TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Dívision, Ext. 5716

LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government, Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
two-protion pickup studies with tie ($\sigma_{\mathrm{L}, 1} 8_{\mathrm{B}}$) beaction
Contents
Abstract v
I. Introduction 1
II. Exper inental Details 4
A. Ion Source, Cyclotron, Deam Transport, and Experinental Area 4
B. Targets 8
C. Detectors and electronics 8
D. Data Acquisicion an Anaysis 17
IIT. Theoretical Considerations 19
A. General weatures of movivglen Transfer Reactions 19
B. Seructural Features 22
C. Selection Rules 28
D. Rinematio Considerations 33
E. Relative Rinenatic Rindrances 37
TV. Emper inental Results 46
$A_{0} T_{2}=0$ lp-Shell targets 50

1. The ${ }^{12} \mathrm{C}\left(6 \mathrm{H}_{3},{ }^{9}\right.$ 3 $)$ 10 Re reaction 50
 55
 59
2. $\mathrm{m}_{\mathrm{z}} 0$ lpowhell Taxgets 64
3. The ${ }^{13} \mathrm{C}\left({ }^{6} \mathrm{ci}_{0} 8_{B)}{ }^{11}\right.$ Be geaction 64
4. Whe $1_{8}\left({ }^{6}{ }_{\mathrm{Li}}, 8_{B}\right)$ Mi Reaction 69
C. Unbound Final Systems 73
5. The ${ }^{9} \mathrm{Be}\left({ }^{6} \mathrm{Li}_{1}{ }^{8} \mathrm{~B}\right){ }^{7}{ }^{\text {KRe Reaction }}$ 74
6. The ${ }^{6}$ Li $\left({ }^{6}{ }_{L i},{ }_{8}{ }_{\mathrm{B}}\right){ }^{A_{\mathrm{K}}}$ Reaction 77
7. The ${ }^{7} \mathrm{Li}\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right){ }^{5} \mathrm{H}$ Reaction 80
D. The 2s-1d Shell Targets 81
8. The ${ }^{28_{\mathrm{Mg}}\left({ }_{\mathrm{Li}},{ }_{8}\right)^{22_{\mathrm{Ne}}} \text { Reaction }}$ 82
9. The ${ }^{26_{\mathrm{Mgg}}}\left(6_{\mathrm{Li}}, 8_{\mathrm{B}}\right)^{24}$ Ne Reaction 90
E. Comparisons With Other Reactions 96
F. Comparisons with Semi-Classical Reaction Theory 99
V. Conclusions and Sumnary 102
acknowledgenents 105
Appendix A. Unbound Final Systems 108
Appendix B. Reaction Dynamics 113
References 120

TWO-PROTCN PICKUP STUDIES WITM TRE $\left({ }_{\mathrm{L}, \mathrm{j}}, 8_{\mathrm{B}}\right)$ REACPTOA
Robert Benjamin Weisemiller
Nuclear Science Division
University of California
Lawrence Berkeley Laboratory
Berkeley, California 94720

ABSTMACI

 ${ }^{16} \mathrm{O},{ }^{13}{ }_{\mathrm{C}},{ }^{12} \mathrm{C},{ }^{11} \mathrm{~B},{ }^{10} 0_{\mathrm{B}}$, and ${ }^{9}$ Be at a bombarding energy of 80.0 MeV , and on targets of ${ }^{16}{ }^{1},{ }^{12}{ }^{C}, 9_{\mathrm{Be}}$, ${ }^{\mathrm{M}} \mathrm{i}$, and ${ }^{5}$ Ii at a bombarding energy of 93.3 Rev. Only levels consistent with a direct, singlewtep twoproton pickup reaction mechanisns were observed to be strongly populated. on $T_{z}=0$ targets, the spactroscopic selectivity of this reaction resembles that of the analogous (p, t) reaction. Rditionally, chese data denonstrate the dumance of spatialy symuetic transer of the bwo grotons. On $\mathrm{T}_{2}>0$ cargets the $\left(6_{\mathrm{T}} \mathrm{i}_{1} 8_{3}\right)$ reaction was employed to locate two previously unceported levels (at 7.47 ± 0.05 mex and $8.86 \pm 0.07 \mathrm{MeV}$) in the $\mathrm{gr}_{\mathrm{z}}=2$ nuclice ${ }^{24}$ Re ard to establish the low-lying ip-sinell states in
 for any narrow levels in the $\mathrm{T}_{2}=3 / 2$ nuclide ${ }^{5} \mathrm{~m}$ nor for any narrow excited states in 7he.

Whe angular distributions reported here are rather featureless and decrease monotonically wich increasing angle. Tris behavior can be shom by a semi-classical reation theory to be a cmsequence of the reaction kinematics. ssemimenssical approach also guggests that the kinenatic tem in the transition matriss alement is only wakly
dependent upon the angular momentum transfer (which is consistent with simple Distorted wave Born Approximation calculations). However , only qualitative agreement was obtained between the observed relative bransition yields and seni-classical predictions, using the two-nucleon coefficients of fractional parentage of Cohen and Kurath, probably due to the limitations of the semi-classical. reaction theory.

I. TNTYODICMTON

A major part of the focus of nuclear physics has been the attempt to explain adequately the interaction between nucleons. fris nuclear interaction can be usefully described by a cencral potential with an additional "residual interaction" to describe detailed behavior. The doninant omponent of the residual interaction in light nuclei widh an excess of protons or neutrons is patring correlations (8i 68) which can be investigated by tro-nucleon transfar reactions. Such reactions have been a particularly fruitful field for molear spectoscpic stadies (See cl 75 and An 72 for examies) fightion womuchem transer reactions have been used to study all types of twoparicle and, also, twowhole states except for twonpotmohole levels. A twoprotn pickup reaction would complement the existing arompoton stripping reaction swaies, since piokup reactions preferentially poghlate levels below the Fermi sea, while stripping reactions pagulate those above it.

The ($6_{L i} 8_{B}$) reaction wold sean to be the optimsn two proton pickup reaction for stuaies in the lpaghell. Wo Iighter reaction pair is of general utility (due to the Imitations of neutron besns for the (n, 3ye) reaction and the difficulties of detectirg particlemantable nuclides in reactions such as ($\alpha, G_{\text {Be }}$). Any heavier reaction pair would result in more severe kinematic contributions to the emperinathel energy resolution, would often have bound exciced states so that the energy spectra would have "ghadom peak" abigutities fhis wonld be the case for the $\left({ }^{9} \mathrm{Be},{ }^{11} \mathrm{C}\right),\left({ }^{12} \mathrm{C},{ }^{14}\right)$, and $\left({ }^{18} \mathrm{O},{ }^{20}\right.$ Ne $)$ reactions, fut not for the $\left(11_{B}, 13_{\mathrm{N}}\right)$ reaction), and would present more of a challenge to detector telesoopes for adequate particle identification (see Section If for a more
complete discussion of particle identification and other experimental considerations). The (${ }^{6} \mathrm{~L}_{\mathrm{L}},{ }^{8} \mathrm{~B}$) two-proton pickup reaction is well-suited to counter telescope experiments since both 7_{B} and 9_{B} are particle unstable, which allows a clean separation of the ${ }^{8} \mathrm{~B}$ events fron other isotopes. The difficulties with these other reactions is evidenced the few other published examples of two-proton pickup ($\mathrm{Si} 72, \mathrm{Ch} 73$, sc 74 a , and Je 74).

This work constitutes the first study of all lp-shell targets readily available in solid form. This region is particularly suited for an initial survey, since it has been investigated thoroughly with other twonuclem transfer reactions and the coefficients of fractional parentage (cfp) relevant to two-nucleon transfer have been calculated (Co 70). Both of these results provide a convenient base for establishing the reaction mechanism. Of particular interest was the degree of anti-symmetric pair transfer (Ku 72 and Lk 70) . The two particle cip for ${ }^{8}{ }_{\mathrm{B}} \rightarrow \sigma_{\mathrm{Li}}+2 \rho$ (Ku 75) indicate that there is a larger amplitude for the proton pair to be in a spatially anti-sywnetric (${ }^{3}$ P) state than in a symuetric (${ }^{1}$ D) state relative to the ${ }^{6}$ Li core (see Section IMI). The simplest cluster transfer mechanism corresponds to an internal ${ }^{l} s$ state (as in the (p, t) reaction) for the transferred nucleons, which for the (${ }^{6} \mathrm{Li}$, ${ }_{\mathrm{B}}$) reaction can only arise from the ${ }^{l}$ D component. If anti-symetric transfer is important, then the expected symmetry between the (${ }^{\mathrm{L}}, \mathrm{i}_{0} 8_{\mathrm{B}}$) reaction and the analogous ($0, t$) reaction on $\mathrm{T}_{\mathcal{Z}}=(\mathbb{N}-\mathbb{Z}) / 2=0$ targets might be distorted. While most of the two-proton-hole states in the lp-shell can be populated by both types of transfer symetries, there are a few known levels which would be fed precominantly by spatially antimsymetric transfer,
and two examples of this will be discussed with the experinental results in Section IV.

From this omparison of the experimental data from the (${ }_{6} \mathrm{~h}_{\mathrm{I}}, 8_{\mathrm{B}}$) reaction on $T_{Z}=0$ targets to both the two muleon chp's and the earlier (p, t) results, it is possible to demonstrate that this reaction has the anticipated spectroscopic selectivity. Whis selectivity in the ponalation of states in the final nulei was then exploited on meutron excess targets to indicate the lowation of low-lying Ip shell states in the $T_{z}=3 / 2$ nuclei $7^{7 e} 9^{9}$, and ${ }^{218 e}$. This series of nuclei is near the edge of particle stability, so that these levels present information on the two-body interaction in a relatively unexplored region. Also, this reaction was employed for further study of ${ }^{4} \mathrm{k}$ and ${ }^{5} \mathrm{H}$; since many ambiguities xemain in the curxent description of these nuclides (Fi 73 and Aj 74), any new experimental approach towards elucidating more of their character is of interest. Finaly, data will be presented for ${ }^{22}$ Ne and the $T_{2}=2$ nuciae ${ }^{24}$ se. These data on 2 gr- $1 d$-shell nuclei illustrate the possible extension of this work to beavier muclei.

II. EXPERTMENTAL DETAILS

While two-nucleon transfer reactions have been thoroughly investigated, this work involved an extension of many aspects of the experimental techniques employed in these earlier studies. These differences occurred in the production of a lithium beam (Section A), detection and identification of 8_{B} particles (Section C), and achieving adequate background reduction in these modest yield reactions (which was acomplished in part through electronic requirements--Section C-and partially by more detailed data analysis based upon multi-parameter recording of each event--Section D). Many of these differences resulted from the heavy-ion character of both ${ }^{6}$ Li and ${ }^{8}$ B. The yields placed these particular reaction studies as intermediate between more conventional spectroscopic studies and inass measurenent work on relatively inaccessible nuclei, so that the experimental techniques resemble more closely those employed in the mass measurement studies, while the information and interest resemble those of conventional spectroscopic studies.
A. Ion Source, Cyclotron, Beam rransport, and Exper imental Area

These exper iments were conducted with the variable-energy, sectorfocused Lawrence Berkeley Laboratory 88 -inch cyclotron, which provided the reguixed high energy beams (high energies are needed due to the very negative Q-values of these reactions, the kinematic conditions, and particle identification constraints). This cyclotxon can produce a naximum energy of $1120 Q^{2} / A$ MeV for beavy-ions of charge state Q and mass A. For ${ }^{6} \mathrm{Li}^{+2}$ ions this correspords to 93.3 MeV , which was employed for the studies of the ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$ targets and for a portion
of the investigation with the ${ }^{9}$ Be target. The renainder of this work was conducted with an $80 \mathrm{MeV}{ }^{6} \mathrm{Li}^{+2}$ beam.

As there is no suitable gaseous lithiun compound, lithium ions have not generally been accelerated in cyclotrons, to that the development of an aforopriate lithium vapor source was required for this work. These beams were produced at the cyclotron by a Pemning Ion Gauge (PIG) type source (see Cl 72) with arconeated cathodes (see Xig. II-1). The lower source cathode consisted of a nisture of isotopically-separated ${ }^{6}$ Lir (40\%) and tantalum powered (60\%), wich was fused at high pressure.
 the anode chamber. A carrier gas (cypically $1 A_{2}$) was ennloyed to strike and maintain the source arc. mis are arded the cathodes and beated the sleeves, thus vaporizirg the lithium.

This beam was accelerated by the cyclotron operating on the first harmonic at a freguency of 8.5 NiHz , so that suocessive beam pulses (5 -ns wide) were separated by bbout 120 ns. whe cyclotron, bean transport systems, and the expeximental area are shom in fig. II-2. A bean energy analysis of dE/E $\sim 0.1 A \%$ was obtained by bending the beam with a switching magnet through an angle of 39.5° onto a 1.5 mm wide analyzing slit. Aboolute beam mergies tere measured with a high precision analyzing magnet (ai 69) with a de/s $=0.028$, wich was calibrated for absolute energies by seattering molecular hydrogen ion beans on ${ }^{12} \mathrm{C}$ and obeerving the $\mathrm{T}=3 / 2$ sescnance in ${ }^{13} \mathrm{~N}$ et 14.232 MeV
(Ba 71). (This system is located in an adjacent exprimental area and is not show in Fig. IX-20) Typical bemmgots of 1.5×2.0 man 2 were obtained an target in the 0.5 min satterning chamer.

LITHIUM INTERNAL PI.G. SOURCE

Fig. II-1. A cross-section of the internal PIG source illustrating the doped cathodes and anode sleeve insert employed to produce lithium ions.

Fig. If-2. A schematic diagram of the 88 inch cyciotron, beam transport system, and Cave 2 experimental area.

Within this chamber detectors were mounted about 15 cn from the target on two independently movable platforms located on either side of the beam. An aluminum housing with tantalum shielding on the upstream side enclosed the counter telescope, and a 600 gauss permanent magnet was placed in front of the collimators to deflect low energy electrons produced in the target. In some of the experiments the detectors were cooled by a thermoelectric cooler to $-20^{\circ} \mathrm{C}$ to reduce thermal noise and leakage current. The scattering chamber pressure was typically A $\times 10^{-5}$ rorr: carbon buildup was reduced by employing a series of liquid nitrogen cooled traps.

B. Targets

Selfesupporting isotopically enriched targets were used in these experiments (see Table II-l for further details). Target thicknesses were deternined from the energy loss of alphamparticles from ${ }^{211} 2_{\text {po }}$ and ${ }^{212}{ }^{3}$. For targets of natural isotopic composition or those which were rapidly oxidized, portions were weighed on a microbalance. These deteminations are estimated to be accurate to about 158 due to inhonogeneicies in the target and the presence of target contaminants. The arounts of contaminants (typically carbon and oxygen) were determined by comparison of either their reaction or elastic yield relative to weighable samples.

C. Detectors and Electronics

Each detector telescope consisted of four counters. The first two of these detectorsmodenoted as $\triangle E 2$ and $\Delta E l$-were Ortec surfacebarrier transmission detectors (of 34 and $24 \mu \mathrm{~m}$ thickness, respectively). The rewaining counters were fabricated at IBL. The E detectors in

Table II-1. Target infomation and detector geometry.

these two telscopes were $200 \cdots \mu$ phorphorus-diffused counters. Finally, a l-mm thick lithium-drifted detector was employed to reject those events which did not stop in the E-counter.

Signals from these detectors fed charge-sensitive preamplifiers (PA) (see Fig. II-3). The PA signals were then delay-line shaped (400 ns) into bipolar signals in the linear amplifiers. This form of shaping gives fast baseline recovery and a narrow pulse width ($-1 \mu \mathrm{~s}$), which produced a dead time of about 5% at a counting rate of 20 kHz . (The dead time was measured by the ratio of randomlystrobed pulse triggers to the number of pulser events observed in the Einal data.) Events were limited to one beam burst by a pile-up xejector (PUR) with a pulse pair resolving time of $50-n s$ and an inspection time of l-us. Events were further limited to the particles of incerest by single channel analyzer (SCA) windows around the energy signals in each detector. the slowest component of the electronics, the particle identifier, required stretched signals ($\sim 5-\mu s$). However, signals were stretched only if there was a 40-ns fast coincidence between SCA's in all three amplifiers, plus a valid event signal from the gra within $40-\mathrm{ns}$, and there was no event in the Rej amplifier within l-uS. In this particle identification unit, the energy signals Erom all three counters were added to produce the total energy signal (Etotal) for each event.

The resolution of this total energy signal was determined by a combination of the natural level width, the spread in the cyclotron beam energy; the electronic resolution, the target thickness, and the finite angular acceptance of the collimators. All these effects can

be considered to add in quadrature, although some have rectangular distributions (Mo 66, Ma7l); typically, the dominant contributions were from the last two effects. The resolution in these experiments was usually $200-300 \mathrm{keV}$.

The particle identifier was a Goulding-Landis three-counter, double identification system (see Go 66 and Ce 66a). Mhis method of identification is based upon the empirical relationship that the range of a charged particle is given by

$$
\begin{equation*}
R=A E^{b} \tag{II-1}
\end{equation*}
$$

above a certain energy threshold. A is a constant characteristic of the particle type, E is the particle energy, and b is a constant that is weakly dependent upon the z of the detected particles. For boron isotopes, this last constant is about 1.6 (PO 76), but the constant b is empirically optimized at the beginning of each experiment for the particles of interest. If a charged particle passes through a transmission detector of thickness I and deposits ΔE in this counter and then stops in the E counter losing E amount of energy in the latter, then, it can be demonstrated that

$$
\begin{equation*}
X / A=(E+\Delta E)^{b}-E^{b}=\left(E_{\text {total }}\right)^{b}-E^{b} \tag{II-2}
\end{equation*}
$$

and this x / A is an energy independent particle identification (PI) signal (see co 64).

The resolution of this signal is obviously directed proportional to the uniformity of the transmission detector. Detectors normally cannot be mede with a non-uniformity less than $0.5-1$ micron and a
typical limit is ~ 2 microns (Wa 75), which will lead to relatively poorer identification with 20 mm detectors than 200 mm ones as transmission detectors. Also, it can be demonstrated that is proportional to M^{2}, which implies poorer separation for heavier elements. Since the energy loss of charged particles is proportional to $\mathrm{MZ}^{2} / \mathrm{E}$, these rather low energy ${ }^{8} \mathrm{~B}$ particles (in the region from 40 to 70 MeV) have a range of at most 300 -um in silicon, so that rather thin transmission detectors (35 and 25 um thick) were employed. Thus, for detected heavy-ions, the particle identifier gives particle spacings smaller than for lighter particles and the thinner transmission counters led to poorer particle resolution.

One can achieve lower background by employing a second transmission detector, as is illustrated in Fig. II-A, so that two independent deteminations of the particle type can be generated. fo the extent that a misidentification occurs in either cometer due to non-statistical fluctuations in the rate of energy loss (for example, caused by chaneling, blocking, or anomalously high energy loss due to the Landau process), then the ratio of these particle deteminations will be anomelous. The particle identification unit generated a particle identification signal (from the sumed energy losses in the transmission detectors) by an analog circuit employing a logarichmic element and also a ratio signal of the two independent identifications (since each $P I$ signal $=T / A$ (Eq. II -2) and thus, $~ R I_{1} / R I_{2}=T_{1} / X_{2}$. this ratio corresponds to the ratio of equivalent detector thicknesses). We have exmined alternative means of gating this xatio to ixwove the particle identification. The gating can be performed either on-line (which

Three counter paricle identifier

Counters

Different identification modes of the particle identifier

	$\begin{gathered} \text { cir(s)used os } \\ \text { " } \Delta E^{\prime} \text { cir } \\ \hline \end{gathered}$	ctr (s) used as "E"cir
A.	$\triangle E 2$	$\Delta E I+E$
B.	$\Delta E I$	E

if the patio A / B is within a chosen percentoge, then the final outpur is C

$$
\text { C. } \quad \triangle E 2+\Delta E I \quad E
$$

$$
\text { MUB. } 9885
$$

Fig. II-A. An illustration of the operation of the three-counter particle identifier.
allows a better evaluation of the data during the experiment, but suffers from irreversibility), or off-line. With on-line gating the percentage of events rejected was carefully monitored, since slight gain shifts in either transmission detector system can cause drastic increases in the rejection rate. Typically, 10 to 20% of the events were rejected by this gate.

We have examined the effects of this selection process as a function of energy, because of the interest in this work in both angular distrim butions and cross sections as a function of excitation energy. Along with the ancmalous identifications due to non-statistical fluctuations, there is a general energy dependence in the parcicle identification signal. We have determined that the majority of the rejected events were in the low energy portion of the spectrum ($\left.\mathrm{E}^{(8)}{ }^{8}\right) ~(40 \mathrm{MeV})$. This can be investigated on line by using the E SCA to vaxy the energy region of events entering the particle identifier, or by off-line gating of the ratio signal. From these investigations we have determined that if a B_{B} event loses more than 15 Nev in the E counter (equivalent to about 45 Mey total energy for the typical transmission counters employed) " its parcicle identification signal is reasonably energy independent. This is in agreenent with theoretical rangemergy calculations of the PT signal erroloying the computer code rizy (Ma 70). Accordingly, we will limit our presentation of data for individual energy levels to this region.

A bypical PI spectrum is show in Fig. II -5 . As can be seen from this spectrum, a clean separation of the ${ }^{8}$'s from other boron isotopes was readily achieved.

Fig. II-5. A particle identification spectrum resulting from bombarding a ${ }^{9}$ Be target with an $80 \mathrm{MeV}{ }^{6} \mathrm{Li}$ beam.

