000	1565	0899	4943	90370		
14.0	6041	487.89	1105.38	50.53	0.000	0.000	.1723	0988	5434	40.570		
15.0	5748	488.39	1105.03	50,51	0.000	0.000	1869	1072	5897	90370		
18.0	5452	488.48	1100.07	50.50	0,000	0.000	2008	1152	6337	90370		
20.0	5152	489.51	1105,11	50.48	5,000	0.000	2140	1227	.6754	90570		
0.55	4408	489.70	1109,42	50.47	0.000	0.000	2265	1299	7152	90370		
54.0 .	4560	496.07	1110,64	50,46	0.000	0.000	.2386	1369	7535	90370		
25.0	.4228	490.35	1111.58	50.45	0.000	0.000	.2503	.1436	.7905	.90370		
28.0	. 3913	490,51	1112.11	50.45	0,000	0.000	.2016	.1501	.8264	.90570		
30.0	.3594	490.57	1112.51	50.45	000.0	0.000	.2727	.1564	.8613	.90570		
32.0	.3272	490,54	1112,20	50.45	0.000	0.000	.2851	.1024	.8941	.90570		
54.0	• 5948	490,19	1111.07	50.46) ,000	0.000	.2913	.1671	.9199	.90376		
35.0	.2623	489,94	1110.20	56.47	D. 000	0.000	.2831	.1624	.8938	.90570		
34.0	+5585	489,67	1109.32	50.47	0.000	0.000	.3294	1763 [′]	.9703	.96047		
40.0	.1947	489.52	1108.80	50.48	0000	0.000	.1718	.1441	.8204	1.29224		
42.0	.1560	489,42	1108,49	50,48	0.000	0.000	.3886	1559	.8570	1.29229		
44.0	.1169	489.34	1108.21	50.48	0.000	0.000	.4017	,1011	.8666	1.29229		
46.G	·0780	489126	1107,95	50,49		0.000	.4137	.1659	.9130	1.29229		
48.0	.0390	489.19	1107.70	50.49		0.000	. 4268	.1712	.9419	1.29259		
CHANNEL RESULTS CASE 1 FUEL THEMAL MODEL TEST

4

DATE 04/21/76 0 TIME 12.28.30 1

1146 =	1.00000 SEC	UNDS PRE	SSURE = 15	.0 PSIA	DATA	FOR CHANNE	LZ			
DISTANCE	GELTA-P	ENTHALPY	TENPERATURE	DENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELOCITY	AREA
(14,)	(P3I)	(BTU/LA)	(DEG=F)	(LE/CU-FT)	QUALITY	FRACTION	(L8/SEC)	(FLH/HR+FT2)	(FT/SEC)	(SG-18)
0.0	.7976	486.88	1100.00	50,56	0,000	0.000	.2547	■ . 050¥	.2796	2.59400
2.0	.7727	486.60	1099.06	50.56	0.000	0.000	-,2226	0445	- 2444	2.59400
4.0	.7458	486.46	1998.00	50.57	0.000	0.000	1878	.0375	2062	2.59400
e.0	,7181	486.36	1998,27	50,57	0.000	0.000	-,1527	0305	1676	2.59400
8.0	.6900	486.27	1397,90	50,57	0.000	0.000	1180	■.0236	1295	2.59400
10.0	.0616	486.44	1098.55	50.57	0.000	0.000	-,0840	•.0168	-,0922	2.59400
12.0	.6330	486.65	1099.24	50.56	0.000	0.000	•,0510	0102	0560	2.59400
14.0	.604D	486,90	1100.08	50,56	0,000	0.000	0191	0038	0210	2.59400
15.0	.5747	487.21	1101.10	50,55	0.000	0.000	.0115	.0023	.0127	2.59.400
10.0	.5451	487.52	1102.14	50.54	0,000	0.000	.0410	.0082	.0451	2.59400
50+0	.5150	487.01	1103.11	50,53	0.000	0.000	.0691	.0138	.0760	2,54400
55.0	.4845	485.09	1104.04	50,52	0.000	0.000	.0958	.0191	.1053	2.59400
54.0	.4539	488.57	1104,96	50.51	0.000	0.000	.1209	.0242	.1328	2.59400
50°0	.4551	488.60	1105.74	50.50	0.000	0.000	.1442	.0288	.1585	2.54400
23.0	3912	488.76	1100.28	50.50	0,00	0.000	1658	.0531	.1855	2.59400
50 . (r	.3595	480,46	1106,62	50.50	0,000	0.000	.1851	.0370	.2035	2.59400
35.0	.3272	489,91	1106.79	50.50	0.000	0.000	,2025	.0405	.2227	2.54400
3 4. 0	.5947	488,75	1106,24	50.50	0.000	0.000	.2192	.0458	.2409	2,59400
36.0	.2619	488.05	1105.93	50,50	0.000	0.000	.2403	.048U	.2041	2.54400
34.0	\$55K2	488,58	1105.67	50,51	0,000	0.000	.2372	.0455	.2503	2.70208
40.0	.1942	488.49	1105,39	50,51	0.000	0.000	,2335	. 0373	.2053	3.24250
45.0	.1557	488.43	1105,17	50.51	0.000	0.000	,2370	.0379	.2084	3.24250
યત 🕛 છે.	.1164	488.36	1104.96	50.51	0.000	0.000	.2397	.0383	.2107	3.24250
40.0	.0779	488,30	1104,75	50,51	0.000	0.000	.2403	.0584	.2113	3.24250
4ð jú	.0390	488,24	1104,55	50,52	0.000	0.000	,2383	. 0381	.2095	3.24250

CHANNEL	RESULTS									
CASE	1 F1	VEL THEMAL	MODEL TEST					UATE 04/	21/76 0 11	ME 12.28.30
TIME =	1.00000 SEC	UNDS PRE	SSURE = 19	5.0 PSIA	DATA	FOR CHANNE	L .5			
CISTANCE	DELTA=P	ENTHALPY	TEMPERATURE	CENSITY	EGUIL.	VEID	FLOW	MASS FLUX	VELOCITY	AHLA
(Iv.)	(PSI)	(HTUPLS)	(DEG=F)	(LE/CU+FI)	DUALITY	FRACTION	(LB/3EC)	(ML8/HR=F12)	(FI/SEC)	(SG-IN)
0.0	.7976	456.86	1000.00	51,39	0.000	0.000	+1,3915	•.3062	-1.6550	2,35600
5.0	.7935	457.63	1002,57	51.37	0.000	0000	=1,3720	•,3019	-1,6327	2.35000
4.0	. 7∧∩₿	457.82	1003,21	51,36	0.000	0.000	=1,3503	•.2971	=1.6070	2.35 600 .
6.0	.7280	457.99	1003,76	51.36	0.000	0000	=1,3277	- 2921	-1.5802	2.35600
₽.Q	6951	458.14	1004,25	51.35	0.000	0.000	-1,3044	-,2870	1.5526	2.35000
10.0	.6024	458,28	1004.71	51,35	0.000	0.000	-1.2306	•.2818	•1.5244	2.35600
12.0	.6297	458.41	1005,16	51.35	0.000	0.000	=1,256b	-,2765	-1.4959	2.35000
14.0	.5971	458,54	1005,60	51.34	0.000	0.000	-1,2526	•.2712	-1,4674	2.35000
16.0	.5645	452.08	1006.06	.51.34	0.000	0.000	=1.2088	- 2660	-1.4392	2.35600
18.0	.5320	458,42	1006.51		0.000	0.000	-1,1855	# 2608	=1.4115	2.35000
20.0	4494	458,95	1046.95	51.33	0.000	0.000	-1.1626	• 2558	=1.3844	2.35600
25.0	4668	459.08	1007.39	51.33	0.000	0.000	-1-1404	-,2509	-1,3580	2.35000
24.0	4340	459.21	1007,83	51.33	0.000	0.000	-1.1190	2462	=1.3326	2.35600
25.0	4011	459.35	1608.27	51.32	0.000	0.000	-1.0984	-,2417	-1.3682	2.35000
23.0	3581	459 48	1608.71	51.32	0.000	0.000	-1. (789	2374	=1.2651	2.350.00
30.0	3349	459.61	1009,15	51.32	0.000	0.000	=1.6604	•.2335	-1.2632	2.35600
12.0	3015	459.74	1604.58	51.31	0.000	0.000.	=1,0431	2295	·1.2420	2.35000
54.0	2679	459.87	1010.00	51.31	0.000	0.000	•1.(275		-1.2241	2.55600
35.0	.2342	460.00	1010.43	51.30	0.000	0.000	-1,0130	- 22229	-1.2069	2.35000
35.0	.2002	466.13	1010.67	51.30	0.000	0.000	6.997	• .2200	-1-1912	2.35600
40.0	.1659	466.26	1011.31	51.30	0.000	0.000	.902	2179	-1.1799	2.35600
42.0	.1343	400.43	1611.69	51.29	0.000	0.000	• • • B 37	.2165	-1.1725	2.35000
44.0	1038	466.97	1013.67	51.28	0.000	0.000	. 9782	- 2152	+1.1077	2.35000
40.0	.0693	461.78	1023.04	51.20	0.000	0.000	· · · 681	•.2130	=1.1042	2.35000
48.0	.0349	477.29	1009.05	50.83	0.000	0.000	• • 4466	.2083	-1.1030	2.35000

ł

Ĺ

DATE

04/21/76 0 TIME

12.20.30

DIVERSION CHOSSFLOR BETREEN ADJACENT CHANNELS, M(1,4), (LB/SEC-FT).

1 Ste

CASE 1 FUEL THEMAL MODEL TEST

TIME = 1.00000 SECUNDS

AXIAL ZONE	h(1, 2) 1	·(1, 3)	w(1, 4)	W(2, 3)	w(2, 4)	W(3, 4) 1	+(5, 6) +	(5, 7)	N(6, 7)
0.0 - 2.0	.00263	.01282	.02230	.01200	02348	.01:51	.01557	.03074	.01509
2.0 - 4.0	.01176	.02536	. 05896	C1600	.03161	01570	01727	.03415	.01692
4.0 - 6.0	,01601	.03049	.04527	.01089	.03358	01682	.01726	.03435	.01714
ნ.0 ო მ.0	+01750	•63550	.04723	.01710	.03378	01683	.01662	.03324	.01666
8.0 - 10.0	.01819	.03263	.04739	61656	.03280	.01641	.01585	.03180	.01544
10.0 - 15.0	.01828	.03228	.04666	01584	.03141	01574	.01515	.C3038	.01527
12.0 - 14.0	.01808	03155	.04541	01496	.02969	01490	.01455	02898	.01447
14.0 = 16.1	.01770	.03054	.04377	.01393	.02769	.01392	.01404	.62804	.01403
16.0 = 18.0	,01715	.02926	.04175	,01282	.02551	.01284	.01357	02711	.01357
18.0 - 20.0	.01642	.02769	.03932	01165	.02321	.01169	.01311	.02619	.01311
50.0 - 55.0	.01541	.02576	.03645	.01046	.02087	.01052	.Ú1264	02525	.01205
22.n = 24.0	.01409	.02344	.03311	00928	.01854	.00935	.01213	.02424	.01212
24.0 - 26.0	.01251	.05099	.02950	.00618	.01634	,00825	.01150	.02312	.0115/
25.0 - 28.0	01079	.01815	.02577	.00715	.01426	.00719	.01093	.02169	.01098
24.0 - 30.0	.00871	.01499	.02146	.00600	.01193	.00600	.01029	.02060	.01032
50.0 - 32.0	e.00696	.01198	.01721	.00465	00927	.00468	.00958	.01806	.00424
32.0 - 34.0	.00988	.01314	.01661	.00206	.00533	.00272	. OUE43	.01684	.00042
34.0 - 36.0	.04148	.04056	.03974	00559	. 00466	• • 00237	.00709	.01416	.00107
36.0 - 38.0	- .∪7619	•.07274	••05920	,00299	.00587	1.00291	.00595	.01200	o V J C 0 4
_58,-0 ≈ 40,0	07094	.067.65	•,06385	.00305	,00601	,00299	.00379	.00745	.00307
40.0 - 42.0	-,02152	•.020G2	01843	00097	.00187	.00092	.00432	.00862	.00451
0 2.0 - 44 . 0	■.V165A	•.01+00	•.41536	•,00009	00025	00014	.00284	.00570	.00205
14.0 • 46.0	01756	.01759	• . 01775	• • 00095	. 00194	.00100	.00131	.00257	.00120
46.0 w 46.0	- .02248	. 02361	02469	B. GU181	. 00470	. 00188	-00062	. 0 C 1 2 5	. 0.00658

12,20,56 1

CASE	1 FUEL THE	EMAL MODEL TEST				DATE	04/21/76	O TIME
†IME #	1.00000 SECUNDA	TEMPERATURE DATA FOR ROD	1	(FUEL TYPE	1 - CYLINDER)			

AUD C.D. - 1.000 (IN.) ZONE-(FUEL DIA, (IN.)) - 1+(.836) 2+(.836) 3=(,836) 4-(0,000)

					# :		TEMP	ERATURES (F 🙀	· · .
			•	1	•		(RELATI	VE RADIUS	(R/R))	
AXIAL ZUNE	HEAT FLLK	TYPE	PICCE	HSURF	A FLUID	CLAD	T(1)	T(2)	T(3)	T(4)
(1%.)	(+810/HA=F	(51	(8	/H=F=F121 -	*		(1.000)	(,667)	(,333)	(0,000)
0.0 - 2.0	.0005	2	C.	585.1	1099.2	1099.6	1099.8	1099.8	1099.5	1094.8
2.0 - 4.0	0005	2	0	435.7	1098.8	1099.3	1099.6	1099.6	1099.6	1099.6
4.0 - 5.0	0607	2	ú	501.2	1098.5	1099.1	1099.5	1099.6	1099.6	1099.6
6.0 - 8.0	.0012	2	0	130.3	1098.2	1099.1	1104.9	1107.0	1108.0	1109.2
8.0 - 10.0	0242	1	ù	920.7	1099.2	1114,2	1300.8	1954.1	2475.0	2670.1
10.0 - 12.0	0342	1	Ű	1102.2	1100.5	1119.7	1368.7	2313.4	3084,8	3375.9
12.0 - 14.0	.0450	1	Q	1261 2	1101.6	1125.3	1435.4	2677.2	3651.0	4013.7
14.0 = 16.0	0545	1	C	1405.7	1103.0	1131.1	1502.4	3040.2	4142.1	4534.3
16.0 = 18.0	0639	1	Û	1540,0	1104.5	1134.5	1536.6	3220.9	4360.5	4761.8
10.0 - 20.0	0665	1	Û	1062.0	1105.8	1135.5	1537.9	3224.0	4303.6	4764.8
50.0 - 55.0	6830 E	1	C	1773.6	1107.0	1136.5	1538.9	3225.6	4364 7	4765.6
22.0 - 24.0	.07C7	1	Ü	1875.1	1108 1	1137.4	1539.7	3225.7	4363.9	4764.3
24.0 = 26.0	0672	1	· U	1967.0	1109.0	1135.9	1507.5	3048.0	4147.9	4543.9
26.0 - 28.0	0575	1	0	2049.8	1109.6	1131.9	1442.3	2667.8	3660.7.	4022.6
24.0 - 30.0	0472	1	0	2123.7	1109.6	1127.8	1377.0	2325.9	3098,3	3309.0
30.6 - 32.0	.0361	1	0	2187.4.	1109.8	1123.3	1310.1	1967.3	2490.3	2686.1
52.0 - 30.0	.0007	5	Û	2238.7	1108.8	1109.1	1114.8	1116.9	1118.5	1114.1
34.0 - 36.0	.0006	2	0	2270.6	1108,2	1108.4	1108.9	1109.0	1109.1	1109.1
50.0 - 5H.O	.0009	5 .	0	2211,5	1107.6	1108.0	1108.5	1108,5	1108.6	1108.0
38.0 - 40.0	0.0000	0.000	0							
40.0 + 42.0	0.0000	0.000	U		-					
42.6 . 44.0	0,0000	0.000	U							•
44.0 - 46.0	0.0000	0.000	0							
46.0 . 48.0	0.0000	0.000	υ							
•	-	-								

G-66

ITERATIONS =

2

.

THERMAL MODEL SAMPLE PROBLEM RESULTS (Continued)

DATA FHOM EXPLICIT SELUTION

- 1	NU. TIBE		COUHANT	VEL	LCITY COM	PONENTS	TETAL	VOLUME	
TH	1 ë 9	STEP	NUNBER	U/DX	V/DY	(U/CX+V/DY)	TIME	ERROR'	
·	4	.01000	.107	10.68	16	10.6800	1.0100	.0085	

HUPBER OF TIPE STEPS # 102 TOTAL TTERATTENS 254 . ITERATICHS/TIME STEP = 2

CHARMEL PESULTS

G-67

CASE 1 FUEL THEMAL MODEL TEST DATE 04/21/76 0 TIPE 12.20.37 1

T1…E =	1.01060 SEC	INDS PRE	SSURE # 15	O PSIA	DATA	FUR CHANNE	LI			
DISTANCE	E DELTA-P	ENTHALPY	TENPENATURE	CENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELOCITY	AREA
(1%)	(PSJ)	(8.7じ/しり)	(UEG=F)	(L8/CU=FT)	GUALITY	FRACTION	(LB/SEC)	(MLH/HH-F12)	(FT/SEC)	(SG=1%)
0 . 0	.7416	486.88	1100.00	50.54	0.000	0.000	.0124	-,0071	- 0390	96370
? .0	•7521	446.85	1099,91	50,50	0.000	0.000	.0081	.0047	.0250	90510
4.0	.7246	486.61	1499.78	50.50	0.000	0.000	0292	.0167	.0914	96310
ю. . ()	. 6975	486.77	1099.63	50,56	0.000	0.000	0492	.0282	1550	90370
8.0	. 6704	466.73	1999,49	50.56	0.000	0.000	0681	.0390	.2145	40310
10.0	•£429	487.07	1106,62	50,55	0.000	0.000	0854		.2708	90570
15.6	<u>.6149</u>	487.45	1101.91	50.54	0.000	0.000	1028	.0590	. 5245	90370
14,0	•5868	447.09	1105,36	50.53	0,000	0.000	,1189	.0662	.3744	90376
1640	.5580	484.39	1105.04	50.51	0.000	C.OŬO	.1341	.0764	.4230	90376
10.0	.5291	485.46	1106.60	50,5V	0.000	0.000	.1485	.0852	.4687	. 40310
50.0	* a 4 8 19	489.31	1100.13	50.48	0.000	0.000	.1623	. 0951	.5122	,90370
55.3	.4702	489.71	1109-45	50.47	0.000	0.000	.1754	.1006	.5530	.40570
24*9	. 4403	490,08	1110.67	50,46	0.000	0.000	.1881	1079	.5939	.40370
50.0	. 4100	490.36	1111.62	50.45	Ú. 000	0.000	.2003	.1149	0 b 3 2 b	. 403/0
5, 0	. 3795	490.52	1112.15	50.45	0.000	0.000	.2121	.1217	.6701	,90310
35.0	· 34#7	490.58	1112,35	50.45	0.000	6.000	.2237	.1265	.7066	.40376
32.0	.3175	490.55	1112.24	50.45	0,000	0.000	.2340	.1346	.7411	90570
54.0	.2461	490.20	1111.09	50.46	0.000	0.000	.2429	.1393	.7671	. 90570
\$5.0	. 2548	489 94	1110.22	50.46	0.000	0.000	.2344	.1545	.7402	.90370
2 a • 0	2225	489.67	1109.31	50.47	0.000	0.000	.2794	.1495	8230	.40847
40.0	1899	489,52	110B. EU	50.46	0.000	0.000	.3194	.1201	,7052	1.24224
45.0	.1520	489,42	11-16.49	50.48	0.000	0.000	.3360	.1348	.7418	1.24224
ા હ 🔒	•1139	449.34	1196.21	50.48	6.000	0.000	.3492	.1401	.7708	1.24229
9 fr 🖬 🖣	.4760	484.26	1107.95	50.49	0.000	0.000	.3613	.1449	.7474	1.09204
44.4	.0379	489.16	11,17,70	50.49	0.000	0.000	3745	. 1502	. 6265	1+69664

CHANNEL RESULTS

CASE 1 FUEL THEMAL MODEL TEST

DATE 04/21/76 0 TINE 12,28,37 1

T146 = 1	.01000 SEC	ONDS PHE	SSURE # 15	.0 PS14	O A T A	FOR CHANNE	L 2			
DISTANCE	DELTA-P	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VCID	FLON	MASS FLUX	VELCCITY	AHLA
([N.)	(PSI)	(81071.8)	(OEG+F)	(LH/CU-FT)	QUALITY	FRACTION	(LH/5EC)	(MLB/MH=FT2)	(FT/SEC)	(SG=1N)
0.0	.7816	486,38	1160.00	50,50	0.000 U	0.000	-,3445	U/92	N.4580	2.54400
2.0	7527	485,58	1048.49	50.57	0.000	0 000	-,3757	0751	- 4124	2.59400
4 <u>,</u> C	7249	486.44	1096.54	50.57	0.000	0.000	-,3436	- .0657	+.3772	2.54400
6.0	.6977	485.34	1098.21	50.57	0,000	0.000	3082	001b ·	.3583	2.59400
0 . Ú	.0764	486.26	1092.93	50,57	0.000	0.000	-,2723	0544	- 5484	2.54400
10.0	.6427	48.0.44	1094.53	50.57	C.000	0.000	+ . 2 Sol	··• 0473		2.54400
12.0	•014d	486.65	1094.23	50,50	6.000	0.000	2053	••0404	- • 5551	5.24400
14.0	. 5465	480.91	1100.09	50,54	C.000	0.000	1689	0338	-1055	2.59400
16.0	.5579	487.21	1161.11	50.55	6.000	0.000	•.1360	0275	÷.1500	5.20400
18.0	.5290	487.52	11.02.15	50,54	6.000	0.000	- 1055	-:0211	+.1159	2.54400
6.65	.4997	487.81	1195.11	50,51	0.000	0.000	■ .0758	0151	.0835	2.54400
55.0	.4701	483.09	1104.04	50,52	0.000	6.000	0475	0045	0522	2.59400
50.0	.4 Ju 2	48°.37	1104.90	50.51	0.000	0.000	₩.0209	• 0042	e.0229	2.59400
22.0	• 41 6 0	480.00	1105.73	50.50	0,000	0.000	.0040	.6006	.0644	2.54400
34.0	.3794	424.76	110-,27	56,59	0.000	0.000	.0259	.0054	.0296	2.59400
\$1.0	. Jaka	1488 . 96	110-461	50.50	0.000	0.000	.0478	.0095	.0525	2.54400
\$2.0	. 3174	448.61	110-76	50.5)	0,000	0.000	.0655	.0133	:0/31	2.59400
\$4.0 ·	.2460	488,74	1102.50	50.50	0. 000	0.000.	. 0839	.0168	.0923	2.54460
30.0	.2545	464,54	1163.88	50,50	0,000	0.000	.1066	.0213	.1172	2.59400
34.9	.2255	468.57	1105.63	50.51	0,000	0.000	-1054	• 0505	.1112	2.14200
40.0	.1893	488.48.	1105.55	50.51	0.00	0.000	.1033	.0165	.0904	3.24250
45.0	.1517	464.45	1105.14	50.51	0.000	0.000	.1070	.0172	:0947	3.24250
લય 🔥 છે	.11:59	468.35	1104.95	50.51	0.000	0.000	.1109	.0177	.0975	5.24256
46.0	.0759	468.29	1104.71	50.51	0.000	0.000	.1119	.0179	.0983	3.24250
	0480	анн эт	1100 41	56 57	0.00	0 000	1008	0176	0466	1 27.26

	CHANNEL CASE	RESULTS 1 FI	HEL THEMAL	MODEL TEST		• •			DATE 04/	21/76 O TI	ME 12.20.1	17 1
	¶ 311T	1.01000 SEC	UNDS PRE	SSURE = 15	.0 P91A	DATA	FUR CHANNE	L 5		•		•
	CISTANCE	E DELTA-P	ENTHALPY	TEMPERATURE	DENSITY	ÉGUIL.	VGID	FLOW	MASS FLLX	VELECITY	AREA	
	(1, .)	(184)	(816763)	(DEG=F)	(LB/CU+FT)	QUALITY	FHACTION	(L8/SEC)	(MLH/HR#F12)	(FI/SEC)	(SG#1N)	
	0.0	.7416	450.86	1000.00	51,39	0,000	0.000	=1.4959	3292	-1.7800	2,35000	
	5.0	7792	457.07	1002.71	51.37	0,000	0.000	-1,4822	-,3261	=1.7634	2.35000	
	4.0	7456	457.56	1005.34	51.36	0,000	0.000	-1.4633	3550	-1.7415	2.35000	
•	0 . Ú	7121	458.03	1003.68	51,36	0,000	0.000	=1.4418	-,3172	1.7160	2:35000	
	8.0	.5300	453.17	1604.37	51.35	0,000	0.000	=1.41.90	- 3155	=1.6691	2.35000	
	10.0	.0475	458.31	1004.83	51.35	0.000	0.000	-1,3957	•.3071	-1.0014	2.35000	
	12.0	.6150	458.45	1005.28	51.35	0.000	0.000	-1,3721	-,3019-	-1.6535	2.35000 .	
	19.0	.5825	458.58	1005.72	51,34	0.000	0.000	-1.3485	£967	-1.6655	2.35040	
	16.0	.5501	458.71	1006.17	51.34	0,000	0.000	-1.3252	-,2916	=1.5778	2.35000	
_	17.0	5178	458.85	1006.62	51.34	ດ້ວບບ	0.000	=1.3021	- 2865	-1.5504	2.35000	
ה. ו	e) 0	4854	458.98	1007.00	51,33	0,000	0.000	-1,2794	-,2815	-1,5235	2.35000	
ע	22.0	4531	459.12	1007,51	51,33	0.000	0,000	=1.2574	•.2767	-1,4973	2.15000	
D	24.0	4207	459.25	1007.45	51.32	0,000	0.000	-1.2359	. 2720	-1.4719	2.35000	
	25.0	39#3	459.38	1008.38	51.32	0,000	0,000	-1.2154	≈ ₀2674	=1.4475	2.35000	
	23.0	3558	459.51	1008.62	51.32	0.000	0.000	-1.1958	=,2631	=1.4243	2.35660	
	39.0	. 52 52	454 64	1009.25	51,31	0,000	0.000	=1,1775	•.2590	-1.4023	2.35000	
	32.9	2905	459,77	1009.68	51.31	0.000	0.000	-1.15.98	• 2552	-1,3016	2.35000	
	34.0	2578	459.90	1010.11	51.51	0.000	0.000	-1.1433	.2516	=1.362U	2.\$5000	
	35.0	- T1155	460.05	1010.54	51.30	0.000	0.000	-1.1280	2463	-1.3446	2.35000	
	54.0	1916	400.10	1010,98	51,30	0,000	0.000	=1.1162	= 2450	-1.3300	2.35000	
	40.0	1585	469.50	1011.44	51.30	ວ ັດບບ	0.000	=1.1065	* 。2435	-1.3185	2.15000	
	42.0	1540	460.52	1012.10	51.29	0.000	0.000	-1.0997	2420	=1.311ú	2.15000	
	44.0	.1007	461.29	1014.75	51.27	0.000	0.000	-1.0929	- ,2405	-1.3055	2.35000	
	40.0	0672	464 . 88	1025.07	51,17	0.000	0.000	-1.0811	2379	-1.3021	2.35600	
	48.0	.0337	480.32	1078.14	50.75	0.000	0.000	-1.0591	• • 5 3 0	-1.3012	2.35000	

¢

DATE

· · · ·

04/21/70

A

TINE 12.20.57 1

DIVERSION CRUSSFLUM BETWEEN ADJACENT CHANNELS, M(I,J), (LB/SEC-FT).

