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ENERGY EFFICIENCY AND CHOICE OF PARAMETERS
FOR LINEAR COLLIDERS*

J. Claus
Brookhaven National Laboratory

Upton, NY 11973, USA

Introduction

The cost of large high energy facilities is a matter of strong concern.

Such facilities use very large amounts of electric power and a sizeable part

of the total cost is directly related to that fact. It is therefore

important to have a clear understanding of the factors that influence the

power efficiency, i.e., the amount of power used per unit product, where

product is the luminosity generated at a specified energy. The overall

efficiency may be regarded as the product of the efficiencies with which the

parts of the system perform their functions: the efficiency with which raw

grid power is converted to r.f. power, the efficiency with which r.f. power

can be transmitted from source to load, the efficiency of conversion of r.f.

power into particle beam power and finally the efficiency with which beam

power is converted to luminosity.

In this paper we address some factors that are relevant to the latter

two. In the first part we investigate three possible ways of converting beam

power into luminosity: two short bunches colliding with each other, two long

ones doing so, and two pulses of bunch trains which interact. The last mode

appears to be preferable for obtaining high efficiencies, but its

possibilities are restricted by the limits imposed on the length of the

interaction region by the users. These restrictions can be met if the wave

*Work performed under Contract No. DE-AC02-76CH00016 with the United States
Department of Energy



length X at which the accelerators work can be chosen small in comparison

with that length, this leads to X < 1mm. We consider therefore in a second

part some of the implications of linacs for very high frequencies,

emphasizing the factors that influence the efficiency of converting r.f.

power into luminosity and assume that suitable power sources are or will be

available. It appears that a resonant linac accelerates single bunches

rather less efficiently than pulses of many bunches with the same total

charge. The pulse requires a higher operating frequency however, this

restricts the charge a single pulse of acceptable length can carry. This can

be compensated for by increasing the pulse repetition rate. Operation at

higher frequencies may, or may not, permit higher accelerating gradients.

This would be an advantage in nearly all respects. Two processes pose limits

to the gradient that can be achieved: the occurrence of field emission of

electrons from the metal surfaces exposed to the field, and the possibility

of physical damage due to mechanical stresses and shock waves generated by

differential thermal expansion due to dissipation.

No suitable accelerator structures for very high frequencies are

available at present. A third section describes some characteristics of

structures that seem feasible.

1.1 Luminosity, beam power and mode of operation

Single pass colliders can be operated in various modes. In one mode a

single bunch of electrons is made to interact with a single counter streaming

bunch of positrons at a time. The process is repeated periodically with

a, generally low, pulse repetition frequency. The expression for the

luminosity produced in this mode is well known [1] and may be written as



Here Is £ • luminosity
f - number of bunch interactions per unit time
N » number of particles per bunch (assumed equal

in each bunch of an interacting pair)
<j2« e6*/Y square of r.m.s. bunch radius
e * invariant emittance
f •* E/Eo - energy parameter
6** amplitude function in the interaction point.

The expression is valid if the bunch length a is much smaller than 8*. The

energy E s^ stored in each bunch is

E s b - *TTE0 (1.2)

thus the power in the two beams is

Pb « 2 fNYE0 (1.3)

Calling the ratio of the luminosity and the beam power necessary to produce

it ne» one obtains

The number of particles per bunch is limited either by the number of

particles that the source can produce per unit time, i.e., by the source

current ib, or by the accelerators between sources and interaction point.

In the former case:

N = ib T/e - ̂  £ (1.5)

where e - charge per particle

T - — • — period, frequency and wavelength in
v c free space of the accelerating field



Using this one finds for the efficiency

The first term in this expression is inviolate since it consists of constants

of nature, the second one is a source parameter. Only the third term, A/B*,

is available for adjustment. The requirement that the bunches be short

compared to 8* implies a coupling between A and 8*: A/8* - (A/az)(oz/6*) -

B cz/8*, where B - A/az is the bunching factor. If cz/8* is regarded as

restricted ne « B. The accelerator restricts the beam current to a value

that is proportional to AG, where G represents the accelerating gradient. We

conclude therefore that efficient single bunch operation requires bright

sources, large bunching factors S, large accelerating gradients G and a long

wavelength, thus a low operating frequency.

1.2 Single long bunch.

If the colliding bunches are not short compared to 6* their local cross

sections at any instant will be functions of position along the axis, because

8 varies with position. Assuming symmetry relative to the interaction point

and disregarding the effects of the beam self fields, one has for 8 * 8(z):

B - 8*0 + (z/8*)2) (1.7)

where z is the distance to the interaction point.

• The contribution to the instantaneous luminosity by a section of length

dz at location z is then:

2 lh/e W e e Y dz

I F 1 • (z/8*)2



where ib represents the instantaneous beam current. The contribution lasts

as long as both colliding bunches are present at location z. Consider first

bunch 1, which has length oz and moves in the direction of positive z. It

will be present at location z during the interval z/c £ t £ (z + o2)/c.

