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A NUMERICAL METHOD FOR TWO
DIMENSIONAL UNSTEADY REACTING FLOWS
by
T. D. Butler and P. J. O'Rourke*
Theoretical Division
Los Alamos Scientific Laboratory
University of California
Los Alamos, New Mexico 87545
SUMMARY

In this paper wve present a method that numerically solves the full
tvo-dimensional, time-dependent Navier-Stokes equations with species trans-
port, mixing, and chemical reaction between species. The generality of the
formulation permits the solution of flows in which deflagrations, detonations,
or transitions from deflagration to detonation are found. The solution pro-
cedure is embodied in the RICE computer program. RICE is an Eulerian finite
difference comnuter code that uses the Implicit Continuous-fluid Eulerian
(ICE) technique to solve the governing equations. We first present the
differential equations of motion and the solution procedure of the RICE
program.

Next, a mecthod is described for artificially thi_kening the combustion
zone to dimensions resolvable by tha compu-:ational mesh. This 1s done in
such a way that the physical flame speed and jump conditions across the
flame front are preserved.

Finally, the results of two exampl. calculations are presented.

In the firest, the artificial thickening technique is used to sclve a one-

dimensional laminar flame problem. In the second, the results of a full two-

dimensional calculation of unsteady combustion in two conneccted chambers are detailed.

AThis work was performed under the auspices of the Enerpy Research and
Development Admiiistration and the Naval Ordnance Station.
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1. INTRODUCTION

The extreme complexity of the coupled tluid dynamic and chemical pro-
cesses that occur in unsteady deflagrationa has made difficult the detailed
analysis of these flows in more than one space dimension. 1In this paper we
present, and illustrate by means of example calculations, a method that
numerically solves the full two-dimensional Navier-Stokes equations with
species transport, mixing, and chemical reactions between species. The
method has been successfully applied to the analysis of continuous wave
HF/LUF chemical lasere,l to the burning of propellant in liquid monopro-
pellant guns,2 and to combustion in internal cembustion engines.3 The
generality of the formulation permits the solution of flows in which de-
flagrations, detonations, or transitions from deflagration to detomation
are found,

The solution procedure is embodied in the RICEA computer program.
RICE is an Eulerian finite difference computer code that uses a modified
form of the Implicit Continuous-fluid Eulerian (ICE)5 technique to eliminate
the Courant sound speed criterion on the magnitude of the calculational
time step, The implicit formulation is particularly effective in deflag-

ration studies wherc material speeds may be far subsonic, and traditional
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explicit methods would require prohibitively small time steps.

In Scctions II and 1II, we present the differential equations of motion
and the solution procedure of the RICE code. Section III briefly outlines
a method by which numerical stability and increased accuracy are achieved
in RICE. The procedure, which involves the explicit cancellation of cer-
tain low-order diffusional truncation errors, is rully described else-
vhere."7

In many cases of practical interest, particularly in laminar flames,
the flame thickness is small compared to the spatial resoclution of the
conmputing wmesh. In Section IV, we introduce a technique for artificially
thickening the combustion zone to dimensions resolvable by the mesh. This
i8 done in such a way that the flame speed is still determined by physical
diffusivities and reaction rates. This procedure is often not necessary
for turbulent flames because of their significantly greater thickness
compared to laminar onee.

Finally, the results of two series of calculations are presented. In
the first series, the artificial thickening technique is used to compute
a one-dimensional, steady-state laminar flame in which the reaction rate
is governed by a single, second order Arrhenius law. 1In the second series,
the results of a full two-dimensional calculation of unsteady combustion

in two connected chambers sre detailed.



II1. The Governing Equations

The partial differential equations that govern the fluid dynamics,
species mixing, and chemical reactions are presented in this section.
They are written in cylindrical coordinates with axial symmatry and zero
azimuthal velocity. The equations for plane coordinates are obtained by
setting the radial distance r equal to unity and the normal stress com-
ponentlo¢¢ equal to zero. The terms with the parameter B account for
turbulent transport effects as will be explained later; lamirar flows re-
quire setting B equal to zero. Table I lists the definitions of the sym-
bols used and indicates the quantities needed as input for the RICE solu-
.tion procedure.
A. The Mixture Equations.