CASE 1 FUEL THEHAL MODEL TEST

TIME = 1,01000 SECONDS

AXIAL	ZUNE	+(1, 2):	4(1: 3)	WC 1, 43 W	(2, 3)	W(2, 4)	W(3, 4) 1	4(Š, 6) M	(5, 7)	n(6, 7)
0.0 -	2,0	-,00458	.00349	,01132	.01017	.01985	.00973	,01379	.02696	.01320
2.0 -	4.0	.00803	02035	.03261	.01478	02909	01440	01548	.03043	.01499
4 0 ÷	6.0	.01542	02956	.04388	.01659	63283	01637	01613	.03192	01583
6.0 -	8.0	01826	03323	04828	.01731	03469	01:594	01594	.03175	01585
8, 4 -	10.0	01950	05415	04925	.01698	03359	01577	01539	01079	01544
10.0 -	12.0	01939	.03347	.04871	.01634	03238	.01522	01478	02958	.01484
12.0 -	14 0	01913	.03315	04756	.01552	03080	01546	01424	.02834	.01414
14.0 -	16.0	01.477	.03215	.04596	. 61448	.02883	01450	.01370	02752	.01577
16.0 -	18.0	.01624	. 03092	.04400	.01340	02660	01343	.01337	02071	01517
15.0 -	20.0	.01752	.02919	.04163	(1224	02440	.01229	01297	02591	01090
20.0 -	22.0	.01654	.02748	.03878	.01106	.02207	.01113	v1255	.02507	01654
- 0,55	24.0	.01523	81250.	.03540	60988	.01973	00995	01210	.02418	.01210
24.0 -	26.0	01364	02250	U3179	.00875	01748	00881	.01160	02320	.01161
20,0 .	28.0	01180	01969	02784	.00766	01529	.00770	01102	.02205	.01105
25.0 -	30.0	.00973	.01654	.02357	.0652	.01300	.00654	01036	.02070	01635
30.0 -	32.0	00314	.01572	.01951	.0520	.01035	.00522	00961	.01893	01454
35.0 -	34.0	.01.72	.01452	.01809	60298	06592	00299	.00872	.01754	00882
54.0 -	36.0	.04301	.04315	.04274	0190	00391	.00198	.00761	.01515	.00755
\$5.0 -	38.0	.07145	. (16759	. 06364	.0341	06671	.00134	00574	.01136	
54.0 -	40.0	-,06519	. 06136	· . 05743	.00338	.00668	.00332	00388	60769	.00301
40.0 -	42.0	.01988	••01015	01629	.60121	.00234	.00115	.00448	04693	.00445
42.0 -	44.0	01598	- 01522	•. U1439	.00008	.00010	.00003	00290	00584	00294
44.0 -	46.0	01710	.61720	+.01723	.0081	- 00171	.00058	.00155	60312	.00157
46.0 -	48.0	.02250	.02356	• 02455	• 90177	- 00359	.00182	00060	.00121	.0061

CASE 1 FUEL THEMAL MODEL TEST

0.000 0.000

0.0000 0.000

0.000 0.000

0,000

0,0000

Ũ

ů

Э

· D

DATE 04/21/76 0 TIME 12.20.37 1

TIME # 1.01000 SECONDS TEMPERATURE DATA FOR ROD 1 (FUEL TYPE 1 . GYLINDER) *

RCU C.D. = 1.000 (IN,) ZENE+(FUEL DIA.(IN.)) - 1-(.836) 2-(.836) 3-(.836) 4-(0.000)

			• .			*			TEMP	ERATURES	F.)	
		•				#			(RELATI	VE RADIUS	(#/#))	
AXTAL	ZÜNE	HEAT FLUX	TYPE	MODE	HSURF	*	FLUID	CLAD	T(1)	T(2)	T(3)	T(4)
(1	(in)	CHETU/HR-F	(51	(8	/H+F=FT2)	*			(1.000)	(.667)	(,333)	(0.000)
0.0 -	5.0	0002	2	U	1157.4		1099.2	1099.6	1099.8	1099.8	1094.8	1099.8
2.0 ×	4.0	.0002	2	0	1058.9		1058.8	1099.3	1094.6	1099.6	1044.6	1099.6
4.0 -	6.0	÷0003	5	0	942.1		1098.5	1099,1	1099.5	1099.6	1099.6	1099.6
ĥ,(i ■	8.0	.0006	2	Ü	812.8		1098.2	1099.1	1104.9	1107.0	1108.6	1109.2
3.0 -	10.0	.U144	1	0	670.4		1099.2	1114,8	1301.0	1953.8	2474,8	2670.0
10.0 *	12.0	,0223	1	0	505.2		1100.3	1120,5	1369.0	2313,0	3084.4	3375.8
12.0 -	14.0	+0311	1	0	466.4		1101.6	1126.2	1435.8	2676.7	365ú.b	4013.5
14.0 -	16.0	.0409	1	0	686,3		1103.0	1132,1	1502.9	3039.5	4141.6	4534.1
10.0 -	18.0.	e u 479	1	۵	862.7		1104.5	1135,6	1537.1	3220.1	4360,0	4761.6
-18,0 •	50.6	.0513	1	0	1016.9		1105.8	1136,6	1538.4	3553*3	4363.1	4764.6
50*0 •	25.0	0543	1	0	1154.2	·	1107.0	1137.6	1539.4	3224.9	4364.3	4765.4
22.0 ·	24.0	.0570	1	0	1277.4		1108.1	1138.5	1540.2	3225.0	4363.4	4764.1
24.0 ·	50.0	, 0549	1	0	1387.9		11(9.0	1136,9	1508.0	3047.3	4147.5	4543.6
25.0 -	59.0	.0475	1	0	1446.8		1109+6	1132.7	1442.7	2687.3	3660.3	4022.4
2°40 •	30.0	.0395	1	0	1573.5	•	1109.8	1128.4	1377.2	2325.5	3098.0	5389.4
23020 -	35.0	.0305	1	0	1649.5		1109.8	1123.8	1310.3	1967.0	2490.1	2685.9
52.4 -	34.0	.0007	2	· 0	1712.0		1108.8	1109.1	1114.8	1116,9	1118,5	1114.1
54.0 -	36.0		2	Ú	1751.9		1168.1	1108.4	1108.9	1109.0	1109.1	1109.1
56.0 -	34.0	• 0°0 0 B	Ż	Ũ	1719.6		1107.6	1108.0	1108,5	1108.5	1100.6	1108.6
50 0 -	40.0	0.0000	0.000	.0				-			-	

G-71

ITERATIONS = 4

10.0 .

42.0 -

iul_0 =

46.0 -

-ISPUT THANSIENT TIME COMPLETED

COMMON DUMPED TO TAPE 8

42.0

44.0

46.0

48.0

DAMPED U-TUBE MANOMETER OSCILLATION

One of the most important new capabilities of COBRA-IV is that of considering density gradients approaching steam-water interface conditions. The modeling of a U-tube oscillation is an ideal way to demonstrate this capability. The model also employs the code's new ability to arbitrarily block lateral flows in transient calculations.

The geometry chosen for the U-tube is illustrated in Figure G-3. The flow area of 36 square inches, the 6-inch gap and the axial node length of 3 inches were chosen to provide the same area for lateral flow as for axial flow and thus a uniform velocity all the way around the "U". All gaps except the first two are closed via input. The only damping present consists of a drag coefficient of 2.0 placed at the 14.4-inch level in channel 1. One channel is initially filled with saturated liquid and the other with saturated vapor at 60 psia. The calculation is carried out to 4.0 seconds which allows two full oscillations (natural period is 1.92 seconds.)

The intermediate output for this problem shows "surface level" in addition to the normal transient output. This is a post-calculated quantity which is determined by integrating the previously calculated density and is not used elsewhere in the code. Refer to the channel results page for the actual density gradient calculated.

FIGURE G-3. U-Tube Manometer Model

DAMPED U-TUBE MONOMETER OSCILLATION SAMPLE PROBLEM INPUT

500										
1			IS(ITH	ERNAL U-TURI	E MANCHETE	P DEMONSTRA	TION			
1	50	1								
.1730	50.		50410	1704.8	18.054	1083.4	3.15	.336		
.25-1	50		01503	1207.5	20.040	1087.7	2.68	342		
3-20	70		01605	868 4 ·	58.052	1092.1	2.32	346		
5358	80.		01007	633.5	43.037	1096.4	2.05	-353		
	, nŋ		01610	464.1	53.018	1100.8	1.851	.358		
9403	100.		01013	350.4	51 444	1105.1	1.64	.362		
1.623	120.		01620	230.3	47.91	1113.6	1.321	.370		
2. 4.29	140		11029	123.0	107.95	1122.0	1,110	378		
4.741	160.		1640	77.29	127.95	1130.2	949	. 38 3		
7.511	140.		11651	50.22	148.00	1158.2	770	.368		
11.53	260		11054	33.64	163.09	1145.0	.720	.391		
24.47	240		1693	16.32	208.45	1160.6	579	396		
50.7	281.01	0.0	17274	8.5140	250.2	1174.1	0.491	0.1959	0.003012	
lud.	\$27.3		7740	4.4310	298.5	1187.2	0.410	0.3936	0.002606	
150.5	15A.4	0.0	1949	1.0119	340.6	1194.1	0.369	0.3893	0.002350	
2.1.1.1	(A) . 8	0.01	1 4 4 9	3.2873	354.5	1198.3	0.345	0.1852	0.00209	
252.4	401.0	0.0	1865	1,8432	376.1	1201.1	0.326	0.3806	0.00195	
- 400 a	417.4	0.0	ANG	1.5427	194.0	1202.9	0.313	0.3760	0.00180	
350.3	431.7	0.01	912	1.3255	409.8	1204-0	0.301	0.3718	0.00168	
10.00 10.00	444.6	0.0	1914	1.1510	424.2	1204.6	0.290	0.3682	0.00158	
		v • 0								
<u>د</u>						•				
1	2									
่ง.	1.	•	1.							
	••		▲ 8 ,	•						
1	36.	24.	24.	2 6.						
2	36.	24	24.	~ ~,						
Å	1			•			<i>i</i>			
Ť	1	1.	1	· •						
ġ	0	30	4	•• 3				•		
72	2.	0.	Ο.	0.1.5=9	1.					
24	400	~ •	••		• •				•	
		0005		.1 20.	1. 0.					
200	6	••••	4							
0	-001			10 025						
11	2	• •	•							
	< 0 -	•	174-	0 -	0 -	1174.				
250.21	1174				••					
12	1									
• • •	-						· ·			

DAMPED U-TUBE MANOMETER PROBLEM OUTPUT

1

										·	• · · · ·				• .
INPUŢ	FOR	ÇASE	1		1	ISCIHE	RMAL	U=TL8	E MA	NOMETER	DEMONSTRATI	ON DATE	04/22/76	0 TIME	12.09.00
SUMMAN	AY CF	INPUT	OPT	1018									· ·		
GROOP	N1	N 2	N3	N4	N 5	N6	N7	NB	Ng	1					
1	20	1	= 0	⇔ ()	= 0	• 0	=0	= 0	=0			· .	•		н
5	- U	=0	⇒ 0	•0	= 0	• 0	-0	• 0	# 0						
3 .	5	- 0	= 0	•0	= 0 ·	. ●9	=0	= 0	• 0		·				
4	2	5	•0	=0	=0	• 0	=0	=0	÷0						
· 8	1	1	-0	æ ()	- 0	• 9	=0.	+ 0	•0						
9	0	30	4	• Ú	3	•0	-0	• 0	# 0			•			
11	2	- 0	- (j	• Û	•0	₩i)	= 0	■Û	=0	•					
15	1	• Q	= 0	# 0	=0	• 0	• ()	● Û	• 0	•		· · · · ·			
FLUTO	PRCP	ENTY T	ABLE									•			
p		T		VF		VG		HF		⊢G	VISC.	KF	SIGMA		
	. 2	50.0	0 .(51662	1704	8.000	i O	18.0	5	1083.40	3.15000	.33600	#0,00000		
	3	60.0	0 .(1603	1207	1.6000	0	28.0	6	1087.70	2.68000	34200	-0.00000		
•	4	70.0	0 .0	1665	861	.4000	0	38.0	5	1092.10	2.32000	.34600	#0.0 0000		
•	15	80.0	<u>v</u> .	1607	653	1. 3 000	0	48.0	4	1096.40	2.05000	.35300	40.00000		
•	.7	90.0	0.00	01610	466	1,1000	0 -	58.0	2	1100.80	1.85100	.35800	=0.00000		
•	. 9	100.0	0.(1613	35(06∎4000	Ŭ	68.0	0	1105.10	1.64300	.36200	=0.00000		
1.	.7	150.0	υ.	11020	530	a . 3 000	0	87.9	7	1113.60	1.32100	.37000	∞0 ,00000	·	
5.	, q	140.0	a .(11629	153	\$.0000	0	107.9	5	1122.00	1.11000	.37800	≠0:00000		
4 e	•7	160.0	Ŭ • (01640	17	1.2900	Ú.	127.9	6	1130.020	.94900	.38300	=0.00000		
7.	,5	190.0	ý a (1651	50)*5500	Ú	148.0	0	1139-50	.77000	.38800	=0.00000		
11.	5	509.0	0 .(01664	3	5+6400	0	168.0	9	1140.00	.72000	.39100	=0 ₈ 00000		
25.	• •	540.0	a e (01693	16	3500	0.	208.4	5	1160.60	.57900	,39500-	=0.00000		
50.	0	581*0	Ú .(01727	ł	1.5144	ιũ.	250.2	0	1174.10	.49100	. 34340	.00301		
100.	.0	327.8	6.0	01774	• •	4.4310	0	298.5	0	1187.20	.41000	. 39360	.00261		
150.	• 0	355.4	a • (11819	-	5.0139	0	530.6	0	1194.10	.36900	. 18910	.00235		
5401	L Ø	381.8	0 • (1839		2.2475	a	355.5	0	1146.30	. 34500	, 18520	e00209		
250.	0	491.0	0	1865		48432	0	\$76.1	0	1201.10	• • • • • • • • • • • • • • • • • • • •	. 38060	.00143		
300.	• 0	417.4	0 .(11589	1	1.5427	0	\$94.0	0	1202.90	.31300	.37600	.00180		
	, 0	431.7	0 •1	1415	1	1.2222	0	409.8	0	1204.00	. 30100	. 37180	.00168		
400.	0	444.6	0.0	01934	1	1.1010	0	424.2	0	1204.60	.29000	36820	.00158		

SUPERHEATED 5	TEAP PROPER	TIES AT 50.	00 P91			
T	н	CP	· V	VISC	K .	PR
DEG F	RIUILAN	81U/L8M=4	CU FT/L8M	LUMZFT=HR	BTU/HR	■FT=F
581.0	1174.0	,537	8,5153	0326	,0166	1.06
304,9	1186 9	.520	8.8380	0340	0171	1:04
328.6	1199.3	.509	9.1534	.0353	,0176	1,02
352.7	1211.5	.496	9.4634	.0367	.0183	1.00
424.4	1247.0	.487	10.3719	.0407	.0204	. 47
490.1	1282.0	,486	11.2611	.0447	.0227	•96
567.8	1310.8	.487	12.1397	.0487	.0251	,95
639.5	1351.7	.490	13,0117	-0527	0276	.94
711.2	1396.9	.495	13.8795	.0567	.0303	.93
762.9	1422.4		14.7444	. 0606	.0331	. 92
854,4	1452.2	.505	15.6073	.0645	0359	91
926.4	1494.5	•511	16.4686	.0685	0388	.90
998.1	1531.1	.517	17.328A	.0724	0418	. 90
1069.0	1505.2	.524	18.1881	0763	.0449	89
1141.5	1005.8	.530	19.0467	.0802	0480	
1213,2	1645.8	.535	19.9047	.0841	.0511	.88
1584.9	1685.5	543	20,7623	.0880	0543	
1356.5	1721.1	.547	21,6195	.0920	.0575	.00
1028.3	1769.5	.556	22.4764	0959	0606	88
150.0	1800.4	-556	21. 3330	.0598	0638	.87

- - -

FRICTION FACTOR CONSELATION

SINGLE PHASE HEAT THANSFER CORRELATION

- HUMORENEOUS PEDEL FRICTION MULTIPLIER

NO SUBCEDIED VOID-CORRELATION HOMOGENEOUS BLLM VOID MODEL

> RELATIVE FLUX 1.000

1.000

THO-PHASE FLOW CONFELATIONS

HEAT FLEX DISTRIBUTION

X71.

9,000 1.000

HFILM = K/D(.023+REA+(.800)+PR++(.400) + 0,000)

MAUL MISCOCITY CURRECTION TO FRICTION FACTOR IS NOT INCLUDED

SUHCHANNEL INPUT DATA CHANNEL TYPE AHEA WETTED HEATED FYDRAULIC (ADJACEN NII. (SU-IN) PERIM. PERIH. DIAMETER (IN) (IN) (IN)	T CHANNEL NO., BPACING, CENTHLIC DISTANCE)
1 1 36,000000 24,000000 24,000000 6,000000 (2,6,000 2 1 36,000000 24,000000 24,000000 6,000000 (-0,-,000	<pre>,=_000)(=0,=_000,=_000)(=0,=_000,=_000)(=0,=_000), ,=_000)(=0,=_000,=_000)(=0,=_000,=_000)(=0,=_000,=_000)</pre>
HUD INPUT DATA ROD TYPE DIA BADIAL PÜRER FRACTION OF POWER TO ADJACENT (ND, ND, (IN) FACTOR 1 1.1,4000 1,6000 1,0000(1) =0,0000(+0) =0,0000(=0)	CHANNELS (ADJ. CHANNEL NU.) 0) =0.0000(=0) =0.0000(=0) =0.0000(=0)
EXPLICIT SOLUTION WITH INLET FLOWS SPECIFIED STANDING START FROM ZERC FOLLOWS	
CALCULATION PAPAPETERS LATERAL RESISTANCE FACTOR .0000 (97L) PARAMETER 1.0000 TURNULENT MEMENTUM FACTOR =0.0000 CMARNEL CRIENTATION =0.0000 DEGREES ROLL OPTION (0 = 40 ROLL) 0	CHANNEL LENGTH72,0000 INCHESNUMBER UF AXIAL NODES24AXIAL NODE LENGTH3,0000 INCHESTOTAL TRANSIENT TIME2,0000 BECCNUSNUMBER OF TIME STEPS400NOMINAL TIME STEP########## SECCNUS
DATA FUR EXPLICIT SULUTION NAXIMUP TIME STEP .0050 SECONCS COURANT NUMBER .2000 ITENATIVE CONVERGENCE FACTORS VCLUME ERROR (DV/V) .0005 ENTHALPY ERROR (DH/H) .C001	ACCELERATION FACTOR 1.0000 FRACTION OF LAST CHANGE 0.0000 ITERATION LIMITS PRESSURE ITERATION 200 ENERGY EQUATION 20
FINE STEP VARJATIUN TABLE TIME STEP SIZE (SEC) (SEC) 0.0000 0.0000 .002000 .002000 10.0000 .002000 .02500	
CPERATING CONDITIONS SYSTEM PRESSURE = 50.0 PSTA INLET ENTHALPY = 1174.0 BTU/LB AVG. DASS VELOCITY = 0.000 MILLION LH/(HR=SGFT) IDLET TEMPFRATURE = 0.000000 MILLION BTU/(HR=SGFT) EXIT ENTHALPY = 1174.0 HTU/LB THOIVIDUAL SUBCHANNEL ENTHALPY SPECIFIED (CHANNEL=ENTHALPY) [1 = 250.2) (2 =1174.0) UNIFORM INLET MASS VELOCITY	

ê

CHAPNEL	HESULTS										
CASE	1	SUTHERMAL	U-TUBE HANOM	ETER DEMONS	TRATION			DATE 04/2	2/76 O T	IME 12.09	.06 1
TINE =	0.00000 SEC	INDS PRE	SSURF = 50	.C PSIA	DATA	FOR CHANNE	L 1	•		·	
DISTANC	DELTAOP	ENTHALPY	TEMPERATURE	GENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELCCITY	AHEA	
(IN.)	(PST)	(atu/La)	(DEG-F)	(LB/CU=FT)	QUALITY	FRACTION	(LB/SEC)	(ML8/HR=F12)	(FT/SEC)	(8G=1N)	
n.ŭ	2.5126	250,20	281.00	57.89	0.000	0.000	0.0000	0.0000	0.0000	30.00000	
3.0	2.4121	250,20	281.00	57.89	0,000	0.000	0.0000	0,0000	0.0000	36.00000	
6 <u>.</u> (j	2.3116	250.20	281.00	57.89	0,000	0.000	0.0000	0.0000	0.0000	36,00000	
9.0	2.2111	250.20	261.00	57,89	0.000	0.000	0.0000	0.0000	0.0000	36.00000	
15.0	2.1106	250,20	261.00	57.89	0.000	0.000	0,0000	0,0000	0.0000	36.00000	
15.0	2.0101	250,20	261.00	57.29	0,000	0.000	0.0006	0,0000	0.0000	36.00000	
18.0	1,9096	250.20	281,00	57.89	0.000	0.000	0.0000	0.0000	0.0000	36.00000	
21.0	1.8091	250.20	261,00	57.89	0.000	0.000	0.0000	0.0000	0.0000	36.00000	
24.0	1.7086	250,20	281,00	57.89	0.000	0.000	0.0004	0.0000	0.0000	\$6,00000	
21.0	1,6081	250.20	281.00	57.89	0.000	0.000	0.0000	0.0000	0.0000	36,00000	
30.0	1.5076	250.20	281.00	57.89	0.000	0.000	0.0000	0.0000	0.0000	36.00000	
53.0	1,4071	259.20	281.00	57.89	0.000	0.000	0.0000	0.0000	0.0000	36.00000	
36.0	1.3966	250.20	281.00	57.89	0,000	0.000	0.0000	0.0000	0.0000	10.0000	
59.0	1.2061	250.20	281.00	57.89	0.000	0.000	0.0000	0.0000	0.0000	36.00000	
42.0	1.1055	250.20	281.00	57.89	0.000	0.000	0.0000	0.0000	. 0.0000	35,00000	
45.0	1.0050	250.20	281.00	57,89	0.000	0.000	0.0000	0.0000	0.000.0	36,00000	
48 <u>0</u>	. 9045	250.20	281.00	57.89	0.000	0.000	0.0000	0.0000	0.0000	36.00000	
51.0	.8040	250.20	281.00	57,89	0.000	0.000	0.0000	0.0000	0.0000	36.00000	
54.0	.7035	250.20	281.00	57.89	0.000	0.000	0.0000	0.0000	0.000.0	30.00000	
57.0	.6030	250,20	291.00	57,89	0.000	0.040	0.0000	0.0000	0.0000	56.00000	
60 <u>.</u> 0	.5025	50,20	281,00	57,89	ວຸດດນີ	0,000	0+0000	0,0000	0.000	30.00000	
63. 0	.4050	250.20	281.00	57.89	0.000	0.000	0.0000	0.0000	0.0000	36,00000	
56.0	.3015	250,20	281.00	57.89	0.000	0.000	0.0000	0.0000	0.000	36.00000	
69 .0	.2010	250.20	281.00	57.89	0.000	0.000	0.0000	0.0000	0.000	36.00000	
72.0	.1005	250.20	281.00	57.84	0.000	0.00.0	0.0000	0.0000	0.0000	36.00000	