D. Data Acquisition and Analysis

For each event, four paraneters (either $\triangle E 2$, $A E 1$, Etotal , and the PI signal generated from the sumned energy losses in the ΔE^{\prime} 's; or the ratio of the PI signals, $\mathrm{E}_{\mathrm{y}} \mathrm{E}_{\text {total }}$ and $\mathrm{PI}_{\text {total }}$ signals) were sent via a multiplexer and an analog-to-digital converter to an online gopm-5 conquatex. The energy spectra were displayed during the exper iment on CRT and the events were witten on magnetic tape for subsequent analysis. In this off-line analysis on an scc-660 computer, the maltimarameter sorting and gating program chaos (Ma 74) was employed to set more stringent PI. requiranents and to generate the resulting energy spectra. These spectra were then analyzed with the peak-fitting program Nertag (Ma 71): which computed the peak centroids, integrals, and wirths. These quantities were then used in the program LORNA (wa 71) on a coc-7600, which calculates a least-squares fic to the know energy calibation points and assigns excitation energies to other level.s.
befinite assigments of peaks to a particular reaction were made only if they were seen at several angles with the apropriate kinematic shift. Warly investigations were mede of caxbon and orygen targets, so thet spectra from the basic taxget contaninants were well-understood. As an aid in the analysis, all the data on each target were kinenatically shifted to one angle and sumed by the program sidshifry on the SO-660. Also, the data for unbound light systerns (e.g. ${ }^{6}{ }^{2} 5_{\mathrm{K}}$) were compressed by a factor of (from $\sim 100 \mathrm{keV}$ to $\sim 400 \mathrm{keV}$) to improve the statistical analysis of broad levels (see Apendix for a description of sone considerations in the analysis of unound systems).

Finally, the measured angular distributions will be presented with only statistical error bars on the data points; this indicates the relative error, although the absolute error could be as large as 30%.

IIT. RHEORETICAL CONSIDERATIONS
While, in general, these studies represent an extension of earliex two-nucleon transfer investigations to include two-proton pickup, the heavy-ion nature of the incoming and outgoing particles adds a distinct character to these studies. Much of this difference arises due to the possibility for transfer of two nucleons in various coupling configurations. In spite of these additional possibilities, the observated selectivity in the population of states in the residual nuclei suggests that the dominant configuracion of the two transferred protons remains the I_{S} relative state, the predminance of which is expected frof the fundamental nature of the paixing interaction. While the transferred pair is an internal ${ }^{1}$ s cluster, its total wave function is ${ }^{1} \mathrm{D}$ with respect to the ${ }^{6}{ }_{\mathrm{L} i}$ core; the extended nature of this state means that finiterange effects will be important in describing the reaction kinematics. These finite-range effects, alcong with the large number of partial waves (ard the angular monnentum mismatch) of the inconing and outgoing particles, cause the reaction to exhibit chaxacteristic heavy-ion reaction features, which suggesi: the appropriateness of semi-classical treatnent of the reaction process.
A. Genexal Features of Two-Nucleon Transfer Reactions

Studies of light-ion tow-nucleon transfer reactions have been legion and the reader is referred to the numerous general aricles discussing spectrosoopic studies with these reactions (for example, Gl 63, G1 65, Gl 75, To 69, An 72, and Br 73).

The transition matrix element of a nuclear reaction can be described in terms of a nuclear structure component and a transfer amplitude, the product of which is summed and averaged over the appropriate quantum numbers. For two-nucleon transfer reactions, this includes a coherent addition of these amplitudes over the internal quantum numbers of the transferred nucleons. This introduces a sensitivity of the transition strength not only to the magnitude, but also to the sign of small admixtures into the wave functions of the "core" plus "cluster" systems (To 69). (In the case of heavy-ion reactions, such as $\left({ }^{6}{ }_{\mathrm{Li}},{ }^{8} \mathrm{~B}\right)$, we must consider the "core" plus "cluster" system in both the target and in the outgoing 8_{B}.)

Typically, the interest is in the nuclear structure factor term, which is called the spectroscopic factor of the transition. This factor is proportional to the square of the two-nucleon coefficients of fractional parentage (2 -cfp), where this coefficient, in the case of pickup, describes the target ground state wave function in terms of states of the final nucleus coupled to two nucleon states with appropriate values of relative angular momentum between the "cluster" and the "core".

For a single-step direct reaction, these spectroscopic factors are a measure of the probability of two-nucleons forming a particular cluster through their spatial correlation (the transition strength will also depend upon the probability density of the cluster wave Eunction in the region where the transfer occurs). For two (or more)
nucleons these spatial correlations arise from not only the nucleonnucleon force (or the pairing interaction), but also from the angular momenturn coupling (Gl. 63). (For example, the spatial correlation of two identical nucleons with angular momentun j, which are coupled to J, is larger if the classical orbits of these particles are co-planar (i.e., if J is 0) rather than ilited with respect to each other.) However, the transition strength will be largest when the transferred pair retains the same relative state; which would select essentially only the ${ }^{1_{S}}$ clusters in the target for pickup into a triton in the (p, t) reaction, but could allow other cluster configurations to match the ${ }^{8} \mathrm{~B}_{\mathrm{B}}$ ground state wave furction in the $\left({ }^{6} \mathrm{Li}_{8} 8_{\mathrm{B}}\right)$ reaction.

Although lightmion twomucleon transfer reactions often have a possible emall cmonent of ${ }^{l_{D}}$ as well as ${ }^{I}$ cluster transfer (e.g., the expansion of the triton ground state wave function has a l_{D} component, which offers this possibility to the (p, t) reaction), the l_{S} state dminates these reactions (Br 71). In heavy-ion reactions the more canglicated structure of the projectile-cutgoing particlemair could result in transfer of "clusters" not only in the relative l_{s} state, but also with ${ }^{1}$ or or ${ }^{3}$ configurations, if the structure of the other systen contains these relative configurations. This will be discussed in greater detail in Section MI-B. Similarly, the transition strengths will depend upon slight admixtures in the target ground state wave function in this pickup reaction, and examples of this sensicivity will be presented in Section IV (in particulax, with respect to the Girst excited state of ${ }^{9} \mathrm{i}$)

B. Structural Features

It is clear that the transition strength is dependent upon the structure of both the target and ${ }^{8} \mathrm{~B}$. A heavy-ion aspect of the $\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right)$ reaction is the more complicated structure of the projectile-outgoing particle pair than for the light-ion reactions. One of the more interesting features of this reaction is that it provides a means of investigating anti-symmetric pair transfer. This type of transfer process has been the subject of some theoretical speculation (Ku 72, Lk 70). There is a great weight of evidence that light-ion two-nucleon transfer reactions occur only through the transfer of a pair coupled predominantly in a spatially symmetric $\left({ }^{(}{ }_{S}\right)$ configuration rather than a l_{D} state. However, it would be useful to learn whether this arises because of the limited structural possibilities of the light-ion reactions, or because of the more prevalent nature of the l_{S} state due to the pairing interaction. This test requires that the structure, both of the reaction pair and the target, provide an opportunity for anti-symmetric transfer, and we will discuss each system in turn. The $\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right)$ reaction is a good probe for determining the importance of the spatially anti-symmetric (${ }^{3} \mathrm{P}$) configuration in the transfer process, since ${ }^{8} B$ has a higher percentage of a ${ }^{3}$ P pair relative the ${ }^{6}$ Li core than a ${ }^{1}$ D cluster. (See Table III-I for the magnitude of these symmetric and anti-symetric transfer terms for some heavyson twonucleon pickup reactions-the SMAG, PMAG, etc., notation Will be discussed below.) This can be seen from the ground state configurations and spins of ${ }^{6} \mathrm{Li}$ and ${ }^{8} \mathrm{~B}$ (see rable III-2). The dominant ground state configurations (${ }^{2 S}+1_{\mathrm{L}}$) can be connected only by

Table III-1. Spectroscopic factors for lp-shell heavy-ion two nucleon transfer reactions.

Reaction	Symmetric		Anti--Symmetric		
	Smag	DMAG	PMAA 0	PMAM 1	FMAE 2
$\left(6_{\text {Li, }}, 8_{\mathrm{B}}\right.$ or $\left.{ }^{8}{ }_{\text {Li }}\right)$	0	0.032	0	0.141	0.494
${ }^{(98 e},{ }^{11} \mathrm{C}$ or ${ }^{11_{\mathrm{Be}}}$)	0	0.747	0	0.888	0.720
$\left(10_{\mathrm{B}}, 12_{\mathrm{N}}\right.$ or ${ }^{12_{\mathrm{B}}}$)	0	1.358	0	0	0.039
$\left({ }^{11_{3},{ }^{13}}{ }_{\text {d }}\right.$	0	2.061	0	1.806	0.472
$\left({ }^{11} \mathrm{H}_{\mathrm{g}}, 13_{\mathrm{B}}\right)$	0.637	0.043	0.101	0	0.004
$\left({ }^{12} \mathrm{C}, 140\right.$ or $\left.{ }^{14} \mathrm{C}\right)$	0.597	0	0.101	0	0
$\left({ }^{33} \mathrm{C}_{5}{ }^{15} 0\right)$	1.002	0	0.300	0	0
$\left({ }^{10}{ }_{\mathrm{B}}, 8_{\mathrm{Li}}\right.$ or 8^{8})	0	0.732	0	0.295	1.428
$\left(1183_{8} 9_{L, i}\right)$	0.667	1.443	0.022	0.183	1.984
$\left(12 \mathrm{C}, 10\right.$ ee or $\left.{ }^{10} \mathrm{C}\right)$	$2.74{ }^{\circ} 7$	0	0.032	0	0
$\left(13_{\mathrm{C}}^{2}, 1 \mathrm{BBe}\right.$	1.959	0	0.090	0.001	0
$\left(14 \mathrm{C}, 12_{\mathrm{Be}}\right)$	1.784	0	0.111	0	0
$\left({ }^{13} \mathrm{C}_{\rho}{ }^{1 L_{\mathrm{C}}}\right)$	0	2.061	0	1.806	0.472
$\left({ }^{14} \mathrm{C}_{6}{ }^{12} \mathrm{C}\right)$	0.597	0	0.101	0	0
$\left(14^{4} \mathrm{~N}_{9} 12 \mathrm{~g}\right.$ or 1^{12} (0.033	2.115	0.008	0.388	0.361
$\left({ }^{25} \mathrm{~N},{ }^{13}{ }^{\text {B }}\right.$)	0	3.737	0	2.755	0.955
$\left({ }^{15} \mathrm{~N}_{0} \cdot 13_{\mathrm{N}}\right.$)	1.002	0	0.300	0	0
$\left(160,{ }^{14} \mathrm{C}\right.$ or $\left.{ }^{14} \mathrm{~N}\right)$	2.212	0	0.788	0	0

Table III-2. $\quad 2 S+1_{L}$ components of the ground state wave functions of ${ }^{6} \mathrm{Li}$ and ${ }^{8}$ (from Ba 66).

$$
\begin{aligned}
& { }_{\text {Li g.s.i }}{ }^{+} \quad 0.992{ }^{3}{ }_{S}-0.028{ }^{3} \mathrm{D}+0.120{ }^{1_{P}} \\
& { }^{8} \text { B g.s.; } 2^{+} \quad 0.922^{3} \mathrm{P}-0.242^{3} \mathrm{D}+0.060{ }^{3} \mathrm{~F}+0.2411_{\mathrm{J}}-0.148^{3_{D}} \\
& -0.032{ }^{3} \mathrm{p}+0.084{ }^{5} \mathrm{p}
\end{aligned}
$$

(Note that in ${ }^{8} \mathrm{~B}$ the ${ }^{3} \mathrm{P}$ and ${ }^{3} \mathrm{D}$ configurations are repeated, since the group theoretic symmetries are different for the two cases of these configurations.)
$\left.\left({ }^{6} \mathrm{Li} \otimes\right)_{2 p}=8_{B}\right)^{3} S \otimes{ }^{3} \mathrm{P}=3_{P}$; since for the L-values, only $\overrightarrow{0}+\overrightarrow{1}=\overrightarrow{1}$, and two identical fermions must have $\mathrm{S}=1$ for odd L and $\mathrm{m}=1$. Symnetric transfer must arise through other than the dominant configurations, such as in ${ }^{3} S_{S} \otimes l_{D}=3_{D}$. One can see that symmetric transfer can only cocur by a ${ }^{1}$ D configuration (relative to the $\sigma_{\text {Li }}$ core) since $\overrightarrow{\mathrm{I}} \otimes \overrightarrow{0}\left({ }^{1} \mathrm{~s}_{0}\right) \neq \overrightarrow{2}$.

These configurations relative to the core can be decomposed by the Talmi brackets, that have been tabulated by Brody and Moshinsky ($\operatorname{Br} 60$), into the internal relative angular monentum λ and the center--of-mass angular momentum Λ of the pair relative to the core, where

$$
\vec{L}=\vec{\lambda}+\vec{\Lambda}
$$

The 3_{P} configuration $\left(\mathrm{I}_{1}=1\right.$) can be decomposed into only $\lambda=\Lambda=1$. The ${ }^{1}$ D configuration ($L=2$) can be transformed with equal amplitude $(\sqrt{2} / 2)$ inco either $\lambda=0, \Lambda=2$, or $\lambda=2, \Lambda=0$. (Since the Talmi transformation brackets are for harmonic oscillator wave functions, they are expressed only in terns of L_{0}) For the anti-symmetric component, sirce $\mathbb{S}=1$, the $\mathrm{L}=1$ term carn correspond to $3=0$, 1 , or 2 , while for symmetric transfer each L corresponds to a unique J.

As previcusly mentiansd, for a test of the strength of transitions through the anti--symnetric components one needs not onily a reaction pair with a large component of antimsymmetric transfer, but also a target that contains a large portion of anti-symetric transfer strength to a particular final state. The 2 -cfp's for the lp-shell in a jj-basis bave been tabulated by Cohen and Kurath (0070) based upon their intermadiate coupling wave Eunctions (Co 65 and ku 56). As part of this work (0070), Cohen and Kurath have tabulated the transition
strengths for $J=L=\Lambda=0$ transfer (denoted in their notation as SMAG or S magnitude) and for $J=L=\Lambda=2$ transfer (called DMAG for D magnitude) for a relative l_{S} cluster $(\lambda=0)$. We have extended this work of Cohen and Kurath by calculating and tabulating the analogous quantities for anti-symmetric transfer (with $\Delta T=1$) for their wave functions, which we will denote in a similar fashion as PMAG 0, PMAG 1, and PMAG 2 (for $L=\Lambda=\lambda=1$ with $\Delta J=0$, 1 , or 2 respectively). These values are listed in Table III-1 for various two-nucleon transfer reactions and in Section IV for the targets studied in this work. (A more complete listing of transitions with the lp-shell is available from the author.)

This transformation consists of first converting the 2-cfp's from the jj-basis into an L•S representation, and then squaring them. Finally, these quantities are weighted by a statistical factor for the available number of pairs for the transition $(\sqrt{\mathrm{N}}[\mathrm{N}-1]$) where N is the number of lp-shell nucleons in the initial nucleus for pickup reactions and in the final nucleus for stripping reactions. Because of the importance of these spectroscopic factors for this work, these relationships between the jj and L•S 2-cfp's are listed in Table III-3. It should be noted from this table that the $\Delta J=1$ transitions are only possible through PMAG 1, while $\Delta J=0$ or 2 transitions are possible through either the symmetric or anti-symmetric transfer configurations.

In fact, SMAG and PMAG 0 (and similarly, DMAG and PMAG 2) are orthogonal combinations of the jj-basis wave functions. Accordingly, these states accessible through anti-symmetric transfer of two nucleons are fairly common, but they typically exist at rather high excitation

Table III-3. The conversions between the jj and Los representations of the two-nucleon fractional-parentage-coefficients.

$$
\begin{aligned}
& \theta^{01}\left({ }^{1} S_{0}\right)=\frac{\sqrt{2} \theta^{01}(33)+\theta^{01}(11)}{\sqrt{3}} \\
& \theta^{21}\left({ }^{1} D_{2}\right)=\frac{\theta^{21}(33)+\sqrt{2} \theta^{21}(31)}{\sqrt{3}} \\
& \theta^{11}\left({ }^{3} P_{1}\right)=\theta^{11}(31) \\
& \theta^{21}\left({ }^{3} P_{2}\right)=\frac{\sqrt{2} \theta^{21}(33)-\theta^{21}(31)}{\sqrt{3}} \\
& \theta^{01}\left({ }^{3} P_{0}\right)=\frac{-\theta^{01}(33)+\sqrt{2} \theta^{01}(11)}{\sqrt{3}}
\end{aligned}
$$

The notation employed is the same as in Co 70 , and is $\theta^{3 \mathrm{P}}\left(1 \mathrm{j}_{1} 2 \mathrm{j}_{2}\right)$

energy. These levels are rather inaccessible because of their unusual configuration, so that only a few states of this type have been located. The symmetric states occur at lower excitation energies and typically have been well investigated. This level ordering might be expected from the sign and size of the pairing interaction, which can be viewed as splitting these states. Fortunately, we found two good test cases (in the ${ }^{10}{ }_{\mathrm{B}}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right)$ and the ${ }^{16} \mathrm{O}\left({ }^{6}{ }_{\mathrm{Li}},{ }^{8}\right.$ B) reactions) which provide a good test for the importance of anti-symmetric transfer.

Another type of test for the importance of this reaction process (and also for multi-step transitions) is to compare the results of this reaction with that of the (p, t) reaction on $T_{z}=0$ nuclei. For this type of target, the two reactions populate mirror final nuclei, so that they are quite analogous (see the numerous discussions of isospin, such as Cerny (Ce 68) and references therein, for a justification of these expectations). If the symmetry of the transferred cluster were different in these two reactions, then a lack of correspondence might be observed. However, the differing kinematic aspects of the two reactions will tend to make the agreement between them inexact, i.e., one would expect the same qualitative selectivity, but the relative transition strengths might be quantitatively different. We will present examples of this similarity on ${ }^{6} \mathrm{Li},{ }^{10_{\mathrm{B}}},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O}$, and ${ }^{24} \mathrm{Mg}$ targets.

C. Selection Rules

A useful way of characterizing reactions is by their selectivity in the population of states in the final nuclei. These selection rules may suggest values for the spin and parity of populated levels. For example, the $\left({ }_{\mathrm{Li}},{ }^{8} \mathrm{~B}\right)$ reaction populates strongly only levels with
the same parity as the target ground state, so that data from this reaction will suggest the location of negative parity states in ${ }^{7} \mathrm{He}$, ${ }^{9} \mathrm{Li}$, and $1_{\text {Be }}$. Moreover, the reaction selectivity in the poralation of states in the final nuclei will reflect the reaction mechanism, so that it is possible to differentiate most easily among direct reactions and more complicated mechanisns by the type of levels preferentially populated (for example, see Ce 64 and Ma 71).

For simplicity, this discussion will be limited to lposhell levels, thus, the dominant configuration of the ground state of a lp-shell target of atomic number A may be described as (ls) ${ }^{4}(1 p)^{2-4} J_{i}$. If the $\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right)$ reaction proceeds by a direct single-step pickup mechanisin on such a target, then only levels with the configuration $(1 p)^{\sqrt{-6}-6} J_{f}$ may be populated (assuming for this discussion that the Is-orbitals remain inert during the reaction, which deletes for now reacticns on both the 6_{Li} and $7_{\mathrm{X}, \mathrm{i}}$ targets). Sirce this reaction involves the pickup of an even rumber of nucleons, the parity of the final levels $\left(\pi_{f}=\pi_{i}(-1)^{A-2}\right)$ must be the same as that of the target ground state. Similarty, the pickup of two identical lpwshell nucleons can change the value of J_{i} by at most 2 , so $\vec{J}_{f}=\vec{J}_{i}+\overrightarrow{2}_{\text {. However, }}$ in a sequential transfer the parity might be changed and in the pickup of two nucleons in different shells the parity must be change.

If one denotes the initial state in the target nucleus and the Einal state in the residual nucleus by their total argular momentum and isospin quantum numbers $\left(\vec{J}_{i}, \vec{T}_{i}\right)$ and $\left(\vec{J}_{f}, \vec{T}_{\mathcal{F}}\right)$ respectively, and also describes the single particle orbitals of the transferred nucleons by their orbital and total angular nomenta $\left(\vec{I}_{1}, \vec{j}_{1}\right)$ and $\left(\overrightarrow{\mathrm{I}}_{2}, \vec{j}_{2}\right)$;
then with only the assumption of a direct reaction one can again derive (see To 69) that

$$
\begin{equation*}
\left|J_{i}-J_{f}\right| \leq j_{1}+j_{2} \tag{III-2a}
\end{equation*}
$$

For the pickup of two lp-shell protons this relationship is

$$
\begin{equation*}
\left|J_{i}-J_{f}\right| \leq 2 \tag{III-2b}
\end{equation*}
$$

If one denotes the orbital angular momentum, intrinsic angular mamentum, total angular momentum, and isospin quantum numbers of the transferred pair by $\overrightarrow{\mathrm{L}}, \overrightarrow{\mathrm{S}}, \overrightarrow{\mathrm{J}}$, and $\overrightarrow{\mathrm{T}}$ respectively, then (TO 69)

$$
\begin{equation*}
\vec{L}=\vec{I}_{1}+\vec{I}_{2}=\vec{\lambda}+\vec{\Lambda} \tag{III-3}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{s}=\vec{s}_{1}+\vec{s}_{2} \tag{III-4}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{T}=\vec{t}_{1}+\vec{t}_{2} \tag{III-5}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{J}=\vec{j}_{1}+\vec{j}_{2}=\vec{L}+\vec{S} \tag{III-6}
\end{equation*}
$$

and for the transfer of two protons

$$
\begin{equation*}
\vec{T}=\vec{I} \tag{III-5}
\end{equation*}
$$

These relationships have one solution for symmetric transfer and another for anti-symmetric transfer, since the fermion nature of the two protons requires for anti-symmetric (with respect to change) total wave function that if L is even then

$$
\begin{equation*}
S+T \text { is odd } \tag{III-7a}
\end{equation*}
$$

and if L is odd then

$$
\begin{equation*}
S+T \text { is even } \tag{IIx-7b}
\end{equation*}
$$

Then for symmetric transfer

$$
\begin{equation*}
\vec{L}=\overrightarrow{2}=\vec{\lambda}+\vec{\Lambda} \tag{III-3}
\end{equation*}
$$

so either

$$
\vec{\lambda}=2, \vec{\lambda}=0
$$

or

$$
\vec{\lambda}=0, \quad \lambda=2
$$

and

$$
\begin{equation*}
\overrightarrow{\mathrm{s}}=\overrightarrow{0} \tag{III-4}
\end{equation*}
$$

so finally

$$
\begin{equation*}
\vec{J}=\overrightarrow{\mathrm{L}}=\overrightarrow{2} \tag{III-6}
\end{equation*}
$$

and for anti-symmetric transfer

$$
\begin{equation*}
\vec{J}=\vec{I}=\vec{\lambda}+\vec{\Lambda} \tag{III-3}
\end{equation*}
$$

50

$$
\vec{\lambda}=\vec{\Lambda}=\vec{I}
$$

and

$$
\begin{equation*}
\overrightarrow{\mathrm{s}}=\overrightarrow{\mathrm{I}} \tag{III}
\end{equation*}
$$

so Einally

$$
\begin{equation*}
\vec{J}=\vec{L}+\vec{S}=\vec{\lambda}+\vec{\Lambda}+\vec{I} \tag{III-6}
\end{equation*}
$$

The necessity of retaining the sane cluster configuration in both systems of core plus cluster requires that

$$
\begin{equation*}
\vec{J}_{f}=\vec{J}_{\mathrm{i}}+\vec{J}=\vec{J}_{\dot{I}}+\overrightarrow{\mathbf{I}}+\overrightarrow{\mathrm{S}} \tag{III-8}
\end{equation*}
$$

and so for symmetric transfer

$$
\begin{equation*}
\vec{J}_{\mathrm{f}}=\vec{J}_{\mathrm{i}}+\overrightarrow{\mathrm{L}}_{\mathrm{L}} \tag{III--8}
\end{equation*}
$$

The experimental results indicate that only symmetric transfer occurs, so $\vec{J}_{f}=\vec{J}_{i}+\vec{L}$. The allowed L-values are identical to those of the (p, t) reaction. There are few cases in which more than one Ir-value will be allowed, and where the spin-orbit interaction would cause a coherence in the reaction amplitude.