The mixture-mass conservation equation is

3 ,13vr du_ 13 (z3),2 (33
3t+r or * 2 r or (rB ar)+ 9z (B az) ' (L
The momentum conservation equations are given by
apv +l_a£v2r + puv _ _ .:22_,__1_ ao,rr . acrz _ fm_,_ v [_1. (1-3 1‘1)
ot r or 9z or r or 9z r r or
. 2 2
) op J [3 v, o v]
+a- B +pB =5 +—5 (2)
3:('5?) .arz 3:2
and
dpu . 1 dpuvr  3pu” _ _3p 1 80,,T + 89,5 + 4 [_1__3_ (B _3_9_)
ot r or oz £ r or or r ar \*° Ir
2 2
3 3p] [au au]
+ 5 |85 +B|l—+—5] . (3)
0z ( az) ar2 a:z
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The initernal energy cquation is

opl . 1 dpvrl . dpul _ _ p (l_ggz + gg) +0 v o (Q! + g!)

— +
ot r or oz rr or o oz or

du v,12 3 :
+ Opz 3z + °¢¢ rty or (rqr) + oz (qz) *a.

2 o) 2 62

2 2
ros [+ 4] (@)
or 0z

In these equations, the componente of the viscous stress tensor for a

Newtcnian fluld are defined in the following manner:

w24y (R, 2

rr T or = oz

- yf3Y 4 3V
orz "(ar + az)

Bu , ,(13vr . 3u
ozz 2u oz + A(r or +'3z)

Y413, du
°6¢ 2 r + A(r or + az) ' (5)

vhere YU and A are the first and second coefficients of viscosity, respec-
tively.
Turbulence is modeled by the terms containing 8. Here, we briefly

outline the procedure that leads to the form of these terms; a more



complete description is given in Ref. (1). First, we conaider cach mean
flow quantity, §, to be the sum of an ensemble averaged part T and a fluc-
tuating part ' ({.e., 4 = T+ C'). Inserting these expressions into the
laminar equations, we recover the usual mean flow terms plus the contri-
butions from the fluctuating compoaents.. We approximate these latter terms
by firet neglecting fluczuations in the pressure p', the molecular diffu-
sivities (e.g., H'), and the chemical reaction rates. Then we assume that

the flux approximation is vali¢ This is,

T . g 2%
(LH B ™
i
vhere uy is the velocity 1in the 1th coordinate direction and B is the

turbulent diffusivity. This leads to the terms in Eqs. (1)-(4) that
represent the diffusion of mass, momentum,and energy.

The energy flux components in Eq. (4) ave given by

p.
"r"‘%%"';phk”ka%(%)

k

and
e 3 (Es)
9, K % + ; phk Dk 2z \p (6)
vhere h, = cp T. The subscript k in these equations represents chemical

k

species k. Soret and Dufour effects as well as radiative heat transfer

effects are not included in this model.
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In this paper the pressure is related to the internal energy and

epecies densities through the ideal gas equatior of state

p=(y - 1)pI ¢))
and the caloric enuation of state

I=c, T . (8)

Y is the ratio of mixture specific heats, cp/cv' wvhere

P>
c_=p p, C ’
P x Kk P

- -1 [}
c, =P :E: Pr cvk , and cpk cvk + Rolwk .

c and <y are assumed constant in the calculations. Equations (7) and
k k

i (8) differ from the forms used by some authors (see Ref. 8) since I is not

k
p

(o}
the total specific internal energy JT%, but I = I* - :E: hk -c_ T (-—
o Pp ©

k

wvhere hk is the standard heat of formation of species k at reference ten~—
o

perature To. Thus I is the specific internal energy less the energy of

chemical bonding.