1

C48E 1		ISUTHERNAL	U-TUBE MANUM	ETER DEMONS	TRATION			DATE 04/2	2/76 0 1	INE 12.04
TIME = 0	.00000 SEC	UNDS PRE	BSURE N 50	.0 PSIA	DAŢA	FOR CHANNE	L 2			
ISTANCE	DELTAP	ENTHALPY	TEMPERATURE	CENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELLCITY	AREA
(10.)	(PSI)	(81V/L8) ·	(DEG=F)	(LB/CU=FT)	QUALITY	FRACTION	(LB/SEC)	(ML8/HR=FT2)	(FT/SEC)	(SG=IN)
0.0	.0051	1174.00	281.00	•15	1.000	1.000	0,0000	0,0000	0.0000	36.00000
3.0	.0049	1174.00	281.00	.12	1.000	1.000	0.0000	0.0000	0.000	36.00000
6.0	.0047	1174.00	281.00	.12	1.000	1.000	0.0000	0.0000	0.0000	36. 00000
9.0	.0045	1174.00	591.00	.12	1.000	1,000	0.0000	0,0000	0.0000	30.00000
12.0	• 0043 ·	1174.00	281,00	•12·	1.000	1.000	0.0000	0.0000	0.000	36,00000
15.0	.0041	1174.00	281.00	.12	1.000	1.000	0.0000	0.0000	0.0000	36,00000
16.0	.0039	1174.00	281.00	•12	1.000	1.000	0.000.0	0.0000	0.0000	16. 00000
1.0	.0037	1174.00	281.00	•12	1.000	1.000	0.0000	0.0000	0.0000	50.0000.02
4.0	.00.59	1174.00	281.00	.12	1.000	1.000	0.0000	0.0000	0.0000	36.00000
7.9	.0033	1174.00	281.00	•12	1.000	1.000	0.0000	0.0000	0.0000	36,00000
0.0	.0031	1174.00	281,00	.12	1,0ŭÓ	1.000	0.0000	0.0000	0.0000	36.00000
3.0	.0029	1174.00	581.00	•12	1.000	1.000	0.0000	0.0000	0.0000	36,00000
6.0	.0027	1174.00	281.00	-12	1.000	1.000	0.0000	0.0000	0.0000	36.00000
9.0	+0024	1174.00	281,00	.12	1.000	1.000	0.0000	0.0000	0.0000	56.00000
2.0	.0022	1174.00	591.00	.12	1.000	1.000	0.0000	0.0000	Ú,ŰŬŰQ	\$6.00000
5.0	.0d20	1174.00	281.00	.12	1.000	1.000	0,0000	0.0000	0.0000	\$6.00000
d. 8	.6018	\$174.00	281.00	.12	1.000	1.000	0.0000	0,0000	0.0000	36,00000
1.0	.0016	1174.00	281.00	.12	1,000	1,000	0.0000	0.0000	0.0000	30.0000
4.0	.0014	1174.00	281.00	.12	1.000	1.000	0,0000	0.0000	0.0000	36.00000
7.0	.0012	1174.00	281.00	.12	1.000	1.000	0.0000	0.000	0.0000	\$6.00000
0.0	.0010	1174.00	281.00	.12	1.000	1.000	0.0000	0.0000	0.0000	36.00000
3.0	6000	1174.00	281.00	.12	1.000	1.000	0,0000	0,0000	0.0000	36,00000
6.0	.00.6	1174.00	281.00	.12	1.000	1.000	0.0000	0.0000	0.0000	36.00000
0.4	.0004	1174.00	261.00	.12	1.000	1.000	0.0000	0.0000	0.0000	36.00000
2.0	. 0002	1174.00	281.60	. 12	1.000	1.000	0.0000	0.0000	0.6600	36.00000

04/22/76 0 TIME 12.09.06 1

DIVERSION CRUSSFLOW BETWEEN ADJACENT CHANNELS, W(I,J), (LB/SEC-FT),

- ÇAGE
- ISCTHERMAL UNTURE NANOMETER DEMONSTRATION DATE.
- TIME = 0.00000 SECUNDS

AXIAL	ZUNE	N: 1,	23
ú.0 🕶	3.0	0.00	000
3.0 .	5.0	0.00	000
6.0 =	9.0	0.00	000
9.0 -	12.0	0.00	û00
12.0 -	15.0	0.00	000
15.0 -	18.9	0.000	000
18.0 -	21.0	0,000	0 ū O
21.0 -	24.0	0.000	000
24.0 -	27.0	0.000	000
27.0 -	30.0	0.000	000
10.0 -	35.0	0.00	000
35.0 -	35.0	0.000	000
35.0 .	59.0	0.000	000
59.0 -	42.0	0.00	000
40.0 -	45.0	0.00	000
45.0 .	48.0	0.00	000
48.0 -	51.0	0.00	000
51.0 .	54.0	0.00	0 O C
54.0 -	57.0	0.00	000
57.0 -	60.0	6.00	000
6).0 -	63.0	0.00	000
63.0 -	66.2	0.00	000
56.0 -	69.L	0.00	000
	72.1	0.00	û û o

ITERATIONS = 2

DATA FROM EXPLICIT SCLUTION....

		T.T			86. F. Te	****	1011
	TRIES	STEP NUMBE	R UZDX	V/DY	(U/CX+V/DY)	TIME	ERROR
	SUBERCE	.00104 .00	1 .49	.37	,8545	.0010	.0003
	SUNFACE SUNFACE		1 <u>1</u> n_19	. 4 1	10,7595	.0050	:0004
	SURFACE	100115 05	3 2 11,49	.79	21,2350	.0031	.0005
	SUMPACE	.00116 .03	3 28,38	.93	29,2536	.0042	.0005
	SUPFACE 2	LEVEL 72.000 .04	•017 0'- <u>3.5</u> •52	1.02	34.4872	.0054	.0005
	SURFACE 2	LEVEL 72.000 .00125 .04	,024 5 36,38	1,09	37,4350	.0066	.0005
	SURFACE 2	LEVEL 72.000	+031 8 37,59	1.13	38.7123	.0079	.0004
	SURFACE 2	LEVEL 71.999	• •040 0 37.65	1.18	38,8341	0091	.0004
	SURFACE 2	LEVEL 71,999	.049 1 38.96	1.23	38,1901	.0105	.0004
	SUPPACE S	LEVEL 71.998	.059 2 35.78	1.28	37.0590	.0119	.0004
	SURFACE 2	LEVEL 71.996	•069 2 34,30	1.33	35,6364	.0133	.0004
	SURFACE 2	LEVEL 71.993.	080 32.68	1.38	34.0576	.0149	.0004
	SURFACE 2	LEVEL 71.989	,092 1 30,98	1.43	32.4149	.0164	.0004
	SURFACE	LEVEL 71,984	,105	1.48	30.7709	.0180	.0004
	SURFACE	LEVEL 71,976	•118 • 27.64	1.53	29,1670	.0197	.0004
	SURFACE	LEVEL 71,966	132	1,58	27.6677	.0215	.0002
	SURFACE	LEVEL 71.954	147 24.58	1.64	26.2162	. 0 2 3 3	.0002
	SURFACE	LEVEL 71,938	,163	1.69	24.8523	. 0 2 5 2	.0002
	SURFACE	LEVEL 71.919	.180	1 75	23 6862	0271	.0002
	SUPPACE	LEVEL 71.897	198 198	· · · ·	2383008	10203	0001
	SURFACE	LEVEL 71.872	•217		21 3700	0313	0004
	SURFACE	LEVEL 71.643	+237	1400		• • • • • • •	.0004
	SURFACE	LEVEL 71.810	•254 •254	1.440	20,4004		.0003
	SULFACE	.00236 .045 LEVEL 71.775	,284	« •10	19.7708	.0357	.0005
	4 SURFACE	.00205 .046 LEVEL 71.737	• 17,09	2.26	19.3140	.0381	.0005
	SURFACE	.00254 .047 LEVEL 71.696	15+67 +342	2,46	19,1238	.0405	.0004
	U Surface	.00264 .044 LEVEL 71.652	14,90 ,378	2.89	19.1917	.0431	.0004
	5 SURFACE	.00274 .051 LEVEL 71:605	16,54 · • 419	2.95	19,5022	.0457	.0003
•	6 Surface	.00284 .055 L&V&L 711555	16,75 •467	3,25	20.0039	e0485	.0004
	7	,00295 ,059	17.06	3,56	20,6201	.0513	.0004

SUHFACE	600306 LEVEL 7	.003	17.40 583	3.85	21.2510	.0542	.0005	· · · ·		
CHANNEL	RESULTS 1	ISUTHERMAL	U-TUBE MANOM	ETER DEMON	STRATION			DATE 04/8	2/76 0 TIME 12.49.1	3 1
TINE =	.05425 SE	CUNDS PH	ESSURE = 50	O PSIA	DATA	FOR CHANNI	EL 1			
01STANCE (1N.) 0.0	0ELTA=F (PSI) ,4823	250,20	TEMPERATURE (DEG=F) 261,60	CENSITY (LU/CU-FT) 57.89	EGUIL. QUALITY 0.000	VOID Fraction 0,000	FLOW (LB/SEC) 0,0000	MA58 FLLX (MLB/HH=FT2) 0.0000	VELCCITY AREA (FT/SEC) (SU=IN) 0.0000 36.00000	
3.0 0.0 9.0	, 3748 , 3345 , 3690	250,20 250,20 250,20	281.00 281.00 281.00	57,89 57,89 57,89	0.000	0,000 0,000 0,000	-13,6843 -25,0837 -25,0160	1999 3612 3602	-,9593 36,00000 -1,7332 36,00000 -1,7285 56,00000	
12.0 15.0 18.1	,4061 ,4379 ,4640	250,20 250,20 250,20	281.00 281.00 281.00 281.00	57,89 57,89 57,89 57,89	0.000 0.000 0.000	0,000 0,000 0,000 0,000	-24,1449 -24,7458 -24,6410	-,3578 -,3563 -,3548	-1.7167 36.00000 -1.7098 56.00000 -1.7026 36.00000	
21.0 24.0 27.0 \$0.0		250,20 250,20 250,20	281.00 281.00 281.00	57,89 57,89 57,89	0.000	0.000 0.000 0.000	•24,5327 •24,4232 •24,3144	3533 3517 3501	•1.6951 36.00000 •1.c875 36.00000 •1.6800 36.00000	
53.0 56.0 57.0	,5022 ,4920 ,4764	250,20 259,20 259,20	281.00 281.00 281.00 281.00	57,89 57,89 57,89 57,89	0,000 0,000 0,000 0,000	0.000 0.000 0.000 0.000	-24,2083 -24,1066 -24,0106 -23,9208	•.3400 •.3471 •.3458 •.3445	-1.657 36.00000 -1.6590 36.00000 -1.6528 36.00000	
42.0 45.0 48.0 51.0	,4309 ,4309 ,4018 ,3693	250,20 250,20 250,20	591.00 591.00 591.00	57.89 57.89 57.89	0.000	010 000 000	-23,8383 -23,7650 -23,7025	• 3435 • 3422 • 3415	-1.6471 30.00000 -1.6421 36.00000 -1.6377 56.00000	
54.0 57.0 60.0	,3341 ,2964 ,2567 ,2184	250,20 250,20 250,20 250,20	281,00 281,00 281,00 281,00	57,89 57,89 57,89 57,89	.000 .000 .000 .000	•000 •000 •000 •000	-23,6118 -23,5118 -23,5826 -23,5539	•,3400 •,3596 •,3352	-1.6212 56.00000 -1.6215 36.00000 -1.6252 56.00000	
65.0 69.0 72.0	,1732 ,1322 ,0846	250,20 250,22 250,60	281.00 241.00 281.00	37.80 57.32 47.77	.000 .000	.000 .010 .175	-25.3245 -19.4377 0478	•.3359 •.2799 •.0007	-1.6276 36.0000 -1.6277 36.00000 -1.6276 36.00000	

CHANNEL I CASE	RESULTS 1	ISOTHERNAL	U-TUBE MANDM	ETER DEMONS	TRATION			DATE 04/2	2/76 0 1	IME 12.09.13	
T1ME =	.05425 8EC	UNDS PRE	SSURE # 50	.0 PSIA	DATA	FOR CHANNE	L 2	•			
DISTANCE (IN.)	DELTA-P (PST)	ENTHALPY (UTU/LB)	TENPERATURE (UEG+F)	UENSITY (L8/CU=FT)	EGUIL. QUALITY	VUID FRACTION	FLOW	MASS FLLX (MLB/HR+F12)	VELOCITY (FT/SEC)	AREA (SG#IN)	,
0.0	.0791	1174.00	281,00	.12	1.000	1.000	0.0000	0.0000	0.0000	36,00000	
3.0	.0647	260.16	281.00	9.14	.011	.843	2.2081	.0518	.4020	30,00000	
6.0	.0227	548.38	591.00	2.17	.052	.964	.9459	.0136	1.7587	36,00000	
9,0	.0640	733.64	201,00	• 5 5	,523	.998	,0967	0014	1.72/5	56.00000	
12.0	•U035	1138,12	241.00	+12	.961	1.000	.0522	.0008	1.7080	30.00000	
15.0	• 0 0 H Q	1172,53	581.00	12	,998	1.000	.0497	.0007	1,6848	36.00000	
15.0	·•0075	1173,95	281.00	.12	1.000	1,000	.0491	.0007	1.6/3/	56.00000	
6,15	.0070	1174.00	581.00	.12	1,000	1.000	.0487	.0007	1.6595	56.00000	
54.0	, 0∪⊼5	1174,00	281,00	•15	1,000	1.000	•0484	.0007	1.6471	56.00000	۰.
27.5	.0090	1174.00	281.00	.12	1,000	1.000	.0480	.0007	1.6361	50.00000	
50.0	.0056	1174.00	261.00	•15	1.000	1.000	.0477	.0007	1.tete	30.60000	
53.0	0051	1174.00	591°60	12	1.000	1.000	.0475	.0007	1.6173	36.01000	
36.0	. ù n u 7	1174.00	281.00	•15	1.000	1.000	.0472	.0007	1.6093	36.00000	
50.)	.0043	1174.00	281.00	•15	1,000	1.000	.0470	.0007	1.0051	56.00000	
42.0	•0039	1174.00	291.00	.12	1.000	1.000	0468	.0007	1.5950	35.00000	
45.0	.0035	1174.00	281,00	.12	1,000	1.000	.0467	.0007	1.5497	36.00000	
46.0	.0031	1174.00	281.00	.12	1.000	1.000	.0465	.0007	1.5846	30.00000	
51.0	8500	1174.00	281.00	.12	1.000	1.000	.0464	.0007	1.5402	36.00000	
54.0	.0024	1174,00	281.00	.12	1.000 -	1.000	.0463	.0007	1.5764	30.00000	
57.0	.0020	1174.01	281.00	510	1.000	1.000	.0462	.0007	1.5732	30.00000	
60.0	.0017	1174.02	201.00	.12	1.000	1.000	.U401	.0007	1,5707	36.00000	
63.0	.0014	1174.02	231,00	.12	1.000	1.000	.0461	.0007	1.5488	36.00000	
65,0	.0010	1174.03	281,00	.12	1.000	1.000	.0460	.0007	1,5676	30.00000	
09.0	0007	1174.04	291,60	.12	1,000	1.000	.0460	.0007	1,5669	56.00000	
72.0	.0013	1174.04	281.00	,12	1.000	1.000	.0460	. 0007	1.5669	10.0000 Jo	

DIVERSION CROSSFLUE BETWEEN ADJACENT CHANNELS, W(I,J), (LR/SEC=FT), GATE 04/22/76 0 TIME, 12,09,13 1 CASE 1 ISUTHERMAL U-TURE MANDMETER DEMONSTRATION

TTHE . .05425 SECONDS

AXIAL	ZONE	w(1, 2)
0.0 -	3.0	55.68691
3.0 -	6.0	45.01000
6.0 -	9.0	0.00000
9.0 -	12.0	0.00000
32.0 -	15.0	0,00000
15.9 -	18,0	0.00000
18.0 -	21.0	0,00000
21.0 -	24.0	0.00000
24.0 -	27.0	0.00000
27.0 -	50,0	0.00000
50.0 -	33.0	0,00000
53.0 -	36.0	0.00000
j6.Ū =	39.0	(,00000
39.0 •	42.0	0.0000
42.0 •	45.0	0.00000
45,0 -	48.0	0.00000
48.0 ·	51.0	0,00000
51.0 -	54.0	0.00000
54.0 -	57+0	0.00000
57.0 -	60.0	0.0000
50.0 -	63.0	0.0000
53.0 ·	56,0	0.0000
66.0 +	69.0	0,00000

0.00000

TTERATIONS = 9

69.0 - 72.0

GATA FROM EXPLICIT SCLUTION

TRIES	TIME Step	COURANT . Number	- VELU UZDX	CITY COM	PCNENTS (U/CX+V/OY)	TC TAL TIME	VULUME Ernur
10	.00318	.067	17,69	4.11	21.7998	.0573	.0005
10 10	LEVEL 71,	.381	17,86	4.35	22,2108	.0605	<u>,</u> 0004
SURFACE 9	LEVEL 71, .00342	.313 .073	•727 17.70	4.56	22,2583	.0638	.0004
SUHEACE 9	LEVEL 71.	,238 ,076	.808 17,51 (4.75	22.2654	.0672	.0004
844475 9	LEVEL 71, 04369	156 .079	.897 17.31	4,95	22.2611	.0708	.0004
SURFACE R	LEVEL 71.	,045 ,032	,992 17,12	5,14	22.2644	.0745	.0004
SHPFACE 9	LEVEL 70. .00397	954 <u>1</u> 085	16,96	5.34	22.3027	.0783	.0004
3.015 431 F 5 9	LEVEL 70,	.853 1. .089	203 14.82	5.56	- 22.3870	.0823	.0004
SURFACE 9	LEVEL - 70	731 1	322	5,80	22.5404		.0004
SURFACE	LEVEL 70.	.598 1. .098	450	6.07	22 7872	.0907	.0004
3-14FACE	LEVEL 70	452 1	589	6.37	-26.1481	.0951	.0004
SURFACE	LEVEL 70	294 1	741	4 6 3 7 0	23 8319		0005
SURFARE	LEVEL 70	124 1	1907 1907		23,3/14		.0005
SURFACE	LEVEL 69.	439 21	1098 1098		24.0082	.1045	e0005
3URFACE	LEVEL 69,	741 24	207	7.41	25,1519	•1042	.0005
SU4F±CE	LEVEL 69.	526 20	20.05	7,76	26.2579	. 1146	.0005
35 Sjrface	.00556 LEVEL 64.	.145	20.83 ,737	8.10	27.3018	,1200	.0005
SA BUREACE	.00577 LEVEL 69.	157. 040 2.	21,58 ,990	8.44	24.3224	.1256	.0005
29 Surface	.UÚ599 LEVEL 68.	,169 765 3,	22.35	8.79	29.3528	.1313	,0005
28 SURFACE	.00622 LEVEL 68.	,182	23.38	9,16	30.4158	.1373	.0005
32 SURFACE	.00628 LEVEL 68.	148 3.	23,97	9.54	31.5320	.1435	.0005
35 SURFACE	400618 LEVEL 67	,205 811 ä.	25.03	9 . 94	32,8823	.1498	.0005
41 SURFACE	100599	·213	25.27	10.32	34.3994	.1560	.0005
40 8005355	00577	.215	27,58	10.70	35.9612	,1620	.0005
38 38	+00554	,216	28,89	11,05	37,5030	.1678	.0005
3URFALE 35	.00536	,214 ,214	29,74	11.39	38,5485	,1733	.0005
347 F 41 E 34	.00529	•509 •719 •209	30.17	11.72	38.3567	.1787	.0005
3937746 <u>5</u> 35	LEVEL 00. .00525	-505 114 2*	96*99 30*99	12.04	38 . 28 39	.1839	.0005
SURFACE	100524	775 6. .201	244 31 .52	12.35	38,2154	,1892	.0005
90884 <u>05</u> 88	LENEL 0525	431 6.	586 32.15	12.67	38.1076	,1944	.0005
: . 59	.06526	•199	52.01	12.98	.57,9439	.1947	.0005

CHANNEL I	RESULTS					•	•			•
CABE	1	ISUTHERMAL	U-TURE MALOM	ETER DEMONS	TRATION			DATE 04/2	2/76 0 11	ME 12.09.20
flite a	.19969 SEC	0N0 3 958	\$SU7E # 50	.0 PSIA	DATA	FOR CHANN	EL I			
DISTANCE	LELTA P	ERTHALPY	TEAPERATURE	CENSITY	EGUIL.	VEID	₽Ļ0w	MASS FLUX	VELCCITY	AHEA
(IN.)	(PST)	(670768)	(DEG-F)	(L8/CU=FT)	QUALITY	FRACTION	(LB/SEC)	(ML8/HR=F12)	(FT/SEL)	(SG=1N)
0 . 0	1,1307	250,20	581.05	57.89	0,000	0.000	0.0000	0.0000	0.0000	30.00000
ن و ال	1.0176	250,20	281.00	57.89	0.000	0.000	=46,9646	.	-3,2451	36.00000
6.0	.7710	230.20	591 00	57,89	0.000	0.000	=81,9743	-1.1804	-5.6641	36.00000
4 . U	.6575	250,20	201.00	57.89	0.000	0.000	•81,9860	-1,1806	=5.0049	36,00000
12.0	.6262	250.20	281.00	57,89	0.000	.000	-81,9983	-1,1808	#5,£658	\$6.00000
15.0	5949	250.20	281.00	57.89	0.000	.000	#82.0110	-1,1810	•5.tóbó	35.00000
14.0	.5436	250.20	591.00	57.89	.000	.000	-82,0239	=1,1811	-5.6675	36.00000
21.0	.5322	250.20	281.00	57.89	.000	.000	-82,0367	=1.1013	-5.6684	36.00000
24.0	.5008	250.20	591°00	57.89	.000	.000	•82,0494°	-1.1815	-5,6895	36.00000
51.0	.4493	250.20	231.00	57,89	.000	.000	•82.u618	-1,1817	#5.6701.	36.10000
50,0	.4578	250,20	281.00	57.89	.000	.000	-82,0736	-1,1619	=5.c710	\$6.00000
. 35.0 .	4062	250.20	531.00	57.89	.000	.000	-82.0849	-1.1650	-5.6717	\$6.00000
5n.ð .	.3746	250.20	281.00	57,89	.000	.000	+82 . 0955	+1,1022	+5.+725	30.000.06
\$9.0	.3430	220.50	281.00	57.89	.000	.000	+82,1051	-1.1825	-5.0731	36.00000
45.0		250.20	201.00	57.89	.000	.000	-82.1135	-1.1024	=5,6737	36.00000
45.0	.2796	520.50	281.00	57.89	.000	.000	82,1190	-1.1625	•5.6743	50.00000
48.0	.2478	250.20	291.00	57.89	.000	.000	-82,1142	-1.1824	•5.6747	36.00000
51.0	.2161	250.20	281,00	57.88	.000	.000	#82.0 607	+1,1d17	=5.6751	56.00000
54.0	.1847	250.20	291.00	57:84	.00Ò	.001	=81,7622	-1.1774	-5.6753	36.úu000
57.0	.1552	250.21	261.00	57.63	.000	.005	-80,2517	•1.1556	+5.6755	36.00000.
51.0	.1347	52015 4	241.00	56.55	,000	£50.	-71,2022	-1.0541	•5.e755	36.00000
53.0	•1411	250.43	281.00	51,59	.000	.109	48.0374	.6917	+5,6755	56,00000
54.0	.1084	251,53	201,00	33,86	.001	.416	-10.1842	1495	•5.6756	36.00000
59.U	.0133	263.18	291.00	7,32	.014	.875	• . 4785	● •0069	=5,6756	36.00000
72.0	. 3006	570.69	281.00	.34	.347	.996	•.2666	- .0024	=5.6756	56.00000