The $\left({ }^{6}{ }_{\mathrm{Li}},{ }^{8}{ }_{\mathrm{B}}\right)$ reaction data provide a test of whether the relative transition strengths simply arise from a "Q-window" effect (which is unlikely at these beam energies and values of the Sammerfeld parameter (see Section D)). The best matching of the incoming and outgoing Coulomb orbits occur at some optimum Q-value (see Appendix B-1 for the formula for $Q_{\text {opt }}$). For this reaction all the 0 -values are negative, while the most favored Q-values would be positive (except for targets with $\mathrm{z} \leq 5$). This could lead to transitions with lower Q-values being enhanced. As a test that the relative yields do not simply reflect this kinematic hindrance, we have employed two cases (${ }^{10} \mathrm{~B}$ and ${ }^{13} \mathrm{C}_{\text {。 }}$ see Section IV) where an excited state should be populated more strongly than the ground state (due to spectroscopic considerations), which was in agreement with the exper imental results. While there should be a general dependence in the transfer amplitude upon the Q-value of the transition (see Sections D and E), the relative transition strengths do not arise completely from this effect.

Another aspect of the reaction mechanism that can be esplored from the selectivity of this reaction in the population of states in the Einal nucleus is the strength of multi-step transitions which involve an inelastic excitation of states in the initial (or final) nucleus
before (or after) the two-proton pickup. By comparison of the form factors and a coupled channel calculation, Sørenson ($5 \varnothing$ 74) has proposed that these indirect processes are an important component of transitions to excited states in the ${ }^{26} \mathrm{Ng}\left({ }^{16} \mathrm{O}_{0},{ }^{14} \mathrm{C}\right){ }^{28}$ Si reaction. These processes could be indicated by the population of unnatural parity levels, as the excited states would by pogulated proportional to their collective strengths. Although the ${ }^{24} \mathrm{Mg}\left({ }^{6} \mathrm{Li}_{\mathrm{i}},{ }^{8} \mathrm{~B}\right){ }^{22}{ }_{\mathrm{N}} \mathrm{Ne}$ reaction is an appropriate test.for this mechanisn, since several multi-particle-hole levels in ${ }^{2} 2_{\text {Ne }}$ are krom (01.71, En 73) to be very collective, we found no evidence for these transitions. This is in agreement with the lpmshell results $\left(\Delta \pi=+, \vec{J}_{E}=\vec{J}_{i}+\overrightarrow{2}\right)$, since the observed selection rules were derived assuning only a direct single-step pickup of the proton pair.

D. Rinematic Considerations

The spectroscopic selectivity of the $\left({ }_{\mathrm{L}} \mathrm{i}, \mathrm{B}_{\mathrm{B}}\right)$ reaction denonstrates that it is predominantly a direct, single-step pickup reaction, wich would be expected by the high energy (over $13 \mathrm{kreV} / \mathrm{nucleon}$) employed in these studies. This selectivity illustrates the importance of kinenatic aspects in detemining the reatures of the reaction. We will explore in this Section the effects of kinenatic variables on the angular distribtions of this reaction, and in the following section their effect upon the transfer amplitudes.

Rinematic effects upon angular distributions can be seen in two extreme linits of the degree of localization of the incowing wave-packet Sc 73, Sc 74b, Sc 75). A light-ion direct reaction has an extended projectile, emphasizing the particule's wave nature. Fhis axtended projectile, along with the limited la's of the transition, leads to
a diffractive angular distribution. "Traditional" heavy-ion reactions have possessed a localized incoming wave-packet, emphasizing the projectile's particle character. In these heavy-ion reactions the wavelength of the projectile is much less than the interaction radius ($\mathrm{R}_{\text {int }}$) (which is slightly larger than the touching radius of the two spheres) and $R_{\text {int }}$ is large enough so that the effective potential felt by the incoming and outgoing particles is primarily the Coulomb potential. Accordingly, the transition yield is maximized by the greatest overlap of the incoming and outgoing Coulomb orbits. (This matching condition differs in emphasis from the conditions of Brink's formulism, which will be discussed below. In the present approach, the Coulomb orbits of the incident and outgoing particles are well matched, while in the discussion below the orbits of the cluster, with respect to the core in the initial and final systems, are matched. In general, the requirements of these two conditions are different, although in many cases the consequences are similar.) Interactions that occur at a distance closer than $R_{\text {int }}$ are absorbsd into the compound system, while for those further out than $R_{\text {int }}$ the transition probability is reduced by the exponential fall-off of the nucleon probability densities. This leads to a bell-shaped angular distribution, with the maximum probability at a radius corresponding to the grazing angle $\left(\theta_{c}\right)$.

These conditions for either a diffractive or a Gaussian angular distribution can be expressed in terms of kinematic variables. The critical variables are the wavenumber $(k), R_{i n t}$, the grazing I-values (roughly $k^{\circ} R_{i n t}$) or the number of contributing partial waves, and the sommerfeld parameter (7). (These kinematic parameters are defined
in Appendix B-1.) A Gaussian distribution axises when the pavelength is much less than $R_{i n t}$ or equivalently $k^{\circ} \mathbb{R}_{\text {int }} \gg I$ (and accordingly. there are many contributing partial waves) and when there is a well defined Coulomb orbit for the incoming and outgoing particles, or $\eta \gg 1$ 。

For high energy heavy ion reactions, such as ($\left.6_{6}{ }_{8}{ }^{9}{ }_{3}\right)_{0}$ on light targets the angular distributions follow a simgleg manotonically decreasing pattern with increasing angle as shom hamig. M m-1 (see Bi. 67, Na 73, Yo 73, D0 65, DO 66, Gr 70, and 8n 74). In these cases $k \cdot R_{\text {int }} \gg 1$, but $\eta \approx 1$. This distribution shave might be viewed as axising from the grawing angle being at an incocessibly fownard angle or equivalently from the localized particles agaim efther forming a compond system beiow some $R_{\text {int }}$ or beyond $\mathrm{S}_{\text {int }}$ saming the exponentially decressing nuclear tail density, but with no focusirg of che projectile onto a particular coulonb orbit at R_{in} fow a gartain θ_{0} wacase of the los n n.

The (${ }_{\mathrm{Lj}}, 8_{\text {B }}$) reaction exhibits this monctenicalty decxeasing angular distribution on light targets (see Section xy): as might be expected from its kinenatic parameters (see Appendix 8 - 2 for a listimg of the variables of interest for sone representacive bargets foudied with this reacticn). Fror the ($6_{\mathrm{Li}}, 8_{\mathrm{B}}$) xeaction on y-sheil texgets. $K \cdot R_{\text {int }} \sim 30, \eta \sim 1, \theta_{c} \sim 5^{\circ}\left(c_{0} m_{0}\right)_{0} \Delta \theta_{\min } \sim 10^{\circ}\left(\mathrm{com}_{0}\right)_{0}$ and $\mathrm{I}_{1} \sim 7$. Finally, it should be noted that on the wach heaviex taxges ${ }^{2 A}{ }^{2}$ Na, where n was quite large, the angular distribution was bebe expected bell-shaped poak at the graming angle (we 75) 。Rucordingly, the argular

XBL.769-10511

Ijg. III-1. Angular distributions for one, two, and three nucleon reactions induced on a ${ }^{12}$ C target (An 74): (a) Reactions induced with a $114 \mathrm{MeV}{ }^{12} \mathrm{C}$ beam, and (b) reactions induced with a $100 \mathrm{MeV}{ }^{10} \mathrm{~B}_{\mathrm{B}}$ beam. (c) Differential cross sections for a range of transfer reactions as a function of transferred momentum. The theoretical curves of q^{-3} and q^{-4} are based upon the calculations of Dodd and Greider (Do 65, Do 66, Gx 70).
of the reaction, instead of conveying structural information. spectroscopic information can be obtained froin this reaction only in the relative transition strengths.

E. Relative Kinematic Hindrances

To extract spectroscopic structural information from the relative transition strengtras, it is necessary to be able to estimate the dependence of the transfer amplitudes upon the 3 (or x) of the reaction and the particular gryalues or the transivion. In this Section we will discuss an approach chat provides an estinnte of the relative hindrance factors of transitions as a function of the properties of the final states in the residual nucleus.

These hindrance factors are anslogous to the transfer amplitudes of the transition matrix element that were discussed in Section A. In light-ion twonucleon transfer reactions the transfer amplitudes axe calmated by Distorted Wave Bom Approxination (DwBA) computer codes, such as bwock (Nu 74 am). We will rot envloy this approach because the degree of manentum mismething calls into guestion its utility: moreover, because of the novelty of highenergy lithiun beams, the apropriate optical wolel paxameters are unavailabie: and, rinally, the magnitude of the recoil temus (Einite range effects) in these systers indicates that a more sophisticated (and costly) bund code such as Lown (0x 73), which includes xecoil afects, should be employed. A brief test of buth concinmed that it did not reproduce the axperimentally detemined angular distributions, and suggested that the kinenatic term in the transition matris element is only slightly deperdent upon the 3 of the transitions. (whese will be described
as simple calculations since they employed optical model parameters from $135 \mathrm{MeV}{ }^{6} \mathrm{Li}$ scattering on ${ }^{28} \mathrm{Si}$ (GO 75) for both the ${ }^{6} \mathrm{Li}$ and ${ }^{8}{ }_{\mathrm{B}}$ particles in this reaction on ${ }^{12} \mathrm{C}$, ignored finite range effects, treated both ${ }^{6}{ }_{\mathrm{Li}}$ and ${ }^{8}{ }^{B}$ as spinless particles, and were not optimized by varying the parameters to describe the observed angular distributions.) It has been suggested (An 74) that, with the assumption that the transfer occurs near the surface of the target nucleus, the magnitude of the quantity $k_{o} \cdot R_{t}$ (where k_{o} is the wavenumber of the transferred cluster and R_{t} is the target radius) provides a check of the size of recoil effects, since this quantity is approximately equal to the phase factors (which contain the recoil effects) in the transition matrix element of the formalism of Dodd and Greider (Gr 70, Do 65, DO 66). Recoil effects are negligible if $k_{0} \cdot R_{t}$ is much less than 1 , but for the $\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right)$ reaction on lp-shell targets this quantity is about 5.

All of these difficulties are circumvented by employing a semiclassical treatment (SCT) of the transfer amplitudes. This approach has been generally successful for reactions with similar kinematic conditions (An 78), although these conditions might seem to indicate that a SCI would not be adequate (see Section D). This theory is based upon a series of criteria that have been proposed as a measure of the relative hindrance (Br 72). These rules are for a reaction

$$
a_{1}+c_{2}=\left(c_{1}+k\right)+c_{2} \rightarrow c_{1}+\left(c_{2}+k\right)=c_{1}+a_{2}
$$

where a cluster " k " is transferred from a beam " a_{1} " to a target ${ }^{\text {" }} \mathrm{C}_{2}$ " forming a Einal nucleus " a_{2} " and an outgoing ${ }^{\text {" }} \mathrm{C}_{1}$ ". (To treat pickup reactions in this formalism one uses the time-reversed reaction.)

The initial and final states of the cluster with respect to the core are described by

$$
\psi_{1}=u_{1}\left(r_{1}\right) \Psi_{1_{1} \lambda_{1}}\left(\theta_{1}, \phi_{1}\right)
$$

for k in a_{1} and

$$
\psi_{2}=u_{2}\left(x_{2}\right)^{x_{1}} 1_{2} \lambda_{2}\left(\theta_{2}, \phi_{2}\right)
$$

for k in a_{2}, where $u_{1}\left(s_{1}\right)$ and $u_{2}\left(r_{2}\right)$ are radial wavefunctions and $Y_{1 \lambda}{ }^{\prime}$ s are spherical hammics. For this reaction system, the optimum kinemacic matching occurs when

$$
\begin{equation*}
\text { 1. } \Delta K=k_{0}-\lambda_{1} / R_{1}-\lambda_{2} / R_{2} \sim 0 \tag{TIT-9}
\end{equation*}
$$

where k_{0} is again the wavenumber of the transferred cluster, the λ_{i} 's are the substates of the cluster's total angular momentum relative to the cores, and the $R_{i}{ }^{\prime} s$ are the radius of the beam and the target. The above equation requires that the y-component of the manentum of the transerred cluster should be alnost conserved (see Fig. III-2 for: the coordinate systen ewployed).

$$
\text { 2. } \Delta L=\lambda_{2}-\lambda_{1}+0.5 k_{0}\left(R_{1}-R_{2}\right)+Q_{\text {eff }} R / h V \sim 0
$$

Where the expression for Qeff is Iisted in Avpendix B-1. This condition requires that the change in the 2 component of the total angular momentum be almost 0 , or that the total angular momentam be oonserved within the limitations of the uncertainty principle.

$$
\text { 3. } \begin{aligned}
1_{1}+\lambda_{1}=\text { even } \\
1_{2}+\lambda_{2}=\text { even }
\end{aligned}
$$

XBL769-10512

Fig. III-2. Co-ordinate system employed in this semi-classical approach.
where 1_{1} and 1_{2} are the total angular momentum of the cluster with respect to the cores (for a spinless cluster) and λ_{1} and λ_{2} are the magnetic substates of these vectors in the initial state ($l_{1} \lambda_{1}$) and in the final state $\left(l_{2} \lambda_{2}\right)$. This condition reguires that the transferred nucleon be near the reaction plane, or that $\theta_{1}=\theta_{2}=\pi / 2$ and $\phi=0$ in the wavefunctions ψ_{1} and ψ_{2}, since $Y_{1 \lambda}(\pi / 2,0)=0$ unless $1+\lambda$ is even.

Given these equations, one can derive an expression that incorporates these conditions and calculates relative hindrance factors. The transition probabilicy from an initial state $\left(l_{1} \lambda_{1}\right)$ to a final state $\left(l_{2} \lambda_{2}\right)$ can . be expressed (An 74) by

$$
\begin{array}{r}
P\left(\lambda_{2}, \lambda_{1}\right)=P_{0}(\mathrm{R})\left|Y_{I_{1} \lambda_{1}}(\pi / 2,0) Y_{I_{2} \lambda_{2}}(\pi / 2,0)\right|^{2} \mathrm{x} \\
\exp \left[-\left(\frac{R_{\Delta K}}{\sigma_{1}}\right)^{2}\left(\frac{\Delta L}{\sigma_{2}}\right)^{2}\right] \tag{III-9}
\end{array}
$$

where ΔK and ΔL were defined in conditions 1 . and 2. , the widths of σ_{1} and σ_{2} are roughly π and $(\gamma)^{1 / 2}$ respectively, with $\gamma^{2}=\pi_{k} \in / \hbar^{2}$, and C is the average of the binding energies of che clusters in the initial and final nuclei (but both are typically treated as adjustable parameters with $\left.\sigma_{1}=\sigma_{2} \sim 2.5\right)$, R is the couching radius, and $g_{0}(R)$ is a function of the radial wavefunctions and k. This assumes that the cluster k has zero spin, the centers of the nuclei c_{1} and c_{2} move along well defined classical paths; and the zwais is perpendicular to the reaction plane.
rhis approach can be extended to include the general case in which the cluster and the cores both have non-zero spin (see An 74). For a cluster with spin S_{k} and isospin T_{k} and angular momentun configurations
$\left(L_{1} J_{1} M_{1}\right)$ and $\left(L_{2} J_{2} M_{2}\right)$ in the initial and final nuclei, the transition probability is

$$
\begin{aligned}
& P_{21}=\frac{2 J_{2}+1}{2 J_{c_{2}}+1} \sum_{J_{1} M_{1}} \frac{1}{\left(2 J_{1}+1\right)\left(2 J_{2}+1\right)} \sum_{L_{2} L_{2} L_{2} L_{k} T_{k}} \\
& \mid B_{S_{k} T_{k}}\left(J_{2} L_{2} M_{2}, J_{1} L_{1} M_{1}\right) \theta^{(1)}\left(L_{1} S_{k} T_{k} J_{1}\right) \theta^{(2)}\left(L_{2} S_{k} T_{k} J_{2}\right) \\
& \left.\left\langle\mathrm{T}_{2} \mathrm{~T}_{3} \mathrm{a}_{2} \mid \mathrm{T}_{\mathrm{C}_{2}} \mathrm{~T}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{k}} \mathrm{~T}_{3_{k}}\right\rangle\left\langle\mathrm{T}_{\mathrm{a}_{1}} \mathrm{~T}_{3} \mathrm{a}_{1} \mid \mathrm{T}_{\mathrm{C}_{1}} \mathrm{~T}_{3} \mathrm{C}_{1} \mathrm{~T}_{\mathrm{k}} \mathrm{~T}_{3}\right\rangle\right|^{2}
\end{aligned}
$$

This expression consists of the spectroscopic amplitudes (i) for the decomposition of $a \rightarrow c+k$ for particular states of k described by $\mathrm{L}_{\mathrm{i}} \mathrm{S}_{\mathrm{k}} \mathrm{T}_{\mathrm{k}} \mathrm{J}_{\mathrm{i}}$, Clebsch-Gordon coefficients (symbolized by $\left\langle\mathrm{T}_{\mathrm{a}_{1}} \mathrm{~T}_{3_{a_{1}}}\right| \mathrm{T}_{\mathrm{C}_{1}} \mathrm{~T}_{3_{\mathrm{C}}} \mathrm{T}_{\mathrm{k}} \mathrm{T}_{3_{k}}$)) for coupling the isospin vectors, and a transfer amplitude factor $\mathrm{B}_{\mathrm{S}_{\mathrm{k}} \mathrm{T}_{\mathrm{k}}}$ for each transition term between states $\left(J_{1} L_{1} M_{1}\right)$ and ($J_{2} L_{2} M_{2}$). This transfer amplitude factor is relation to expression (III-9) by
$\mathrm{B}_{\mathrm{S}_{\mathrm{k}} \mathrm{T}_{\mathrm{k}}}\left(\mathrm{J}_{2} \mathrm{~L}_{2} \mathrm{M}_{2}, J_{1} \mathrm{~L}_{1} \mathrm{M}_{1}\right)=\sum_{\lambda_{1} \lambda_{1} \mathrm{~m}_{s}}\left\langle\mathrm{~J}_{1} \mathrm{M}_{1} \mid \mathrm{I}_{1} \lambda{ }_{1} \mathrm{~S}_{k} \mathrm{M}_{\mathrm{s}}\right\rangle$

$$
\left\langle J_{2} M_{2} \mid L_{2} \lambda \lambda_{2} S_{k} M_{5}\right\rangle P\left(\lambda_{2}, \lambda_{1}\right)
$$

with some moxe Clebsch-Gordan coefficients and another sum over magnetic substates (see An 7A for a more detailed derivation).

This expression (III-10) is evaluated by the computer code HIPROB (Mu 75). The quantity $P_{O}(R)$ in expression (III-9) is calculated by a standard Coulonb bound-state wavefunction routine. The results of these calculations will be discussed in Section IV; employing the parameters listed in Table III-A.

Table ITI-\&. Fnput perambers for the progron mitus.

$$
\sigma_{1}=o_{2}=2.5: \sigma_{0}=1.4 \mathrm{~m}
$$

	core plus cuuster systen				Bome state wave Eunction Vown rion Saron potenciav								
	\pm	uster	Joore*	Sernal	Noces	Σ	3	S	v_{x}	5	$a_{\text {r }}$	350	V_{80}
$3=0$													
Inicial	0	0	0	0	$\underline{1}$	0	0	0	-i.	1.25	0.65	25.0	0
Stras	2	0	2	2	0	2	2	0	-1.	2.25	0.55	25.0	0
$\leq=2$													
Iniclai	2	0	0	2	0	2	2	0	-1.	1.25	0.65	25.0	0
Tinal Same as above													

This çuntity is not a cirect inpur parameter.