).
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B. The Species Transport Equations.
The dynamics of the individual species are determined through the species

transport equations:

p. p, vr  9p, u
t Yt ar t o2 r or [pDkr ) .pk/p)] * 5z [pDk iz (Dk/p)] + (py) .
9p p
139 k 3 k
* T or (rB —51‘—) + oz ( Bz) 9)

Here ((3k)c is the rate of change of species k density from chemical reac-

tions given by

. L L

(o) = v 2,; Re (Bk - Ak) (10
in which R2 is the rate of reaction 2. For the example calculations
reported here, Rg has the form:

3
o, \Ak
R ™ ¢ Eo/RT <—5> . (11)

=C

L 2

k \"k

The rate of heat release ac in Eq. (4) is thus given by

acBZREQE

L

where Qz, the heat release by reaction %, is given by

Ql - :E: Yk (A: - Bi) (hk B cpk To) ' (12)

TV YOL - 1EWY



The molecular diffusion in Eq. {(3) is modeled using Fick's Law. If

we sum Eq. (9) over all species k and subtract Eq. (1), we obtain

Z{r ar 1P DF —- (pk/p)] + -aa; [p D, :—z (pk/p)]} =0 (13)

since mass is conserved by chemical reactions. Equation (13) is viewed as
a constraint on the molecular diffusion coefficients Dk by the solution pro-

cedure.
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Symbnl

TABLE 1

DEFINITION OF SYMBOLS

Definition

Stoichiometric coefficient for specles k as reactant
in reaction 2*

Stoichiometric coefficient for species k as pro-
duct in reactiou 2*

cz Constant coefficient for reaction rate L%
ep Mixture specific heat at constant pressure
¢ +
Px Specific heat of species k at constant pressure
v Mixture specific heat at constant volume
v
k Specific heat of species k at constant volume*
Dk Mass diffusion coefficient for species k relative
to mixture®
El Activation energy of reaction 2%

Specific enthalpy per unit mass of species k+

Heat of formation per unit mass of speciles k at

° temperature To*
I Stecific internal energy of mixture+
n, Temperature exponent in reaction rate %
P Equation of state pressure
ac Total rate of heat+re1ease per unit volume from
chenical reactions
Qi Heat release of reaction 2+

VAVLLLMN < W A= WY



TABLE I (Continued)

Symool Definition
q 60np$nent of heat flux vector in radial dircc-
r

tion

q, Component of heat flux vector in axial direc-
tiont

1-

T Radial distance from symmetry axis

Rl Reaction rate of reaction £+

Ro Universal gas constant*

T Mixture temperature+

To Fixed reference temperature*

u Component of mixture velocity in axial direction+

v Component of mixture velocity in radial direc~
tion

Vi Molecular wveight of species k*

8 Turbulent eddy diffusivity*

Y Mixture ratio of specific heats+

K Thermal conductivity¥*

A Second coefficient of viscosity*

" First coefficient of viscosity*

Mixture dens:lty+

"p'b

Density of species k+

O » O

Ir Tz

%%z* %

Components of viscous stress tensor+

*Quantities input to RICE.
tQuantities computed by RICE.



III. THE RICE SOLUTION PROCEDURE
In this section, we describe briefly the RICE rompu-ational mesh and
the solution procedure throughone time step; complete details are found
in Ref. 4. The central feature of the RICE golution procedure is the use
of the ICE5 method. By eliminating the Courant sound speed restriction on
the magnitude of the calculational time step, the method increases compu-
tational efficiency and automatically permits the solution of flows with

materials speeds that range from far subsonic to supersonic.

The computing mesh is made up of a number of zones of rectangular cross

section called cells. In each cell, of uniform dimensions 6r and 8z, are
etored the computed variables describing the local fluid conditions.
Figure 1 indicates the spatial locations of these variables within a cell
indexed (1,j). The velocities and momentum densities are defined at cell
edges; other quantities (denoted by wi.j) are cell centered.

A simplified flow diagram for RICE appears in Fig. 2. To start the
calculation, the input variables denoted in Table I are specified toget-
her with the initial velues of the species densities, velocity components,
and specific internal energy for each cell. Appropriate boundary condi-
t:lona9 are also specified.

First, the cell pressures and square of the adiabatic sound speed

are computed using the polytropic gas equation of state:
Py " D ey g 1y

(), = yo-D 1

1,3 1,
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in which Y is defined as the ratio of the mass weighted specific heats of
the mixture in the cell.

The coupled mass and momentum equations are next solved in the two-step
ICE procedure. First, intermediate or tilde values of the mixture density
and momentum densities are computed explicitly. Then an iterative scheme

is used to solve for the advanced time donsity and velocities.