1

ţ

CHANNEL CASE	RESULTS 1	ISOTHERMAL'	U-TUBE NANOM	ETER DEMUNS	TRATION			DATE 04/2	2/76 0 1	IME 12.04	1.20 1
TLISE =	19969 SEC	UNDS PRE	SSURE = 50	.0 PSIA	DATA	FOR CHANNE	L Z			· · ·	
DISTANCE	DELIA+P	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VCID	, FLOW	MASS FLLX	VELCCITY	AHEA	
[[].]	(PET)	(81U/LH)	(DEG+F)	(LU/CU+FT)	QUALITY	FRACTION	(LB/SEC)	(MLB/HA+F12)	(FT/SEC)	(90+1n)	
0.0	.8706	1174.00	281.00	.12	:.000	1.000	0.0000	0.0000	0.0000	36.00000	
3.0	.7108	250.21	261.00	57.65	.000	.004	46.7516	.6732	3.2440	30,00000	
n ,)	4164	250.49	261.00	50.06	.000	.136	70.6581	1.0204	5.6621	36.00000	
9.0	.0167	253.00	281.00	23.24	003	.600	32.8942	.4737	5.6619	36.00000	
12.0	0197	263.36	281.00	7.25	014	.877	10.2303	.1473	5.6415	36,0000üü	
15.0	-,0G06	29.8.23	281.00	2.18	052	.964	3.0827	.0444	5.0005	36.00000	÷
18.0	.0043	417.84	281.00	.64	181	.991	.9071	.0131	5.6578	36.00000	
21.0	0053	743.31	281,00	.22	534	998	.3103	.0045	5.6506	30,00000	
24.0	0057	1042.70	281.00	.14	.858	1.000	,1930	.0028	5.0398	36.00000	
27.0	0055	1146.49	201.00	.12	.970	1.000	.1703	0025	5.6285	\$6.00000	
30.0	.0351	1168.88	291.00	.12	994	1.000	1659	.0024	5.6179	36.00006	
15.0	.0048	1173.10	201.00	.12	<u>, 499</u>	1.000	1648	.0024	5,6083	36 .00000	
36.0	.0045	1173.86	281.00	.12	1,000	1.000	.1644	.0024	5,5999	36.00000	
19.0	0141	1174.00	281,00	.12	1.000	1.000	,1642	.Uú24	5,5926	30,00000	
42.0	.0038	1174.03	261.00	.12	1,000	1.000	.1640	.0024	5.5064	50.0000	
45.0	.0434	1174.03	281.00	.12	1.000	1.000	.1639	.0024	5,5812	30.00000	
18.0	.0331	1174.04	281.00	.12	1.000	1.000	1637	.0024	5.5/69	30,00000	
51.0	.0027	1174.04	281.00	. 12	1.000	1.000	.1636	.0024	5.5754	36.00000	
54.0	.0024	1174.04	281,00	.12	1.000	1.000	.1635	.0024	5.5706	\$6.00000	
57.)	0021	1174.04	281,00	.12	1.000	1.000	.1635	, 0∪24	5.5684	36.00000	
60.0	.0017	1174,04	241.00	.12	1.000	1,000	.1634	.UU24	5.5000	36.00000	
33.0	0114	1174.04	281.00	.12	1.000	1.000	1634	.0024	5.5656	36.00000	
66.0	.0010	1174.04	281.00	.12	1.000	1.000	.1634	0024	5.5640	36.00000	
63.0	.0007	1174.04	281.60	.12	1.000	1.000	.1654	0024	5.5644	36.00000	
72.0	.0001	1174.04	241.00	.16	1.000	1.000	.1634	.0024	5.5644	36.00000	

DIVERSION CHOSSELER RETREER ADJACENT CHANNELS, MCI/J), (L8/SEC-FT),

CASE 1 ISOTHERMAL U-TUBE MANUMETER DEMUNSTRATION DATE 04/22/76 0 TIME 12.04.20 1

AXIAL	ZUNE	4(1, 2)	
0,0 -	5.0	187.41554	
3.0 -	6.0	139,99192	
6.0 .	9.0	0,000 a	
9.0 -	12.0	0,00000	
12.0 -	15.0	a,00000	
15.0 -	18.0	0,00000	
18.0 -	21.0	ບູ່ພັນກິດກ	
21.0 -	24.0	0,0000	
24.0 -	27.0	0.0000	
27.0 -	50.0	0.00000	
\$0,0 •	53.0	6.00000	
53.0 -	\$6.9	0.00000	
35.0 m.	59.0	0.0000	
39.0 •	42.0	0,00000	
42.0 =	45.0	0- 0 -0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	
45.0 ·	0.80	· 0.0000	
48.0 -	51.0	ē, 00000	
51.0 -	54.0	0.00000	
54.0 -	57.0	6.0000	
57.0 •	+0.0	0.00000	
50.0 · ·	63.0	0.00000	
as.0 =	6c.0	0.00000	
06.0 ·	59.0	0,00000	

0.00000

ITERATIONS = 39

69.0 - 72.0

G-88

ŧ

DATA FROM EXPLICIT SULUTION

`_N(),	TIME	CUURANT	VEL	CITY COM	PENENTS	TCTAL	VOLUME
THIES	STEP	NUMBER	U/0X -	V/DY	(U/CX+V/OY)	TIME	ERROR
39	00528	.198	33,59	13,28	37,7501	.2050	.0005
41	.00530	198 <u>-</u> 198	34 , 19	13,59	37,5315	,2102	.0005
30HFACE 42	LEVEL 63 .00533	1985 a.⊓ •198	24.95 954	13.89	37.3223	.2155	.0005
SURFACE 13	LEVEL 63	198 8.	410	14,18	37, 1535	. 2209	.0005
SJHFACE	LEVEL 63	.211 8.7	301				0.005
SURFACE	LEVEL 62	,812 9,8	500 22+11	14.47	.3/.0424	• < < 9 2	.0003
46 Surpace	.00539 LEVEL 62	+199 +403 9+6	35.60 507	14.76	.37.0245	.2316	,0005
47 Subpace	.00539 LEVEL 61	+200 +988 10+0	35,62	15.04	37.1127	.2370	.0005
47) 61155755	.00538	201	\$5,89	15,32.	37,3015	.2424	.0005
UNAPACE UA	.00535	*505 *205	37,59	15.58	.37.5855	.2478	.0005
304Face 47	+00528	•140 10•2 •205	5분 • 54	15,84	38.3432	.2531	.0005
BURFACE 47	LEVEL 60 +00523	•709 11•à	298 38.57	16.09	38.5726	.2584	.0005
SUPERCE 48	LEVEL 60	.279 11.7	128	15.11	39,1090	2636	.0005
SURFACE	LEVEL 59	.847 12.1	59	16 54	79 6 79 4	3684	0005
SURFACE	LEVEL 59	•416 12•5	590 590	10,30	, j + , n / + +	.2000	.0005
47 SURFACE	.00505 LEVEL 58	205 985 13.0	20 20	16.78	40.0598	.2739	ę0005
47 344F4CE	.00498 LEVEL - 58	.205	40.65	17.00	40.6492	.2789	.0005
SHEFALF	00491	.206	41.30	17.20	41.3014	.2839	000.5
35	.00434	.205	42.01	17,39	42,0075	.2888	.0005
30884UE 45	.00480	•644 14•3 •203	42.05	17.57	42.0500	.2937	.0005
SURFACE 45	LEVEL 57 .00473	.276 14.7 .205	42.85	17.75	42.8488	.2985	.0005
SURFACE	LEVEL 50	.853 15.1	49	17 01		1013	0.004
SURFACE	LEVEL 56	.432 15.5	69	↓ / ↓ 7 ↓		.3032	
44 SURFACE	.00466 LEVEL 55	202. 15.9 210.	43 .14 (문9	18.07	43.1440	.3079	.0005
45 BURFACE	.00463 LEVEL 55	• 203 • 591 16.4	43.54	18.22	43.5427	•3126	.0005
14 94955105	00459	.204	44.02	18.37	44.0190	.3172	.0005
44 64	+07456	*505	43.15	18.51	44.1534	3218	.0005
30864CE 44	.00453	•505 •11 201	44.55	18.64	44.3478	.3263	.0005
SUHFACE Qu	LEVFL 54. .00449	.334 17.6 .204	н5 45.04	18.76	45.0408	.3309	.0005
SUPFACE	LEVEL 53.	.915 18.0	83	18.80	45.2740	. 1767	.0005
SURFACE	LEVEL 53.	.499 18.4	99	40.00			
43 SJAFACE	,00443 LEVEL 53,	.201 .084 18.9	45.27	19 84	45.2651	• 3 7 8 9	e0005
43	00442		45,46	19.10	45.4583	.3442	.0005
44 SURFACE	.00439 LEVEL 52	202. 754 19-7	45.81 42	19,20	45.8064	. 3486	.0005

CASE Case	AESULTS 1	ISCTHERMAL	L-TUBE MANON	ETER DEMONS	TRATION			DATE 04/2	2/76 O T	IME 12.09.34
TIME =	.34864 SEC	ONDS PRE	SSURE = 50	,0 PSIA	DATA	FOR CHANN	EL 1			·
DISTANC	E DELTA=P	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELOCITY	AREA
(14.)	(PSI)	(81U/L8)	(DEG+F)	(LB/CU+PT)	QUALITY	FRACTION	(L8/9EC)	(ML8/HR+FT2)	(FT/SEC)	(SU=1N)
0.0	5.1508	250.20	291.00	57.89	0.000	0,000	0.0000	0.0000	0.0000	30,00000
5.0	. 1.8781	250,20	591.00	57.89	.000	.000	=69,4729	•1. 0004	=4,8003	50,00000
ちょう	1.4156	520.50	591.00	57.89	.000	.000	-113.3241	#1,6319	-7,8302	30,00000
9.0	· 1.1907	250.20	281.00	57.89	.000	.000	=113,3338	·1.6320	•7.8309	\$6.0000c
12.0	1.1128	250.20	281.00	57.89	.000	.000	≈113.3431	•1.6521	-7.8316	36.00000
15.0	1,0350	250,20	241.00	57.89	.000	.000	=113,3519	•1.6323	•7.8322	36.00000
18.0	,9571	250.20	281.00	57.89	.000	.000	-113,1603	-1.6324	-7.8327	36.00000
51 •0	.8793	250,20	281.00	57,89	.000	.000	-113,3680	-1.6325	-7.8355	36.00000
24.0	.8015	250.20	201.00	57,89	.000	.000	-113.3749	-1.6326	+7,8330	56.000C0
51.0	.7236	250.20	291.00	57,89	.000	.000	-113,3802	+1,6527	-7.0342	30.00000
\$2.0	.6458	250.20	291.00	57,89	.000	.000	=113,3812	#1.6327	-7.8346	\$0 ,00000
33.0	.5680	250.20	241.00	57.89	.000	.0U0	=113.5074	+1,0325	-7.8350	30,00000
36.0	.4903	250.20	281.00	57,88	.000	.000	-113,2981	-1.6315	-7.8353	36 . U 0 0 Ŭ Ŭ U
51.0	•4131	220.20	591*00	57.84	.000	.001	-113,0167	-1,6274	•7.8355	36.00000
42.0	.3380	250.21	281.00	57.69	. ŰÖN	.003	-111,9283	=1,6118	=7.8350	36.00000
45.0	.2705	220.55	281.00	57.14	.000	.013	-107.8618	=1.5532	=7.8357	30.00000
40.0	.2274	230,30	591.00	55.06	.000	.049	-93,963 0	≠1,3531	#7.8358	30.00000
51.0	.2248	250,59	281.00	41,97	.000	.172	-58,3018	• • 8 3 9 5	=7.2358	36.00000
5 4 . a	.1590	251.97	261.00	29.76	200.	,487	=15.1284	+.2178	-7.8358	36.00000
57.0	.1272	252.40	241.00	7.72	.015	.868	+1,4973	+,0216	-7.8359	30.00000
60.0	.0024	390.55	261.00	.76	1 52	.989	a.2627	•.003e	-7.8361	\$0,0000 .
95.0	.0007	1059.07	281.00	e 1 3	.876	1.000	- 2304	• • 0 0 5 3	•7.0363	36.00000
nh . D	.0005	1172.49	291.00	.12	.998	1.000	-,2301	.0035	#7°522	36.00000
69+1)	.0003	1174.02	241.00	•12	1.000	1.000	-,2301	• • 0033	-7.8364	30.00000
72.0	2000	1174.03	201.00	+12	1.000	1.000	#.2301	•.0033	-7.8364	56,0000u

G--90

1

ï

1.189.44 1997 - 199

1

CHANNEL (CASE	I ESULTS	ISUTHERMAL	U-TUHE MANOR	ETER DEMONS				DATE 04/2	2/76 0 T	IME 12.09
TÍME #	.34864 \$EC	UNDS PHE	\$90AE # 50	.0 PSIA	DATA	FOR CHANN	EL ?			
DISTANCE	DEL TA .P	ENTHALPY	TEMPERATURE	GENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELOCITY	ANEA
(1.4.)	(PST)	(870768) '	(0EG+F)	(L8/CU+FT)	QUALTY	FRACTION	(L8/9EC)	(ML8/HR+F12)	(FI/SEC)	(S4=1N)
0.0	1,6990	1174.00	231.00	.:2	1,000	1,000	0,0000	0,0000	0,0000	36,00000
5.9	1.5985	220,20	281,00	57.89	,000	.000	69.4514	1.0001	4.7968	30.00000
6.0	1.0157	250.20	261.00	57.89	.000	.000	113.2824	1.6313	7.8274	36.00000
. 7.0	.5033	250.20	291.00	57.89	.000	.000	113.2754	1.6312	7.8269	36.0000.01
12.0	.3850	250.20	281.00	57.68	.000	.000	113.2528	1,6308	7.0205	30.00000
15.0	.2620	- 250,22	281.00	57.37	0.00	.009	112.2579	1.6165	7.8263	36.00000
10.0	.1308	250.51	591.00	49.65	.000	.143	97.1507	1,3990	7.2261	36,00000
51.9	0491	252.10	281.00	27.31	.002	.529	53,4279	7694	7,8259	30.00000
51.0	3964	259,17	281.00	10.62	.010	.829	19,6028	,2823	7,8255	30.00000
22.0	-,0319	278.14	231.00	3.65	.030	,939	7.1527	.1027	7.2240	30.00000
50.9	.0094	330.01	281.00	1.32	.087	979	2,5830	.0372	7.8231	36.00000
33.0	• 0013	478.02	261.00	.47	247	994	,9221	0133	7.6180	30.00000
36.0	.0017	766.92	281.00	15.	\$559	998	4093	.0059	7.8098	30.00000
\$9.0	.0026	1018.30	291.00	.14	831	1.000	2752	.01)40	7.7971	36.00000
42.0	.00.27	1128.85	281.00	.12	951	1.000	,2403	.0035	7.7036	36.000000
45.0	.0025	86.5611	281.00	12	987	1.000	2311	.0031	7.7708	36.00000
40.0	\$500	1171.01	241.00	.12	997	1.000	2285	.0033	7.7590	36.00000
51.0	.0020	1171.29	201,00	,12	,999	1.000	.2277	.0033	7.7485	50.00000
54.0	.001.8	1173.45	591.00	.12	1.000	1.000	2273	.0033	7.7395	00000,01
57.0	.0015	1173.99	281.00	.12	1.000	1.000	.2210	.0033	7.7319	30,00000
50.0	.0013	1174.03	281.00	.12	1.000	1.000	.2268	.0035	7.7258	36.00000
35.0	.0010	1174.04	281.00	,12	1,000	1.000	,2267	.0033	7:7212	16.00000
60.0)	● 0.0 0 B	1174.94	281.00	.12	1.000	1.000	,2266	.0033	7.7181	30.00000
09.0	0005	1174.04	281.00	.12	1.000	1.000	.2265	.0035	7.7166	35.00000
72.0	1000T	1174 04	281 00	1 2	1.000	1 000	2265	. 0.633	7.7166	10 06000

1 44.00.51 JHLT 0 67122/40 JIAG

DIVERSION CROSSFLOW HETMER ADJACENT CHANNELS, W(1,J), (LB/SEC+FT).

CASE

ISDINERMAL U-TUBE MARCHETER DEMONSTRATION

TIPE 4 .30464 SECONDS -

AXIAL ZONE n(1, 2) 277,04172 9.0 4 3.0 3,0 -175, 15542 6.0 6.0 . 0.00000 9.0. 9.0 -0.00000 12.0 0,00000 12.0 -15.0 15.0 -18.0 0,00000 18.9 - 21.0 0.00000 0.00000 21.0 - 24.0 6.75 . 0.45 0.00000 0.00000 27.0 = 50.0 10.0 - 35.0 0,00000 33.0 - 36.0 0.00000 30.0 -0.00000 19.0 0,00000 19.0 - 42.0 0.00000 42.9 - 45.0 0.00000 45.0 . 48.0 0,00000 44.0 - 51.0 51.0 - 54.0 0.00000 0,00000 54.0 - 57.0 57.9 - 60.0 0,00000 0,00000 60.0 . 63.0 63.) + 60.0 0.00000 0.00000 06.0 - 69.0 0.00000 69.0 - 72.0

TTERATIONS = 44

G-92

ŧ

DATA FROM EXPLICIT SCLUTION

.

	ND.	TIME	COURANT	VEL		PLNENTS	TETAL	VOLUME
1	RUS	STEP	NUMBER	U/DX	V/DY	(U/CX+V/DY)	TIME	ERROR
	33	.00438	.201	45.80	19,29	45,0039	,3530	.0005
344	17 AUE 44	.00437	•201 •201	45.83	19.38	45,9887	. 3574	.0005
SUF	53470	LEVEL 51 .00434	.425 20.	46,12	19.46	40,3182	.3618	.0005
90-	IFACE 33	LEVEL 51		,985 46,97	19.54	46.9739	.3661	.0005
90#	FACE JUB	LEVEL 50	595 21. 201	398 45.76	19.62	40.7635	. 3704	.0005
91.i	FACE	LEVEL 50	184 21.	809	10 4 3		7747	0005
รมห	FACE	LEVEL 49	.773 22.	219	17,00			.0003
SUR	FACE	1875L 44	-361 22.	40+91 531	19,75	46.9145	.3740	.0005
3114	43 F4CE	.00427 LEVEL 48	,200 ,950 23,	46,81 042	19,60	46.8144	.3833	.0005
הנוצ	⊔3 F∆CE	.00427 LEVEL 48	.200	48.83 453	19,86	46.8323	.3875	.0005
5.14	43 F309	.00427	.125 23.	- 47,95 855	19.91	46.9575	.3918	,0005
9110	43	,00424	,203	47,53	19,95	47.5306	,3961	,0005
3.74	5 A U E 4 5	*09455	•/12, 24+	47.65	19,99	47.6451	.4003	,0005
504	54CE 42	*00855 FEAFE 41	• 205 • 500 • 205 • 507 •	47 . 38	20.03	47.3809	.4045	.0005
9V8	FACE 42	LEVEL 46	•893 25• •200	096 47.46	20.06	47.4569	. 4088	0005
રીત્રો મ	FACE 45	1.EVEL 40	.484 25. .199	505 47.31	20.08	47.3050	.4130	.0005
S∿≺	FACÉ 13	LEVEL 46	.074 25,	914	20.11	47.2877	. 4172	.0005
9U+	FACE	LEVEL 45	.664 20.	324		47 2055	4340	0005
ราห	FACE	LEVEL 45	.253 26.	734	2413			.0003
304	FACE	LEVEL 44	+292 +842 27.	145	20.14	47.6320	.4257	.0005
3២៩	42 Face	.00419 LEVEL 44	,202. 432 27.	48.04 554	20.15	48.G375	.4299	.0005
3ย4	42 FACE	.00419 LEVEL 44	.200 .025 27.	47.67 901	20,16	47.6708	.4341	.0005
<u>an</u> e	42 FJCF	+00420 LEVEL 43	,199 -618 28.	47.53	20.16	47.5251	.4382	.0005
Suk	41 5405	.00421	199 199	47,35	20.16	47.3508	.4424	.0005
eus.	, 400 43	•00455	,199 ,199	47,24	20,15	47.2372	.4467	.0005
3.14	22	.00423	• 199 • 199	47,12	20.14	47.1201	.4509	.0005
SON.	95 205	.00423	*344 54* *344 54*	47.32	20,13	47.3198	.4551	.0005
SURI	42 42	LEVEL 41 .09421	,984 30, ,202	000 47.76	20,11	47.7579	.4593	.0005
3114	- 30£ 41	LEVEL 41. .00421	.576 30. .200	40ê 47.52	20.09	47,5177	.4636	.0005
Silei	FACE	LEVEL 41	.170 30.	513 47,14	20.07	47.1705	. 4679	0005
Sum	ACE	LEVEL 40.	.705 31.	218				10003
	4) 	.00424	•199	47:03	20.04	47.0286	.4720	• 7 0 0 5
9 110	41 5 4 5 5	16/61 10 +00456	199	45.8U	50.01	40.4055	.4762	.0005

1

CHANNEL CADE	RESULTS 1	ISOTHERMAL	U-TUBE MANOM	ETER DEPONS	TRATION			DATE 04/	22/76 0 TIME	12,09,44
TIME =	.47623 SEC	UNDS PRE	SSURE = 50	.U PSIA	DAŢA	FOR CHANN	NEL 1			
OISTANCE	DELTA=P	ENTHALPY	TENPERATURE	DENSITY	EGUIL.	void	FLOW	MASS FLUX	VELCCITY	AKEA
(14.)	(PST)	(BTU/LB) -	(OEG=E)	(LH/CU+FT)	QUALITY	FRACTION	(LB/SEC)	(HLUJHH=FT2)	(FT/SEC) (SG=IN)
0.0	2,2593	250,20	281.00	57.89	0.000	0,000	0.0000	0.000	U.000U 56.	,00000
5.0	2.0021	250,20	281.00	57,89	.000	2000	•72.3972	•1.0425		,00000
0 , 0	1,4960	-50,20	281.00	57.89	.000	.000	-115,5612	=1,6641	•7.9848 50.	,00000
9.0	1,2333	120,20	201.00	57.89	.000	.000	+115.5661	=1.6642	=7,9852 36.	,00000
15.0	1.1201	250,20	281,00	57,89	.000	.000	+115,5702	=1,6642	-7,9855 .36,	, 60066
15.0	1.0068	250_20	581.00	57.89	.000	.000	=115,5722	=1,6642	-7.9858 30.	, 6 0 0 0 0
16.0	,3436	250.20	281.00	57,89	.000	.000	=115,5685	=1.6642	-7.9860 36.	, 6 6 9 6 6
21.1	•7e04	250,20	291.00	57.89	.000	.000	=115_5 447	-1.6638	. 7.9862 30.	,00000
51.0	. 5674	250,20	251,00	57,87	.000	.000	-115,4473	-1.6624	=7.9864 36.	,00000
27.0	5552	250.20	281.00	57.82	.000	.001	=115.0784	=1.6571	=7.9065 36.	, U Ü U Ü Ü
50.0	.4461	250.21	591.00	57.64	.000	.004	=113.7118	=1,6375	•7.9866 55.	,60000
55.0	.3473	250,23	281.00	56.95	.000	.016	=108,7996	=1.5067		,00000
50+0	.2792	250.32	281.00	54.49	.000	.059	-92,7855	-1.3361		,0000
59.9	2546	250.56	281.00	46.47	.000	.198	•54,7255	- 7880	. =7.9867 36.	, 0 0 0 0 0
42.0	.1590	252,29	251.00	27.41	002	.528	-15,3635	-,1924	•7.9667 30.	,60000
45.0	.0270	264.57	281.00	6.69	.016	.886	-1,3718	· 019d	=7.9600 50.	,
46.0	.0037	406.55	291.00	. 69	.169	.990	■,2687	≈ .0039 ′	=7.9860 .36,	,06060
51.0	.0019	1056,21	281.00	.13	.872	1.000	-,2351	≈ .0034	-7.9854 36.	, 0 0 0 0 0
54.0	.0016	1171-27	591.00	.12	,997	1.000	- 2344	 0134	-7.9848 30.	, 0 6 0 0 0
57.0	20014	1173,98	581.00	.12	1.000	1.000	+.2344	0034	-7.9843 36.	,00000
60.0	.2011	1174.03	281.00	.12	1.000	1.000	•.2344	0034	-7.9834 50	00000
65.0	. 3009	1174.03	281.60	.12	1.000	1.000	-,2344	. 0034	-7.9830 36.	00000
55.0	.0007	1174.03	281.00	.12	1.000	1.000	- 2344	■ 00 \$4	-7,9834 36,	, 6 0 0 6 0
69.0	.1005	1174.03	241.00	-12	1.000	1.000	•.2344	- .0u34	#7.9833 Sn.	, (+) () (+) (+)
72.0	S002	1174.03	.281.00	.12	1.000	1.000	2344	0034	-7.9833 36.	. 00000