It is possible to qualitatitively evaluate conditions 1 and 2 for their effects upon the reaction selectivity. Expression (1),

$$
\begin{equation*}
\Delta K=k_{0}-\lambda_{1} / R_{1}-\lambda_{2} / R_{2} \sim 0 \tag{1}
\end{equation*}
$$

for this $\left({ }^{6} \mathrm{Li},{ }_{\mathrm{B}}^{\mathrm{B}}\right.$) reaction on lp -shell target can be reduced to

$$
k_{0} R_{1}-\lambda_{1}-\lambda_{2} \sim 0
$$

since $R_{1} \sim R_{2}$. Typically, the equivalent stripping reaction for ${ }^{6} L i$ on lp-shell targets has a $k_{o} R_{1} \sim 5$, so we have

$$
\begin{equation*}
5-\lambda_{1}-\lambda_{2} \sim 0 \tag{1}
\end{equation*}
$$

Similarly, expression (2),

$$
\begin{equation*}
\Delta L=\lambda_{2}-\lambda_{1}+0.5 \mathrm{k}_{\mathrm{O}}\left(\mathrm{R}_{1}-R_{2}\right)+Q_{\text {eff }} \mathrm{R} / \hbar v \sim 0 \tag{2}
\end{equation*}
$$

can be reduced to

$$
\lambda_{2}-\lambda_{1}-5 \sim 0
$$

Both expressions, if solved simultaneously, are zero for $\lambda_{1}=0$ and $\lambda_{2}=5$. For allowed values of both λ ' s, expression (1) is smallest if $\lambda_{2}=\lambda_{1}=-2$, and expression (2) is smallest if $\lambda_{2}=-\lambda_{1}=2$, which are mutually exclusive. The minimum value of the sum of expressions (1) and (2) is when $\lambda_{1}=0$ and $\lambda_{2}=2$. The transition strength will be proportional to the negative exponent of the sum of the squares of these expressions and other terms will not be very significant. Since pickup reactions are treated by their equivalent stripping reactions, λ_{1} is the magnetic substate of the two-protons with respect to the actual target core, and therefore, relative transition strengths will be comparable for $\mathrm{L}=0$ or 2 (or 1). However, with higher excitation energy $Q_{\text {eff }}$ increases, so that expression (2) will becone misnatched.

Therefore, there will be a general decrease in relative transition strengths with increasing excitation.

This kinenatic dependence is in contrast to the stripping reactions reported in in 74 , since in these cases the hindrance was minimized at some higher excitation energy. The transition probabilities for these stripping reactions resembled Gaussian distributions and the peak in these colculations corresponded to the observed dominant transition. Moreover, in these stripping reactions, lower J transitions were hindered relative co high-spin states. For these pickup reactions the transition probabilities are simply the tail regions of the Gaussian distributions. The slight differences in the transition strength for the various spin transitions is reproduced by exact calculations of expression (TIT-10) and also by DNUCK calculations.

In sumary, we have demonstrated that the transfer amplitude term in the transition matrix elenent enhances low excitation levels and depends only slightly upon the spin of the transition. Accordingly, the observed transition strengths within a limited range of excitation anergy are a reasonable measure of the relative spectroscopic factor. This is useful to note for Gection IV, where the energy spectra will be presented. Also, in section N, we will present some calculations of the total transition strength (expression III-10) and compare these with the observed relative yields.

IV. EXPERIMENIAL RESULIS

As discussed in the previous section, the observed relative yields to levels in the final nuclei of the $\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right)$ reaction are roughly indicative of the two-proton spectroscopic amplitudes of these states. The energy spectra, which will be presented in this section, will indicate these relative transition strengths, since these relative yields are independent of angle. The selectivity of the two-proton transfer will demonstrate that this reaction proceeds primarily through a direct, single-step pickup. In general, the dominant observed transitions are only to levels with a significant predicted two-nucleon spectroscopic factor. The observed angular distributions, which will also be presented here, illustrate the lack of any obvious spectroscopic utility of this aspect of the reaction. A summary of the experimental investigations is presented in Table IV-1.

Excitation energies and the associated spins and parities of the levels populated in this reaction were obtained by comparing the observed excitation energies to the previously measured ones (tabulated in Aj 74, Fi 73, En 73, etc). The uncertainties in the measured excitation energies indicate primarily the extent of reproducibility in these observations. Similarly, it should again be noted that the uncertainty irdicated in the angular distributions represents only the statistical error; the absolute error could be as much as 30%.

As a measure of the strength of anti-symetric transfer we will employ both the 1^{+}levels in ${ }^{18} \mathrm{C}$ and ${ }^{8} \mathrm{Li}$ and overall comparison of the spectroscopic selectivity of the $\left({ }^{6}{ }_{L i}, 8_{B}\right)$ and (p, t) reactions.

Table IV-1. Sumary of exper imental investigations.

Targer	Q-Walue (MEV)	$\begin{gathered} \text { Eeam Energy } \\ (\text { May }) \end{gathered}$	Angular Sculied (cieg ${ }^{(8)}{ }^{\text {c.m. }}$)	Final Nucleus	Observed Energy Leveis (FreV)
$6_{\text {Li }}$	-21.17	93.3	31~-46	${ }^{\text {P/ }}$	0.0
$7_{\text {Li }}$	$-25.02^{\text {* }}$	93.3	27-50	5	---
9 se	-23.597	93.3	32-49	${ }^{7}$ fe	0.0
9	-23.5974	80.0	22-80	7 zre	0.0
10_{8}	-17.7300	80.0	22-264	$8_{\text {Li }}$	0.0,1.0,2.2,5.5
1_{B}	-25.1330	80.0	20-32	$9_{\text {ci }}$	0.0,2.6, $6.2,6.4$
${ }^{12} \mathrm{C}$	-21.4429	80.0	12-89	$10_{\text {be }}$	0.0,3.3,5.9,7.5,9.4,11.8
12 C	-21.8829	93.3	18-29	$10^{\text {Be }}$	0.0,3.3.5.9
${ }^{13} \mathrm{C}$	-25.8865	80.0	18-35	$11_{8 e}$	0.3.2.7,4.0
160	-16.5914	80.0	17-29	${ }^{14} \mathrm{C}$	0.0,6.1,6.9,8.3,10.4
${ }^{16} 0$	-16.5914	93.3	15-25	${ }^{14} \mathrm{C}$	0.0,6.9.8.3,10.6
2**9\%	-14.7410	80.0	14-30	22,	$\begin{aligned} & 0.0,1.3,3.4,4.5,5 . A_{0} \\ & 5.9,6.3,6.9,7.5 \end{aligned}$
26909	-19.1002	80.0	1i-28	24 Ne	0.0,2.0,3.9,7.5,8.9

This Q-value is for transitions to a final 5 systen with zero binding energy for breakup to $t+2 n$.

Other tests are possible, such as the predicted $2_{3}{ }^{+}$state in ${ }^{10}$ Be (see Table IV-2), but this work seems to have utilized the most satisfactory test cases: The results for the $8_{\text {Li }}$ case are particularly unambiguous since the location of at least the $1_{1}{ }^{+}$state is well established (unlike the cases in ${ }^{11}$ Be and ${ }^{9}$ Li) and this level is at a low excitation energy so that the configuration should be reasonably pure (unlike the $2_{3}{ }^{+}$state in ${ }^{10}$ Be where even the $2_{2}{ }^{+}$strength is fragmented). While the 1^{+}level in ${ }^{14} \mathrm{C}$ is not definitely located and is at a high excitation energy, it has a very large predicted transition strength so that it should clearly be in evidence (see Table IV-3). Finally, the overall comparison between the spectroscopic utility of the $\left({ }^{6} L i, 8_{B}\right)$ and (p, t) reactions does not depend upon any one level, so that it removes the ambiguity associated with the uncertainty in the configuration of any particular level.

This section is divided into four parts. The first portion consists of data for the $T_{z}=0$ lp-shell targets ${ }^{12} C,{ }^{16} O$, and ${ }^{10} B$, which will be compared to the earlier data from the analogous (p, t) reaction on these targets. The second part contains data from reactions on the neutron-excess targets ${ }^{13} \mathrm{C}$ and ${ }^{11_{B}}$, which will be compared with data from the (t, p) reaction leading to the same final nuclei. The third portion consists of data for reactions on ${ }^{9} \mathrm{Be},{ }^{6} \mathrm{Li}$, and ${ }^{7} \mathrm{Li}$ targets, which lead to unbound final systems that have yet to be completely characterized in a non-controversial and unambiguous fashion (Aj 74, Fi 73). It should be noted that the hierarchy among the three lpshell sections reflects a trend towards an increasing neutron to proton ratio with a corresponding decrease in the knowledge of the final system.

The ditformetial croxs gecticms incrrashet momotonically usth male, see text.

Finally, the fourth part consists of data for the 25 -ldmshell targets ${ }^{24}{ }^{4} \mathrm{Mg}$ and ${ }^{26} 6_{\mathrm{Mg}}$, which represent an example of the possible extension to heavier targes of the work presented in the earlier parts. In all cases these results will be compared to available theoretical spectroscopic amplitudes and level predictions.

$$
\text { A. } Y_{2}=0 \text { 10-She } 11 \text { targets }
$$

1. The ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li}^{8}{ }^{8}\right)^{10_{\text {Be Reaction }}}$

An energy spectrum of the ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{LI}_{\mathrm{i}}{ }^{8} \mathrm{~B}\right){ }^{10}$ Be reactions is shown in Fig. IV-la. These data were collected with an 80.0 MeV beam from a $0.22 \mathrm{mg} / \mathrm{cm}^{2}$ target. This particular spectrun is a composite of data collected between $\theta_{\text {lab }}=1.2 .8^{\circ}$ and 16.8°, in which the data were kinematically shifted to $\theta_{\text {lab }}=15.8^{\circ}$. Data were also collected with a 93.3 MeV beam energy as a calibration for the studies employing 6_{Li} and ${ }^{7} \mathrm{Li}$ targets; both the selectivity and the yields were essentially unaltered by the difference in beam energy (as is expected for a direct reaction at similar bombaxding energies).

As irdicated by this spectrun, the Cominant transitions are to the 0^{+}ground state and to the first excited level, at $3.36 \mathrm{MeV}\left(2_{1}{ }^{+}\right)$. The next peak $\left(2_{2}{ }^{+}\right.$at 5.96 MeV$)$ probably corresponds to the 2^{+}member of the $2^{+}, 1^{-\infty}$ doublet at this excitation energy, since the 1^{-1} level must have a cross-shell configuration and this type of state would be unlikely to have substantial parentage in the ${ }^{12} \mathrm{C}$ ground state wave function. Weaker transitions are seen to a state at $7.54 \mathrm{meV}\left(2_{3}{ }^{+}\right)$, a probable 2^{4} level at 9.4 mev (Aj 74), and a known state at 11.8 MeV ercitation. rhese experimental resules are sumarimed in table IV-2. The rather featureless angulax distributions of the first two transitions

Fig. IVal. (a) A composite spectrum of the ${ }^{12} C\left({ }^{6}{ }_{\text {Li }},{ }^{8}{ }_{B}\right)^{10} \mathrm{Be}_{\mathrm{B}}$ xeaction between $\theta_{1 a b}=12.8^{\circ}$ and 16.8° (with $E\left(\sigma_{\mathrm{Li}}\right)=80 \mathrm{MeV}$), in which the data were kinematically shifted to $\theta_{\text {lab }}=15.8^{\circ}$. (b) The ${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{t})^{10} \mathrm{C}$ reaction induced by 54 MeV protons at $\theta_{\text {lab }}=19.5^{\circ}$ (as 75). (This angle lies at the first minimum in the ${ }^{10} \mathrm{C}$ g.s. angular distribution.)
are shown in parts (a) and (b) of Fig. IV-2.
One sees a strong similarity between these results and those of the ${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{t}){ }^{10} \mathrm{C}$ reaction (As 75 , Be 67), which are shown in Fig. IV-1b. These data were collected at the first minimum in the ${ }^{10} \mathrm{C}$ ground state angular distribution. The conparison between these energy spectra suggests the location of the analog levels in these two final nuclei. Both of the higher excited levels at 5.28 and 6.60 MeV in ${ }^{10} \mathrm{C}$ have angular distributions which are consistent with $\mathrm{L}=2$ (As 75). In the first case this supports the suggestion that the 5.96 MeV level, populated in the ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right){ }^{10_{\mathrm{Be}}}$ reaction, corresponds to the 2^{+}member of the $2^{+}, 1^{-}$doublet (denoted by $2_{3}{ }^{+}$). In the second case, it supports the suggestion that the 6.60 MeV level in ${ }^{10} \mathrm{C}$ is the analog of the known 2^{+}state $\left(2_{3}{ }^{+}\right)$at 7.54 MeV in ${ }^{10}$ Be. Finally, analogs of the two higher lying transitions (at 9.4 and 11.8 MeV excitation in ${ }^{10} \mathrm{Be}$) were seen as a by product of the ${ }^{14} \mathrm{C}(\mathrm{p}, t)^{12} \mathrm{C}$ investigation (As 76) due to ${ }^{12} \mathrm{C}$ target contamination. Although the differing transfer emplitudes lead to a relative enhancement of the yield to higher lying levels in the $\left({ }^{6}{ }_{L i}, 8_{B}\right)$ data compared to the (p, t) reaction, there is a strong similarity in the selectivity of these two reactions.

The various theoretical predictions for both the energy levels and the transition strengths for two-nucleon transfer are also summarized in Table IV-2. (As the transfer amplitudes are ignored, the comparison between these predicted transition strengths and the observed yield is meant to be very qualitative.) One sees reasonable qualitative agreement between the various level predictions and the experimental results. Major disagreenent batween theory and experimental results

Fig. NV-2. Angular distributions for reactions induced by an 80 MeV 6_{Li} bearn: (a) ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right)^{10_{\mathrm{Be}}} \mathrm{g} . \mathrm{s}_{\mathrm{o}} ;$ (b) ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right)^{10_{\mathrm{Be}}}{ }^{*}$ $\left(3.37 \mathrm{MeV}, 2^{+}\right)$; (c) $\left.{ }^{16} \mathrm{O}^{(}{ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right)^{14} \mathrm{C}$ g.s., and
(d) ${ }^{13} \mathrm{C}\left({ }^{6} \mathrm{Li}_{\rho}{ }^{8}{ }_{\mathrm{B}}\right)^{11_{\mathrm{Be}}}$ * $\left(0.320 \mathrm{MeV}, 1 / 2^{\infty}\right)$ 。
appears for the transition to the $2_{3}{ }^{+}$level (at 7.54 MeV), which is not an expected lp-shell level; also, the $2_{2}{ }^{+}$state at 5.96 MeV has a large spectroscopic factor (relative to the $2_{1}{ }^{+}$level), but a relatively weak transition strength. The $2_{3}{ }^{+}$state is felt to be primarily an sd-shell "intruder" level (Al 69). Its population in this reaction might indicate that the predicted $2_{2}{ }^{+}$lp-shell configuration is split among the observed $2_{2}{ }^{+}$and $2_{3}{ }^{+}$states, which could explain the observed transition strength to the $2_{2}{ }^{+}$level.

The close correspondence between the theoretical predictions and the experimental results would suggest that the theoretical $2_{3}{ }^{+}$state corresponds to the probable 2^{+}level at 9.4 MeV excitation and that the theoretical $\mathrm{O}_{2}{ }^{+}$state corresponds to the 11.8 MeV peak; this would be consistent with these levels being populated, along with the other transitions seen in this work, in the ${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li}, \alpha\right){ }^{10} \mathrm{Be}$ (Gl 71) and $9_{\mathrm{Be}}\left(\mathrm{p}, \pi^{+}\right)^{10}$ Be (Da 73) reactions. While the $2_{3}{ }^{+}$state may be populated by anti-symmetric transfer (see Table IV-2 for the predicted relative magnitude of the symmetric and anti-symnetric transfer components), it is more likely that its possibly relative enhanced yield reflects either the effect on the transition strength of either admixtures in the ${ }^{12} \mathrm{C}$ ground state wave function or configuration mixing in the Einal level. Of course, these two transitions could also correspond to the predicted two 1^{+}levels, whose locations have not been experimentally determined, but this is rather unlikely, as will become obvious fram the discussion of similar states in ${ }^{14} \mathrm{C}$ and ${ }^{8} \mathrm{Li}$.

2. The ${ }^{16} \mathrm{O}\left({ }^{6} \mathrm{Li},{ }^{8}{ }_{\mathrm{B}}\right)^{14}$ C Reaction

An energy spectrum of the ${ }^{16} O\left({ }^{6} \mathrm{Li},{ }_{8}\right)^{14} \mathrm{C}$ reaction is shown in Fig. IV-3a. These data were collected with a 93.3 MeV beam from a 168 oxidized (by atcan) $0.3 A_{\mathrm{mg}}^{\mathrm{man}}{ }^{2} 7_{\mathrm{Li}}$ target at $\theta_{\text {lab }}=13.5^{\circ}$. Carbon contaminatica gave rise to the ${ }^{10}$ Be states; the spectrum is cut-off before possible transitions could arise from the ${ }^{7}$ ri component of the target. Data were collected at 80.0 Mgev with both a $0.21 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{SiO}_{2}$ target and a 1008 oxidized (by atom) $142_{\text {nd }}$ target. The reaction yield and selectivity again were essentially unchanged with the different beam energies.

The dominant transition is to the ${ }^{14} \mathrm{C}$ ground state and the next strongest transitions are to a series of 2^{+}levels at $7.01,8.32$ and 10.0 nev excitation. In this particular spectrum the ${ }^{10}$ Be contaminant state obscured possible further transitions to the 1 - level at 6.09 MeV and a 0^{+}state at 6.58 ReV (which is predominantly an ed-shell level (A] 59)), but these transitions were seen in the investigations with the other targets. By analogy to the ${ }^{16} \mathrm{O}\left(\mathrm{p}, \mathrm{t}^{14}{ }^{14} 0\right.$ reaction (Fl 71), shown in Fig . TV-3b, che would expect that the peak near 7.0 MeV corresponds to mot only the 2^{+}state at 7.01 MeV , but that is also has an unresolved component corresponding to the $3^{\text {me }}$ level at 6.73 MeV (this is sonsistent with both the measured excitation energy and width of this peak, which was often barely resolved from the transition to the 0^{+}state at 6.59 MeV) The experinental results are sumarized in table IV-3; the ground state angular distribution is shown in sig. TV-2C.

XBL 759-3889
Fig. IV-3. (a) An energy spectrum from a partially oxidized Li target for the $160\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right){ }^{14} \mathrm{C}$ reaction. These data were collected at $\theta_{\text {lab }}=13.5^{\circ}$ with a $93.3 \mathrm{MeV} 6_{\mathrm{Li}}$ beam. Carkon contamination gave rise to the ${ }^{10} \mathrm{Be}$ states. (b) The $16_{0}(\mathrm{p}, \mathrm{t}){ }^{140}$ reaction induced by 54.1 MeV protons at $\theta_{\text {lab }}=27^{\circ}$ (Fl 71).

Table rv-3. Stumeny of expecinential axi theoretical spsuits for ${ }^{18}$.

Preflicter inme										Trenstiticn Strenath9						
$300-2 y 1 r y$ Kram levels		teveris observed in This worl		s°	Esyarkita ${ }^{\text {b }}$	Bie ${ }^{\text {c }}$	$\pi \because e^{d}$	Fixton ursi collmanere ${ }^{-1}$	OBnen ans Rurath ${ }^{6}$	Cinea mai muash						
s°	(xy			5xac						5ex	Heco 0	Peg 2	[10 2			
0^{4}	0	-			0^{+}	-	0	$?$	\bigcirc	0	2.212	0	จ. 288	0	-	9.7 ± 0.8
1	\$. 0	6.0	50												0.5 ± 0.2	
0^{*}	6.59															
5	6.73															
0	6.00															
2	7.01	0.984	00	2	5.2	7.19	7.18	6.56	6.83	0	12.721	-	0	2.277	3.8 ± 0.9^{2}	
τ	7.30															
2^{*}	0.32	0.30	70												2.5 ± 0.3	
63,19	0.00															
$\left(2^{4}, 3\right)$	20.48	10.50	50												1.0 ± 0.3	
(8)	10.58															
	10.74															
(19)	11.35			1*	9.6	9.69	23.64	16.09.	9.09	0	0	0	9.001	0	≥ 0.5	
				0	12.9	5.8	5.52	16.68	23.83	0.786	0	2.212	0	0		
				28	15.3	7.63	9.37	16.72	15.19	0	2.277	0	*	12.721		
				2^{8}		9.25	12.\%									

[^0]As can be seen from Fig. IV-3b, the dominant transition in the ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{t})^{14} \mathrm{O}$ reaction is to the ${ }^{14} \mathrm{O}$ ground state. This level is followed in strength by the triplet of 2^{+}states. Finally, the two cross-shell 1^{-}and 3^{-}levels and the sd-shell 0^{+}state are also populated; thus, these higher-shell configurations are components of the ${ }^{16} \mathrm{O}$ ground state wave functions.

The theoretical predictions of the energy levels and transition strengths are also summarized in Table IV-3. The theoretical predictions of the energy levels are not completely comparable, since both Boyarkina (Bo 64) and, also, Cohen and Kurath (CO 70) employ calculations with only a lp-shell basis, while both True ($\operatorname{Tr} 63$) and Lie (Li 72) included configuration mixing from $2 s-1 d-s h e l l$ levels. These latter calculations agree more completely with the known levels. One effect of these higher configurations can be seen in the triplet of 2^{+}states, which is felt to arise from the strength of the 2^{+}configuration being split among these three levels (Fl 71, Tr 63, Li 71). This configuration has a very large spectroscopic factor, so this suggested fragmentation of the transition strength leads to better agreement between these results (and those of the (p, t) reaction (Fl 71)) with the predicted spectroscopic factors (Co 70).

Reactions on this target also provide a convenient test for antisymmetric transfer processes. The predicted 1^{+}level can only be porculated by anti-symnetric transfer (since $\Delta J=1$). It has been proposed by Kaschl (Ka 71) that this state is located in 14C at 11.29 MeV excitation (based upon results from the ${ }^{15} \mathrm{~N}\left(\mathrm{~d},{ }^{3} \text { He }\right)^{14} \mathrm{C}$ reaction).

This region is obscured by a contaminant peak at the angle shown in Fig. IV-3a, but no strong transition is seen to this level in any of the other spectra, indicating that anti-symnetric transfer does not play an important role in this reaction.
3. The ${ }^{10_{B 3}}\left({ }^{6} \mathrm{Li},{ }_{8}\right)^{8}{ }_{\mathrm{Li}}$ Reaction

An energy spectrum of the ${ }^{10_{\mathrm{B}}}\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right)_{\mathrm{Li}}$ reaction is shown in Fig. IV-4. These data were collected with an 80.0 MeV beam from a $0.14 \mathrm{ng} / \mathrm{cm}^{2}$ target; this particular spectrum is a composite of data collected between $\theta_{1 a b}=9.7^{\circ}$ and 20.3°, in which the data were kinematically shifted to $\theta_{\text {lab }}=9.7^{\circ}$. The ${ }^{14} \mathrm{C}$ levels arose from ${ }^{16} \mathrm{O}$ contamination of the target.