Bunch 2, also of length cz, but traveling in the opposite direction will be

there while -z/c £ t £ (oz - z)/c; t-o represents the time at which each

bunch reaches the interaction point. It follows that both bunches are

present while

(02 - z)/c < t < (a z+ z)/c. (1.9)

The length of the interval of exposure is

At - (oz - 2 ft )/e

regardless of the sign of z because of the symmetry of the system. At - 0

for ]z] 2. oz/2 because there the counter streaming bunches do not appear

simultaneously. Using this and assuming for convenience that ib is constant,

i.e., that the bunch charge is distributed uniformly along its length, one

obtains for the contribution to the time integrated luminosity:

[„ dt

Integration over the full length -V2 oz £ 2 _< V2 oz yields

ffidt - 2 4 ^ Q 2 ^[# ozg*Carctan (az/26*) - -|^ln(1+(az/2S*)
2)] (1.10)

Repeating this process at a rate of f times per unit time one finds that the

time averaged luminosity is



where

F(oz/28»)

F(x) - arctan(x)- (1/2x) ln(1 + x2)

(1.11)

This luminosity requires a beam power

Pb - 2 f ̂ f Y EO (1.12)

so thus the efficiency becomes

F(az/28*)

(1.13)

The first term in parentheses in (1.13) corresponds to (1.6) which is valid

for az «$*. In Table I, I tabulate some values for F(x) and 2F(x)/x as

functions of x.

Table I: F(x) and 2/x F(x) as functions of o.

X

0.01
0.03
0.1
0.3

1
3
10
30

F(x)

0.005
0.015
0.050
0.148
0.439
0.865
1.240
1.424

| P ( X )

1
1

0.998
0.986
0.878
0.577
0.249
0.095



It may be seen that there is little point in demanding az<B* as far as

efficiency is concerned, oz-2B* is certainly acceptable in that respect, as

is <xz-68*, in all likelihood. However, the bunch length is limited by

considerations of energy spread to a fairly small fraction of X: for

I&E/EJ < 0.05 oz/X - 1/B < 0.14, thus B > 7.2, where E stands for energy.

This then sets an upper limit to &*:

B* < 0.1X
cz < 0.14X

for good efficiency.

1.3 Multibunch operation. (Fig. 1)

The coupling between B* and X can be broken by switching to multibunch

operation. The basic idea is to subdivide the long bunch discussed above

into Ng small ones, each with a charge N/Ng particles and with a center to

center distance, thus a new wavelength A, of

A - L/(NB-1) (1.20)

Here is L the length the interaction region, which is equal to the length c2

of the original long bunch. There are now Ng collision points, spaced at

2
distances 1/2 A along the system axis, in which a total of Ng bunch-bunch

collisions occur per pulse. In calculating the overall luminosity and

efficiency one has to calculate those quantities separately for each

interaction point because the B's are different in the various points, and

because the number of interactions per pulse in a particular point decreases

linearly with its distance to the central one. Computer simulation shows

little difference between the exact result and the analytical one for the



long bunch, particularly if N B is large. In this way I find for the

efficiency of this multibunch mode

F(L/2fJ*)

where I used (13) and (20) and where Ng >̂  2. This form is evidently

independent of the choice of wavelength (although that variable may enter

into the beam current ib> as mentioned before), and nearly independent of

that of Ng. It appears, therefore, that the efficiency in this mode is

determined by the characteristics of the source, i.e., by ib/e and by the

choice of L/2B*, i.e., by the ratio of the length of the interaction region

and B*. It is evident from Table I that there is not much point in choosing

L/2B* - 10.

Multiplication of any of the expressions for T\Q, e.g., (21) with the

beam power Pb yields the luminosity itself. Since

Pb - 2 ibYE0Tf

- 2 ibEt £ f (1.22)

where E^ • YE0 one finds that

£ a L ib
2/e

1.4 Comments.

It has been assumed, so far, that 3ingle particle optics is valid. In

practice the beam densities will be sufficiently high that this is not true.

The computer model referred to before incorporates a linear approximation of

this beam-beam or beam disruption effect and shows clearly that things change



with increasing density. It describes each bunch/bunch interaction as the

application of a focussing lens that transforms the emittance ellipse of each

of the two participating bunches. The strength of that lens is adjusted

according to the local beam radius and is proportional to the sum of the

charges in the two bunches involved. The initial conditions can be set up

for each bunch individually so that Brian Montague's proposal for dynamic

focusing [2] can be simulated, but this has not yet been tried. Another

important factor that has been disregarded is the so-called beamstrahlung.

Its effect is.likely to be different in multibunch operation from what it is

in short single bunch operation and will be studied.