G-94

÷

Ł

CHANNEL CASE	RESULTS 1	ISOTHERMAL	U-TUBE MANDA	ETER DEMONS	TRATION			DATE 04/2	2/76 0 TIME 12.09
TIME =	47623 SEC	UNDS PRE	SSURE = 50	.0 PSIA	DATA	FOR CHANN	EL 2		
DISTANCE	DELTAN	ENTHALPY	1EMPERATURE	DENSITY	EGUIL.	VEID	FLOW	MASS FLUX	VELOCITY AREA
(1%,)	(189)	(414768)	(DEG+F)	(L8/CU=F1)	QUALITY	FRACTION	(LB/SEC)	(ML8/HK+F12)	(FT/SEC) (SQ-IN)
Ú .0	1.8737	1174.00	281.00	.12	1,000	i.000	0000.0	0.0000	0.0000 36.00000
3.0	1,7731	. 250.20	281.00	57.89	.000	.000	72,3805	1.0423	5.0012 30.0000
6.0	1.1782	290.20	281.00	57,89	_000 i	.000	115,5279	1.6636	7,4825 36,00000
?.)	+6981	250.20	201.00	57.89	.000	.000	115.5188	1,6035	7,9819 36,00000
12.0	.6104	250.20	281 . U0	57.89	.000	.000	115,5097	1.6653	7.9813 36.00000
15.0	.5227	250,20	261.00	57,89	.000	.000	115,5010	1.6632	7,9807 36,00000
18.0	.4350	250,20	261.00	57.89	.000	.000	115.4931	1.6031	7.9801 36,00000
21.0	.3472	250.20	281.00	57.89	.000	.000	115,4858	1.6630	7.4796 30.00000
24.0	2505	250,20	281,00	57.88	.000	.000	115,4573	1.6626	7.9793 30.00000
27.0	.1719	221022	251.00	57.43	.000	.008	114,5548	1.6490	7.9790 36.00000
\$9.9	.0758	250.46	261.00	50.84	.000	.122	101.4130	1.4603	7,9788 36,00000
- 53)	0767	251.97	281,00	29,81	\$00 .	.486	59,4579	.6562	7.9785 36,00000
30.0	-,1209	250.03	281.00	11.20	.008	.808	22,3360	,3216	7.9782 36.00000
19.0	-,0454	275.18	261.00	4.05	.027	,932	8.0718	.1162	7,9775 30,0000U
45.0	0156	322.02	261.00	1.46	.078	.977	2,9174	.0420	7.9758 36.00000
45.0	- 0046	455.82	251.00	.52	223	.993	1.0441	.0150	7.9715 30.00000
18.0	- 0005	728.54	261.00	.23	518	,998	.4505	.0065	7.9623 36.00000
51.0	.0008	990.13	261.00	.15	.801	999	2912	.0042	7.9494 36.00000
54)	. 2011	1116.54	201.00	.13	938	1.000	2484	.0036	7.9359 36.00000
57.0	.0010	1157.97	251.00	.12	2 983	1.000	2367	.0634	7.9236 36.00000
30.1)	0009	1169.70	201.00	.12	995	1.000	2334	.0034	7.5134 36.00000
63.0	.0007	1172.88	281.00	.12	999	1.000	.2324	.0053	7.9055 36.00000
36.0	.0905	1173.73	281.00	.12	1.000	1.000	2320	.0033	7.9002 30.00000
29.0	.0004	1173.96	281.00	.12	1.000	1.000	2319	.0033	7.8970 36.00000
12.0	.0002	1174.02	261.00	.12	1.000	1.000	.2319	.0033	7.8976 36.00000

DIVERSION CROBSFLOW BETWEEN ADJACENT DHANNELS, W(I,J), (LB/SEC+FT), DATE 04/22/76 0 TIME 12.09.44 1 CASE 1 ISOTHERHAL UNTUBE MANDMETER DEMONSTRATION

TIME a	.4762	3 3EC	0108	3	
AXIAL	ZONE	w [1,	5)	
0.0 -	3.0	289.	5551	15	
.5 . V 🛥	6.0	112.	6249	6	
6.) -	9.0	Ο.	0001	0	
9.ŭ -	12.0	6.	000C	0	
12.0 -	15.0	υ.	0000	0.0	
15,0 -	18.0	0.	0000	0	
10.0 -	21.0	0 .	0000	• Û	
51.0 -	24,0	0.	Ü O O O	0	
24,0 -	27.0	- 0 . -	0000	0	
27,) •	30.0	Ü,	vüüQ	i Q	
30∎ŭ -	35.0	Ŭ,	ũ ũ ũ O O	Ŭ.	
33.9 -	36.0	0.	0000	0	
30.0 +	39.0	ົ່ງ	0000	ů,	
59.0 -	42.0	0 🔒) ü D Ü	0	
45.) •	45.0		0000	0	
45.0 -	48.0	0 . •	0000	0	
위투 () =	51.0	Ŭ,	0000	Ŭ.	
51.0 -	54.0	() • · ·	0000	0	
54.0 -	57.+0	0 • (0000	Ŭ	
57.) •	60.0	•	0000	Ú.	
o),0 ∙	h3.0	0.	0000	0	
55.0 -	66.0	0.	ũ Ó Ú Ú	0	
စင်း ပြေး 🖷	69.0	0.	0000	0	
57.0 -	72.0	0.	0000	0	

ITERATIONS # 41

G-96

.

DATA FROM EXPLICIT SCLUTION

NŪ.	TIME	COURANT	VEL	OCITY COM	CNENTS	PCTAL	VOLUME
TRIES	STEP	NUMBER	UZOX	V/DY	(U/CX+V/CY).	TIME	ERROR
ai aussics	.00427	.198	45.52	19.97	40.6238	.4805	.0005
3988408 41	.00455 00455	+248 32+	430.45.	19,73	40.0164	.4848	.0005
SUAFACE 10	LEVEL 39	+138 32+ 105+	84 5 47,00	19.89	47.0046	. 4890	.0005
SURFACE	LEVEL 38	•731 33 •	250	10 94			0005
SURFACE	LEVEL 3A	.326 33.	654	17804		14433	.0003
40 Surface	.00428 LEVEL 37	198ء 198ء 198ء	46.48 057	19,79	46.4782	.4976	0005
39 SURFACE	+00430 LEVEL 37	,198 ,519 - 14,	46.25	19.74	46.2500	.5019	.0005
39	00433	198	45,95	19.68	45,9601	,5062	.0005
3987-00	.00435	•113 34• •198	45,72	19.62	45.7180	,5105	.0005
20RFACE 39	LEVEL 35	•710 35•. •195	258 45.52	19.56	45.5151	.5148	.0005
S-J=F4CE 38	LEVEL 36	.201	45.86	19.49	45.8587	5192	.0005
SURFACE	LEVEL 35	.899 36.	079	10 40	45 0719	E 7 7 4	000E
SURFACE	LEVEL 35.	495 36,4	485	17.42	13.4110	13530	.0003
SURFACE	.00438 LEVEL 35,	•198 ∎094 36∎8	45.41 883	19.34	45.4076	•5279	0005
37 Surface	.00442 LEVEL . 34.	.197 .693 37.2	цц , ФЦ 284	19.26	44.9365	.5323	,0005
31 SULFACE	.00444 IEVEL 34	198 291 77	44.81	19,18	44,8085	.5307	.0005
37	.00447	197	44.42	19.10	44.4204	.5412	.0005
SUMPALE 36	.00450	197 • 197	44.11	19,01	44.1132	.5456	.0005
BURPACE 35	LÉVEL 33, .00/451	485 38.0 200	44.35	18.91	44.3184	.5501	.0005
SURFACE 15	LEVEL 33,	.081 38. <i>i</i>	394 44-04	18.89	44.0018	.5547	0005
SURFACE	LEVEL 32	.679 . 39.2	95				
SURFACE	LEVEL 32.	281 39.6	4 3 .44	19.72	43.9408	.5591	0005
34 Surfice	.00457 LEVEL 31.	•196 •882 40•(43.36)91	18.61	43.3599	.5637	.0005
54 Surface	+00461 LEVEL 31-	.195 482 40.4	42,48	18.51	42.9850	.5682	.0004
33	*00964 *00964	.197	45.91	18.39	42.0064	.5728	.0005
.55	•00448	198 - 198	42.34	18,28	42.5415	.5775	.0005
SURFACE	LEVEL 30.	.681 41.2 	42.34	18,16	42.3436	.5822	.0004
3068408 32	LEVEL 30.	280 41+6	42,59	18.03	42.5913	.5869	.0004
SURFACE	LEVEL 29.	350 42.0	91				
SURFACE	LEVEL 29.	483 48.4	87	1/971	46.0404	01 4 6	.0005
31 Surface	,00479 Level 29,	195 038 42.8	41.37 185	17.78	41.3681	.5963	.0004
SUBEACE.	•00484 LEVEL 28-	,195 A91 51 3	40.80	17.64	40.8014	.6011	.0005
30	.03489	•196	40.43	17.50	40.4275	.6059	.0004
81106 106 1 50	00493	197	40,19	17.36	40.1861	.6108	.0004

CHANNEL CASE	RESULTS 1 I	ISUTHERNAL	U-TUBE MANOM	ETEN DEMONS	TRATION			DATE 04/2	2776 Q T	IME 12.09.53	1
TT-E =	.61081 SECU	NOS PRE	SSURE = 50	.0 PSIA	DATA	FOR CHANNE	EL 1				
DISTANCE	DELTAP	ENTHALPY	TEMPERATURE	CENSITY	EGUIL.	VC10	FLOW	MASS FLUX	VELCUITY	AHEA	
(14*)	(FSI)	(BTU/L3)	(DEG=F)	(L8/C0=FT)	QUALITY	FRACTION	(LB/SEC)	(MCR/HK+L15)	(FI/SEC)	(SG=IN)	
0 • 6	1.5500	250.20	281.00	57.89	0.000	0,000	0,0000	0.0000	0.000	30.0000	
5.0	1,6100	52) 50	291.00	57.89	.000	• 0 0 0	-62,8039	4044	-4.3596	36.00000	
5.3	1.1930	250.20	251.00	57,89	•000	• 0 0 0	-98,3128	#1,4157	=0.7934	36,00000	
9.0	.9466	520.50	581.00	57,89	.000	.000	- 98,2986	•1.4155	=6,7935	30.00000	
15.0	• R064	250.20	281.00	57.88	.000	.000	+98,23B2	-1.4146	•6.7936	36. 00000	
15.0	• 6668	250.20	591*00	57.84	.000	.001	•97,9953	+1.4111	=6.7917	50.00000	
18.0	.5295	50.51	591*00	57,70	.000	.003	- 47.0137	-1,3970	=0.7937	30.00000	
51.0	. 4006	250,23	541.00	57,12	.000	.013	•93,1821	-1.3418	=6,7938	36.00000	
24.0	.2990	250,30	501.00	54.86	.000	.052	•79,5536	= 1,1456	•6.7938	\$6.00000	
51.0	.2419	250.64	581 00	46.84	.000	.191	-45,1671	•.6504	=6.7938	30.00000	
\$0.Q	.1323	252,41	281.00	26,59	.002	•542	-9,3431	• . 1 3 4 5	=6 <u>,743</u> 8	36,00000	
\$5.0 .	. 6213	263.08	281.00	5,50	.019	,907	-,9618	•.0130	• 0 . 7935	30.00000	
\$6.0	.0647	140.29	281.00	.57	.206	.992	-,2152	0031	-0.7455	3n ,00000	
37.0	.0934	1105.93	281.60	.13	.959	1.000	1976	0029	-6.7409	30,0000,05	
42.0	.0031	1172.92	241.00	.12	,999	1.000	-,1993	≈ •0059	-6.7096	30.00000	
45.0	6560 €	1174,01	281.00	•12	1.000	1.000	` = ,1993	0029	-6.7884	30.00000	
48.0	• 6 0 5 4	1174.03	281.00	•12	1.000	1.000	- 1993	0050	-6.7875	30.00000	
51.0	.4023	1174.03	281.00	.12	1.000	1.000	-,1992	••0059	=6 <u>.</u> 7853	Sh.00000	
54.0	.0020	1174.03	281.00	▲1 م	1.000	1.000	-,1992	0029	•0.7¢55	36.00000	
57.0	.0017	1174.03	281.00	.12	1.000	1.000	1992	•.0029	•6.7848	36.0000C	
n0.0	.0014	1174.03	SH1.00	.12	1,000	1.000	-1495	•:0029	=6.7642	36.00000	
53.0	.0011	1174.03	281.00	.12	1.000	1.000	-,1992	0029	=0.7837	56.00000	
	. (1009	1174.03	281.00	.12	1.000	1.000	-,1992	` ≈ ,0029	-6.7855	\$0.00000	
09.0	.0006	1174.03	281:00	.18	1.000	1.000	1992	0029	-0.7835	36.00000	
15.0	.0003	1174.03	281,00	,12	1.000	1,000	=,1972	-0029	-6.7853	36.00000	

∮.'
· · ·

t:

1

CHANNEL I Cabe	RESULTS 1	ISUTHERMAL	SUTHERMAL U-TUBE MANOMETER DEMONSTRATION						UATE 04/22/76 0 TIME 12.		
TIME =	.61081 SFC	ONDS PRE	.SSURE = 50	0.0 PSIA	DATA	FUR CHANNE	L 2			•	
DISTANCE	DEL TA=P	ENTHALPY	TEMPERATURE	CENSITY	EGUIL.	VGID	FLOW	MASS FLUX	VELCCITY	AREA	
(IN.)	(281)	(810/69)	(DEG=F)	(LU/CU+FT)	QUALITY	FHACTION	(LB/SEC)	(ML8/86#F12)	(FT/SEC)	(SA=IN)	
0.0	1.5954	1174.50	281.00	.12	1.000	1.000	0.0000	0.0000	0.0000	36.00000	
5.0	1.4949	250,20	281.00	57.89	.000	.000	62,8041	.9044	4,3395	36.00000	
6,0	1.0429	250,20	281.00	57.89	.000	.000	98,3150	1.4157	6,7932	36,00000	
9.0	.7021	250.20	281.00	57.89	.000	.000	98,3121	1,4157	6.7910	50.00000	
12.0	.6414	250.20	281.00	57.89	.000	.000	98,3070	1,4156	6.7926	36.00000	
15.0	.5807	250.20	281.00	57.89	.000	.000	98,2994	1,4155	6.7921	30.00000	
18.0	.5199	250,20	201,00	57,89	.000	.000	98,2894	1.4154	6.7914	36 ,00000 .	
21.0	.4592	250.20	281.00	57.89	.000	.000	98.2772	1.4152	0.7900	30.00000	
24,0	.3985	250,20	281.60	57,89	∎ 000	.000	98,2636	1.4150	6.7896	50.00000	
27.0	.3378	250,20	281.00	57.89	.000	.000	98.2494	1.4148	6.7886	\$6.0000C	
\$0.0	.2772	250,20	281.00	57,89	000	.000	98.2354	1.4146	6.7077	30.00000	
35.0	.2166	250,20	201.00	57.89	000	.000	98.2227	1.4144	6.7868	30.0000	
36.0	.1560	250,20	261.00	57.89	000	.000	98.2044	1.4141	6.7861	36.60000	
59.0	.0950	259.21	281.00	57.62	.000	.005	97.7486	1.4076	6.7856	\$6.00000	
42.0	0321	250,42	-201.00	51,91	.000	.103	88.0608	1.2681	6.7852	\$6.00000	
45.0	.0755	251.95	261.00	29,97	002	.483	50,8407	7321	6.7848	30.00000	
4A.0	- 1064	259.32	201.60	10.86	009	814	18.4468	.2656	6.7842	30.00000	
51.0	0369	276.08	281.00	3.92	.028	.934	6.6402	0956	6.7031	36.00000	
54.0	0127	325.65	281.00	1.41	.082	978	2,3833	0343	6.7809	30.00000	
57.0	= 00/1	455,24	261.60	.50	.233	.993	.8490	.0122	6.7761	36.00000	
50.0	-,0011	761.89	281.00	,21	.554	998	3581	.0052	6.7070	\$n;00000	
53.0	0001	1021.29	281.00	.14	.835	1.000	.2376	.0034	6.7567	16.00000	
on.0	.0003	1130.97	281.00	.12	953	1.000	.2078	.0030	6.7488	10,0000	
59.0	.0002	1163.15	281.00	.12	.988	1.000	2004	.0029	0.7440	3 6.00000	
12.0	.0001	1171.96	-81.00	12	.997	1.000	1985	.0029	6.7448	36,00000	

DIVERSION CROSSFLUA BETHEEN AUJACENT CHANNELS, W(1,J), (LB/SEC+FT), DATE 04/22/76 0 TIME 12.09.55 1

- CASE
- 1 ISOTHERMAL U+TUBE MANDMETER DEMONSTRATION

TIME = .61081 SECUNDS

· AXIAL	ZUNE	¥(1, 2)	
Ú., C 🖛	3.0	251.21662	
3.0 •	6,0	142.04723	
6.0 -	9.0	0,0000	
9 i) =	12.0	0.0000	
12.0 -	15.0	0.0000	
15.0 -	18.0	0.0000	
18.0 .	21.0	0.30000	
21.0 -	24.0	0.10000	·
24.0 -	27.0	0,0000	
27.0 -	\$0.0	0.00000	
30.0 -	53.0	0,40000	
15.0 -	30.0	0.000.0	
16.0 -	39.ŭ	0.00000	
59.0 -	42.0	0.0000	
42.0	45.0	0,000,0	
45.0 -	48.0	0.0000	
44.0 -	51.0	0.00000	
51.0 -	50.0	0.000.00	
54,0 -	57.0	0,000,0	
57.0 -	60.0	0,00000	
90.9 ·	63.0	0.00000	· _
63,0 -	ć6.ŭ	0,00000	
00.0 -	69.0	0,00000	
99.) =	12.0	0,00000	

LIERATIONS # 29

ł

CATA FROM EXPLICIT SCLUTION

NU . TPILS	TIME ST <u>e</u> p	CUURANT	VEL UZDX	CITY COMPI V/DY	CNENTS (U/CX+V/DY)	TCTAL TIME	VOLUMË Errur
85	.00497	.197	39.89	17.21	39,8852	.6157	.0004
20KF3CE	LEVEL 27	•495 44• •199	473	17.05	40,0921	.0207	.0004
30RF 4CE 27	LEVEL 27	,198 , 198	870 39.67	15.90	39.6742	.6257	.0004
91774CE 27	LEVEL 25	+703 45+ +195	264 38,90	15.74	38,8993	.6307	.0004
5044705 3044705	LEVEL 26	•311 45• •194	656 38+20	19.58	38,2012	.6358	.0004
SURFACE 25	LEVEL 25 .00523	46. 194	048 37.57	16.41	37.5664	.6409	.0004
8112F4CE 23	LEVEL 25 .00530	46. 195	443 \$7.21	16.23	37.2076	,6462	.0004
SURFACE 25	LEVEL 25 .00536	•127 46• •196	638 36,88	15,05	36,8775	.6515	.0004
SURFACE 24	LEVEL 24 .00538	•730 47. •199	234 37.03	15.84	37.0262	.6568	.0004
BURFACE 23	LEVEL 24 .00541	•335 47• •198	629 36,75	15.67	36,7457	.6622	.0004
BURHACE. 23	LEVEL 23	.943 48, .194	020 35.87	15.48	35.8715	.6676	.0004
39484 <u>68</u> 22	LEVEL 23	•554 48•	408	15.28	35.0678	.6731	.0004
9076770 22	LEVEL 23	•165 48, •193	796 .	15.07	34.4175	.6787	.0004
SURFACE	LEVEL 22	.193	185	14.86	13.7926		.0004
SURFACE	LEVEL 22	• 384 49•	576	14.64	74,1958	.6902	.0004
SURFACE	LEVEL 21	.992 49. .197	967 33.20	14.41	.11 2581	.6961	
SURFACE	LEVEL 21	+600 50+	358	14.14	11 1786	. 7021	0004
SURFACE	LEVEL 21	.212 50.	746	-13 0/	13 1713	7081	
SURFACE	LEVEL 20	.828 51.	128	13,74	JE,1/16		
SURFACE	TEAET 50	•191	509	13.70	31.2308	•/142	.0004
SURFACE	*90949 *90949	•190 •063 51•	30,46	13.45	.30,4657	,7205	.0004
17 Surface	+00656 LEVEL 19	190 181 - 190	29.71 . 275	13.19	29.7132	. 7269	.0004
17 34RF4CE	.00573 LEVEL 19	,190 ,294 52,0	23,98 659	12,91	28,9624	,7334	.0004
17 Surface	.00687 LEVEL 18	.192 .910 53.1	2 ⁴ .50	12.63	28.5039	.7402	.0003
LO SUPFALE	.00896 LEVEL 18	195 527 53.1	29,39 423	12.34	28,3862	.7470	.0004
15 3089305	.00710 LEVEL 18	+192 •151 53+1	27 . 97 744	12.05	27.5703	.7540	.0004
15 SURFACE	.00732 LEVEL 17	.188	20,40 171	11,74	28.4773	.7±11	.0003
15 SUHFACE	.00757 LEVEL 17	.187	25,50	11.43	25.5017	,7684	.0003
SUPFICE	.00784 LEVEL 17	.186	24.61	11.10	24,6141	.7760	.0003
	-00813	186	25.69	10.75	23.6A80	,7838	.0004
14 3054405	.00845 LEVEL 15	185 •294 55•1	22,74	10.39	22,7358	,7920	.0003

.•1

CHANNEL CASE	не 1	SULTS	ТЯОТНЕННАЦ	U=1URE MANDH	IETER DEPONS	TRATION			DATE 04/2	22/76 0 1	INE 12.10.0	11 1
11~E =		79195 SEC	CAUS PRE	ESSURE = 50	.Ú PSIA	DATA	FOR CHANN	EL 1			,	
OISTANC	E	DELTARP	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VOID	FLÛW	MASS FLUX	VELCCITY	ANLA	
(T% ₊)		(FST)	(BTU/LB)	(DEG=F)	(LE/CU=FT)	GUALITY	FRACTION	(L8/883)	{MLX/HR#FTZ)	(FT/SEC)	(S6+IN) -	
ن • ک		1.0224	220.50	281.00	57.89	0,000	. 0,000	0.00000	0.0000	0.0000	30.0 0000	
3. Ū	:	.0768	250.20	281.00	57.89	.000	000	=37,5655	•,5404	•2.5973	36.00006	
6.0		.6451	250.20	231.00	57.85	.000	.001	•54,5957	7862	= 5,7071	36.00000	
9.0	·	. 4559	250.21	241.00	57.67	.000	.004	-=53,5775	=,7715	= 5,7869	30.00000	
12.0		.3045	250.24	201,00	56,59	.00Ŭ	.022	-48.0942	.	•3,7868	36.00000	
15.0	• *	•1944	250.46	281.00	50,80	.000	123	-27,3237	*.3 935	- 5,7868	36.00000	
100.0		.0775	252.09	201.00	28.86	.002	,502	•4.5347	•.0624	-3.7066	36.00000	
21.0	•	.0152	272.06	591.00	4,58	.024	1923	- 4487	.0065	-3,7853	36.00000	
5+*0		.0061	477.59	201,00	.47	.246	.994	1:19	0016	#3,7804	36.00000	
27.0		.0052	1160.07	231.00	.12	992	1.000	- 1:09	₩. 0016	-5.7762	35.000000	
\$0.0		.0049	1174.02	591.00	.12	1.000	1.000	= 1 1 0 B	►.0016	=3. 7726	36.00000	
55.0	:	.0046	1174.03	591.00	.12	1.000	1.000	1:07	•.0016	-3.7702	36.00000	
35.0		.0042	1174,03	241.00	,12	1.000	1.000	-,1:0b	CU16	• 5.7683	30.00000	
39.0		0039	1174.03	281,00	.12	1.000	1.000	1:06	+.0016	=3,7071	36.00000	
42.0		.0035	1174.03	241.00	.12	1.000	1,000	.1:0b	0016	-5.7664	36.00000	
45.0		0033	1174.03	201.00	.12	1.000	1.000	• <u>1:06</u>	0016	- 5.7661	36.00000	
45.9		0029	1174.03	281.00	-12	1.000	1.000	- 1.06	0016	-3.7600	36.00000	
51.0		0020	1174.03	251.00	.12	1.000	1.000	-1:06	■.6018	-3.7062	30.00000	
54.0		0023	174.03	281.00	-12	1.000	1.000	-,1:0b .	· . Uú16	-3.7665	56.00000	
57.0		0020	1174.03	281.00	12	1.000	1.000	• . 1 . UIG	■.0ú16	-3.76e8	30,00000	
60.0		.0015	1174.03	281.00	12	: 600	1.000	≂,1:0⇔	+.0016	-5.7671	30,00000	
65.0		.0013	1174.63	241.00	. 12	1.000	1.000	•.1104	. 0016	-5.7674	30.00000	
96.U		.0010	1174.03	201.00	.12	1.000	1.000	-1106	0016	-3.7075	56,00000	
69.0		.0007	1174.03	281.(0	.12	1.000	1.000	-11045	# .0016	-3.7676	36.00000	
72.0		.0003	1174.03	251.00	.12	1.000	1.000	-1100	0016	-3.7676	36.00000	

.