The tilde values of the mixture density are computed according to

1 - - _._1_ n - n
Pig =Pyt O [‘1 % {rjér [0}, 1o 7y = @0y 1]
1 n n
+ 5 [($>u)1_;’.j - (p")iﬂ,j]}

* ;(;;,2 [‘Jﬂs 800 Phian = PL) = my By O - °ri‘.j-1)]

+$ [Bms.J (°'1‘+1 S "'1'.1) " Bioa,g (”:-1 i pz’l'-")]

* rj(:r)z [r.1+!= Ty (PLaen - PL3) - Ty g (L "?.3-1)]
+(Ti)—? [‘144,,1 (":ﬂ,j ' "'1'._1) T Ti-kg,4 (":.j - "'1'-1.5)]] ' (14)

The superscript n is used to denote the value of the quantity at the time
t = n6t. 0 is a parameter used to vary the relative time centering of
the convection terms. It ranges in value from zero for a purely oxplicit

calculation to 1.0 for a éompletely time-advanced treatment of the convec-

TNV -
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tion terms. A value 6 = 0.5 18 usually chosen for most compressible flow
calculations because this value time centers the terms and eliminates the
first order time errors that arise in the difference procedure.

The additional diffusion terms involving T are added to cancel low
order diffusional truncation errors. These errors may either lead to
numerical instability or, alternatively, may lead to excessive diffusion
in the calculated solution. The T terms are calculated from the values

of T° given by

. 8t n 2.1 2. 2.n
Ty, g0 = ~028-1 {("t.ws) 1 G ’1.j+1]}

Sr n n
+ FEJ_H’ ('j+3/2 Vi,343/2 T Ty "1.1-':) ?

’ ot n 2 1 2.n 2.n
(g, g = -(20-1) 5 {(“14-!:.3) t3 [‘“ I ’1+1.3]}

62 n n
+ 5 (a2, - ‘1) - (s

The value of T is determined from the algebraic sign of T°,

(1 +E) (T')t.j-ﬂs 1f (1‘)1.1_“’?_0

T4, 94

Q-8 () gu 1 (1) 4, <0, (16)

where £ 18 a constant ranging between zero and unity. The other values

of T° and T are found similarly.
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By controlling the magnitude of the low order diffusional truncation
errors, this truncation error cancellation procedure6'7 improves the
accuracy and stabilicy of the calculations. Controlling these errors is
particularly advantageous for combus:ing flows because excessive numerical
diffusion can be larger than the physical diffusivities, leading to in-
accurate flame propagation speeds. A similar treatmeat to that given in
Eqe. (14)-(15) is used for each of the RICE transport equations. For
esimplicity, we include them in this discussion only for the mixture con-
tinuity equation, to indicate the form and t}c manner in which the terms
are included in the finite difference equations. A complete derivation is
given in Ref. 7.

Omitting the truncation error terms, the radial momentum density is

given by

G T = (V)] g + 8 [?jf,,ﬁ {'j [tev®, 5 - CISTN
T TR [“"’2’{.’5‘+1 - “-’i'r’r.'ih]}
+ 30 oy - 075555 = P g 3y * O g ]
* 37 (05 - )

I . n 1 [, g. L
ri+§ (99?)j.j+5 + Vi, 3% 2’3+h(§')2 [rj+1 Bi,j+1 (bl.j+2 na.j)

i B )
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* '(;f,'f [osson (reiion - Py, 1) = Byag, g ooy - °:-1.j4:s,)]{

1 1] n . 1 n n n .
+3 (Di.j + 01,j+1) By, 4% {——(Gr)z ("1.;|+3/2 -2y cact "1.3-!,)
_..1__ n .. - n- ~.. n- .,
* (82)° ("1+1.j+‘s 2y, et "1-1.3#,)}] (17)

Here, wstraightforward centered differences and averages at time level n are

used for the various terms indicated. A similar equation is solved for -

©1)340g,5°

With §, pV, and fu computed, the finite difference approximations

for the time advanced density and momenta become:

{l"‘.l - = ] n+1 R h
PO Pyt “‘{ X [“"”1 3t Fyag = OO J+']

n+l 1
[(nu)i lg, ) (pu)ﬂ*’.jj} , (18)
-~ . &t [~ —
vy .j+~s Ay gt 96':-" (5" 5"1.j+1.) (19)
and
- 8t /- -
(pu)ﬁ}hj - () gy %—;‘- (apu - spm_.') . (20)

The &p'v aro advanced time pressure {nerements that reflect prossurae
changes resulting from adiabatic compresstons. The role of ¢ is similar
to that of 0 in Eq. (14).