The dominant transition is to the 3^{+}level at 2.26 MeV . Weaker transitions are seen to the 2^{+}ground state, a 1^{+}level at 0.98 MeV , and to the known (Aj 74) state at 6.53 MeV excitation. These experimental results are sumarized in Table $\pi V-4$; the angular distributions are shown in eig. IV-5.

The same qualitative selectivity in the relative transition strengths was onserved in the ${ }^{10} \mathrm{~B}(\mathrm{p}, \mathrm{t}) 8_{\mathrm{B}}$ reaction (8 q 70), which is not reproduced here. This (p, t) study could only observe the lower-lying transitons, so that the analog of the 6.53 MeV state was not observed.

The various theoretical predictions of the energy levels and transition strengths are also sumarized in Table IV-A. In general, the theoretial calculations indicate that there should be an extremely high level density in 8_{Li} (and ${ }^{8}{ }_{\mathrm{B}}$), but relatively few states have been located. However, ${ }^{8} \mathrm{Li}$ is unbound above $\simeq 2 \mathrm{MeV}$, and several of

XBL768-3906

Fig. IV-A. A composite spectrum of the ${ }^{10_{B}}\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right)^{8}{ }_{\mathrm{Li}}$ reaction between $\theta_{l a b}=9.7^{\circ}$ and 20.3° (with $\mathrm{E}\left({ }^{6} \mathrm{Li}\right)=80 \mathrm{MeV}$), in which the data were kinematically shifted to $\theta_{\text {lab }}=9.7^{\circ}$. Oxygen contamination gave rise to the ${ }^{14} \mathrm{C}$ transitions.
$E_{6 i}=80 \mathrm{MeV}$

XRLT56-3207
gig. Ny. 5. nogular distributions for reactions incuced by an $30 \mathrm{Moy}{ }^{6} \mathrm{Li}$ beamo (a) ${ }^{10_{\mathrm{B}}\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right)_{\mathrm{Li}} \text { 9.5.: }}$

(c) $10_{\mathrm{B}}\left(6_{\mathrm{Li}}, 8_{\mathrm{B}}\right)_{\mathrm{IA}} \mathrm{B}^{2}(6.53 \mathrm{MeV})$ 。

Table VI-A. Surxery of exper imental and theoretical resultes for tit.

$\begin{aligned} & \text { Rrasen } \\ & \text { Levels } \end{aligned}$		Predicted Levels								Trensition strengens					$\begin{gathered} \operatorname{croses} \\ \operatorname{secticning} \\ 0^{\text {c.n. }} \sim 25^{\circ} \\ \mathrm{mb} / \mathrm{Br} \end{gathered}$									
		ianeis Cbsarved in this pack			sorarkirab	8arker ${ }^{\text {c }}$	$\mathrm{Ru}_{\text {unar }}{ }^{\theta}$	portom and colonemsher ${ }^{e}$	Onen and Kurath ${ }^{\text {t }}$	Comen end Rurach			(1) 1	mack										
30	H24	mV	\pm hev							$\underline{\max }$	max	Wab 0												
24	0	0		$2{ }^{*}$	0	0	0	0	0	0	0.732	0	0.295	1.488	2.3 ± 0.2									
1 *	0.8	0.93	40	14	1.2	0.83	0.92	1.53	0.91	0	0.002	0	0	0.808	0.5 ± 0.1									
3^{4}	2.26	2.24	28	$3{ }^{4}$	2.8	2.09	2.19	1.92	1.63	0.750	1.305	0.018	0.069	0.871	5.3 ± 0.4									
1	3.21			$1{ }^{4}$	3.0	2.65	4.28	5.37	2.78	0	0.021	0	0	0.873										
$\left(2^{*}, 3^{4}\right)$				$0{ }^{4}$	3.1	2.89	3.95	4.32	5.32															
	5.4			24	3.4	2.96	4.05	4.05	2.95	0	0.803	0	0.001	0.120										
				3^{4}	8.5				5.59	0.27	0.482	0.015	0.009	0.053										
				${ }^{+}$	4.6	4.33	5.74																	
				1	5.2		8.39	6.15																
				2	5.4	4.74	3.33	6.15																
	8.1			24	6.2																			
					6.3	6.51	7.81																	
	6.53	6.52	150	$4{ }^{4}$	8.9	5.57	3.79	6.39	5.55	0	0.346	0	0.010	0.33	1.6 ± 0.4									
	7.1																							
	(9.)																							
- mot. aj 76. b Ret. Do 64. c Nat. Be 66. - Ret. ku 760. - 2ef. No 71. (mef . 0770																								
f mef. 0070 . h The differential crose																								

the known states are quite broad, so that it would be difficult to identify many of these levels.
this rucleus provides a good test for the importance of antisymmetric txansfer, since both of the low lying I^{+}levels can be populated essentially solely through spatially anti-symmetric transfer. However, since the $1^{\text {th }}$ level at 0.98 MeV is weakly populated, little evidence for this transfer mode is seen. Sinilarly, if one assume that the secha 1^{*} gtate corresponds to the known spin l level (Aj 74) at 3.21 MeV, then this conclusion is further confimed Finally, one sees from the transition strengths that the 3^{+}state's strong population relative to the growd state also provides supporting evidence that anti-symetric cxansfer is unimoortant (since this 2^{+}level has a larger possible anti-symetric component than the $3^{\text {th }}$ state). In sumary, then, we have scen no evidence for anti-symmetric transfer either in the yield of the 1^{t} jevel in ${ }^{14} \mathrm{C}$, or the known 1^{+}state in 8_{Li}, or a possible 1^{t} level in $\beta_{\text {Li, }}$ or in owerall comparisons between the $\left(6_{\mathrm{mi}}, 8_{\mathrm{B}}\right)$ and the (p, t) reacticns.

The relative transition strengths of the ground state and the 3^{+}level indicate that the observed popilation ratio reflects the spectroscopic factors, instead:of solely the reaction kinenatics. The only other cases in the lp-shell where an excited state should be populated more strongly than the ground state are in transitions leading to ${ }^{11}$ Be (which will be discussed below) and those leading to
 which was employed in an attemped mass measuremant. ware comsistent with the population of the Eixst excited state, but conly an urger limit
could be determined for the ground state transition).
From the spectroscopic factors of Cohen and Kurath (Co 70), one could suggest that the 6.53 MeV level is either a $3+$ or a A^{+}state, and these high spins would be consistent with the known (Aj 74) narrow width of this level ($\leq 40 \mathrm{MeV}$).

$$
\text { B. } \mathrm{T}_{2}>0 \text { lp-Shell Targets }
$$

1. The ${ }^{13} \mathrm{C}\left({ }^{6} \mathrm{Li},{ }^{8} \text { B }\right)^{11}$ Be Reaction

An energy spectrum of the ${ }^{13} \mathrm{C}\left({ }^{6} \mathrm{Li},,_{\mathrm{B}}\right){ }^{11}$ Be reaction is shown in Fig. IV-6. These data were collected with an 80.0 MeV beam from a $0.14 \mathrm{mg} / \mathrm{cm}^{2}$ target; this particular spectrum is a composite of data collected between $\theta_{\text {lab }}=9.4^{\circ}$ and 20.3° for a total of $32,900 \mu \mathrm{C}$, in which the data were kinematically shifted to $\theta_{1 a b}=14.3^{\circ}$. The ${ }^{10} \mathrm{Be}$ and ${ }^{14} \mathrm{C}$ levels arose from the ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ contaminants in the target, respectively.

The dominant transition is to the first excited state of l_{Be}, a $1 / 2^{-\quad}$ level at 0.320 MeV excitation, which is the lowest lp-shell level (Aj 75). The predominant population of this state, instead of the known $1 / 2^{+}$ground state (Aj 75), was established by the known ${ }^{10}$ Be contaminant transitions. More weakly populated levels are seen at 2.69 and 4.0 MeV (this last peak may correspond to both members of the known doublet near this excitation). These experimental results are sumarized in rable IV-5; the angular distribution of the first excited state is show in Fig. IV-2d.

The selectivity of this reaction can be contrasted with that of the ${ }^{9} \mathrm{Be}(t, p){ }^{11}$ Be reaction (Aj 72), which populates all the known levels in ${ }^{\mu_{B e}}$. While the (${ }^{6} i_{i}{ }^{8}$) reaction can only populate lp-shell levels,
-65-

KBL. 759-3891A

Fig. IV-6. A composite spectrum of the ${ }^{13} \mathrm{C}\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right)^{11_{\mathrm{Be}}}$ reaction collected between $\theta_{\text {lab }}=9.4^{\circ}$ and 20.3° for a total of $32,900 \mu \mathrm{C}$ (with $E\left(6_{\mathrm{L}} \mathrm{i}\right)=80 \mathrm{MeV}$), in which the data were kinenatically shifted to $\theta_{\text {lab }}=1$. 3°. Oxygen contamination gave rise to the ${ }^{14} \mathrm{C}$ states.

$E_{6 L i}=80.0 \mathrm{MeV}$

XBL 7612-11201

Fig. IV-7. Angular distributions for reactions induced by an $80 \mathrm{MeV}{ }^{6}{ }_{\mathrm{Li}}$ beam: (a) ${ }^{11_{\mathrm{B}}}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right){ }^{9} \mathrm{Li}, \mathrm{g} . \mathrm{s}$. , and (b) ${ }^{9} \mathrm{Be}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right){ }^{7} \mathrm{He}$,g.s.

Trexe teveic ${ }^{3}$		Prenicter Levels						Tranatien serenget					
		covesc comerred In Thls wark		$\underbrace{*}$	Esambis	Noticn sers соіक	Ochen arx Kurstr ${ }^{\text {d }}$	Comen znd Rursth					
3^{\square}	Nef	\%	4 tev					s		mas 0	PNG 1	mata 2	
$12{ }^{4}$	0												
2/2-	0.38	0.30		$1 / 2^{-}$	0	0	0	2.959	0	0.090	0.001	d	$1.1 \pm$. 1
(2/2,3/2.5/4)	2.60												
(1/1,3/2,5/2) ${ }^{4}$	2.\%9	2.6	(6)	$3 / 2^{-}$	2.9	3.73	2.28	0	0.191	0	0.0i1	0.503	$0.2 \leqslant 0.1$
(1/2,3/2,5/21 ${ }^{+}$	3.61												
	3.80												
	3.85	4.00	100	$5 / 2^{-}$	3.9	3.68	8.65	-	1.842	-	0	1.059	0.2 ± 0.1
	5.25			$3 / 2^{-}$	7.6	6.45	8.93	0	1.395	0	0.002	0.599	
	(5.2s)												
	6.58	.		$7 / 2^{-}$	12.3		7.99						
	5.72												
	7.03												
	0.08												

Table iv-s. Surxary of experimental and theoretical resulta for ${ }^{9}$ Li.

Sncen Levels		tevele Cbeerved in this work		Predicted Levels						Tranaition strengthst							
						morton and	Cotren and Ruratht	Coken and Rurath					$\begin{gathered} \text { croas } \\ \operatorname{sectionsh}^{\text {cem. }} \sim 25^{\circ} \end{gathered}$				
J*	N00			mev	$\pm \mathrm{kev}$	3^{*}		Beyarkinab	Barker ${ }^{\text {c }}$	Klusar ${ }^{\text {d }}$	colonmmere	5 smg	0×6	mase 0	Fec 1	2ack	ab/gr
(3/2) ${ }^{-}$	0	0		3/2 ${ }^{-}$	0	0	0	0	0	0.667	1.443	0.022	0.143	1.984	5.8 ± 0.4		
(1/2)	2.69	2.59	100	$1 / 2$	2.1	2.89	2.22	3.23	3.88	0	0.032	0	0.110	0.229	0.6 ± 0.1		
	4.31	4.36	100	5/2	2.6	2.89	3.08	5.16	3.79	0	0.508	0.	0.155	0.042	0.7 ± 0.1		
	5.38			3/2	3.6	4.31	4.65	5.97	4.88	0.143	0.062	0.063	0.042	0.042	>0.3		
	6.81	5.38	120	7/2	5.4		5.20	6.81	6.18	0	0.001	0	0	0.094	0.8 ± 0.2		

which mast have negative parity, the (t, p) reaction can also populate states with higher configurations and positive parity. An example of such a level is the $1 / 2^{+}$ground state of $1_{\text {Be }}$. This unusual level ordering of a 2 s -ld-shell state belon the lp-shell levels has been explained by Talmi and Unna (Ta 60) as a consequence of the differing interaction energies of the $2 s_{1 / 2}$ and $l_{p_{1 / 2}}$ neutrons with the $l_{p_{3 / 2}}$ proton. The lack of population of the ${ }^{11}$ Be ground state by the ${ }^{13} \mathrm{C}\left(6_{\mathrm{Li}}, 8_{\mathrm{B}}\right)^{11}$ Be reaction is additional confirmation that the level at 0.320 MeV excitation is the lowest lp-shell state in 11_{11}. Finally, by the comparison of these two reactions we can suggest that the known levels at 1.79 and 3.41 MeV might have positive parity, since they are not populated in the $\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right)$ reaction.

These results can be compared with the predicted level spacings and eransition strengths shown in Table IVw-5. We have located three lposhell states below 5 NeV excitation, which agrees with all three calculations (given the lowest level at 0.320 MeV excitation). All three calculations predict a level order of $1 / 2^{\text {an }}$, $3 / 2^{-\infty}$ and $5 / 2^{\circ}$. While the predicted strength of the population of the $3 / 2^{-}$state is quite mall, these transition strengths are quite sensitive to small adniztures in the target around state wave function (Ku 76). 2. The ${ }^{11_{B}}\left({ }^{6}, i_{1} 8_{B}\right)^{9}{ }^{9}$ Reaction

An energy spectrun of the ${ }^{11_{\mathrm{B}}}\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right)^{9} \mathrm{Li}$ reaction is shown in rig. IVm. These data were collected with an 80.0 MeV beam from a $0.21 \mathrm{mg} / \mathrm{cm}^{2}$ target; this particular spectrum is a composite of data collected at $\theta_{\mathrm{jab}}=12.4^{\circ}$ and 16.4°, in which the latter spectrum was kinematically shifted to $\theta_{\text {lab }}=12.4^{\circ}$. The ${ }^{14} \mathrm{C}$ transition arose from

XBL768-3904

Fig. IV-8. A composite spectrum of the $\left.{ }^{11_{B}\left({ }^{6} L i, ~\right.}{ }^{8} B\right)^{9} \mathrm{Li}$, reaction collected at $\theta_{\text {lab }}=12.4^{\circ}$ and 16.4° (with $\left.E\left({ }^{6} \mathrm{Li}\right)=80 \mathrm{MeV}\right)$, in which the latter data were kinematically shifted to $\theta_{l a b} 12.4^{\circ}$. Oxygen contamination gave rise to the ${ }^{14} \mathrm{C}$ peak.

Toble TV-9. sumary of expermand and theoretical resuits for ${ }^{7}$ Re.

STow 5evelc		$\operatorname{sen} 1 \mathrm{coser}$ in the prots		Predictes tavela						Trasiliten strenseras					Cross secticnih ${ }^{\circ} \mathrm{C}$.四. $\sim 25^{\circ}$ pions
		s°	Eerraxim	serienc	Moser	noten x cosichamer ${ }^{2}$	nersent	Corses ent maren							
3	\%							290	$\pm 2 \mathrm{cc}$	5×20	5ax	nxas 0	[fact	Fin 2	
0		O		$3 / 2$	0	0	-	-	0	1.172	0.352	0.029	0	0.007	2.1 ± 0.2
				12	2.4	2.46	3.22	0.34	2.55	-	0.012	0	-	0.001	
				5/2	3.3	3.08	4.07	4.34	3.54	0	0.360	0	0.cen	0.005	20.2
				$3 / 2^{-}$	8.4		5.55	7.0	3.67	0.002	0.085	-	0.002	0.002	
				$3 / 2$	80.0				8.43	0.001	0.001	0	0.002	0	

[^1]the ${ }^{16} \mathrm{O}$ comtaminant in the target.
The dominant transition is to the $(3 / 2)^{-}$ground state of ${ }^{9} \mathrm{Li}$. Weaker transitions are observed to levels at 2.69, 4.31, and 6.41 MeV . The other know state, at 5.38 MeV excitation, is not appreciably populated. While this could indicate that this level has positive parity, a more likely explanation for its absence is that it has negative parity, but a small spectroscopic factor. These data are summarized in Table IV-6; the ground state angular distribution is shown in Fig. IV-7a.

These results can be compared with those of the ${ }^{7} \mathrm{Li}(\mathrm{t}, \mathrm{p}){ }^{9} \mathrm{Li}$ reaction (Yo 71), which populated all of the known levels in ${ }^{9}$ Li. Fram a comparison of the observed level spacing and widths with their predicted values by Barker, along with a comparison between the predicted and observed transition strengths in the (t, p) reaction, it was suggested (Yo 71) that the $3 / 2^{-\infty}, 1 / 2^{-}, 5 / 2^{-}, 3 / 2^{-}$, and $7 / 2^{-}$states correspond to the observed levels at $0,2.69,4.31,5.38$, and 6.41 MeV , respectively. It should be noted that the population of these levels by the $\left({ }^{6} \mathrm{Li},{ }_{8} \mathrm{~B}\right)$ reaction strongly suggests that the populated states have negative parity (although we cannot suggest any spin assignments) and that both reactions generally agree on the location of the lp-shell levels in ${ }^{9} \mathrm{Li}$ 。

These experimental results can be compared with the theoretical predictions of the energy spectrum and transition strengths, which are also summarized in table IV-6. While there is reasonable agreement among these predictions as to the number of low-lying lo-shell state, there are differences concerning their order. Kumar's work (Ru 7Ab)
is an improved version of Barker's (Ba 66); it employs the same theoretical techniques, but is based upon more recent experimental data. The level ordering of Boyarkina (Bo 64) "Kumar, and Norton and Goldhamer (No 71) agree, but differ with Coher and Kurath (CO 70) (and also farker) as regards the order of the first two excited states. The probable $1 / 2^{-\infty}$ assignment to the first excited state (Aj 74) agrees with the majority of these calculations. If this level is indeed a $1 / 2$ state, then its transition strength is much greater than might be expected from its very small spectroscopic factor. However, a 18 admixture in the ${ }^{11} \mathrm{~B}$ ground state wave function would increase this strength to 0.15 (Ku 76). Similarly, the observed population of the possible $7 / 2$ state at 6.41 ReV rather than the possible $3 / 2$ level at 5.38 HeV (Yo 71) could arise from the sensitivity of the transition strengths to this amixture. In sumary, while this reaction does not establish the spin of unknom levels, it does strongly indicate their parity; the (weak) pogulation of the excited state is potentially extremely sensitive to any configuration-mixing in the target ground state wave function.

C. Unbound Final Systens

Whis section can, for the most part, be viewed as a continuation of the investigation of the light $T_{2}=3 / 2$ nuclides (i.e., the earlier $11_{\mathrm{Be}}, 9_{\mathrm{Li} \text {, and } \mathrm{now}} 7_{\mathrm{Ele}} 5_{\mathrm{H}}$, and finally $3 n$ (see Ce 78 for the $3 n$ portion of this study); but not 4 which has $\mathrm{T}_{\mathrm{z}}=1$). Rowever, these unbound nuclides are discussed separately from ${ }^{11}{ }^{\text {Be }}$ and ${ }^{9 \mathrm{Li}}$, since the interpretation of these results must consider phase-space distributions and final-state interactions (see Appendix A). Noreover, unbound levels
have broad widths, so these energy spectra are four-channel sums of the original data. Transitions can be obscured not only by the broad widths of these states, but also by the underlying breakup continuum. 1. The ${ }^{9} \mathrm{Be}\left({ }^{6}{ }_{\mathrm{Li}}, 8_{\mathrm{B}}\right){ }^{7}{ }_{\mathrm{He}}$ Reaction

An energy spectrum of the ${ }^{9} \mathrm{Be}\left({ }^{6} \mathrm{Li},{ }^{8}{ }_{\mathrm{B}}\right){ }^{7}$ He reaction is shown in Fig. IV-9. This particular spectrum was collected with an 80.0 MeV beam from a $0.13 \mathrm{mg} / \mathrm{cm}^{2}$ target at $\theta_{1 a b}=9.7^{\circ}$ for $9200 \mu \mathrm{C}$. The smooth curve in this figure corresponds to the phase-space distribution for the three-body breakup reaction ${ }^{\sigma_{\mathrm{Li}}}+{ }^{9}{ }_{\mathrm{Be}}+8_{\mathrm{B}}+{ }^{6}{ }_{\mathrm{He}}+\mathrm{n}_{\text {。 }}$. Four and five body breakup reactions can also contribute to the underlying continuum above their indicate thresholds. The relationships amoung these thresholds are indicated in Fig. IV-10.

The ground state of ${ }^{7} \mathrm{He}$, which is unbound to ${ }^{6} \mathrm{He}+\mathrm{n}$ by 440 keV (Aj 74), is clearly populated. This reaction was investigated not only for a range of angles (from $\theta_{\text {lab }}=9.7^{\circ}$ to 18°) with an 80 MeV beam, but also at two angles (${ }_{1 a b}=15^{\circ}$ and 18°) with a 93.3 beam. These studies show no indication of any sharp excited states in ${ }^{7} \mathrm{He}$ below ~10 MeV excitation. However, weak transitions to a possible broad excited state in 7 He would have been obscured by the breakup continutm. The experimental results are summarized in Table IV-7; the angular distribution is shown in Fig. IV-7b. This nuclide has been investigated by the ${ }^{7}{ }_{\mathrm{Li}}\left(t,{ }^{3} \mathrm{He}\right) 7_{\mathrm{He}}$ (St 67) and the ${ }^{7} \mathrm{Li}(\mathrm{n}, \mathrm{p}){ }^{7} \mathrm{He}$ (Li 73) reactions, which also failed to locate any sharp excited states in 7 He 。

These negative results can be contrasted with the predictions of excited levels of ${ }^{7} \mathrm{He}$, which are also shown in Table IV-7. However,

Fig. IV-9. An energy spectrum of the ${ }^{9} \mathrm{Be}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right){ }^{7} \mathrm{He}$ reaction collected at $\theta_{1 a b}=9.7^{\circ}$ for $9200 \mu \mathrm{C}$ (with $\left.E\left({ }^{6} \mathrm{Li}\right)=80 \mathrm{MeV}\right)$. These data are four channel sums and the smooth curve corresponds to three-body phase-space for the $6_{\mathrm{Li}}+9 \mathrm{Be} \rightarrow$ $8_{\mathrm{B}}+6_{\mathrm{He}}+\mathrm{n}$ breakup reaction.