1

.

CHANNEL !	RESULTS									
CASE	1 1	ISOTHERMAL	U=108E MANOM	ETER DEMONS	TRATION	•		DATE 04/2	2/70 0 7	IME 12.10.01
TIKE =	.79195 SEC	INDS PRE	99U4E = 50	,0 PSIA	G A Ţ.A	FOR CHANNE	LZ			
DISTANCE	OELTA-P	ENTHALPY	TENPERATURE	CENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELCCITY	AHEA
(IS*)	(PST) ·	(810/68)	(DEG≠F)	(LB/CU+FT)	QUALITY	FRACTION	(LB/SEC)	(MLB/HR-FT2)	(FT/SEC)	(SG=IN)
u, ė	1.0196	1174.00	281,00	.12	1,000	1.000	0.000	0.0000	0.000	36.00006
3.0	.9101	250.20	281,00	57,89	000	.000	37,6109	.5416	2.5988	36.00000
n.0	.7207	250.20	S91.00	57,29	.000	.000	54,8478	.7898	3.7899	36.00000
9.0	.5974	250,20	261,60	57.89	.000	.000	54.8598	.7900	3,7907	36.00000
12,0	.5571	250.20	281.00	57,89	.000	.000	54.8706	.7901	3,7915	\$6,00000
15.0	.5168	250.20	291.00	57.89	.000	.000	54.8800	.7903	3,7921	36.00000
18.0	.4764	250.20	261.00	57.89	•000	.000	54.8886	,7904	3,7927	\$6.00000
\$1.0	.4360	250,20	281+60	57.89	.000	.000	54,8971 .	,7905	3.7932	36.00000
54.0	.3957	250.20	591.00	57.89	.000	.000	54.9051	.7906	5,7930	36.00000
21.0	.3553	520.50	281.00	57.89	.000	.000	54,9109	.7407	3.7942	30.00000
39.0	.3149	520.50	201.00	57.89	.000	.000	54,9116	,7907	3.7442	36.00000
\$3.0	.2745	250.20	561.00	57.89	•00u	.000	54.9041	.7906	3.7931	36.00000
30.0	.2342	50,50	281.00	57,89	•000	.000	54.8865	.7904	3.7925	36.00000
39.0	.1939	250,20	591.00	57.89	•000	.000	54.8591	.7900	3.7906	30.0000
15.0	.1537	520,50	281.00	57,89	.000	.000	54.8246	.7895	3,7082	36.00000
45.0	,1135	52.02	201.00	57,89	.000	.000	54,7876	.7889 J	3.7050	36.00000
42.0	.0734	250,20	281.00	57.89	•00U	.000	54.7535	.7685	3.7035	30.00000
51.0	.0332	250.20	541.00	57.85	• N V V	.001	54.6870	.7675	3.7815	56.00000
34.9	-,0019	250.38	591.00	52.79	.000	.088	49,8891	.7184	3.7803	56.00000
57.0	- ,0456	252,72	581.00	24.71	.003	.574	23.3469	. 3905 .	3.7784	\$6,0000
50.0	- .0316	261.15	281.00	8.48	.012	855	8.0034	.1152	3.7768	36.00000
23.0	0112	285,21	251,00	2,95	.038	.951	2,7805	.0400	3.7741	36.00000
00 . 0	=_a0039	353.87	581.00	1.05	.112	.984	.9709	• Ú14V	5.7709	50.00000
59.0	0012	556.80	281.00	° 35	.332	.996	.3319	.0048	3.1070	50.00000
12.0	• • u 0 n 3	961.62	561.00	.15	.770	.999	.1435	.0021	3.7668	\$0.0000

DIVERSION CRUSSFLUR RETREEN ADJACENT CHANNELS, W(1,J), (LE/SEC-FT), DATE 04/22/76 0 TIME 12.10.01 1 CASE 1 ISUTHERMAL U-TUME MANUMETER LEMONSTRATION

TIME = .79195 SECUNDS

A K 🛛 A L	ZUNE	× (.	1,	5)
0.C =	3.0	154	. 386	46
5, J =	5.0	68.	160	71
6,) +	9,0	÷,	000	ÜÜ
9.0 e	12.0	Ű,	, ŭ O v	0.0
15.0 +	15.0	- (t.	000	υQ
15.0 -	18.0	Ú,	, Ü) ()	00
18.0 -	21.0	ü,	000	00
21.0 -	24.0	. ù	000	00
24,0 ≖	27.0	0,	000	00
27.9 -	30.0	Ú,	.000	60
30,0 -	35.0	0,	,000	00
\$3.0 -	35.0	v,	, U Ü Ü	0.0
56.0 -	\$9.0	G .	000	00
59.0 -	42.0	Ű.	000	00
45.9 -	45.0	Û,	νυυ	ÚŪ
45.0 .	48.0	Û,	000	ú O
46.0 -	51.0	. 0.	000	0.0
51.0 -	54,ú	Դ	000	აა
54.0. •	57.0	ů,	úýý	00
57.0 -	60.0	0	,úψ0	ύO
စားပါ 🍨 🔍	63.0	Ú.	ΰψO	0 6
53.0 -	66.0	Û.	ήQU	0 Û
ήή,Ų 🖛	69.0	. Э.,	000	00

0.00000

U TTERATIONS ■ 14

59.0 - 72.0

DATA FROM EXPLICIT SOLUTION

•1- t	V TIME	COURANT	VELU	CITY COM	PENENTS	TETAL	VOLUME
18185	STEP	NUMBER	67 <u>0</u> X	VIDY	(U/CX+V/DY)	TIME	ERROR
14	.00381	.184	21.76	10.01	21,7565	.8004	.0003
	400917	13,920 30, 188	50°03	a' ? 5	20,9158	•8095	៖ ចំព <u>័</u> ពង
SURPACE 13	LEVEL +00955	15+562 56+ +184	20.05	9.21	20.0624	.8184	.0004
SURFACE 12	LEVEL .01008	15.203 56. .179	739 18,74	8.77	18,7410	.8279	.0004
SURF∆CE 14	LEVEL .01065	14.851 57.	091	8.31	17.7155	.8380	.0045
SURFACE	LEVEL	14.504 57.	437	7 81	16 5914	8487	0005
SURFACE	LEVEL	14.165 57.	776		10, 377	8400	0005
2086705 12	LEVEL	15.837 58.	104	7,31	12.2231		.0005
SURFACE	.01321 LEVEL	13,521 58,	13.82	6.76	13.8161	.8721	.0005
17 Sjyfiace	.01456 LEVEL	.153 13.221 58.	12.31	6.16	12,3280	.8853	0005
18 SUHFACE	.01616 LEVËL	12.944 . 58.	10.65 997	5.51	11,0162	.8999	.0005
57 SURFLOF	.01822 LEVEL	155 12-702 59.	8,92 240	4.79	9.5811	.9161	.0005
9.1287.68	.02023	.146	7,01	4.00	7,9924	.9343	. <u>0</u> 0000
2.10	05054	,126	5,10	3.12	6.2499	. 4545	.0007
21	02052	*045 15*409 24*	3.04	2.29	4.5639	.9748	.0005
SURFACE 73	*05056	12.409 59. .111	531 5350	3.19	5.4985	.9950	.0005
SURFACE 47	-02027	12,510 59, 153	419 7.25	4,13	7.5659	1.0153	.0005
SURPACE 100	LEVEL .01987	12.716 59. 208	202 8.97	5.09	10.2669	1.0355	.0005
SURFACE Sg	LEVEL .01752	13.031 58,	885	5,94	12.7584	1.0554	.0005
SUNFACE	LEVEL	13,437 58.	477	. 54	1	1 0100	0005
SURFACE	LEVEL	13:867 58.	12:07	0,30	14./653	1.0/29	.0005
54 Surface	.01357 LEVEL	•250 14•295 57•	14,42 611	7.02	16.3930	1,0882	.0005
93 BURFACE	.01231 LEVEL	•241 14•718 57•	15.98 186	7.36	17.7506	1,1018	0005
55 SURFACE	.01138 LEVEL	.233	17,36	7.62	18.2943	1+1141	.0005
47	.01068	.225	18,40	7.81	19.8752	1,1255	.0005
303F4CE 45	.01014	+221 +221	19.26	7,95	20.7352	1.1362	.0005
BURFACE - 46	.00970	15,954 55. ,218	944 20,13	8.06	21.5047	1,1463	.0005
9UREACE 49	LEVEL 1 .00934	16,303 55,' ,215	534 20.50	0.14	22.2015	1,1560	.0005
SURFACE LA	LEVEL)	16,772 55.	20.59	8,21	22.8367	1,1653	.0005
SURFACE	LEVEL	17.181 54.	713	8 3E	31 H.CE	1.19na	0005
SUHFACE	LEVEL	17.592 54.	301	0 1 C J	63+4173	1 0 1 7 45 45	
an Bananan	00956 د د د د	210 	22.81 299	8.29	23.9583	1.1832	,0005
45 304FACE	.00836 LEVEL . 1	,209 18-419 53	23.49	8.32	24.4597	1.1317	.0005

CHANNEL P CASE	АЕВОЦТВ 1	ISUTHERMAL L		DATE 04/2	2/76 0 1.	IME 12.10.20				
FIME =	1.19171 SEC	CUNDA PHES	SSURE # 50	.0 PSIA	DATA	FOR CHANNE	L 1			
OISTANCE (IN.)	PELTA+P (PST)	ENTHALPY (HTW/LH)	1EMPERATURE (DEG+F)	DENSITY (Le/cu=FT)	EGUIL. GUALITY	VOID FRACTION	FLOW (LB/SEC)	MASS FLUX (MLB/HR+FT2)	VELLCITY (FT/SEC)	AREA (SG=1n)
Ĵ.O	1.1401	520,50	591.00	57.89	υ″υ ΰα	0.00.0	0 <u>0</u> 0 0 0 0	0,0000	0.0000	36.00000
5.0	1.0396	250,19	280,49	57.89	0.000	0.000	28,2358	.4066	1,9510	36.00000
n.0	.0090	250,19	590,00	57.89	0.000	0.000	58.3421	.8401	4.0312	36.0000
9.0	.5405	540.00	580,80	57,90	0.000	0.000	58,3410	.8401	4.0398	36,00000
15.0	.3971	259.02	280.82	57.90	0.000	0.000	58,3367	.8400	4.0305	36.00000
15.0	.2541	220.51	281.00	57.63	.000	.004	58.0702	.8365	4.0505	36.00000
18.0	•1554	250,54	281.00	43.19	.001		43.5137	• 9599	4.0302	36.00000
21.0	0032	52,55	591.00	15,62	.005	.732	15.7367	.5599	4.0500	36,00000
24.0	.0030	258,52	281.00	5,38	.020	.909	5 4226	.0781	4.0297	36.00000
21.0	.0040	319.10	281,60	1.79	.064	.971	1.8016	.0259	4.0290	30.00000
30.0	• 0040	453.30	281.00	,59	.198	.992	.5917	.0065	4.0272	36.00000
53.0	.0037	737.31	281.00	• 50	.581	.999	.2028	.0059	4,6225	30,00000
50.0	• 9037	1075.54	281.00	.15	.895	1.000	•131B	.0019	4.0150	30.60000
\$9.0	.0035	1156.70	251.00	12	.981	1.000	.11.99	.0017	4.0087	36.ύθουυ
42.N	.0032	1171.21	591.60	.12	, 997	1.000	.1179	.0017	4.0022	30.0000
45.0	.0029	1173.59	591.00	.12	1.000	1.000	.1174	.0017	3,9962	30.00000
44.0	.0459	11/3.97	591.00	.12	1.000	1.000	.1172	.0017	3.9910	36.00000
51.0	.0023	1174.03	281.00	•12	1.000	1.000	.117D	.0017	3.9863	30.00000
54.0	.00:20	1114.04	281,00	.12	1.000	1.000	.1169	.0017	3.9024	38.00000
51.0	.0017	1174.04	281.00	.12	1.000	1.000	1165	.0017	3,9791	36,00000
60.0	.0014	1114.04	281.00	.12	1.000	1.000	.1167	.0017 .	3,4765	30.00000
05.0	0015	1184,04	201.00	.12	1.000	1.000	.1167	.0017	3.9746	30.0000
55.0	1009	1174.04	201.00	.12	1.000	1.000	.1167	.0017	3.9733	30.00000
69.0	0006	1174.04	281.00	.12	1.000	1.000	.1165	,0017	5,9720	36,00000
12.0	.0003	1174.04	.201.00	•12	1.000	1.000	.1165	.0017	\$.9726	36.0000

G-106

٦

5

CHANNEL	RESULTS									
CASE	1	ISOTHERMAL	U-TUBE MANOM	ETER DEMONS	TRATION			DATE 04/2	2/76 0 1	IME 12.10.20
TIME =	1+19171 SEC	DNDS PRE	98U4E = 50	.0 PSIA	DATA	FOR CHANNE	EL 2			
DISTANCE	DELTA=P	ENTHALPY	TEMPERATURE	DENSITY	ECUIL.	VOID	FLOW	MASS FLLX	VELCCITY	AREA
(14,)	(PSJ)	(BTU/LA)	(D戶G=戶)	(LB/CU+FT)	QUALITY	FRACTION	(L8/SEC)	(MLB/HR+F12)	(FT/SEC)	(SG=1N)
0.0	1,3112	1174.00	281,00	.12	1,000	3.000	0,0000	0,0000	0.0000	36.00000
3,0	1.1495	250,20	281.00	57.89	0.000	0.000	-28,2568	• 4069	-1,9524	36.00000
6. 0	1.0334	250,20	281,00	57.89	0.000	0,000	-58,3830	. 8407	-4.0340	36.00000
ຊູດ	.9251	250.20	281,00	57 89	0.000	0.000	-58,3932	.8409	=4.0347	36.00000
12.0	. Ah 74	250,20	281.00	57.89	0.000	0.000	-58,4031	.8410	-4.0354	36.00000
15.0	.8093	250,20	281.00	57.89	0.000	0.000	-58,4127	8411	•4.0361	36.00000
18.0		250,19	580.99	57.69	0.000	0.000	-58,4218	-,8413	-4.0567	30.00000
21.0	.6945	250,19	280,49	57,89	0.000	0.000	-58,4302	8414	-4.0373	36.00000
54.0	.6368	250,19	280,04	57.89	0,000	0.000	=58,4380	8415	-4.0378	36.00000
21.0	.5792	250.20	261.00	57.89	0.000	0.000	=58,4450	8416	=4.0583	30.00000
\$2.0	.5216	250.20	201.00	57.89	0.000	0.000	-58.4511	8417	-4.0387	36.00000
53.0	4639	250.20	281.10	57,89	.000	.000	-58,4561	.8418	-4.0391	36.00000
56.0	.4063	250,20	281.00	57.89	,000	.000	-58,4582	.8418	-4.0.594	36.00000
39.0	.3486	250.20	581,60	57,89	.000	.000	=58.4474	-,8416	-4.0397	36.00000
42.0	.2911	250,20	241.00	57.87	.000	.000	-58,3637	- 8404	=4.0395	50.00000
45.0	.2340	250,20	281,00	57.79	.000	.002	•57,8525	- 8331	=4.0400	30,00000
44.0	.1800	250.22	281.00	57,28	.000	.011	-54,9212	• ,7909	=4,040V	36.00000
51.0	•1004	250.52	281.00	54,38	.000	.061	=40,9586	•,5898	#4.0400	36.00000
54.0	.1043	251.00	281.00	40,55	.001	.300	=10,7718	*.1551	■4,0400	36.00000
\$7.0	.0198	258.52	591.00	10.67	.0.09	.817	-,9781	0141	•4.0401	36.00000
40.)	.0025	360.58	581.00	.97	.119	.985	• 1507	0055	■4 . 0402	.36 . 60000
03.0	.0005	977.07	201.00	.15	. 787	.999	•.1180_	0017	• 4 • 0 4 6 5	30,00000
50.0	.0004	1174.04	281,01	.12	1.000	1.000	+,1184	•.0017	#4.04U4	36.00000
a¥.0	• 0 0 0 2	1174.58	582,00	.12	1.000	1.000	-,1184	=.0017	=4.0405	30.00000
15.0	• 0 n n <u>)</u>	1174.60	282.64	.12	1.000	1.000	-,1186	-,0017	-4.0405	30,00000

1

DIVERSION CHOSSFLOW BETWEEN ADJACENT CHANNELS, W(1,J), (LB/SEC+F1), 0 TIME, 12.10.20 1 DATE 04/22/76 CASE ISOTHERMAL U-TUBE HANDMETER DEMONSTRATION 1

1

TIME # 1.19171 SECUNDS

			•	
AXIIL	ZUNE	n (1, 2)	
0.0 •	5.0	-112	98711	
3.0 -	6.0	-120	46384	
n.) =	9.0	0	00000	
9,0 •	15.0	0	00000	
12.0 -	15.0	v	(0000)	
15.0 -	18.0	. 0	00000	
14.0 -	21.0	U,	00.000	
21.) -	24.0	0	00000	
24.0 -	27.0	0	00000	
27.0 -	30.0	0	00000	
30.0 -	33.0	0	00000	
\$3.0 -	30.0	0	00000	•
3h.0 -	39.0	0	60900	
59.0 -	42.0	0	00000	
+5.6 +	45.0	υ,	00000	
45.0 .	48.0	0	00000	
45.9 -	51.0	U U	00000	
51.0 -	54.0	U.	00000	
54.0 -	57.0	0.	0.0000	
57.0 -	66.0	0	00000	
53.0 -	63.0	0	00000	
65.9 -	66.0		00000	
50.0 -	69.0	9	60000	
50.0 m	0.51	0	00000	

ITERATIONS = 45

DATA FROM EXPLICIT SULUTION

N() 🔒	TIME	COURANT	YEL	COITY COMP	PENENTS	TCTAL	VOLUME
IRIES	STEP	NUMBER	UNDX	VIDY	(U/CX+V/CY)	TIME'	ERROR
46 9002300	.00A19	.209	23.68	8,35	24,9286	1,2001	.0005
305F40E (45)	00803	°+034 33+ ,208	54.53	8.63	25,3692	1,2083	.0005
SUPPACE -47	+00789	4,252 52. 702,	538 24,79	9,00	25,7837	1,2163	.0005
SURFACE 74	LEVEL 1 .00776	9.670 52. 207	218 25.38	9.36	26.1741	1.2242	.0005
30862CE	LEVEL 2	0.091 51.	797 26.48	9.70	26.5429	1.2320	.0005
SURFACE	LEVEL 2	0.513 51.	374	10.02	2019427	1 3104	0005
SURFACE	LEVEL 2	0.536 50.	950	10.02	20.0413	1+2370	.0003
SURFACE	16AEI 5	,207 1,50 006,1	525 525	10.32	27.3478	1.2471	0005
47 5995305	LEVEL 2	.204 1.785 50.	27.42 100	10,61	27,5332	1.2546	.0005
47 8455405	.007,26 LEVFI 2.	.204 .911 49.	27.73	10.88	27.8281	1.2619	.0005
48	.00719	.204	28.09	11.13	28,1068	1.2692	.0005
47	•00705	805.	28,88	11.36	28.2793	1.2764	.0005
304FACE 45	.00690	209 <u>209</u>	29,66	11,58	29.6554	1,2834	.0005
SURFACE 45	+00645	3.491 48. .205	391 29 . 67	11.79	29.6695	1,2903	.0005
SU~F1CE 45	LEVEL 2:	3,911 47,1 ,205	971 30.01	11.98	30,0058	1.2971	.0005
SURFACE 45	LEVEL 20	4.330 47.5	551	12.15	30.0571	1.3039	.0005
SURFACE	LEVEL 24	4,749 47.	132			•••••••	
SURFACE	LEVEL 25	*292 5•168 46•	712	16.26	30.2019	1.5106	*0003
45 SU4FACE	100662 LEVEL 25	,202 5,588 46.8	30,41 292	12.47	30.4054	1,3172	,0005
45 SURFACE	.00652 LEVEL 26	.206 .008 45.8	31.10 971	12.61	31.0978	1.3238	.0005
43 Subeace	,00640 IEVEL 26	.425 45.4	31.84	12.74	31.8402	1.3304	.0005
63 911-61.00	.00636	•505 •515	31.42	12.86	31.6218	1.3368	.0005
304FACE 43	00635	• 201	31.60	12,98	31.6007	1.3431	.0005
SURFACE #4	.00633	201 201	31.62	13.08	31.6249	1,3495	.0005
SURFACE - uil	LEVEL 27 •00632	•201 •201	217 31.70	13.17	31.7008	1,3558	.0005
SURFACE 44	LEVEL 28	.074 43.6 .201	31.77	13.26	31.7736	1.3621	.0005
SURFACE	LEVEL 28	468 43.3	368	11 74	13 1055	1 7494	0005
SURFACE	LEVEL 28	402 42.9	973	13033	3201033	1,3604	.0005
SUPFACE	1666° 1666 1666° 1666	1315 42.5	د"، کد () مر	15.40	1254.25	1.5747	0005
42 Surface	.00614 LEVEL 29	,203 •,723 42.1	32.82	13.46	32.8170	1,3809	,0005
41 SHWEACE	.00614 LEVEL 30	.200	32.54	13.52	32.5345	1.3870	.0005
43		• 199	32.43	15.56	32.4304	1,3932	.0005
43 SURFACE	.00616 LEVEL 30	.944 40.9	32.40	13,60	32,3958	1.3993	.0005

CHANNEL CASE	<u>яезоет</u> я 1	ISOTHERMAL	U-TUBE MANON	ETER DEMONS	TRATION			DATE 04/2	22776 0 TI	ME 12.10.	, 51 1
T LME 🖕	1,39932 SEC	GADS PRE	SSURE = 50	U PSIA	DATA	FOR CHANNE	L 1				
CISTANCE	DELTANP	ENTHALPY	TEMPERATURE	GENSITY	EGUIL.	VOID	FLOW	MASS FLLX	VELOCITY	AHEA	
(124)	(P5I)	(BTUZLB)	(DEG=F)	(Le/CU+FT)	QUALITY	FRACTION	(LB/SEC)	(MLB/HR-FT2)	(FT/SEC)	(SG=1N)	
0.0	1,5361	250,20	591.00	57.89	0.000	0,000	0.0000	0.0000	0.0000	30.0000	
3.0	1.4356	250.20	281,00	57.89	0.000	0.000	49,2130	.7087	5.4004	50,00000	
6.0	1.0961	250.20	281.00	57.89	0.000	0,000	80,0423	1.1526	5.5\$06	36.00000	
9 . 0	.8002	250.19	280,99	57.89	0.000	0.000	80.0356	1,1525	5,5301	35.00000	
12.0	.6967	250.18	280.98	57.89	0.000	0.000	80,0296	1,1524	5.5297	30.00000	
15.0	.5932	250.16	580.46	57.89	0.000	0.000	80.0242	1,1523	5,5292	30.00000	
18.0	.4697	250.15	240,95	57.89	0.000	0.000	80.0189	1,1523	5.5289	\$6,00000	
21.0	.3862	250,18	280.95	57.89	0.000	0.000	80.0134	1.1522	5.5285	36.00000	
54.0	.5951	250.20	281.00	57.89	.000	.000	80.0064	1,1521	5,5283	36.00000	
27.0	. 1798	22.052	241.00	57.39	.000	.009	79.3206	1.1455	5.5201	30.00000	
50.0	.0769	250.07	201.00	46.37	.001	.199	64.0793	.9227	5.5280	50,00000	
33.0		253.82	291.00	19.77	.004	.660	27,3258	. 3935	5.5279	30.00000	
50.0	••0580	263.60	201.00	7.11	.015	.879	9.8321	.1416	5.5275	36.00000	
39.0	●_បណ្ចជ	290.53	581.00	2,58	.044	.957	3.5588	.0512	5.5209	36.00000	
45.0	002S	364.73	281.00	.,93	.124	.986	1.2900	. 0186	5.5252 .	36.00000	
45.0	.0403	575,14	581.00	, 33	.352	.996	.4591	.0066	5.5210	30.00000	
47.0	.0014	9:5.54	591*00	.16	.720	.999	.2246	.0032	5.5130	36.00000	
51.0	.0016	1104.20	281.00	.13	.924	1.000	.1748	.0025	5.5037	36.60000	
54.0	.0015	1158.00	281.00	•15	,983	1.000	.1641	.0024	5.4947	50.00000	
57.0	.0013	1170.73	281.00	.12	.996	1.000	.1617	.0023	5.4869	\$6.60000.	
់តំមត្ថា	.0011	1173.35	261.00	.12	. 999	i.000	.1810	.0023	5.4805	30,00000	
63.0	.0008	1173,90	281.00	,12	1.000	1,000	.1608	.0023	5,4756	30.00000	
60.0	.0046	1174.01	291.00	.12	1.000	1.000	.1607	.0023	5.4723	56.00000	
69.0	.0.004	1174.03	281.00	.12	1.000	1.000	.1606	.0023	5.4766	30.00000	
72.0	0.002	1174.04	281.00	.12	1.000	1.000	.1606	.0023	5.4706	36.00000	