The wolution of Fqn. (18)-(20) im accomplished by itorating on the

Prossure 51.] - p:.J + SFL.J' The criterion for convergence of the
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iteration procedure is that thc mixture continuity equation, Eq. (18), is
satisfied to within a specified small amount €; that is, Eq. (18) is

written as

o~ 1 n+l n+l
Py, ™ Pr,y ~ Py g~ 06t {sz? ['j-'s (PV)y 3ot = Tywty PV 5

+ & [eew | - “’“"1':415.1]} (21)
and the convergence requirement is IDi.jI < ¢ for all cells (1,j). The
itoration is started using densities and preasures at time level n and tilde
values of the momentum densitics.

If the convergence criterion for cell (i,j) is satisfied, the pressure,
density, and momenta of cell (i,j) are not changed. If, however, the

criterion is not met, the prassure ia changed by an amount

_ !ID1
/1.1
where
N 1 2/ 1 1
- —ese. 4 204 6t (-— + --—)
ap)l.j (cz)’.j 6r2 6:2

and 0 ia a constant over ‘relaxation factor usually chosen in the range
1.0 < 1 < 2,0. The values of the cell quantities are then changed as

fo)iowst
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ntl n+l

ARLARIOWLY

] 1,)

ntl n+l 8t ~—

ntl n+l Pt =
P,y © W1y, " 6 %P,

ntl n+l $6t —
(V) | g (PV)y yuag * “or 6Py 4

Gpi,j . (22)

ntl ntl it
oW, V] - gL

After the criterion is met for each ccll, the advanced time velocities

are obtained by

n+l
n+l 2 (pu) g4, 4

u ;|
1‘“’|j n+l wel
Py,3 ¥ Pin,y

n+l
vn+1 - 2 (pV)1,j+ﬁ
1,34 pn+1 n+l '

1,9 7 P14
These velocities and pressures are then used in an explicit calculation
of the internal energy, neglecting changes in internal cnorgy due to

chemical heat relcase and enthnlpy diffusicn:
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n+l

~1_
(PI)] 4 + 6t {err ['J—l: (PL)y y-by Vi,5- ™

nt+l

1 n+1
+ 5 [(pni"!..'l Y115, T

(pl)i‘ﬂi 3 1+|’ 3

" Py [?15? (g v = oo Vi) * 3 (s - oik,g)]

* Oy w (e - i)

+ Oy g [o (0,50 O,g) * o (aviyy - Y14,4)]

+::<_:§>_’ oo tsen (Lgen = T09) = #n %e9 (L3 = 1))

n+1
Tipg Py g Vi, e

+_(.$i[nw'j (T - Teg)" Kag (g - Tie1y)]

+ 1:.1[;?:-”—2 ['-!#, YR (°'Ifi+1 °'1‘+1) 34 s nﬂ

+ -(—6:—)2- [aw,. y P,y - o0) - By O - pr:ii)]]

*03 b [y (L = 0 ) ¢ Gt (s - 28,
(23)

n+1

®1,3-

+1

)]

1,4)

!
f
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in which
(1)}
s
- 1,3 n
pi 4
| ¥

and from Eq. (8)

n
PL)y 4

T, "& (
i,J '
;“’k)i,_j(cv)k

Next, the changea in species densities for the time step are obtained.

The finite difference approximation to the species transport equation, Eq.
(9), 1s accomplished by calculating incremental changes in Py firet for the
convective process, next for the laminar and/or turbulent ¢iffusion, and
finally for the chemical rates. The order in which these increments are
computed is arbitrary. We have switched the order and found no significant
changes in the calculated results for the problems that have been computcd
thus far.