Fig. IV-10. A diagram of the decay scheme of ${ }^{7}$ He indicating the relative location of the various decay channels.
if a level near 3.6 MeV excitation in 7 (corresponding to the predicted $5 / 2^{-}$state, which has the largest transition strength of the excited levels) has the same fraction of the ground state strength
 then it would be difficult to discern if it were broader than $\sim 1.5 \mathrm{MeV}$. Only the predicted $3 / 2^{20}$ ground state (see Table IV 7) should have a relatively large transition strength. The population of the ground state in this two-proton pickup reaction strongly suggests that this level has negative parity, as expected.
2. The $6_{\mathrm{Li}}\left({ }_{\mathrm{Li}}, 8_{\mathrm{B}}{ }^{{ }^{4}} \mathrm{H}\right.$ Reaction

An energy spectrum of the $\sigma_{\mathrm{Li}}\left(6_{\mathrm{T}, \mathrm{i}},{ }_{\mathrm{B}}\right)^{4} \mathrm{H}$ reaction is shown in Fig. IV-Ila. This spectrun was collected with a 93.3 MeV beam from a $0.40 \mathrm{mg} / \mathrm{cmi}^{2}$ target at $\theta_{\text {lab }}=14.7^{\circ}$ for $950 \mu \mathrm{C}$. The smooth curve in this figure corxesponds to the phase-space distribution for the three-body breakup reaction $6_{\mathrm{Li}}+{ }^{6} \mathrm{Li} \rightarrow 8_{B}+t+$ n. Four and five body breakup reactions can also contribute to the under-lying continuum above their indirected thresholds.

The observed enhancement above the three-body phase-space distribution can be attributed to the known (Fi 73) (t + n) Einal-state interaction, which would correspond to transitions to the 2 ground state of ${ }^{4} \mathrm{~N}$ along with possible contributions from transitions to probable 3^{m} and 0^{m-} levels in 4 , since all these states are broad. This enhancement was seen with appopriate kinemaics at all four angles studied (from $\theta_{\text {lab }}=11^{\circ}$ to 17°): additionally, its intensity eliminates contaninants as a cause. Assuming that all of the counts above the ghase-space

Fig. IV-11. (a) An energy spectrum of the ${ }^{6}{ }_{L i}\left({ }^{6} \mathrm{Li},{ }^{8}{ }_{\mathrm{B}}\right)^{4} \mathrm{H}$ reaction collected at $\theta_{\text {iab }}=14.7^{\circ}$ for $950 \mu \mathrm{C}$ (with $\mathrm{E}\left({ }^{6} \mathrm{Li}\right)=93.3 \mathrm{MeV}$). These data are four channel sums and the smooth curve corresponds to three-body phase space. The excitation scale is relative to the $t+n$ threshold. (b) An energy spectrum of the ${ }^{7} \mathrm{Li}\left(6_{\mathrm{Li}}, 8_{\mathrm{B}}\right){ }^{5} \mathrm{H}$ reaction collected at $\theta_{\text {lab }}=14.7^{\circ}$ for $6200 \mu \mathrm{C}$ (with $\mathrm{E}\left({ }^{6} \mathrm{Li}\right)=93.3 \mathrm{MeV}$). These data are four channel sums and the smooth curve corresponds to four-body phase-space. The excitation scale is relative to the $t+2 n$ threshold and $10_{B e}$ and ${ }^{14} \mathrm{C}$ levels arose from target contaminants (see text).

XBL768-3907

Fig. TV-11.
curve correspond to this transition, then the observed yield is equivalent to $4 \mu \mathrm{~b} / \mathrm{sr}$ (c.m.). This cross-section is roughly constant at all angles studied, although these might be a slight enhancement at more backard angles. These data can be compared to the analogous ${ }^{6} \mathrm{Li}(\mathrm{p}, \mathrm{t}){ }^{4} \mathrm{Li}$ reaction (Ce 65) and both spectra show very similar structure. Although little has been established in ${ }^{4} \mathrm{H}$, it has been studied through numerous reactions (Fi 73).
3. The ${ }^{7} \mathrm{Li}\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right)^{5}$ Reaction

An energy spectrum of the ${ }^{7} \mathrm{Li}\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right) 5_{\mathrm{H}}$ reaction is displayed in Fig. IV-11b. This spectrum was collected with a 93.3 MeV beam from a $0.33 \mathrm{mg} / \mathrm{cm}^{2}$ target at $\theta_{\text {lab }}=14.7^{\circ}$ for a total of $6200 \mu \mathrm{C}$. The smooth curve drawn in this figure corresponds to the phase-space distribution of the four-body breakup reaction ${ }^{6} \mathrm{Li}+{ }^{7} \mathrm{Li} \rightarrow 8_{\mathrm{B}}+\mathrm{t}+\mathrm{n}+\mathrm{n}$. The thresholds for the higher-excitation breakup channels are also indicated. Transitions to levels in ${ }^{10}$ Be and ${ }^{14} \mathrm{C}$ arose from ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ contaminants in the target, respectively (these states provided useful calibration points). (The four-channel summing of the original data obscures these contaminant peaks, but Fig. IV-3, shown for the ${ }^{16} \mathrm{O}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right){ }^{14} \mathrm{C}$ reaction, is representative of the higher energy portion of the original spectrum.)

Counts above the phase-space curve may be attributed to either these target contaminant reactions or to other multi-body breakup channels, such as the three-body breakup $8_{B}+t+(2 n)$ or ${ }^{8} B+{ }^{4} H+n$. Unlike the ${ }^{6} \mathrm{Li}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right){ }^{4} \mathrm{H}$ reaction (and all the others studied in this work), no obvious evidence is seen for a strong final-state interaction in 5_{H} at any of the angles studied (from $\theta_{1 a b}=11^{\circ}$ and 15°). As a measure of the experimental sensitivity to possible ${ }^{5} \mathrm{H}$ levels, the yield at
low excitation energy above the phase-space curve corresponds to $\sim 100 \mathrm{nb} / \mathrm{sr}-\mathrm{MeV}$, which may be compared with the cross-section of the final-state interaction in ${ }^{4} \mathrm{H}$ of $1 \mu \mathrm{~b} / \mathrm{sr}-\mathrm{MeV}$. In sumnary, this investigation, as was the case in the ${ }^{9} \mathrm{Be}\left(\alpha_{,} 8_{\mathrm{B}}\right)^{5}{ }^{\mathrm{H}}$ data (MC 68), the $3_{\mathrm{H}}(\mathrm{t}, \mathrm{p}){ }^{5} \mathrm{H}$ study (Yo 68), and pion-induced reactions on 7_{Li} targets (Mi 69), has produced no evidence for any sharp $5_{\text {H }}$ states below 10 MeV excitation. A negative finding was also the result of the earlier investigation of the ${ }^{7}{ }_{T_{s i}}\left({ }^{7}{ }_{L i},{ }^{17}\right.$ C) $3 n$ reaction (Ce 74), where for the lowest passible $T_{Z}=3 / 2$ nuclide- $3 n$, there was no evidence for a narrow state below at least 10 MeV excitation.

D. The 2s-ld Shell Targets

While the remainder of this work was devoted to lp-shell targets, these final two targets will provide an illustration of the possible extensions of this work to higher shells. The study of ${ }^{22}$ Ne and ${ }^{24} \mathrm{Ne}$ is of particular interest because the neon isotopes exhibit a gradual decrease in deformation from ${ }^{20}$ Ne to ${ }^{24}$ Ne. This decrease in defomation with the addition of neutron pairs has also been noted in the sodium isotcyes, where ${ }^{26}$ Na can be successfully described by a spherical shellmodel calculation (Fl 74a). Moreover, this region is valuable for allowing the comparison of various microscopic and macroscopic calculations, particularly since a spherical shell-model approach with a fuil 2s-ld shell basis has become feasible (Co 74a, Co 74b). While ${ }^{\text {serect}}$ " shellmodel calculations can reproduce these trends in rotational character of the spectra, it would be more generally useful if this segion could serve as a guide anong the various Hartree-Fock calculations. To adequately explain this region in the Hartree-Fock franework it
is necessary to allow for pairing correlations (Ma 73) and possibly "shape-mixing" (or shape "co-existence") (Kh 71). Shape mixing occurs when the prolate solution (which can be associated with a small neutron energy gap and a large proton gap) has approximately the same energy as the oblate solution (corresponding to the solution with a small proton energy gap and a large neutron gap) (Kh 71). Since the reduced energy gaps enhance pairing correlations, reactions studying the twoparticle configurations in these nuclei could provide an interesting test of these various theoretical models. Finally, ${ }^{24} \mathrm{Ne}$ is a $\mathrm{T}_{\mathrm{z}}=2$ nuclide, so this study illustrates the applicability of this reaction to study such nuclei by employing $T_{z}=1$ targets such as ${ }^{14} C,{ }^{18}{ }_{0}$, $22_{\mathrm{Ne}},{ }^{30_{\text {Si }}}$, etc.

1. The ${ }^{24} \mathrm{Mg}\left({ }^{6} \mathrm{Li}, 8_{B}\right){ }^{22_{\mathrm{Ne}}}$ Reaction

An energy spectrum of the ${ }^{24} \mathrm{Mg}\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right){ }^{22} \mathrm{Ne}$ reaction is shown in Fig. IV-12. These data were collected with an 80.0 MeV beam from a $0.15 \mathrm{mg} / \mathrm{cm}^{2}$ target; this particular spectrum is a composite of data collected between $\theta_{l a b}=10^{\circ}$ and 22°, in which the data were kinematically shifted to $\theta_{\text {lab }}=18^{\circ}$. Transitions to ${ }^{10}$ Be and ${ }^{14} \mathrm{C}$ levels arose from ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ comtaminants in the target, respectively. The dominant transition is to the ground state of ${ }^{22} \mathrm{Ne}$. Also transitions were clearly resolved to the first excited state which is a 2^{+}level at 1.27 MeV , the 4^{+}level at 3.36 MeV , and another 2^{+} state at 4.46 MeV excitation. At higher excitation the density of final states (see Table IV-8) adds ambiguity to the transition assignments, but our analysis of these data suggests that the peak near 6 MeV excitation corresponds to barely resolved transitions to the 2^{+}level

Table rv-8. Sumary of same of the experimental and theoretical results for ${ }^{22}$ 隹.

tow-tying Rncom tevels s^{s}		Levels Obeer ved in this work		Predicted Levels							
			preetcom and Mudenthal ${ }^{\text {b }}$	Cralq ${ }^{\text {c }}$	Mnow iker, Nait, and Panktyad	and Cole, watts mitethosof					
J"	Mev							Mev		\pm kev	J"
$0{ }^{+}$	0	0		0^{+}	0	0	0	0	5.5 ± 0.4		
$2+$	1.27	1.26	50	2^{+}	1.14	2.0	1.2	2.4	1.7 ± 0.2		
$4{ }^{+}$	3.36	3.36	∞	$4+$	3.21	2.8	3.5	3.5	1.0 ± 0.2		
$2+$	4.88	4.45	50	2^{+}	3.53	3.8	6.9	4.5	0.7 ± 0.2		
2	3.14			3^{+}	4.51	4.48		5.4			
$(1,2)^{+}$	3.34			24	6.77	4.6	8.0	4.8			
${ }^{+}$	5.38	5.37	70	0^{+}	4.95		6.4	6.0	0.7 ± 0.2		
4^{4}	5.52			$1+$	5.18	4.5		5.0			
$3+$	3.68			$2+$	5.43	5.1		8.0			
2^{+9}	3.91	6.07	100	1^{+}	5.45			6.5	$1.7 \pm 0.2^{\text {h }}$		
$2+1$	6.12			4^{+}	5.54	4.6		5.5			
0^{+1}	6.24			6^{+}	6.30	5.9	7.1	6.4			
6^{+3}	6.30.			0^{4}	6.81						
$4+3$	6.34			3^{4}		6.2		6.3			
$(0-9)^{4}$	6.64			4^{+}		6.8		6.4			
(rnat)	6.69	6.69	80	2^{+}		6.1			0.3 ± 0.2		
2^{+}	6.82										

Toble rv-8. ocntirued.

 transition, we canot dontion htommo its compaticion. weaker

 ments are consistent wher the hata, phay theses populated by the $\left(\alpha, \alpha^{\prime}\right)$ reaction (07 70), wion then whed, since these inelastic
 deformation arises Fron the wre, motaran, which is in turn,
 interactions are xeflenten in mamonea transer transition

 These data con th reaction (2a 74), show with, whomematy, while these (p, t)

 comparison suggeste the surn maritas of several levels in ${ }^{22} \mathrm{Mg}$ rather than clarifying the fort dra by intentrying the isolated analog transitions. tran thr wruma om cuggest that the
 the A^{t} level at 3.36 Wh mate at A. 00 MeV in
 As might be expected tra that chere is a strong starturng manom the golccivity of these Wo reactions even on ho watum whe whiex 2s-ld-shell targets.

XBL. 7612-11202

Fig. TV-J.3. Angular distributions for reactions induced by an $80 \mathrm{MeV}{ }^{6} \mathrm{Li}$ beam: (a) ${ }^{24} 4_{\mathrm{Mg}}\left({ }^{6} \mathrm{Li},,_{\mathrm{B}}\right)^{22_{\mathrm{Ne}}}$, g.s.. and (b) ${ }^{26_{\mathrm{Mg}}\left({ }_{\mathrm{Li}}, 8_{\mathrm{B}}\right)^{24_{\mathrm{Ne}}} \text {, g.s. }}$

Fig. IV-14. The ${ }^{24} \mathrm{Mg}(\mathrm{p}, \mathrm{t})^{22} \mathrm{Mg}$ reaction induced by 41.9 MeV protons at $\theta_{\text {lab }}=36.6^{\circ}$ (Pa 72). The ${ }^{10} \mathrm{C}$ and ${ }^{14} \mathrm{O}$ transitions arose from ${ }^{12} \mathrm{C}$ and 160 comtaminants in the target, respectively.

Compar ing the known and observed levels in Table IV-8, it is clear that this reaction is quite selective. While the resolution of this study precludes placing stringent limits on their population, no evidence is seen for the population of the multi-particle-hole levels at 5.14 MeV (a $2^{\text {m. }}$ state) and 5.64 MeV (a 3^{+1} level), or for the 6^{+}state at 6.30 MeV all of which would be forbidden in a direct single-step pickup. This selectivity will provide sone bounds on the possible spin and parity of the two previously unreported levels in ${ }^{24}$ Ne.

The variety of the theoretical approaches to this region can be seen in Table $\pi V^{w} 8$. Greedan and Wildenthal (Pr 72) erploy an approxinate shell-findicl approach, while Cole et al. (Co 74a) use a spherical shell-znodel with a fuil 2 sw -1d shell basis. Craig (Cr 74) uses a Nilsson model. Khadkikar et al. (Kh 71) employ a Hartree-Fock framework with shapemixing. This list is by no means exhaustive of the theoretical approaches to ${ }^{22}$ Ne. The state at 5.92 MeV is generally considered to be an intruder level ($\mathrm{Cr} 74, \mathrm{Bx} 72$) and the 2^{+}state at. 6.12 MeV is considered to be a $2 \mathrm{~s}-1 \mathrm{~s}$ shell state, which might disagree wich our results. However, there is a large uncertainty in the results at this excitation because of the difficulties in unfolding the overlapping transitions. Altematively, it has been suggested that the state at 5.92 Mev is either a $1^{\text {" }}$ or $3^{\circ \times}$ level (Ho 73). It would be difficult to believe that there is such a large comonent of a crosseshell level in the ${ }^{24} \mathrm{Mg}$ ground state. If the level at 5.92 mgV excitation were a 3^{-}cotupole vibration, then its strong population by this reaction is possible (as is the case in the ${ }^{5 A_{F e}}\left({ }^{5} \mathrm{Li}, 8_{\mathrm{B}}\right)^{52} \mathrm{Cr}$ reaction (we 75)).

This possibility is supported by the inelastic scattering data (01 70). 2. The ${ }^{2} 6_{\operatorname{Mgg}}\left({ }^{6} \mathrm{Li}_{0}{ }_{\mathrm{B}}{ }^{2 A}\right.$ Ne Reaction
 Fig. IV-15. These data were collected with an 80.0 MeV beam from a $0.45 \mathrm{mg} / \mathrm{cm}^{2}$ target: chis parelcuior spgetrum is a composite of data collected between $\theta_{\text {lab }}=6^{\circ}$ and 21° 。 in which the data were kinematically shifted to $\theta_{\text {lab }}=17^{\circ}$. Tevels of ${ }^{10} 9$ and ${ }^{14} \mathrm{C}$ arose from the ${ }^{12} \mathrm{C}$ and ${ }^{16}$ O contaminants in the target, waspectively.

The dominant transition is to the $0^{+\quad}$ ground state. Along with a weaker transition to the Kirst ercited level. which is a 2^{+}state at 1.98 MeV excitation, a parts is observed to 3.88 MeV , which probably corresponds to both nembers of the 2^{t}. 8^{t}. doublet near this energy (while the neasured excitation energy egrees well with the 2^{+}level, this peak is noticebly broake than the other transitions in a high resolution prelininary ofservation of this xeaction (We 75)). Transitions to tro wacoontel states (ma 73) at 7.87 and 8.86 MeV are also observed. ginally, seme muidence is seen for the weak population of the knom level at 5.58 Mev, but the contaminant peaks in this region precluded a definite onammaion of its kinenatic shift. These experimental xesults are sumartam in mable Th-9. The angular distributions (s) sone of these levels are sham in Mig. yvol6. Exom which (as before) it is apparent that these distrabutions do not offer a means of discriminating among the gossible spin changes of the various transitions. Th is of sone incerest the the gromed stete txansitions to ${ }^{22}$ Ne and 24 Ne have almost identict cressmertions fand angular distributions),

Fig. IV-15. A composite spectrum of the ${ }^{26} \mathrm{Mg}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right){ }^{24}$ Ne reaction between $\theta_{1 a b}=8^{0}$ and 21° (with $\left.E\left({ }^{6} \mathrm{Li}\right)=80 \mathrm{MeV}\right)$, in which the data were jinematically shifted to $\theta_{l a b}=17^{\circ}$. Transitions to ${ }^{10}$ Be and ${ }^{14} \mathrm{C}$ levels arose from ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ comtaminants
in the target. in the target.

Erasen Laves ${ }^{\text {a }}$		Sevela coorwo in Thes tiont		Predictes invels						
			Mocronde 	5narkizar. not: ams panysc	cie, rate. axd winkeneso					
5°	mo						2ev	\pm ner		
θ	-	-		0	0	0	0	0	0.35	2.940 .2
z^{2}	1.50	2.97	39	2^{*}	2.5	2.6	1.8	2.26	0.015	$0.6 \leq 0.2$
2^{*}	3.07	3. ${ }^{\text {\% }}$	50	2	2.0	6.0	8.0	0.27	0.09	0.3 ± 0.2
0^{6}	3.50			0^{3}	3.0	3.0	0.7	0.98	${ }^{\circ}$	
0	0.60			0^{4}	6.2	3.6	3.6	6.68	0.03	
	6.5.9			$0^{\hat{*}}$	6.:	7.5		0.05	3.05	
2	5.50	\% 5.5	180	0		5.6		6.85	0.02	0.03 ± 8.097
	(5.C)			6^{4}		7.2		0.03	0	
	6.03			2^{3}				5.\%	0	
		7.67	58	2				6.07	0.003	0.25 ± 0.80
		6.๕๐	20	8^{2}				6.53	0.04	$0.80 \leq 0.05$
				23				7.77	0	
				2				7.93	0.025	
				8				8.02	0.005	
				6	.			8.20	0	
				0^{4}				0.64	0.005	

XBL7E10-4289

Fig. IV-16. Angular distributions for transitions induced by an $80 \mathrm{MeV} 6_{\mathrm{L},}$ beam in the ${ }^{26} \mathrm{Mg}\left(6_{\mathrm{Li}}, 8_{\mathrm{B}}\right)^{2 \Lambda_{\text {Ne }}}$ reaction: (a) g.s., 0^{+}; (b) $1.98 \mathrm{MeV}, 2^{+}$; (c) uncesolved transitions to the $3.87 \mathrm{MeV}, 2^{+}$, state and $3.96 \mathrm{MeV}, 4^{+}$, level, and (d) 7.47 MeV .
although the Q values differ by $\sim 5 \mathrm{MeV}$. A simple DWuck calculation reproduces this trend. These experimental results can be compared with those of the ${ }^{22_{N e}(t, p)}{ }^{24}$ Ne reaction (NO 70), which identified all the known levels, but could not have observed the two higher-lying states.

Some of the theoretical predictions for ${ }^{24}$ Ne are also sumnarized in Table IV-9. Cole et al. (Co 7Ab) employ a spherical shell-model calculation with a complete $2 s-1 d-s h e l l$ basis, while Robertson and Wildenthal (Ro 73) use a spherical shell-model calculation with a truncated basis. Khidkikar et al. (Kh 71) employ a kartree-Rock calculation with shape-mixing, while Macdonald et al. (Ma 73) use a Hartree-FockBogoliubov calculation (which includes pairing effects) with number projection. The two levels found in this work might provide an interesting test for these various models, if their spins and parities could be determined. However, we can only limit them to having spins ≤ 4 and natural parity (which is the only allowed possibility for the transfer of two identical $2 \mathrm{~s}-1 \mathrm{ld}$ shell nucleons).