Ì

1

G-110

Э

Э

CHANNEL Case	RESULTS	ISUTHERMAL	UHTUBE HALOK	ETER DEMONS	TRATION			DATE 04/2	2/76 0 1	IME 12.10.	31
TIME =	1.39932 SEC	ONDS PRE	SSLRE = 50	.0 PSIA	DATA	FOR CHANNE	EL 2				
DISTANCE	UELTA-P	ENTHALPY	TEMPERATURE		EGUIL.	VOID	FLOW	MASS FLLX	VELCCITY	AREA	
(1".)			(9EG#P) 	([8/00+61]	WUALIT	PRACIIUN	([8/326]		(PI/SEL)	(30+1N)	
0,0	1,1342	1174.00	201.00	- 12	1.000	1.000	0.0000	6 [•] 0 0 0 0	0,0000	30.00000	
() د د د	1.0024	250.20	201.00	57.89	0.000	0.000	-44.2261	• • / 089	-3,4013	35.00000	
C + U	1,0/61	250.20	201.00	57.89	0,000	0.000	-80,0681	•1.1530	*5.5324	50.00000	
9.0	1,1044	250.20	201.00	57.89	0,000	0,000	-80,0721	•1.1530	•>•>>?/	36,00000	
14.0	1,0075	250.20	201.00	57.89	0,000	0.000	-80.0758	•1,1531	•2•2354	36,00000	
19.0	•404#	250.20	281.00	57.89	.000	.000	-80.0786	+1,1551	-5.5331	36,00000	
19.0	• 4122	250.20	261.00	57.89	.000	.000	-80,0806	=1,1532	+5,5333	3n.00000	
21.0	.7146	250,20	281.60	57.89	.000	.000	=80,0798	=1,1531	=5,5335	36.00000	
24+0	.0171	220.50	581.00	57.89	.000	.000	-80.0672	-1.1530	-5.5336	36.00000	
27.0	.5197	250.20	591.00	57.88	.000	.000	=80,0007	•1,1520	=5,5337	36.00000	
30,0	• 422P	220,20	251.00	57.83	.000	.001	-79,6812	=1.1474	-5,5337	36.00000	
33.0	. 5284	250.21	541.00	57.60	.000	.005	-78,1903	•1,1259	-5,5338	30.0000	
35.0	.2450	250.25	581.00	56,52	.000	.024	-71,6262	=1.0314	+5,5338	36.00000	
59+0	.1936	250.42	281.00	51.77	.000	.106	•48.8263	• 7031	+5,5338	36.00000	
45.0.	.1339	251.40	251.00	35.29	.001	.391	=12,6717	-,1625	+5,5338	36,00000	
45.0	• 9540	260,19	281,00	9,16	.011	.843	-1,2393	. 0178	+5.5337	36.00000	
48.0	.0033	364.67	231.00	.90	.129	.987	-,1799	■.0026	-5,5332	36.00000	
51.0	.0016	1084.08	231.00	.13	.903	1.000	• 1625	0023	•5,5320	50.00000	
5a n	.0014	1173.87	231.00	.12	1.000	1.000	.1624	•.0023	-5.5321	36.00000	
57.0	5100.	1174.13	591,18	.12	1.000	1.000	- 1623	•.0023	.5.5316	36.00000	
50.0	.0010	1174.20	281,31	.12	1.000	1.000	+,1023	- 0023	-5.5315	36.00000	
03.0	.0004	1174.20	231.30	.12	1.000	1.000	- 1623	0025	•5.5310	30.00000	
55.0	.0006	1174.15	241.20	.12	1.000	1.000	. 1624	0023	=5.530b	36.00000	
69.0	.0004	1174.08	291.07	.12	1.000	1.000	. 1624	.0023	-5.5307	36.00000	
72.0	.0002	1174.03	591.00	.12	1.000	1.000	- 1624	0023	-5.5307	36.00000	

G-111

4

OIVERBIGN CROSSFLUM BETWEEN ADJACENT CHANNELS, W(I,J), (LB/SECHFT), DATE 04/22/76 0 TIME 12.10.31 1

- CASE 1
- ISOTHERMAL USTUBE MANOMETER DEMONSTRATION
- TIME # 1,39932 SECONDS

AXIAL	ZONE	»(l, 2)	
0.0 -	3,0	=196.08363	
3.0 -	6.0	=123.34929	•
6.0 -	9.0	0.00000	
9.0 -	12.0	a, angua	
12.0 -	15.0	0,00000	
15.0 -	19.0	0,00000	
18.0 -	21.0	0,0000	
21.0 -	24.0	5,00000	
54.0 -	27.0	5,00000	
27.0 -	50.0	5,00000	
50.9 -	33.0	2,00000	
33.0 -	36.0	7.00000	
36.0 -	39.0	5,00000	
39.0 •	42.0	5.00000	
42.0 -	45.0	0,0000	
45.0 -	48.0	- 3,00000	
49.0 -	51.0	J . VUOUO -	
51.0 -	54.0	00000	
54.) -	57.0	9,0000 C	
57.0 +	60.0	00000 C	
51.0 -	53.0	5.00000	
53.0 -	nh.0	0,0000 ·	•
on.0 =	69.0	5,00000	
59.) =	72.0	5.00000	

ITERATIONS # 43

DATA FROM EXPLICIT SOLUTION

NU, TRIES	TIME Step	COURANT NUMBER	VEL UVDX	OCITY COMP V/DY	CNENTS (U/DX+V/OY)	TCTAL TIME	VOLUME Error
42	.00617	.199	32.35	13,64	32.3514	1,4055	.0005
3URFALF L 43.	EVEL 31	(+35.3 40 + +199	519 32 . 31	13,66	32,3056	1.4117	.:005
SURFACE C	.EVEL 31 .00613		35*98	13.68	32.8915	1,4178	.0005
SURFACE L	EVEL 32	2•174 59• •204	33,28	13.70	.33.2837	1,4240	0005
SURFACE L 40	600209	199 199	291 32.46	13.71	32.8612	1.4300	,0005
SUBFACE L	EVEL 32	198 1 98	588 32 . 53	13.71	32.5277	1.4361	,0005
SUMPACE L 91	EVEL 33	1,385 38. 198	486 32:39	13.70	32,3913	1.4422	.0005
SURFACE L 41	EVEL 33	14789 384 198	081 32.24	13.69	32.2442	1.4484	.0005
SURFACE L 41	.03620	+194 37+ +196	676 32.10	13.68	.32.0958	1.4545	.0005
SURFACE L 10	EVEL 34 .00620	• 600 57• • 200	270 32.30	13.66	32.3001	1.4607	.0005
SURFACE L 40	EVEL 35 ,00614	• 007 36 • • 203	54.55	13.63	32.8214	1,4669	.0005
SURFACE L 53	EVEL 35 .00514	• 412 36 •	457 32.56	13.60	32,5552	1.4731	.0005
SURFACE L SB	EVEL 35 +0%619	+812 36+ +197	056 \$2.07	13.56	.32.0744	1.4792	.0005
SURFACE L 39	EVEL . 36 .00624	•210 35•0 •197	654 31.75	13.52	31.7530	1.4854	.0005
SURFACE L 58	EVEL 36 .00629	•610 35•6 •197	258 31.51	13.47	31,5115	1.4917	.0005
SUNFACE L 38	EVEL 37	+011 34+8 +197	85e 31.27	13.41	31.2658	1.4980	.0005
SURFACE LI 59	EVEL 37	.413 34.4 .197	454	13.35	31.0950	1.5043	.0005
SURFACE L	EVEL 37	.816 34.0	31.53	13.29	31,5318	1.5107	.0005
BURFACE LI	EVEL 38	,219 33,4 ,201	547	13.21	11.6306	1.5171	.0005
SURFACE LI	EVEL 38	•618 33•7	247	13.14	31.0217	1.5234	.0005
SURFACE LE	EVEL 39	.013 32.8	52 \$3.\$9	13.04	10.4979	1.6398	0005
SUREACE LI	EVEL 39	.195	457 30 17		30 1 310	1.8161	
SURFACE LI	EVEL 39	.805 32.0)59 10 a 7		30.1/10	1 2000	10004 0005
SUBEYCE FE	EVEL 40	.203 31.6		12,07	24 4033	1.3420	.0005
304FACF L8	EVEL 40	• • • • • • • • • • • • • • • • • • • •	29,49 (62	12,17		1,3443	.0004
SURFACE LE	EVEL 41	•194 •001 30.8	162	14,07	6760334	1.7792	.0005
BURFACE LE	EVEL 41	.398 .30.4	165	12,55	24,4624	1.3029	.0005
SURFACE LE	,00878 EVEL 41	197 769 30+0	24 , 36)74	12.44	29,3606	1.5696	.0005
32 Surfaçe Le	.VEL 42	,195 ,178 29,6	28 . 31 184	12.35	28,8051	1.5763	.0005
32	.00697	,193 	28.85	12.19	28.2156	1,5832	.0004
32 SUSEACE 14	.00708 FVF1 42	193 960 28 9	27.77	12.05	27.7726	1.5902	.0004

СНАЗНЕЦ Я Сазе 1	ESULTS	ISOTHERMAL	U-TUBE MANON	ETER DEPONS	TRATION			DATE 04/2	2/76 0 1	IME 12.10.	,40 1
TINE = 1	.59015 SE	CONDS PRE	SSURE = 50	,0 PSIA	DATA	FOR CHANNE	L 1 -			•	
DISTANCE	DELTAP	ENTHALPY	TEMPERATURE	CENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELCCITY	ARLA	
([%,)	(PSI)	(BIUNCB)	(DEG=8)	(LB/CU-FT)	QUALITY'	FRACTION	(LB/SEC)	(MLE/HR+FT2)	(FI/SEC)	(SG=1N)	
0.0	1,4072	250,20	281.00	57.89	0,000	0.000	0.0000	0.000	0.0000	36.00000	
3.)	1.3067	259,20	2äl,v∪	57.89	ΰ, άΰΰ	0.000	43,6079	.6280	3.0131	36. 00000	
6.0	1,0406	259.20	281.00	57.89	0.000	0.000	67.8759	.9774	4.6899	56.00000	
9.0	.8341	259.20	201.00	57.69	0.000	0.000	67.8738	.9774	4.6898	36.00000	
12.0	.7411	520°52	501.00	57.89	0.000	0.000	67.8701	.9773	4.6295	36.00000	
15.0	.6891	250.19	280.09	57.89	0.000	0.000	67.8048	.9775	4.6892	\$6.00000	
18.0	.6150	250.19	286.49	57.89	0,000	0.000	67,8582	.9772	4.6887	\$6.0000	
51.0	.5420	250.18	280,98	57.89	0.000	0.000	67.8505	.977Ŭ	4.6882	36.00000	
24.0	. 4690	250.18	590.08	57.89	0.000	0.000	67.8422	.9769	4.6476	36.00000	
27.0	.3960	250.18	540.93	57.89	0.000	0.000	67,8338	.9768	4.6870	36.00000	
30.0	.3230	250,18	590.69	57.89	0.000	0.000	67,8257	.9767	4.6864	30.00000	
33.0	. 2500	250.19	280,99	57.89	0.000	0.000	67.8185	,9766	4.6860	\$8.000000	
34.0	.1770	250.20	281.00	57.89	,000	.000	67.8120	.9765	4.6050	36.00000	
59.0	1005	250.21	281.00	57.58	.000	.005	67.4402	.9711	4.6054	\$6.00000	
45.0	0359	250,62	281.00	47.29	.000	.183	55,3948	. 79 71	4.6852	36.00000	
45.0	0519	253.92	281.00	19.42	.004	.666	25.1459	.3275	4.6849	36.00000	
45.0	.0201	264.13	281.60	6.88	.015	.883	8,6531	.1160	4.6845	30.00000	
51.0	• 0092	292.62	261.60	2.45	046	.960	2,8133	.0414	4.6836	35.00000	
54.0	0029	372,13	261.00	.88	132	.987	1.0278	.0148	4.6818	36.00000	
57.0	-,0006	600.62	281.00	.31	379	.947	.1008	0052	4.0774	56.00000	
60.0	0003	953,95	281,00	.15	762	.999	.1199	.0026	4.0703	30.00000	
63.0	.0005	1:21.63	281,00	.12	.943	1.000	.1451	.0021	4.0034	36.00000	
an . 0	.0004	1:63.43	281.00	-12	989	1.000	.1.384	.0620	4.6580	36.00000	
59.0	0003	1:71.99	281.00	.12	998	1.000	.1.570	.0050	4.6561	36.00000	
72.0	-0001	1 73.69	281.00	.12	1.000	1.000	.1368	.0020	4.6561	36.00000	

¥

3

.

>

2

CASE		ISOTHERMAL I	U-TUBE MANONI	ETER DEMONS	TRATION			DATE 04/2	2776 0 1	IME 12.10.40
TIME = 1		UNDS PRE	3SL9E = 50.	0 PSIA	DATA	FOR CHANN	EL 2			
DISTANCE	DELTIP	ENTHALPY	TEMPERATURE	CENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELCCITY	AREA
(1%)	(PSI)	(8TU/L8)	(<u>D</u> €G≠₽)	(LH/CU+FT)	GUALITY	FRACTION	(LB/SEC)	(MLB/HR=FTZ)	(F1/9EC)	(SL-IN)
0.0	1.5065	1174.00	201.00	•i2	1.000	1.000	0,0000	0.0000	0.0000	36.00000
3.0.	1.3481	250,20	281.00	57.89	0.000	0.000	-43.6047	6279	-3.0129	30.00000
6.0	1.0915	250.20	591.00	57,89	.000	.000	-67.8706	- 64773	≠4 ,6890	36.00000
9.0	.9129	250,20	281 . Vu	57.89	.000	.000	-67.8673	•.9773	=4.6895	36.00000
12.0	.7849	250.20	261.00	57.89	.000	.000	=67.8576	• • 9772	=4 <u>.</u> 6894	56.00000
15.0	.6570	250.20	281.00	57.88	.000	.000	-67,8145	.9765	-4,6693	36. 00000
18.0	,5295	250.20	201.00	57,85	.000	.001	=67,5990	- 9734	-4.6893	3n.00000
21,0	4041	250.21	281,00	57.66	.000	.004	=66,5067	+ .9577	=4,6892	36,09000
24.0	2873	250,24	281.00	56.73	000	.020	=61.2167	• .8615	-4.5692	36.00000
27.0	2015	250,40	201.00	52,22	.000	.098	-41.2226	-,5936	=4,6892	36,00060
30.0	.1220	251.41	281.00	35,16	.001	.393	-9.5102	= 1369	-4.6892	36. 00000
33.0	.0217	261.72	261.00	8.11	.012	.862	-,9467	•.0136	=4.689Q	36.00000
30.0	.0046	392.94	281.00	.81	.144	.988	-,1467	0021	=4,6878	36.0000
39.0	.0031	1116.71	5H1.00	,13	,938	1.000	•.1376	0020	=4.6867	36,00006
42.0	PS00.	1173,96	291.00	.12	1.000	1.000	•.1376	0020	=4.6HSn	30.0000
45.0	.0026	1174.07	281.06	.12	1.000	1.000	-,1375	.0500.	-4.6847	30.00000
45.0	.0023	1174.11	281.13	12	1.000	1.000	• 1375	0020	-4.6036	\$0. 0000
51.0	.0021	1174.13	591.10	.12	1.000	1.000	•.1375	• • 0020	-4.6831	36.00000
54.0	.0018	1174.12	281,16	12	1.000	1.000	- 1374	• • 0 0 2 0	-4.6624	30.00000
57.0	0016	1174.10	261.11	.12	1.000	1.000	•.1374	0500.	-4.6819	36,00000
60.0	0013	1174.07	281.05	.12	1.000	1.000	+.1574	0020	#4.6815	\$6.0000
03.0	0010	1174.04	281.00	.12	1.000	1.000	- 1374	0020	-4.6812	30,00000
n6 0	.0008	1174.03	281.00	.12	1,000	1.000	.1374	.0020	44.6810	30,00000
69.0	0005	1174.03	201.00	.12	1.000	1.000	+,1374	.0020	-4.6809	36.00000
72.0	0003	1174.03	281.00	.12	1.000	1.000	1374	- 0020	-4.6849	50.00000

y

DIVERSION CROSSFLOW BETWEEN ADJACENT CHANNELS, W(1,J), (LB/SEC+FT), DATE 04/22/76 0 TIME 12.10.40 1 CASE 1 ISOTHERMAL UNTUBE HANDMETER DEMONSTRATION

TIME = 1.59015 SECONDS

AXIAL	20NE	н (1,	2)
0.0 •	3.0	=174	426	37
3.0 -	6.0	=97	,072	16
h.0 =	9,0	0	.000	00
ə"ù •	12:0	0	.000	00
12.0 -	15.0	0	, ú00	Úΰ
15.0 -	18.0	.U	000	00
18.0 -	21.0	0 j	000	0 C
21.0 -	. 24.0	· • •	000	00
24.0 -	27.0	0	000	00
27.0 +	30.0	0.	000	0 0
30.0 -	33.0	υ,	000	υδ
53.C m	36,0	۰,	000	0.0
56.0 -	39,0	9,	00ú	00
32.0 -	42.0	е,	000	0.0
45°0 ∎	45.0	0,	000	00
45.0 -	48,0	.0	000	9.0
48.0 ·	51.0	Ű,	000	00
51.0 -	54.0	0.	.000	0.0
54,0 -	57.0	Ŭ,	000	0.0
57.0 -	50.0	Û,	,000	00
5°.0 -	53.0	Ú,	000	00
03.0 -	65.0	(i ,	0.00	U A
60.0 -	69.0	C I	000	00
93°G a	72.0	C.	000	0.0

ITERATIONS = 32

DATA FROM EXPLICIT SELUTION

. ·	NO. Tries	TIME STEP	COURANT NUMBER	VEL U∕ņ×	MOD YTION	PONENTS (U/CX+V/DY)	TCTAL TIME	VOLUME Error
	31	.09720	,193	27.32	11.91	27,3190	1.5972	.0005
	SURFALE 51	. LEVEL 4	194 194	27,02	11.76	27,0153	1.0044	.0004
	SURFACE	LEVEL 4	43.746 28. 199	115 27.23	11.60	27.2316	1.6117	.0004
	SURFACE	LEVEL	4.139 27.	722		27 0275	4 4404	000/
	SURFLEE	LEVEL	14.526 27.	334	11944	21.0213	1.0171	
	SURFACE	.00750 Level 4	193 14,909 26.	26,20	11.27	26 + 1975	1.6264	.0004
	27 SUWEACE	00765	,192	25.61	11.10	25.6110	1,6339	.0005
	27		.191	24,93	10,91	24.9285	1,6416	.0004
•	308F4CE 27	. LEVEL - 4	•191 •191	24,36	10.72	24.3579	1.6494	.0004
	SURFACE 27	LEVEL 4	46.059 25. 191	800 23.77	10.52	23.7723	1.6574	.0004
	BURFACE	LEVEL	16.444 25.	415	10 70	21 581/	1 44E4	0004
	SURFACE	LEVEL 4	6.829 25.	030	10.30	2313434	140030	
	SURFACE	00840 LEV€L 4	197 24.	23.62 648	10,08	23.6210	1,6740	.0004
	24 SURFACE	.00857 LEVEL 4	.192	22.87	9.85	.22.8670	1.6824	.0004
	24	00884	,188	21,91	9,62	21,9130	1.6909	.0004
	SURFACE 23	00915	187 . 187	21.12	9.37	- 21 . 1158	1.6998	.0004
	304F4C5 22	LEVEL 4	18,325 23. 187	533 20.48	9.11	20.4757	1.7089	.0004
	SURFACE	LEVEL 4	8.695 23.	162	8.83	19.6329	1.7184	.000#
	SURFACE	LEVEL 4	9.064 22.	794	A 5.			0004
	SURFACE	LEVEL 4	9+431 22+	426	0.34	10.0405	1./202	
	. 21 BURFACE		185 9.797 22.	18,40 051	8,24	18,4039	1.7384	.0004
	20 SUBEACE	+01078 LEVEL 5	190 0-156 21-	18.08	7.91	18.0820	1.7489	.0004
	19	.01121	185	17,13	7,58	17,1303	1,7597	.0004
	19	01185	•179	15,93	7,23	15,9275	1,7709	.0004
	SURFALE	LEVEL 5	0.846 21.0 175	012 14 ,79	5,86	14,7852	1.7827	.0004
	SURFACE 16	LEVEL 5	1.163 20.0	676	5.45	13.7147	1.7954	0004
	SURFACE	LEVEL 5	1,514 20,3	345		136,121		
	17 17 SUREACE	LEVEL 5	1.838 20.0	15,24	0 , 02 .	12.5920	1.8089	.0004
	15 SURFACE	+01595 LEVEL 5	•147 2•148 19•1	11.40 713	5,55	11,3973	1,8435	.0005
	50 911263.06	01746	4161 2 1/42 10 /	10,11	5,03	10,1146	1,8395	.0005
	155	.01974	,158	 5,48	4.47	8.9378	1.8571	.0005
	SOURFALE		4/10 19.5 152	د جا 7 . 1 3	3.84	7.6768	1.8768	.0010
• ``	SURFACE 200	LEVEL 5	2,937 18,9	925	3.19	6.3720	1.8974	. 0008
,	JUNTALE	66766 J	38070 1981	00	· · · · · ·			
	20457CE.	.U2073 LEVEL 5	105 3.174 18.1	4.69 588	2,54	⇒ ,0 ₽ 10	1.4192	.0005

CHANNEL Case	RESULTS 1	ISUTHERMAL	U-TUBE MANOM	ETER DEMONS	TRATION		-	DATE 04/2	2/76 0 1	IME 12.10
TIME #	1.91831 SEC	INADS PRE	SSURE = 50	.0 PSI4	DATA	FUR CHANNE	L 1			
DISTANCE	DELTAOP	ENTHALPY	TENPERATURE	CENSITY	EGUIL.	VCID	PLOW	MASS FLLX	VELCCITY	AHEA
(1~,)	(³ 81)	(BTU/LH) -	(DEG#F)	(LB/CU=FT)	GUALITY	FRACTION	(LB/SEC)	(ML8/HR=F12)	(FT/5FC)	(SG+1A)
0.0	,9915	250,20	281.00	57.89	0,000	¢,000	0,0000	6.0000	0.0000	16.UUUUU0
5.0	1910	250.20	281,00	57 89	0.000	0.000	9,1916	.1324	.6351	30.00000
6 . ()	6006	250.20	281,00	57.89	0.000	0.000	4.5408	.0654	.3137	30.0000
9.0	• 7573	250.20	291.00	57.89	.0.000	0.000	4.5404	.0654	.3137	36.0000
15.0	.7057	253.20	281,00	57.89	0.000	0.000	4.5403	.0654	. 5137	3 0.0000.00
15.0	.6549	250.20	2A1,00	57.89	0.000	0.000	4.5401	.0654	.3137	36,00000
18.0	.0024	250.20	291,00	57.89	0.000	0.000	4.5400	,0654	.3137	36.00000
21.0	.5503	250.20	251.00	57.89	0.000	0.00	4.5399	.0654	.3137	36.09000
54*0	.4991	250.19	590,44	57.89	0,000	0.000	4,5397	.Ųo54	.3137	30.00000
27.0	.4475	250,19	280.99	57,89	0.000	0.000	4.5394	.0054	.3137	36.00000
30.0	. 3958	250.19	280.99	57.69	0,00 0	0 0 0 0 e D	4 . 5 5 9 5	.0654	. 3137	36.00000
53.0	. 3042	250.18	280.98	57.89	0.000	0.000	4.5395	.0654	.3137	36.00000
\$5.0	2926	250.18	590°04	57.89	0.000	6.000	4.5394	.0054	.3137	30.00000
59.0	.2409	250,19	590.66	57,89	0.000	C.000	4.5593	.0654	.3130	36.06000
142.0	.1893	250.19	599.44	57.89	0.000	0.000	4.5392	.0654	.3136	36.00000
45.0	.1377	250,20	581.00	57.89	0.00	0.000	4.5392	.0654	.3130	30.00000
40.0	.0860	250.20	591.00	57.89	0.000	0.000	4.5391	.0654	.3130	\$5.00000
51.0	on 345	250.20	281.00	57.88	.000	.000	4.5181	.0653	.3130	36.00000
54.0	.0073	251.74	251.00	31.79	.002	.452	2.4924	.0359	.3130	36.00000
57.0	.0004	262.91	591.00	7,45	.014	.873	.5844	.0084	.3130	30.00006
60.0	■ 0 0 0 4	290.35	591,00	2.26	.ú50	.963	.1775	.0026	.3136	36.00000
65.0	.0003	395.82	281.00	.74	.158	.989	.0573	8000	.3136	30.00000
65.0	.0002	732.17	281.00	• 55•	522	.998	.0175	.0003	.3136	30.00000
69.0	.0002	1168,55	241.00	.12	994	1.000	.0695	.0001	.3136	55.00000
72.0	.0001	1174.96	281.03	12	1.000	1.000	.0095	.0001	.3130	30.00000