The species convection portion is given by

- n 1
(Pdy,g = Pdy g *+ 8t {r—jé-; ["_1-!, (P g, 501 = Fywy ("k")i.jﬂ]

1
* 3 Lo, - “’u“’w,.j]} ’ 24

where, for cxample,

1 n n 6t {. \n n n+l n+l
(O)y, 504 = 2 {(pk)L.j * oy g "W [“’k’t.jﬂ - (pk)l.j] Vi a¥s Ve, a4y

TV NN~ THS-NVY -



-18-

Straightforward centered differences are used in the finite differencc
approximation to Eq. (13) for the laminar wixing portion. Turbulent
diffusion of the species is treated in an analogous way to that in Eq. (14)
with P substituted for p in the appropriate terms. Chemical reactious
are computed for each cell as detailed in Eqs. (10)-(11) using an implicit
approach to prevent the rcactant species from becoming negative in value
during the time step. For reaction times that are short compared to the
characteristic times for hydrodynamic motion, a submultiple of the fluid
dynamic time step is used for the chemistry portion to more accurately re-
present the kinetics. Finally, the mixture internal erergy equation is
updated for the time step to reflect the net heat release given by Eq. (12)

and for enthalpy diffusion.

=1 e VAEE-T
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IV. ARTIFICIAL THICKENING OF DEFLAGRATION
WAVES

In this section we introduce a technique for artificially thickening
deflagration waves t; dimensionrs resolvable by typical cell sizes used in
two dimensional calculations. A dif{iculty with numerical solutions in-
volving deflagrations is that the physical thickness of a laminar flame
front is very small comparad to the computational cell sizes it is practical
to use in two dimensional calculations. Ome solution to this problem
is to treat the deflagration wave as a discontinuity. This procedure can
become computationally time consuming, especially when the burn front curls
over on itself or breaks apart due to the presence of obstacles in the flow
field. (See the second example calculation presented in this paper.)

The artificial thickening technique takes little computer time, and no
additional logic is required to model difficult interface geometries.

Its disadvantage is that it may suppress or alter the growth rate of fluid
dynamic instabilities with wavelengths comparable to the deflagration wave
thickness.

The mathematical justification for the artificial thickening procedure
follows from a simple coordinate transformation argument. We consider a
stcady-statc, one dimensional, laminar flame front whose density profile is
shown schematically in the top portion of Flig. 3, and another sulution,
shown in the bottom part, which is obtained by expanding the coordinates
in the vicinity of the flame front through an appropriatc mapping function
X{(x). It may be rigorously verified that the expanded solution satisfies the
equations of motion in the new coordinate system if all diffusivities are
multiplied by X' and all reaction rautes are divided by x', where X' is the

derivative of X with respect to x.

TNV ARTNWY
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Hence, by increcasing diffusivitics by the factor X' and decreasing
reaction rates by the factor of 1/X', the rete of propagation of the
deflagration vave remains the same while its thickness is increased by a
factor of X'. X' can vary spatially so that by making X' large only in
the vicinity of the flame front, its effects are localized in a manner
similar to the nffect of ertificial dissipation terms in the numerical
treatment of shock waves.

An example of the use of this procedure is presented in the next

section.

TUMNS ) LAY WP -
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V. NUMERICAL EXAMPLES
One Dimensional Steady-State Deflagration

To iiluctratc the effectiveness of the artificial thickening technique
described in Sec. IV, we applied RICE t> the one-dimensional, laminar, steady
combustion of gaseous species A to form species B. The calculated solution
achicves steady . tate through transient processes.

In the calculations, A enters the computing region from the left at
atmospheric pressure and temperature with velocity 370 cm/s and density

1.0 x 10-3 glcm3. It reacts to form B arcording to the simple reaction
2A >+ B

with a heat release Qz = 580 cal/g and at the rate defined in Eq. (1ll) in which

3

12 em
CL 4.9 x 10 -5

nz = 0.0

end E, = 1.0 x 1012 ergs/mole.

The right boundary of the mesh is an outflow boundary in which species B

exits the mesh with density 03 = 1.2 x 10_4 g/cm3 and velocity 3.0 x 10’ cn/s.