The structure amplification factors of Robertson and Wildenthal (RO 73) are ompared with the observed transition strengths in Fig. IV-17. Several higher-lying levels are predicted chat might be observed in this reaction. (Agein one should note that slight admistures in the ground state wave function might have a dranatic effect on these predicted "eransition strengths for beak transitions.) It showl be noted that the Rrecton-wildenthal interection (which was cmoloyed in this calculation predicts too high an excitation for low lying levels and too low an excitation for high-Iying ones in ${ }^{22}$ Ne,

XBL 762.9256

Fig. IV-1.7. A comparison between the observed relative yields of the ${ }^{26} \mathrm{Mg}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right){ }^{21_{\mathrm{Ne}}}$ reaction (with $\mathrm{E}\left({ }^{6} \mathrm{Li}\right)=80 \mathrm{MeV}$) and the predicted relative structural amplification factors (Ro 73).
and if this were the case in ${ }^{2 A}$ Ne, then the agreement with our results would be reasonable.
E. Comparisons With Other Reactions

In principle, there could be rather dramatic differences in the population of levels in the final nuclei between the $\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right)$ and (p, t) reactions since the differing wave functions of the outgoing particles could select different cluster configurations fron the target ground state wave functions. However, the observed similarities between the spectroscopic selectivities of these two reactions for the $T_{Z}=0{ }^{12} C$, $16_{\mathrm{O}}, 10_{\mathrm{B}}, 6_{\mathrm{Li}}$, and ${ }^{24_{\mathrm{Mg}}}$ targets demonstrate a related simple pickup reaction mechanism and suggest that any differences in the relative yields simply arise from the two reactions sampling the 1_{S} cluster probability density at different interaction radii (and over different ranges of radii).

Agreement in the compar isons between the $\left({ }_{\mathrm{L}, \mathrm{i}}, 8_{\mathrm{B}}\right)$ and (t, p) reactions producing the same final nuclei (e.g. $11_{1_{B e}},{ }^{9} \mathrm{Li}_{0}$ and ${ }^{24} \mathrm{Ne}^{2}$) leads to the anticipated complenentary nature of their spectroscopic selectivities in studies of neutron-excess nuclei. Any differences in the population of levels in final nuclei becween these two reactions indicate possible configuration differences (e.g. predminant particle or hole states).

Investigations of two-proton pickup reactions are still rather sparse, so that only limited comparisons are now feasible. As the lightest experinentally feasible two-proton pickup reaction, $\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right)$ is best suited to studies of lp-shell targets and these targets provide a convenient means of detemining the reaction mechanism. We have

facilitate crosseompar isons with this particular reaction.
The usefulness of these various reactions is measured by the combination of experimental difficulty, the presence of bound excited states, spectroscopic selectivity, and relative yield. As mentioned, particle identification based upon counter telescopes is particularly suitable for the $\left({ }^{6} \mathrm{Li}, 8_{B}\right)$ reaction since both ${ }^{7}{ }_{\mathrm{B}}$ and ${ }^{9} \mathrm{~B}$ are particle unstable. A requirement that the outgoing particle not have any bound excited states would eliminate several possible reactions, as can be seen from Table TV 10 which also lists the spectroscopic amplitudes (0 70) and twoproton separation energies. While the $\left({ }^{18} 0,{ }^{20} \mathrm{Ne}\right)$ has a relatively high yield, its spectra are complicated by the large transition strength of the bound 2^{+}and 4^{+}"shadow peaks" (Si 72, Ch 73, Ke 76). Experimental resultes are available for the ${ }^{26_{\mathrm{Mg}}}\left({ }^{11} \mathrm{~B}_{\mathrm{B}},{ }^{13} \mathrm{~N}\right){ }^{24} \mathrm{Ne}$ reaction (Sc 74a). Comparing data from the (${ }^{6} \mathrm{Li},{ }_{\mathrm{B}}^{\mathrm{B}}$) and $\left({ }^{11_{\mathrm{B}}},{ }^{13_{\mathrm{N}}}\right.$) reactions on the ${ }^{2} 6_{\mathrm{Mg}}$ target:

- both reactions have similar spectroscopic selectivity, - the $\left({ }^{1]_{8}},{ }^{13} \mathrm{~N}\right)$ reaction has a (come) yield about three times higher than the $\left(6_{T}, 8_{B}\right)$ reaction (however, the $\left({ }^{11_{B}},{ }^{13} \mathrm{~N}\right)$ reaction data were collected at the grazing angle).

The higher relative yield of the $\left(11_{\mathrm{B}},{ }^{13} \mathrm{~N}\right)$ reaction might be expected from the largex spectroscopic amplitude, more positive Q-value, and greater proton pair binding energy in the outgoing particle for the $\left({ }^{11}{ }_{B},{ }^{13}\right.$ (N) reaction (see Table IV-10). Similarly, either the $\left({ }^{10_{B}}{ }^{12} 2_{N}\right)$ or the $\left({ }^{12} C^{14} 0\right)$ reactions might have a higher yield than the $\left({ }^{6} \mathrm{Li}, 8_{\mathrm{B}}\right)$ reaction, while still lacking any shadow peak ambiguity.

Table IV-10. Comparison among some of the gossible two-proton pickup reactions.

Reaction	J_{i}	J_{f}	Bound Excited States	Two-Proton Separation Energy* (MeV)	Strengths**	
					SIMAG	DMAG
$\left(6_{L i}, 8_{B}\right)$	1^{+}	2^{+}	No	- 5.744	0	0.032
(${ }^{9} \mathrm{Be},{ }^{11} \mathrm{C}$)	$3 / 2^{-}$	$3 / 2^{-}$	Yes	-15.277	0	0.747
$\left({ }^{10_{B}}, 12_{N}\right)$	3^{+}	1^{+}	No	-9.287	0	1.354
$\left({ }^{11} \mathrm{~B}_{\mathrm{B}}, 13_{\mathrm{N}}\right)$	3/2 ${ }^{-}$	$1 / 2^{-}$	No	-17.901	0	2.061
$\left({ }^{12} \mathrm{C}, 140\right)$	0^{+}	0^{+}	No	- 6.570	0.597	0
$\left({ }^{13} \mathrm{C},{ }^{15} \mathrm{O}\right)$	$1 / 2^{-}$	$1 / 2^{-}$	Yes	--14.843	1.002	0
$\left({ }^{14} \mathrm{C},{ }^{16} \mathrm{O}\right)$	0^{+}	0^{+}	Yes	-22.335		
$\left({ }^{18} \mathrm{O},{ }^{10} \mathrm{Ne}\right)$	O^{+}	0^{+}	Yes	-20.838		
"Calculate ${ }^{4}$:The nota is from Ku		$-\triangle_{i}$ value	$2 p^{\circ}$ are Erom Co 70	except for	$\left.8_{\mathrm{B}}\right) \text { wh }$	

F. Comparisons With Semioclassical Reaction Theory

We have already seen that the (${ }_{\mathrm{I}, \mathrm{i}}, 8_{\mathrm{B}}$) reaction strongly populates only those levels with a significant predicted twomucieon spectroscopic amplitude and chat these transition strengths reasonably reflect gross differences in the predicted relative yields. Bowever, several transition strengths apear to be significantly different from their predicted relative yield. In particular, sone configurations wich nather large predicted cransition strengths seen to be fragmented among several states. (of couse, this splitting would be most obvious if the configuration possessed a particularly large cransition strength.) Several configurations that had racher small predicted transition strengths were noticably populated. probabiy indicating the effect of configuration misirg in the target ground state wave function.

As previously mentioned, the tansition matris elenent can be describet as depanding mon both the spectrosopic amplitude and a transfer emplitude fretor. ve heve attemped to describe chis kinematic dependence by a semi-cisesical reaction theory (Br 72. fin 74) with the computer code brmon (Hu 75). This appoach involves in part the descripticn of the target and mtgoing marticle (for pickup reactions) as core plus clustar systans with the spins of the core and che cluster couring with their relacive internal angular momentua (A) fo fom the total angular momentum (J). th Table Ty-11. we list the observed relative transition strengths along with the predicted transition strength, the relative kincmatic hindrance, and the total predicted relative transition strengths for emme spin wero targets. "fhese resules are less than imgxessive, wich seans to indicate that this agroach bas

Table IV-1. Comparisons between the observed and predicted relative transition strengths.

Nuclide	Pinal MeV	Level J^{π}	$\frac{\text { Observed }}{\frac{d \sigma / d \sqrt{2}}{(d o / d \Omega)}}$	9\%ric ${ }^{2}$	Dinc ${ }^{\text {a }}$	Relative Kinsmatic Hindrance	$\frac{\text { Bredicted }}{\frac{d \sigma / d \Omega}{(d \sigma / d \Omega)}}$
${ }^{10} \mathrm{Be}$	0	0^{+}	1.	2.75	0	1.	1.
	3.36	2^{+}	0.60	0	1.22	0.48	0.21
	5.96	2^{+}	$\left.{ }_{0.10}^{0.26}\right\} 0.36^{b}$	0	4.54	0.35	0.58
	7.54	2^{+}		0.28			
	9.4	$\left(2^{+}\right)$	0.15	0	0.004	0.22	3.2×10^{-4}
	11.8	$\left(0^{*}\right)$	0.11	0.004	0	0.18	2.6×10^{-4}
${ }^{14} \mathrm{C}$	0	0^{+}	1.0	2.21	0	1.	1.
	7.01	2^{+}	$6\}^{5} 0.63^{b}$	0.34			
	8.32	2^{+}			12.71	0.29	1.73
	10.4	2^{+}				0.23	
${ }^{2} 2_{\text {Ne }}$	0	0^{+}	1.0		c	1.	1.
	1.27	2^{+}	1.			0.68	
	3.36	4^{+}	0.18			0.38	
	4.46	2^{4}	0.12			0.27	
	5.36	2^{+}	0.13	0.25			
	6.0		0.3				
					Stucture Anplification ${ }^{\text {d }}$ sactor		
${ }^{24} \mathrm{Ne}$	0	0^{+}	1.		0.36	1.	1.
	1.98	2^{+}	0.22		0.0 .5	0.82	0.018
		2^{4}			0.09	0.27	$\left.{ }_{0.018}^{0.000}\right\} 0.086$
	3.9	8^{+}	0.17		0.03	0.21	
	5.6	$\left(2^{+}\right)$	0.04		0.003	0.19	0.016
	0^{+}				0.01	0.32	0.009
	7.5	4^{+}	0.13		0.04	0.12	0.013
	8.9	2^{4}	0.05		0.025	0.13	0.009

a Fron Ref. © 70. b Predicted stength is Exegaented. c sot available.
d Prom Ref. 8074.
limited utility for this reaction, and accordingly we have not attemped any more complicated spin situations.

It is passible that this semi classical approach is inappropriate for this particular situation because of low values of n. further it is likely that this poor agreament reflects the inappropriateness of functional forms of Q value degendence in this particular approach. This possibility is supported by the oxford approach of empirically varying the input parameters to shift the relative probability curves vs excitation energy to achieve matisfactory agreement (Me 76). Wo variation of the input parmeters was attermted in this work. Wis possible deficiency can be generalized to the inadeguacy of the assumed cussian functional form of the kinematic matching criteria.

V. CONCIUSTONS AND SLRAMARY

Results from the first broad survey of a two-proton pickup reaction have been presented in Section IV. This study was undertaken to determine the utility of the (${ }^{6} \mathrm{Li},{ }^{8}$ B) reaction as a spectroscopic probe of neutronexcess nuclei. A systenatic feature of these data is that the $\left({ }^{6}{ }_{\mathrm{Li}},{ }^{8}{ }_{\mathrm{B}}\right.$) reaction populates strongly only states for which a significant twonucleon cfp is predicted. The spectroscopic selectivity of the (${ }^{6}{ }_{\mathrm{Li}},{ }^{8}{ }_{\mathrm{B}}^{\mathrm{B}}$) reaction on $T_{z}=0$ targets resembles that of the analogous (p, t) reaction. The observed selectivity in the population of states in the final nuclei demonstrates that the $\left({ }^{6} \mathrm{Li},{ }_{8}{ }_{\mathrm{B}}\right.$) reaction proceeds primarily through a direct, single-step pickup of two protons. Moreover, these data indicate that the predominant configuration of the two-proton cluster is a relative ${ }^{I_{S}}$ state. No evidence was seen for the transfer of the proton pair coupled to a spatially anti-symmetric configuration.

By establishing an understanding of the observed spectroscopic selectivity with $T_{z}=0$ targets, it has been possible to employ this reaction on $\mathrm{T}_{z}>0$ targets to locate low-lying lp-shell levels in relatively inaccessible $\mathrm{T}_{\mathrm{z}}=3 / 2$ nuclei, such as ${ }^{{ }^{1}} \mathrm{Be},{ }^{9} \mathrm{Li}$, and ${ }^{7} \mathrm{He}$. However, no evidence was seen for any narrow excited states in ${ }^{7} \mathrm{He}$. Also, no indication was observed for a strong final-state interaction in ${ }^{5} \mathrm{H}$, although the known $t+n$ interaction corresponding to the ${ }^{4} \mathrm{H}$ ground state was readily apparent. Two previously unreported levels (at $7.47 \pm 0.05 \mathrm{MeV}$ and $8.86 \pm 0.07 \mathrm{MeV}$) were identified in the $\mathrm{T}_{\mathrm{Z}}=2$ nuclide ${ }^{2 \mathrm{~A}_{\mathrm{Ne}}}$.

The measured angular distributions were all rather featureless
and decrease monotonically with incxeasing angle. This feature can be explained by a semi-classical approach to the reaction kinematics in terms of the localization of the inconing wave packet at a relatively large interaction radius without strong focusing into a particular Coulonb trajectory. sinilarly. simple DMBA calculations indicate that the angular distributions should not be very oscillatory, although these calculations do not describe very well the envelope of the observed distributions. both the semi-classical reaction theory and the DWBA calculations indicate that the kinenatic term in the transition matrix should be only slightly dependent upon the transferred angular momentum. dowever, while the observed relative transition yields agree qualitatively with the spectroscopic predictions of Conen and Xurath (Co 70), good guantitative agreement was not obtained. Whis could indicate the inapropriateness in the present situation of either the semi-classical reaction theory or its approximation for the functional form of the Q-value dependence.

The $\left({ }^{6},{ }^{2}, 8_{\mathrm{B}}\right)$ wowpoton pickup reaction has been demonstrated to be well suited to counter-telescope technigues and most appropriate on light taxgets. Bowever, due to the higher yield one might expect that future studies of twoproton pickup on heavier targets will employ other techniques, such as the (${ }^{11}{ }_{\mathrm{B}},{ }^{13}$ N $)$ reaction. Now that this work has denonstrated the broed utility of two-proton pickup reactions, one might also expect further twomuclen transfer studies to focus on two-protom transfer reactions. For example, two-proton pickup reactions can be employed in inmestigations of neutron-excess systens for mass reasurement studies with neutron-excess targets such as ${ }^{36} \mathrm{~S}$ and ${ }^{70} \mathrm{Zn}$
as well as spectroscopic studies of the levels of $\mathrm{T}_{\mathrm{Z}}=2$ nuclides by reactions on $\mathrm{T}_{\mathrm{z}}=1$ targets. Finally, spectrascopic studies on heavier targets might permit investigation of proton pairing-vibration states by studying a series of targets such as ${ }^{48} \mathrm{Ca},{ }^{50} \mathrm{Ti},{ }^{52} \mathrm{Cr}$, and ${ }^{54} \mathrm{Fe}$ or ${ }^{140} \mathrm{Ce},{ }^{142} \mathrm{Na}$, and ${ }^{144} \mathrm{Sm}$.

ACKNOWLEOCRMENTS

I would like to express my appreciation to:
My research advisor, Dr. Josech Cerny, for his interest and support over the years and, perhaps more important, for his patience and wisdom in providing me both the time and space to grow both as a nuclear physicist and, eventually: as an ExGie;

The senior staff of Building 88, Dr. Bernard Barvey, Dr. David Bendrie, Dr. H. E. Coneett, Dx. David Scott, and Dr. David Clark, for their interest and encouragement in my work and for providing a milieu of interesting and escellant physics;

The various post-docs with whom I have had the pleasure of working, Dr. Bans harrey, for his guidance and Eriendship during my formative days, Dr. Nick Jelley, for his assistance, advice, and campanionship over the years and miles, Dr. Rick Cough, Dr. Dan Ashery. Dr. Gary Kikelis, Dr. Rainer Jahn, and Dr. Charles Roguire, for their aid and example;
Dx. Mike Zisman, whose enthusiasm and dedication were always both inspiring and helpful. first, as a senior graduate student guiding me through my orals and second, es a postodoc suffering through a Few experiments, numerous drafis of papers, and finally numerous drafts of this thesis:

The past and present graduate students, John Esterl, George Goth, Joe Sherman, John macdonald, Rich Sexcro, Leonard Ho, Dave Vieira, Dietex stahel, and Dennis moliz, for nunercus col shifts, good times,
and their support in countless ways;
My collaborator on these experiments, Ken Wilcox, for sharing these years in many ways;

My faithful office-nate, Gordon Wozniak, for his friendship, example, assistance, and parties;

Creve Maples, for countless computer programs and interesting conversations;

The cyclotron crew and other support people for making Building 88 such a pleasant place to work, particularly John Bowen, for his long hours developing lithium beams; Roy Burton, for his assistance with design work and for supplying the mermaids; Claude Ellsworth, for the targets; Frank Hart and the Accelerator Technicians, Manny Enos and the electricians, Ted Reynolds, Lou Bish. and the maintenance machinists, for their aid; Carol Adams, for crack-typing, dynamic phone pages, and general exuberance; Fred Goulding and Don Randis, for their elegant electronics; Ed Lampo and Glenn Skipper, for their patient assistance in the care and feeding of electronics and computers; Jack Walton and Heinrich Sonmer, for their beautiful detectors; and John Flambard and Evelyn Grant, for their wondrous illustrations;

To my family, for their sumport and confidence in my future;
To Cheryl, for her love, comfort, and warm ways over the years, particularly for her support and assistance during my thesis months in the typing of the countless drafts, and for the Tekies that made this work possible;

Io Suzanne, Shadow, the Grateful Dead, and Richard Brautigan, for both joy and a joyeous gerspestive;

To Carl Blunstein and the unbearable multitude (particularly Rent Anderson), for harassing me to complete this task;

And to the U. S. Energy Research and Develognent. Administration who supported this work.

AMPENDIX A. UNEOUND FTNAL SYSTEMS

An additional elenent of complexity occurs in reactions of the type

$$
1+2+3+4+0 \circ \circ+n
$$

(where 1 is the beam, 2 is the target. 3 is the detected particle, and \& through n are unobserved). While these reactions obey the same laws of conservation of energy, linear manentum, and angular momentum as do two-body reactions, the multi-body nature of the final state means that measurement of the angle and energy of particle 3 no longer completely specifies the reaction kinenatics. In an ordinary two-body final system, the energy and laboratory angle, θ, of one of the particles uniquely determines the energy and angle of the unobserved particle. For multi-body final systems, the additional complexity is that the center-of-mass energy of the final system is distributed among three or more nuclides, and for any detected energy and angle of one particle, the unobserved nuclei can experience a range of relative energies. The consequences of this edded Ereedom in the residual system can be explored by writing the diffexential cross section of the observed particle as

$$
\begin{equation*}
\frac{d \sigma}{d E_{3} d \Omega_{3}}=\frac{8 \pi^{2}}{\mathrm{~h}^{2}} \frac{\mu_{1}}{k_{i}}\left|M\left(E_{3} \cdot \Omega_{3}\right)\right|^{2} \rho\left(E_{3}: \Omega_{3}\right) \tag{Al}
\end{equation*}
$$

where μ_{1} is the reduced mass of the initial system, k_{1} is the relative momatum between the target (2) and the projectile (1), $\left|\mathrm{M}\left(\mathrm{E}_{3}, \Omega_{3}\right)\right|^{2}$ is the natris element determining the interaction, and $\rho\left(E_{3}, r^{3}\right)$ is the phase space or density of final states (see co 71 and references
therein for a more detailed discussion). One might expect that effects due to the multi-body nature of the final state could arise through either the phase space factor or the matriz element. We will discuss each in turn below.

1. Phase Space

One can see from Exg. (Al) that the cross section is proportional to the density of final states. The division of the available energy between the unobserved particles can be considered (in a simple picture) to depend not on the residual nuclei, but on the number of ways in which this division cen be acomplished. (of caurse, a strong interaction among these nuclei can cause an enhancement of the yield above this simple statistical distribution through the matrix element; such as enhancement could indicate the existence of a state at this relative energy (see Section 2 below).)

For a systen such as the $3 n$ final state, there are very few orientations allowed which provide low relative energy anong all three neutrons, wile still conserving lirear and angular manentum with the observed particle. On the other hand, there are many ways of distributing 10 MeV excitation among these three neutrons. Accordingly, one would expect the yield at 10 MeV excitation to be greatly enhanced ower that at 0 MeV . From this simole argument, one can derive an expression for this relative enhargement by counting the number of values of the linear monentum germitted the observed particle while integrating over the coordinates of the unobserved nuclei within the linits of the conservation laws (see Ba 69 and 6071 for some simple examples of this derivation). This result is generally familiar from

B-decay, where the shape of the detected electron spectrum is simply that of three-body phase space.

In the case of non-relativistic particles, the phase space distribution in an n-particle final state can be solved in general. In the center-of-mass frame

$$
\begin{equation*}
\left.\left(\frac{\partial^{2} N}{\partial E_{3} \partial \Omega_{3}}\right)_{\text {c.m. }} \propto\left(E_{3}\right)_{c . m .}^{1 / 2} \cdot\left(E-\frac{M_{t}}{\left(M_{t} \cdot M_{3}\right)} \cdot\left(E_{3}\right)_{c . m .}\right)^{\left(\frac{3}{2 n}-4\right.}\right) \tag{A2}
\end{equation*}
$$

where

$$
E=Q+\left(M_{2} / M_{1}+M_{2}\right) \cdot E_{1}
$$

is the energy available in the center of mass frame; $\left(\mathrm{E}_{3}\right)_{\mathrm{C} . \mathrm{m}}$. is the center-of-mass energy of the detected final particle; and M_{t} is the total mass of all the particles in the Einal system (Ba 73). To convert this quantity from the centerm-mass to the laboratory frame of reference, one uses simply the inverse of the Jacobian.