Ý

DATE 04/22/76 0	TIMÉ	12.10.5	0
-----------------	------	---------	---

CHAUNEL CASE	RESULTS 1	ISUTHERMAL	U-TUBE HANDH	ETER DEMONS	TRATION	•		DATE 04/2	2/76 0 1]	IME 12.10
TIME ₽	1.91831 SEC	ONDS PRE	SOURE = 50	.0 PSIA	DATA	FOR CHANNE	r 5			
DISTANCE	DELTARP	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VOID	FLOW	MASS FLLX	VELOCITY	AREA
([N ₊)	(PST)	(RIUNE9)	(DEG=F)	(LB/CU+FT)	QUALITY	FRACTION	(LB/SEC)	(MLB/HR=PTZ)	(FT/SEC)	(9G=IN)
0.0	.9173	1174.00	581.00	•15	1,000	1.000	0,0000	0.0000	0.0000	30.00000
3.0	.8129	50.50	281.00	57.89	0.000	0.000	-9,1919	-1324	• • 6 3 5 1	30.00000
6 . ()	• 6871	250.20	591.00	57.89	0,000	0.000	-4.5412	= _0654	•.3138	36.00000
9.0	•55°3	250,20	591.00	57,89	0.000	0.000	-4.5413	-,0654	-, 3136	30.00000
15.0	.3890	250.20	591.00	57.89	0.000	0.000	-4.5394	•.0654	3150	36.00000
15.0	• 5405	250.20	591.00	57.87	.000	.000	-4.2924	• • 0 0 1 8	• 3138	30,00000
18.0	.1016	250.31	281.00	54.72	.000	.055	•1,2195	•.0176	••313ö	30.00000
21.0	.0244	255.32	281.00	15.54	.006	.733	- .0903	0013	•.3141	36.00000
24.0	.0065	342.87	261.00	1.15	.100	.982	-,0091	•.0001	+.3171	36,00000
0.75	.0049	1182,99	297.67	.11	1.000	1.000	•.0094	• • • 0001	•,3200	36,00000
30.0	•0n46	1174.05	281.01	.12	1.000	1.000	•.0095	0001	-,3228	36,00000
· 33.0	.0043	1174.05	281.03	-15	1.000	1.000	.0096	0001	•.3255	30,00000
36.1	.0040	1174.07	281.06	-15	1,000	1,000	•,0096	= 60001	• .3281	36.00006
59.0	.0037	1174.09	201.09	51,	1,000	1.000	=,0097	# .0001	■ 3 3 3 0 6	36.00000
42.0	.0034	1174.10	201.11	.12	1.000	1.000	•,0098	•.0001	• 3328	36.00000
45.0	.0031	1174,09	281.10	51.	1.000	1.000	≈ ,0098	• • 0 0 0 1	-,3350	30.00000
48.0	•0058	1174.08	201.07	.12	1,000	1.000	•,0099	•.0001	3369	36,00000
51.0	.0025	1174.05	281.02	.12	1.000	1.000	• • 0049	• • 0001	• 3580	36.00000
54.0	S200.	1174,04	281.00	.12	1.000	1.000	0100	•.0001	■.3400	36,00000
57.0	.0019	1174.04	281.00	.12	1.000	1.000	.0100	•.0001	-,3413	36.00000
60.0	.0015	1174.04	281,00	.12	1.000	1.000	0100	.0001	• • 5423	50.00000
63.0	5100	1174.04	281.00	.12	1.000	1.000	.0101	•.0001	-,3430	36.00000
65.0	0109	1174.04	281.00	.12	1.000	1.000	- 0101	0001	•.3436	36.00000
59.0	.0306	1174.04	261.00	.12	1.000	1.000	0101	 0001 	- 3430	30,000000
72.0	.0303	1174.04	281.00	.12	1.000	1.000	-,0101	• 0001	- 3430	30.00000

DIVERSION CROSSFLUM HETMEEN ADJACENT CHANNELS, W(I,J), (LB/SEC-FT). DATE 04/22/76 0 TIME 12,10,50 1 CASE 1 ISUTHERNAL U-TURE MANOMETER DEMONSTRATION

TIME = 1,91831 SECCADS

AXIAL	ZONE	w(1, 2)
0.0 -	3.0	-36.76713
3.0 -	6.0	10.60345
e.0 #	9.0	0.00000
9.0 -	12,0	0.00000
15.0 -	15.0	u,90000
15.0 #	18.0	L.00000
18.0 -	21.0	E.00000
21.0 -	50.0	L.VC000
54.0 •	27.0	00000
27.0 -	30.0	2.00000
30.0 -	33.0	a.00000
35.0 -	36.0	0.0000
36.0 -	59.0	0.0000
39.0 •	0.54	ŭ,00000
42.0 -	45.0	0,0000
45.0 m	48.0	0.0000
48°U ■	51.0	0,09900
51.9 .	54.0	0.000 0 0
54.0 -	57.0	0,05000
57,0 -	60.0	9°09900
50.0 -	63.0	u_00000
55.0 -	nh.0	9.00000
bh.() •	69.0	3.00000
59.0 -	72.0	0.00000

ITERATIONS = 165

ĴX.

CHANNEL CASE	RESULTS 1	ISUTHERMAL	Ú-TUBE MANUM	ETER DEMONS	TRATION			DATE 04/2	2776 O T	IME 12.10.	.51
TENE =	2.0013+ SEC	CONDS PRE	SSLHE = 50	.0 PSIA	DATA	FOR CHANN	ËL 1				
OISTANCE	. DEL 14-P	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELCCITY	AKT.A	
11,4*)	(PAI)	(810768)	(DEG=F)	(L8/CU=FT)	QUALITY	FRACTION	(LB/SEC)	(ML8/HR#FT2)	(FIZSEC)	(SG=1N)	
0.0	1.0734	250.20	241.00	57.89	0,000	0.000	0,000 0	0.0000	0.0000	36.00000	
3.0		50,50	281,00	57.89	0,000	0.000	,5116	.0074	د 5 ک 0 .	30.00000	
6.0	.8918	250,20	281.00	57.89	0,000	0.000	-14,2165	2047	=,9023	30.00000	
9.0	.4367	250.20	281.00	57.89	0.000	0.000	-14.2341	-,2050	-,9835	36.00000	
15.0	.7847	250.20	591.00	57.89	0.000	0.000	-14,2519	•.2052	●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	56,00000	
15.0	.1325	220.50	281.00	57.89	0,000	0.000	-14.2696	• .2055	=,986û	36.00000	
14.0	6801	250.20	281.60	57.89	0.000	0.000	14.2868	■.2057	.9872	30.00000	
21.0	.0275	25ú,20	591.00	57.89	0.000	0.000	-14.5035	•.2060	* •9683	30.00000	
24.0	.5746	250.19	590 69	57.89	0.000	0.000	-14,3188	•.2062	• • • • • • • • •	36.00000	
ć1.0	.5215	250,19	540.43	57.89	0,000	0.000	-14,3330	•.2064	· . 9405 ·	36.00000	
10.0	.4442	250,18	590.49	57.89	0.000	0.000	-14.5457	•.2066	+.9912	36.00000	
. 55.0	.4148	250.18	280,98	57.89	0.000	0.000	-14.3567	2067	• • 920	30.00000	
56.0	.3612	250,18	280,99	57,89	0.000	0.000	•14,3658	.2069	• • 4450	30.00000	
57.0	.3074	250,19	280,99	57,89	0.000	0.000	-14,3728	●。2070	- 9931	36. 000000	
15.0	.2536	250.20	281.00	57.69	.000	.000	=14.3760	•.2070	• • 9935	\$5.60000	
45.0	1997	250.20	241.00	57.88	.000	.000	=14,3453	•.2000	+ + 9 9 3 7	36.00000	
45.0	1457	250.20	241.00	57.75	.000	.003	-13.8042	•.1988	• • 4938	36.00000	
51.0	.0950	250,28	591.00	55,56	.000	.040	-7.4178	•.1068	+,4438	50.0000	
54.0	.0570	251.96	591.00	29.80	.002	.485		0131		30.00000	
57.0	0057	278.09	281.00	3,65	.030	.939	•.2796	≈ ₀0040	-,9940	36.000000	
50.1	.0955	344 . ""	201.00	1.12	.103	.983	≈, ùê22	0012	a*8A45	36.00000	
55.0	.0057	576,88	581.00	.33	.354	.996	•.0257	•.0004	+ <u>+</u> 9947	36.00000	
60.0	.0003	1180.26	292.59	.12	1.000	1.000	0291	•.0904	-,9951	36.00000	
69.0	SCOU.	1175.17	283.10	.12	1.000	1.000	.0292	•.0004	• ,9952	30.00000	
15.0	•0091	1174.05	201.05	.12	1.000	1.000	•,0292	0004	•.9952	30.00000	

CHANNEL RESULTS CASE 1 ISOTHERMAL U-TUBE MANOMETER DEMONSTRATION DATE 04/22/76 0 TIME 12,10,51										
11ME = 2	2.00136 SEC	ONDS PRE	SSUR <u>1</u> = 50	.U PSIA	DATA	FOR CHANNE	L 2			
DISTANCE	DELTA=P	ENTHALPY	TEMPERATURE	DENSITY	EGUIL.	VOID	FLOW	MASS FLUX	VELCCITY	AREA
(IN,)	(PST)	(814768)	(JEG+F)	(LU/CU+F1)	GUALITY	FRACTION	(LH/SEC)	(MLH/HR=FT2)	(FT/SEC)	(5G=1A)
0.0	.9883	1174,00	581,00	•15	1,000	1.000	0,0000	0.0000	0.0000	3e . 00000
3.0	.HA75	250.20	281,00	57.89	0.000	0.000	-,5439	• • U V 7 8	••0376	30,00000
6.0	,7661	250,20	591,00	57.89	0.000	0.000	14,1532	.2038	.9779	30.00000
9.0	++101	.50.50	591,00	57.84	0.000	0.000	14.14:48	.2037	.9773	50. (VOVC
15.0	.4598	250.20	281,00	57.89	0,000	0.000	14.1587	.2030	.9764	30.00000
15.0	.5094	249,75	280,56	57.90	0.000	0.000	14.1581	.2036	.9767	36.00000
18.0	.1595	250.21	591.00	57.62	.000	.005	2800.01	•5050	. \$760	56,66000
0.15	.0449	253.75	581,00	20.03	.004	. 455	4.889]	.0704	.97h5	30,00000
24.0	.0098	86,885	281,00	5.85	.040	,953	.6882	.0999	.9762	30,0000
21.0	.0053	548.64	281,00	.36	.325		.058E	- 0013	,9750	3 0, 0000
30.0	0045	1060,60	291,00	.15	.877	1.000	.0329	.0005	.6151	36.00000
35.0	• 00 4 S	. 1165.31	261,00	.12	.991	1.000	02:87	.0004	* 9 9 9 5	30,00000
\$0.0	.0039	1173.39	281.00	-12	,999	1.000	.0284	.0004	.9664	36,00000
59.0	.0036	1174.06	281.05	-12	1.000	1.000	.0≥8J	.00.04	.9639	30,0000
42.0	.0033	1174.09	201.10	12	1,000	1,000	5850.	.0004	.9610	36,00000
45.0	.0030	1174.09	201.10	.12	1.000	1.000	0282	.0004	.9595	30.00000
48.0	.0027	1174.08	281.08	.12	1.000	1.000	0281	.0004	.9517	36,00000
51.0	0024	1174.05	20,165	51.	1.000	1.000	0281	.0004	.9562	3n.00000
54.0	1500	1174.04	201.00	12	1.000	1.000	0280	.0004	.9548	36. 00000
57.0	.0018	1174.04	281.00	.12	1.000	1.000	0850	0004	. 5537	30,000,06
50.0	0015	1174.04	281,00	12	1.000	1,000	0280		.9520	30.00000
n3.0	.0012	1174,04	281,60	12	1,000	1,000	0280	.0004	9521	36.0000
20.0	0009	1174.04	281,00	.12	1.000	1.000	0279	.0004	.9517	36.00000
54.0	.0006	1174.04	281.00	.12	1.000	1.000	0279	.0004	.9515	3.0.0000
15.0	.0003	1174.04	281,00	.12	1.000	1.000	0279	.0004	9515	\$6.00000

-1

DATA FROM EXPLICIT SCLUTION....

ы6.	TIME	COURANT	. VEL	LCITY COM	PLNENTS	TCTAL	VOLUME
TRIES	STEP	NUMBER	UZDX	VIDY	(U/CX+V/DY).	TIME	ERROR
20 SURFACE	∎02076 LEVEL	.079 53.170 18.	3.70	1,96	3,8301	1.9391	.0004
51 SURFACE	02077	106 53.081 15.	5,13 771	2.64	5,1251	:,9598	.0005
UHFACE	.02078 LEVEL	•134 52.910 18.	6,45 931	3.35	6,4513	1.9806	.0005
5 Sufface	.02079 LEVEL	166 52.662 19.	7,71	4.06	7,9942	2.0014	,0005

NUMBER OF TIME STEPS = 305 TOTAL ITERATIONS = 10637 TTERATIONS/TIME STEP = 34

041E 04/22/76 0 TIME 12,10,51 1

DIFERSION CROSSFLUM HEIMEEN ADJACENT CHANNELS, H(I.J), (LB/SEC-FT),

CASE 1 ISOTHERMAL U-TUBE MANOMETER DEMONSTRATION

714E = 2.00134 SECONDS

4x:4L	ZENE	-(1, 2)
a.a 🝝	3,0	-2.12527
3.0 •	0.0	54.3041
o,0 ●	9.9	0,00000
9 j =	12.0	6,00000
12.0 •	15.0	0 . 40700
15.0 =	19.0	0.00000
10.0 •	21.0	0,00000
21.0 -	24.0	0,0000ú
5197 -	27.0	6.00000
27.0 -	30.0	6.0000
50.0 m	35.0	0.0000
55.0 -	30.0	0.0000
lo,y ⇔	39.5	00000
(? .) •	45°U	0,0000
15°0 -	45.0	0,00000
15.9 -	48.0	0.00000
(# ₁ .) •	51.0	. 0,00000
1.2 -	54.0	0.0000
4 🖕 () 🖷	57.0	0.00000
7.) 🖷	r0.0	0,0000
9°5 -	63.0	0.0000
5 . 19 · •	66.0	0.00000
n.) =	.9.0	0.00000
9.0 -	72.0	0.00000

ITERATIONS = 65

IMPUT THANSIENT TIME COMPLETED

COHMON DUMPED TO TAPE 8

Copies

No. of Copies

OFFSITE

2

A. A. Churm ERDA Chicago Patent Group Chicago Operations Office 9800 South Cass Avenue Argonne, IL 60439

27 ERDA Technical Information Center

> R. J. Bariboldi ERDA Chicago Operations Office 9800 South Cass Avenue Argonne, IL 60439

U.S. Energy Research & Development Administration

ATTN: Acting Director, Program Analysis & Evaluation Division Idaho Operations Office 550 2nd Street Idaho Falls, ID 83401

H. Cullingford
U.S. Energy Research and Development Administration
Engineering Design and Component Development Branch
Division of Controlled Thermonuclear Research
Washington, DC 20545

J. Hopenfeld

U.S. Energy Research and Development Administration Components Engineering and

Development Branch Division of Reactor Research and Development Washington, DC 20545

B. Twining

- U.S. Energy Research and Development Administration Systems and Application Studies Branch
- Division of Controlled Thermonuclear Research

Washington, DC 20545

5 U.S. Nuclear Regulatory Commission ATTN: Chief, Systems Engineering Branch Division of Reactor Safety Research Washington, DC 20555

E. Davidson

U.S. Nuclear Regulatory Commission Division of Reactor Safety Research Washington, DC 20555

S. Fabic U.S. Nuclear Regulatory Commission Division of Reactor Safety Research Washington, DC 20555

S. Israel U. S. Nuclear Regulatory Commission Division of Technical Review Reactor Systems Branch Washington, DC 20555

P. Norian U. S. Nuclear Regulatory Commission Division of Technical Review Core Performance Branch Washington, DC 20555

Zoltan Rostoczy U.S. Nuclear Regulatory Commission Division of Technical Review Reactor Systems Branch Washington, DC 20555

D. F. Ross U. S. Nuclear Regulatory Commission Division of Technical Review Core Performance Branch Washington, DC 20555

2 Union Carbide Corp. Oak Ridge National Laboratory P.O. Box Y Oak Ridge, Tennessee 37830

M. Fontana

J. Wantland

No. of Copies

L. Shotkin U.S. Nuclear Regulatory Commission Division of Reactor Safety Research Washington, DC 20555

L. S. Tong U.S. Nuclear Regulatory Commission Division of Reactor Safety Research Washington, DC 20555

- Aerojet Nuclear Company ATTN: Mgr, Systems Safety Research Division 550 2nd Street Idaho Falls, ID 83401
- 2 Aerojet Nuclear Company ATTN: Mgr, Model Verification Branch 550 2nd Street Idaho Falls, ID 83401
- 2 Aerojet Nuclear Company ATTN: Mgr, Analytical Model Development Branch 550 2nd Street Idaho Falls, ID 83401
- 2 Aerojet Nuclear Company ATTN: Mgr, Analysis Applications Branch 550 2nd Street Idaho Falls, ID 83401
- 2 Aerojet Nuclear Company ATTN: Mgr, Experiment Specification and Analysis Branch 550 2nd Street Idaho Falls, ID 83401

- 2 Aerojet Nuclear Company ATTN: Mgr, Systems Analysis Branch 550 2nd Street Idaho Falls, ID 83401
- 2 Aerojet Nuclear Company ATTN: Mgr, LOFT Facility Division 550 2nd Street Idaho Falls, ID 83401
- 2 Aerojet Nuclear Company ATTN: Mgr, PBF Facility Division 550 2nd Street Idaho Falls, ID 83401
- 2 Aerojet Nuclear Company ATTN: Mgr, Reactor Safety Technical Support Division 550 2nd Street Idaho Falls, ID 83401
- 2 Aerojet Nuclear Company ATTN: Mgr, Thermal Fuels Behavior Program 550 2nd Street Idaho Falls, ID 83401
- 2 Aerojet Nuclear Company ATTN: Mgr, Semiscale Program Division 550 2nd Street Idaho Falls, ID 83401
- 2 Aerojet Nuclear Company ATTN: Mgr, LOFT Program 550 2nd Street Idaho Falls, ID 83401

P. Lottes Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439

2

R. Henry Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439

W. Wulff Brookhaven National Laboratory Upton, Long Island, NY 11973

J. McCluskey Brown & Root, Inc. P. 0. Box 3 Houston, TX 77001

M. Plesset California Institute of Technology Department of Applied Mechanics Pasadena, CA. 91109

Mr. J. Block CREARE, Inc. Hanover, New Hampshire 03755

Consolidated Edison Co. of New York, Inc. ATTN: Senior Vice President 4 Irving Place New York, NY 10003

G. B. Wallis Dartmouth College Hanover, NH 03755

T. Fernandez Electric Power Research Institute 3412 Hillview Avenue P. O. Box 10412 Palo Alto, CA 94304

F. Gelhaus Fault Analysis & Modeling Electric Power Research Institute 3412 Hillview Avenue P.O. Box 10412 Palo Alto, CA 94304

No. of Copies

A. Gopalakrishnan Electric Power Research Institute 3412 Hillview Avenue P. O. Box 10412 Palo Alto, CA 94304

J.T.A. Roberts Electric Power Research Institute 3412 Hillview Avenue P. O. Box 10412 Palo Alto, CA 94304

C. Sullivan Electric Power Research Institute 3412 Hillview Avenue P. O. Box 10412 Palo Alto, CA 94304

General Electric Company ATTN: Mgr, Reactor Systems Safety Development San Jose, CA. 95114

General Electric Company ATTN: P. McGee, Mgr of Design Engineering Breeder Reactor Development Operation 310 Deguigne Drive Sunnyvale, CA 94086

Dr. R. T. Lahey Rensselaer Polytechnic Institute Troy, New York 12181

G. Birkhoff Department of Mathematics Harvard University Cambridge, MA 02138

G. Carrier Department of Engineering Applied Physics Harvard University Cambridge, MA 02138

A. E. Bergles Department of Mechanical Engineering Iowa State University Ames, IA 50011

C. Truesdell Department of Rational Mechanics Johns Hopkins University Baltimore, MD 21218

J. Chen Department of Mechanical Engineering Lehigh University Bethlehem, PA 18015

C. W. Hirt Group Leader T-3 Los Alamos Scientific Laboratory Los Alamos, NM 87545

K. D. Lathrop
Assistant Division Leader
T-Division
Los Alamos Scientific
Laboratory
Los Alamos, NM 87545

P. Griffith
 Department of Nuclear
 Engineering
 Massachusetts Institute of
 Technology
 Cambridge, MA 02139

K. F. Hansen
 Department of Nuclear
 Engineering
 Massachusetts Institute of
 Technology
 Cambridge, MA 02139

No. of <u>Copies</u>

N. E. Todreas
Department of Nuclear
Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

D. M. Chapin MPR Associates 1140 Connecticut Avenue Washington, D. C. 20036

H. Estrada MPR Associates 1140 Connecticut Avenue Washington, D. C. 20036

P. Lax Courant Institute of Math Sciences New York University 251 Mercer Street New York, N. Y. 10012

S. G. Bankoff Department of Chemical Engineering Northwestern University Evanston, IL 60201

B. I. Spinrad
Department of Nuclear
Engineering
Oregon State University
Corvallis, OR 97331

S. L. Lee Department of Mechanical Engineering State University of New York Stony Brook, NY 11794

K. Miller
Department of Mathematics
University of California
 at Berkeley
Berkeley, CA 94720

No. of <u>Copies</u>

No. of Copies

J. Weisman University of Cincinnati Cincinnati, OH 45221

A. A. Bishop Department of Chemical Engineering University of Pittsburgh Pittsburgh, PA 15213

H. S. Isbin Department of Chemical Engineering University of Minnesota Minneapolis, MN 55455

J. E. Casterline Department of Chemical Engineering Columbia University New York, NY 10027

C. Morgan Babcock & Wilcox P. O. Box 1260 Lynchburg, VA 24505

P. Lorenzfui
Bettis Atomic Power
Laboratory
P. O. Box 79
West Mifflin, PA 15122

G. diLauro Combustion Engineering, Inc. Windsor, CT 06095

L. P. Bupp Exxon Nuclear Corporation 2110 Horn Rapids Road Richland, WA 99352

G. A. Sofer Exxon Nuclear Corporation 2110 Horn Rapids Road Richland, WA 99352

ř

G. H. HalseyKnolls Atomic Power LaboratoryGeneral Electric CompanyP. O. Box 1072Schenectady, NY 12301

R. A. Markley Westinghouse Electric Corporation Waltz Mill Site P. O. Box 158 Madison, PA 15663

E. Novendstern Westinghouse Electric Corporation Waltz Mill Site P. O. Box 158 Madison, PA 15663

C. L. Caso
Westinghouse Electric Corporation
P. O. Box 355
Pittsburgh, PA 15230

ONSITE

ERDA Richland Operations Office

B. J. Melton

4 Westinghouse - Hanford

J. Hanson A. E. Walter J. F. Wett J. M. Yatabe

75 Battelle-Northwest

J.	Μ.	Bates
s.	Η.	Bush
Ν.	Ε.	Carter
R.	J.	Cena
J.	Μ.	Creer

ONSITE

J. M. Cuta D. E. Fitzsimmons C. R. Hann B. M. Johnson D. K, Kreid W. W. Laity C. A. McMonagle D. E. Olesen M. G. Patrick L. T. Pedersen D. S. Rowe C. W. Stewart A. M. Sutey D. S. Trent C. L. Wheeler (50) R. D. Widrig F. R. Zaloudek Technical Information (3) Technical Publications

V