The diffusivities for the species are given by
- -5 —B_
¥=1.1x10" /T -

2
= Dg = 2.2 x 1073 ﬁ/ (ZpA + pp) e

A

MNHO-VOIN-NYY |
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and chv -1.5x 107 /T ';f%;
A

Typical thicknesses for laminar diffusion flames are approximately
lx 10-2 cm, negliglible compared to the calculational cell size §z = 1 em.

Shown in Fig. 4 are plots of the fluid density versus distance at
steady state for two different values of X'. The dashed line is the theore-
tical profile. The value of X' = 1.0 x 103 smears the flame over approximately
5 computational zones, while X' = 4.0 x 103 thickens the flame to approximately
20 computational zones. In both cases, the calculations retain the correct

flame speed and the correct jump conditions across the flame front.

We note that the time step for the x' = 1.0 x 103 case is 6t = 1.5 x 10-4 sec

vhich results in a Courant numbcr based on sound speed of 16. This illustrates
the advantage of the implicit ICE technique in permitting the use of larger

time eteps than are attainable by explicit methods.

Tarbulent Combustion in Connected Closed Chambers.

As an example of two-dimensio»-!, unsteady combustion, we applied RICE
to the turbulent combustion inside two connected closed chambers. For

this calculation, gaseous species A reacted to form B as in the previous

example with
3
Cp = 2.0 x 1012 €
-‘

nl = 0.0

- 1? ergs
E, = 1.25x10° =82
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02 cal

and Ql =50x1

The ax:symmetric configuration (see Fig. 5) is that of a small chauber
of inside radius 0.7 cm and 1.4 cm axial length connected through an inlet
0.3 cm in radius and 1.0 cm in length to the main chamber 3.0 cm in radius
and 1.8 cm in length. The computational cells are of uniform size with
6r = 0.1 cm and 6z = 0.2 cm. The chamber boundaries are reprasented as
rigid, free-slip, adiabatic walls. For this problem, the turbulent
diffusivity is constant, B = 1.0 x 102 cmzls. and the laminar diffusivities
are zero.

Initially both chambers and the inlet were uniformly filled with

species A at density p = 1.0 x 10'3 g/cma. T = 300°K,and p = 1.0 x 108 dxn?? .
cmn

Injitiation of combustion was accomplishad by the deposition of 1.8 x 1012_5%;5_
cm .8

in four calculational cells adjacent to the symmctry axis at the left hand
side of the small chamber until t = 1.0x10™° s.

Figure 5 summarizes the results of iLne calculation by showirng side-by-side
the cross-sections of the velocity vectors and contour plota of species
denslty at four different times: ¢t = 1,2,4, and 5 x 10_4i a8, chroiologically,
from top to bottom. The bottom bouudary in each of these plots is the
gymuetry axis. The flame front is deduced from the density contour plots
as the reglon of steep gradients.

At t =1.0x 10-4 8, the flamec front is in the small chamber but a
compression wave ahead of the flame has procceded into the main chamber.

At t -2.0:10_6 8, the front has advanced rapidly in the axial direction

due to the large conve.ctive velocitica of the inlet jet. The velocity
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vectors show the presence of a large vortex formed as the jet collides with
the right hand wall. Some burning is still occuring in ihe small chamber.
The gases in the small chamber overexpand, and the frames for t = 4.0 x 10-“
show the fluid velocities in the inlet have reversed direction and some
reaction is taking place in the inlet, The flame front advances from right
to left in the large chamber until the last time in which there is only a
small parcel of species A remaining along the left wall of this chamber.
Diagnostics at t = 6 x 10—4 s, the end of this calculation, show the reaction

along the left wall almost complete. Total calculation time on a CDC

7600 computer was nine minuces.
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FIGURE CAPTIONS

Fig.

Fig.
Fig.

Fig.

Fig.

1.

Schematic diagram of a RICE computational cell showing the locations
vhere flow quantities are defined.

Abbreviated flow chart for the RICE code.

Representation of steady state deflagration wave solution p and
its transformed solution.

Steady state density versus distance profiles obtained by RICE
for one-dimensional deflagration calculations.

Velocity vector and reactant density contour plots at times t = 1.0,
2.0, 4.0, and 5.0 x 10=4 8, from top to bottom, for the calculation
of unsteady combustion in two connected, closed chambers.
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