At some excitation, most systems become unbound to several decay channels. For example, ${ }^{5}$ is unbound to $(d+3 n)$ at 6.3 MeV above its threshold for breakup into ($t+2 n$), while at 8.5 MeV, it becomes unbound to ($p+\Delta n$) . The ratio of the appropriate phase space distributicns with more than one channel open will be equal to the ratio of the decay widths. For the systens that we have investigated (i.e. ${ }^{4} \mathrm{H}, 5_{\mathrm{k}}$, and ${ }^{7} \mathrm{me}$), the ratio of these decay channels as a function of energy is unknown. one would expect that the opening of additional breakup modes will reduce the romalization of the previous phase space
distribution, on the assumption that the cross section is either a constant or smoothly varying function of the excitation energy. Because of these complexities, we have not attempted phase space fits that are a composite of several of these distributions, but have only fit the less ambiguous portions of the spectra. Such a fit is achieved by an arbitrary nomalization of the expected shape to the experimental spectrum. Even with fised proportions of the various distributions, it would be difficult to perform composite fitting with much confidence, since in a situation of several breakup modes, the regions near the various thresholds may be distorted by the additional final state interactions:

Deviations fron these phase space distributions can arise from either a final state interaction, or from the reaction mechanism. As an example, the reaction could have a knock-out mechanism.
2. Final State Interactions

An enhancement of the yield above phase space is often called a final state interaction. Any state will cause such an enhancement, but not all of these final state interactions correspond to states in the systen to interest or to only one particular level. (A resonance will also cause an enhancenent, but then is typically described as a resonant interaction rather than a final state interaction.) For example, if one were studying the ${ }^{7}{ }^{\text {Li }}\left({ }^{6}{ }_{\mathrm{Li}},{ }^{8}{ }_{\mathrm{B}}\right){ }^{5} \mathrm{~F}$ reaction and saw an enhancement above phase space, then this effect, if it wexe not an artifact of the reaction mechanism, would be a final state interaction. However, this additional yield could axise from the matrix element corresponding to the $t+n+n$ interactions $(5$ ra) , or to the $n+n$
interaction (corresponding to ${ }^{2} n$), or to the $t+n$ interactions $\left({ }^{4} \mathrm{H}\right)$, or it might be a combination of all of these systems. Similarly, at the higher breakup thresholds, enhancements might arise from $d+n$ or $p+n$ interactions, respectively. Also in A_{H} there is known final state interaction between the $\tau+\pi$, but it is felt to correspond to, not only the ground state of ${ }^{A_{H}}$, but also to the three other low-lying levels (since all these states are quite broad).

There are two ways of removing this ambiguity. Interactions in the mass 2 , or 4 , or 5 systems all have characteristic kinematic shifts so that by collecting data at several angles one should be able to decide which interaction is present. Alternatively, if one employs a coincidence experiment, in which all but one of the final particles is observed, then one would note on correlation plots that the enhancement corresponds to particular relative energies between some group or groups of particles.

APPENDIX B. REACTION DYNAMICS

1. Definitions and Relationships of Some of the Kinematic Parameters

We will employ the following subscript convention

$$
T(I, O) F
$$

where T is target, I is the incident bearn, O is the outgoing particle, and F is the final system. Then for these calculations

$$
\begin{gather*}
E_{C_{0} M_{0}}=M_{T} \cdot E_{I a b} /\left(M_{I}+M_{T}\right) \tag{B.I}\\
k_{I}=\left(2 \cdot M_{I} \cdot E_{C \cdot m \cdot}\right)^{1 / 2} / h \tag{B.2}\\
\lambda_{I}=1 / k_{I} \tag{B.3}\\
n_{I}=Z_{I} \cdot Z_{T} \cdot k_{I} \cdot e^{2} / 2 E_{C \cdot m_{0}} \tag{B.4}\\
v_{I}=k_{I} \cdot h / m_{I} \tag{B.5}\\
R_{i n t}=1.65\left(A_{I} I / 3+A_{T} 1 / 3\right) \tag{B.6}\\
\theta_{C} / 2 \theta=\sin ^{-1}\left(1 /\left(\left(R_{i n t} \cdot k_{I}\right) / n_{I}\right)\right. \tag{B.7}\\
L_{I}\left(\theta_{C}\right)=n_{I} \cot \left(\theta_{c} / 2\right) \tag{B.8}\\
L\left(0^{\circ}\right)=k_{I} \cdot R_{i n t} \tag{B.9}\\
\Delta \theta_{\text {min }}\left(\theta_{C}\right)=\left(2 / n_{I}\right) \cdot \sin \left(\theta_{C} / 2\right) \tag{B.10}
\end{gather*}
$$

$$
\begin{align*}
& Q_{\text {eff }}=Q_{O}-\left(\left(Z_{O} Z_{f} Z_{I} Z_{T}\right) \cdot e^{2}\right) / R_{I} \tag{B.11}\\
& Q_{\text {opt }}=\left(Z_{o} Z_{f}-Z_{I} Z_{T}\right) \cdot E_{C_{0} m_{0}} / Z_{I} Z_{T} \tag{B.12}
\end{align*}
$$

In Brink's formalism

$$
\begin{equation*}
k_{o}=m_{k} \cdot \mathrm{~V} / \mathrm{h} \tag{B.13}
\end{equation*}
$$

where: $m_{k}=$ transferred mass
$\mathrm{V}=$ the relative velocity.
2. Tables of Kinematic Parameters for the $\left({ }^{6} \mathrm{Li},{ }_{8}{ }_{\mathrm{B}}\right)$ reaction at 80.0 MeV on Some Representative Targets

12C(ELI, 8B) 108E
0 MEV

CM ENERGY IN IMEV 52.27
CH ENERGY CUT INEVI 23.03

Q (MEVD - 21044
$\begin{array}{lll}\text { MCMENTUM IN } & \text { FM-1) } & 3.91 \\ \text { MOM FNTUM OUT } & \text { FM-1 } & 2.97\end{array}$

G CPTIMIUN IMEV: $5: 93$
GRINKOS 0 EFFECTIVE IMEV: -21.87

Re	$x *$	IN	$2 \epsilon .5 C$			
cos	x K	DUT		C. 34		
0.2	TRANSFERZEC AT O					
\bigcirc	teuc	HNE	N	(FN)		

AETA IN . 95 95

AETA CUT 1.86
CLASSICAL L IN 25.54
CLASSICAL L OUT 18.41
DELTA L AT GRALING ANGLE 7.13

WAVELENGTH IN (FM-1) . 26
WAVELENGTH CUT (FM-1) . 34

MIMIMUM ANRULAR UNCERTAINTY IN B. 74
MINIMIJN ANGULAR UNCERTAINTY CUT 16.87

26NG(BLI.8E124AF
O MEV

142NCR6:1.8日1140CE
0 MEV

CM ENERGY BM \&MEV: $76.7 E$
CW FNROGY OUT INFV 58.97

0 (NEV) -6.71

WJPEMTUN IN BFM-1 4069 MCMFATUM OUT \&FM-11 5.14

GELCCITY IN RC: DEE VELCCITY CLT CC O136

6 CPTIMIUM SMEV: 46.91 BRINK'S 2 EFFECTIVF PMEV: -20.38

CLASSICAL LIN 45.57
CLASSICAL L CUT 43.3 L
OEITA 1 GTGATING ANGLE 2.66
hAVELEAGTH IN (FM-I) . 21
havelengit ref ifm-1! -19

MINIWUS ANGULAR UNCEQTAINTY IN 13.83
MINIMUM GNGULAE UNCERTAINTY EUT IG.64

REFERENCES

Aj 72. F.Ajzenberg-Selove, R. F. Casten, O. Hansen, T. J. Mulligan, Phys. Lett. 40B, 205 (1972).

Aj 73. F. Ajzenberg-Selove, H. G. Bingham, and J. D. Garrett, Nucl. Phys. A202, 152 (1973).

Aj 74. F. Ajzenberg-Selove and T. Lauritzen, Nucl. Phys. A227, 1 (1974) and references therein.

Aj 75. F. Ajzenberg-Selove, Nucl. Phys. A248, 1 (1975) and references therein.

Al 69. D. E. Alburger, E. K. Warburton, A. Gallmann, and D. H. Wilkinson, Phys. Rev. 185, 1242 (1969).

An 72. Argonne Physics Division Informal Report, PHY-1972H, "Symposium on Two-Nucleon Transfer and Pairing Excitations," (1972).

An 74. N. Anyas-Weiss, J. C. Cornell, P. S. Fisher, P. N. Hudson, A. Menchaca-Rocha, D. J. Millener, A. D. Panagiolou, D. K. Scott, D. Strottinan, D.M.Brink, B. Buck, P. J. Ellis, and T. England, Phys. Report 12C, 201 (1974).

As 75. D. Ashery and M. S. Zisman, private cammunication.
As 76.
D. Ashery, M. S. Zisman, G.W. Goth, G. J. Wozniak, R. B. Weisenmiller, and J. Cerny, Phys. Rev. C 13, 1345 (1976) and private communication.

Ba 66. F. C. Barker, Nucl. Gnys. 83, A18 (1966).
8a 71. A. D. Bacher, E. A. Moclatchie, M. S. Zisman, T. A. Weaver, and $\mathrm{T} . \mathrm{A}$. Tombrello, Nucl. Ehys. Al81, 453 (1971).

Ba 73. A. D. Bacher, private commnication.

Be 67. W. Benenson, G. M. Crawley, J. D. Dreisbach, and W. P. Johnson, Nucl. Rhys. 897, 510 (1967).

Bi 67. J. Birnbaum, J. C. Overley, and D. A. Bromley, Phys. Rev. 157, 787 (1967).

Bo 6A. A. N. Boyarkina, Akademida Nauk, SSSR (English translation) Bhysical Series 28, 255 (1964).

195 60. J. A. Brody, and M. Moshinsky, "Table of Transformation Brackets," Monografias del Instituto de Fisica, Mexico (1960).

Br 70. G. Bruge, J. C. Faivre, H. Faraggi, and A. Bussiere, Nucl. Phys. 4146, 597 (1970).

Bx 71. R. A. Broglis, C. Riedel, and T. Udagawa, Nucl. Phys. Al69, 255 (1971).

Bx 72. D. M. Brink, Phys. Lett. 408, 37 (1972).
Br 73. R. A. Broglia, O. Elansen and G. Riedel, Advances in Nuclear Physics, M. Baranger and E. Vogt, eds. (Plenum publishing CO., Ny, 1973), Vol.6. 9.287.

Ce 64. J. cerny and R. H. Pehl, wuclear Spectroscopy with Direct Reactions, Argome National Laboratory Report, ARIm-6848, Maxch 1964. 8. 208.

Ce 65. J. Cerny, C. Detréz, and R. R. Jehl, Phys. Revo Jetto 15.300 (1965).

Ce 66a. J. Cerny, S.W. Cosper, G. W. Butler, 日. Brunader, R. L. MsGrath, and E'. S. Goulding, Nucl. Instr. and Math. 35. 337 (1966).

Ce 66b. J. Cerny, C. Detraz, and R. M. Dehl. Yhys. Rev. 152,950 (1966).

Ce 68. J. Cerny, Ann. Rev. Nucl. Sci. 18, 27 (1968) and references therein.

Ce 74. J. Cerny, R. B. Weisenmiller, N. A. Jelley, R. B. Wilcox, and G. J. Wozniak, Phys. Lett. 53B, 2A7 (197a).

Ch 73. P. R. Christensen, V. I. Manko, F. D. Becchetti, and R. J. Nickles, Nucl. Phys. A207, 33 (1973).

Cl 72. D. J. Clark, J. Stayaert, J. Bowen, A. Carneiro, and D. Morris, AIP Conf. Proc. NO. 9, Cyclotrons-1972. (Intern. Cyclotron Conference, Proc. of the 6th, Vancouver, 1972, J. J. Burgeryin and A. Strathdee, eds. (AIP, NY, 1972)), p. 265.

Co 70. S. Cohen and D. Kurath, Nucl. Phys. Alal, 145 (1970).
Co 74a. B. J. Cole, A. Watt, and R. R. Whitehead, J. Phys. A: Math., Nucl. Gen. 7, 1374 (1978).

Co 7ab. B. J. Cole, A. Watt, and R. R. Whitehead, J. Phys. A: Math., Nucl., Gen. 7, 1399 (1974).

Cr 74. C. Craig, Nucl. Phys. A225, 493 (1978).
Da 73. S. Dahlgren, 叉. Grafströn, 8. Höistad, and A. Asberg, Nucl. Phys. A204, 53 (1973).

De 73. R. M. De Vxies, Phys. Rev. C 8, 951 (1973).
Do 65. L. R. Dodd and k. R. Greider, Ghys. Rev. Lett. 14, 959 (1965).
Do 66. L. R. Dodd and K. R. Greider, E'nys. Rev. 146, 671 (1966).
En 73. P. M. Endt and C. van der Leun, Nucl. Phys. A214, 1 (1973) and references therein.

Fi 73. S. Wiamnan and W. E. MeyerboE, Mucl. Phys. A206, 1 (1973) and references therein.

Fi 74. L. K. Fifield, R.W. Zürmuhle and D. P. Balamuth, Phys. Rev. C 10, 1785 (1978)。

Fl 71. D. G. Fleming, J. C. Fardy, and J. Cerny, Nucl. Phys. Al62. 225 (1971) and unpublished data.

Yl 74a. E. R. Flynn and J. Do Garrett, Phys. Rev. C 9, 210 (1974).
Fl 7ab.E.R. Flynn, O. Hansen and O. Nathan, Nucl. Phys. A228, 189 (1974).

Gl 63. N. K. Glendenning, Ann. Rev. Nucl. Sci. 13, 191 (1963)
Gl 65. N. K. Glenderning, Phys. Rev. 137, B102 (1965).
G. 71. Y. A. Glukhov, B. G. Kovatskii, A. A. Ogloblin, S. B. Sakuta, D. N. Stephanov, and V. I. Chufv, Yad. Fiz. 13, 277 (English texans. Sov. J. Nucl. Rhys. 13, 154 (1971)).
G. 75. N. K. Glendenning, Nuclear Spectroscogy and Reactions, J. Cerny, ed. (Academic Press, NY, 1975), p. 317, part D.

Go 64. F. S. Coulding, D. A. Landis, J. Cerny, and R. H. Pehl, Nucl. Thstr. and meth. 31, 1 (1964).

Co 66. F. S. Coulding, D. A. Kandis, J. Cerny, and R. H. Pehl, LEEE Trans. Nucl. Sci. 13, 514 (1966).

Co \%1. G. W. Goth, Lamrence Berkeley Laboratory Report LBi-224, Ph. D. Thesis, 19% (wnablished).

Gr 70. K. R. Greider, Mucleax Reactions Induced by Heavy Ions, R. Bock and W. B. Bering, eds. (North-Holland, Ansterdam, 1970), p. 217.

Go 75. D. A. Goldberg, J. G. Cramer, M. S. Zisinan, and R. Mo DeVries, grivate commanication.

Ha 69. B. G. Harvey, Introduction to Nuclear Physics and Chemistry, (Prentice-Hall, Englewood Cliffs, NJ, 2d, 1969), p. 213.

Hi 69. R.E. Hintz, F. B. Selph, W. S. Flood, B. G. Harvey, F. G. Resmini, and E. A. MoClatchie, Nucl. Instr. and Meth. 72, 61 (1969).

Ho 70. A. J. Howard, R. G. Hirko, D. A. Bromley, K. Bethge, and J. W. Olness, Phys. Rev. C 1, 1846 (1970).

Ho 72. A. J. Howard, R. G. Hirko, D. A. Bromley, K. Bethge, and J. W. Olness, Il Nuovo Cimento 11, 575 (1972).

Hu 75. The Fortran program HIPROB was provided by Dr. P. H. Hudson, Oxford University, Oxford, England.

Je 74. N. A. Jelley, R. H. Wilcox, R. B. Weisenmiller, G. J. Wozniak and J. Cerny, Phys. Rev. C 9, 2067 (1974).
Ka 71. G. Kaschl, G. Mairle, H. Mackh, D. Hartwig, and U. Schwinn, Nucl. Phys. A178, 275 (1971).
Ke 76. G. KeKelis, M. S. Zisman, D. R. Scott, D. L. Hendrie, R. B. Weisenmiller, and J. Cerny, unpublished data.

Kh 71. S.B. Khadkikar, S. C. K. Nair, and S. P. Pandya, Phys. Lett. 36B, 290 (1971).

Ku 56. D. Kurath, Ghys. Rev. 101, 216 (1956).
Ku 72. D. Kurath, Corments on Nuclear and Particle Physics V2, 55 (1972).

Ru 74a. The Fortran program bwUCK (March 1974 version DwUCK IV) was provided by Dr. B. D. Kunz, University of Colorado, Boulder, ∞ 。

Ku 74b. N. Kumar, Nucl. Phys. A225, 221 (197A).
Ku 75. D. Rurath, Argonne National Laboratory, private communication.
Ku 76. D. Ekurath, Argonne National Laboratory, private communication.
Li 72. S. Lie, Nucl. Phys. Al81. 517 (1972).
Li 73. R. H. Lirdsay, W. Toews, and J. J. Veit, Nucl. Phys. A199, 513 (1973).

Ik 70. O. Lkhagva and I. Rotter, Yad. Fiz. 11,1037 (Sov. J. Nuc. Phys. 11. 576 (1970)).

Ma 70. The Fortran program LZY was provided by Dr. C. C. Maples, Lawrence Berkeley Laboratory.

Ma 71. C. C. Maples, Lawrence Berkeley Laboratory Report LBL-253. Th. D. Thesis, September 1971 (umpublished).

Ma 74. The Fortran program Chas was provided by Dr. C. C. Maples, Lawnence Berkeley Laboratory.

Ne 68. R. L. MiCGrath, J. Cerny, and S.W. Cosper, Phys. Rev. 165. 1126 (1968)。

Me 76. A. Menchacca-Rocha, University of Mexico, private commnication.
Mi 69. R. C. Minehart, L. Coulson, W. F. Grubb, III, and K. Ziock, Phys. Rev. 177, 1455 (1969) and references therein.

Mo 66. J. Moss and G. C. Ball. tCRLm1712A, 1966 (unpublished).
Na 73. K. Nagatini, D. H. Youngblood, B. Stennefick, and J. D. Bronson, in Symposium on Heavy-Ion Transfer Reactions (Argonne, March, 1973). Arganne Physics Division Infomal Report, Pay 1973B (1973). P. 623.
\$o 71. J. L. Norton and P. Goldhamer, Nucl. Phys. Al65, 33 (1971).

Ol 71. R. W. Ollerhead, G. F. R. Allen, A. M. Baxter, B. W. J. Gillespie, and J. A. Kuehner, Can. J. Phys. 49, 594 (1971).

Pa 72. R. A. Paddock, Phys. Rev. C 5, 485 (1972).
Po 76. A. M. Poskanzer, Lawrence Berkeley Laboratory, private communication.

Pr 72. B. M. Preedom and B. H. Wildenthal, Phys. Rev. C 6, 1633 (1972).
Ri 68. G. Ripka, Advances in Nuclear Physics, M. Baranger and
E. Vogt, eds. (Plenum Press, $N X, 1968$), Vol. 1, p. 183.

Ro 73. R. G. H. Robertson and B. H. Wildenthal, Phys. Rev. C 8, 241 (1973) and private communication.

Sc 73. D. K. Scott, in LBL-1991, and in Intern. Conf. on Nuclear Physics, Munich, 1973, Proc. by J. de Boor and H. J. Mang, eds. (North Holland/Aner ican Elsevier Publ. Co., Inc., 1973), p. 215.

Sc 74a. D. K. Scott. B. G. Harvey, D. L. Hendrie, L. Kraus, C. F. Maguire, J. Mahoney, Y. Terrien, and J. K. Yagi, Phys. Rev. Lett. 33, 1343 (1974) and private communication.

Sc 74b. D. K. Scott, in LBI-3434, and in Classical and Quantum Mechanical Aspects of Heavy Ion Collisions, H. L. Harney and C. K. Gelbke, eds. (Springer-Verlag, 1975), p. 165.

Sc 75. D. K. Scott, in Intern. Conf. on Cluster Structure of Nuclei and Transfer Reactions Inducted by Heavy-Ions (Tokyo, Japan, 1975), also in LBL-3495.

Si 72. R. H. Siemssen, C. L. Fink, L. R. Greenwood, and E. J. Körner, Phys. Rev. Lett. 28, 626 (1972).

Sф 74. B. Sørensen, Phys. Lett. 53B, 285 (1975).

Sq 70. G. T. A. Squier, A. R. Johnston, E. W. Spiers, S. A. Harbison, and N. M. Stewart, Nucl. Phys. Al41, 158 (1970).

St 67. R. H. Stokes and P. G. Young, Phys. Rev. Lett. 18, 611 (1967).
Ta 60. I. Talmi, and I. Unna, Phys. Rev. Lett. 4, 469 (1960).
To 69. I. S. Towner and J. C. Hardy, Adv. Phys. 18, 401 (1969).
Tr 63. W. W. True, Phys. Rev. 130, 1530 (1963).
Wa 75. J. Walton, Lawrence Berkeley Laboratory, private communication.
We 75. R. B. Weisenmiller, unpublished data.
Wi 74. K. H. Wilcox, L. Ho, N. A. Jelley, R. B. Weisenmiller, G. J. Wozniak, and J. Cerny, unpublished data.

Yo 68. P. G. Young, R. H. Stokes, and G. G. Ohlsen, Phys. Rev. 173, 949 (1968).

Yo 71. P. G. Young, and R. H. Stokes, Phys. Rev. C 4, 1597 (1971).
Yo 73. D. H. Youngblood, K. Nagatani, R. Kenefick, and J. D. Bronson, in Symp. on Heavy-Ion Transfer Reactions, (Argonne, 1973), Vol. II. Argonne Physics Division Informal Report, PFY-1973B (1973), p. 689 and Phys. Rev. Lett. 31, 250 (1973).

This report was done with support from the United States Energy Research and Development Administration. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the United States Energy Research and Development Administration.

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

[^0]:

 Raf. Con

 部

[^1]:

 The diferentlai cross secilors decresse mpotionicaliy with exale, qee teat