2.1 Acceleration.

We now consider some aspects of accelerators that might be useable for

our purposes. The principal factors of interest are the energy spent per

unit energy in the final beam and the average accelerating gradient. The

first factor enters immediately into the operating cost of the facility and

indirectly into its capital cost, the second one directly into the capital

cost. The characteristics of those accelerators will depend on the choice of

operating mode: single bunch or multibunch. Developments of the induction

linac, wakefield accelerator or switched power linac might be suitable for

single bunch operation while the multibunch mode needs something similar to

the conventional electron linac. The first three accelerators are all single

pulse, wide band, non-resonant devices; the electron linac is a high Q,

narrow band, resonant device. This latter accelerator can also be used for

the acceleration of single bunches but then its energy efficiency is low. A

convenient parameter for guiding the choice of r.f. parameters is the ratio



np of the luminosity and the r.f. power spent to produce it, or,

equivalently, that of the integrated luminosity, integrated over a single

beam-pulse and the r.f. energy invested in that pulse. We use the latter

definition for convenience. An expression for the integrated luminosity was

derived in the previous section, the present one addresses the determination

of the r.f. energy. This requires a description of the accelerator

installation. It appears that np, once an expression for it is available,

can be maximized by proper choice of the r.f. frequency or wavelength and che

coupling factor between the source of the r.f. power and the accelerator.

This is a consequence of the fact the., the system is pulsed to yield a

beam-pulse length equal to the desired length of the interaction region.

Each beam pulse is preceded by a filling period during which r.f. energy is

spent in building up the fields in the accelerator to their nominal levels.

This energy increases quickly with increasing wavelength and is lost after

the last bunch of a pulse has passed if it is not recovered. The integrated

luminosity due to a beam pulse of fixed duration increases also with

wavelength because the tolerable beam.current does. However, the energy

expanded during the filling time increases faster than the integrated

luminosity, so that an optimum wavelength, whose value depends on the length

of the beampulse, must exist.

Consider as a prototype an accelerator that consists of a string of

independent cavities, each supplied by its power source via an ideal, i.e.,

lossless and reflection free, power transmission system. The length of

that system is such that the time it takes a wavefront to travel from one of

its ends to the other is more than half the length T S of the powerpulse. The



beam pulse begins only a filling time -rp after the arrival of the power pulse

front at the cavity and terminates simultaneously with the power pulse. The

restriction on the length of the transmission guide ensures that the power

source is turned off before reflections due to mismatches between guide and

cavity or any signals from the beam can reach it. It is therefore always

loaded by the characteristic impedance of the transmission line during the

pulse, regardless of the conditions at the cavity end while the source

impedance seen by cavity and beam is always the characteristic impedance of

the transmission line at its cavity side. It is convenient to represent the

cardinal features of this prototype with the equivalent circuit diagram of

Fig. 2:

R L C
Fig. 2 Equivalent Circuit Diagram of Linac Cell

I, y, Ro represent the length, propagation constant and characteristic

impedance of the transmission system and L, C, R the magnetic, electric and

dissipative parts of the cavity impedance, S is the power source, it produces

a voltage Uscos HIT, Ug is the gap voltage and ij, is the beam current. The

dissipative losses, which are primarily caused by eddy currents in the cavity

walls, would be represented more accurately by a small resistor in series

with the inductor than by the large parallel resistor shown, however, the

difference is immaterial for the present purpose and the representation



chosen is slightly more convenient. The beam consists of a stream of bunches

whose lengths are short compared to the intra-bunch distances. The Fourier

expansion of the beam current has therefore a dc component and many harmonics

of the bunch repetition frequency, which we take to be identical to the r.f.

frequency u/2ir. We are only concerned about its fundamental component,

which has an amplitude I5 that is twice the dc component i^. The beam

current is represented as coming from a current source, this is an acceptable

approximation if the particle energy YE0 is so high that fractionally small

changes cause negligible fractional change in the velocity 8c, i.e., if

0

Via this model one finds for the behaviour of the gap voltage amplitude

Ug as a function of time in the absence of beam: i

0g(t) - Ug (1 - e"
t/T) (2.1)

t = o represents the instant of arrival of the power pulse front at the

cavity and the resonant frequency ur of the cavity is equal to the frequency

of the power source: •

•0^-0) (2.2)

2 1 ,1 1

a)2 - 1/LC - 1/T 2 (2.4)
r

o)r is real if

T 2Q RQ

thus if

Ro/R > 1/(2Q-1) (2.5)



where Q - R \ r represents the quality factor of the unloaded resonator.
L

The asymptotic value Ug of the gap voltage amplitude is related to the

powersource voltage (as measured at the cavity) according to

Ug - 2 Us/(1 + R o/R). (2.6)

It follows that the filling time tp necessary for a specific gap voltage

amplitude Ug is

tp - - T ln(1 - Ug/Ug) (2.7)

The effect of a beam current i^ may be described as a change in the

amplitude of the effective power source voltage from Us to Ua - 1/2 !& Ro.

This expression is valid if the source voltage and the beam current are in

phase; the situation becomes algebraically much more complex if they are not:

phase factors have to be added, the phase between cavity voltage and drive

will change and switching transients will have to be taken into adcount.

Using the simple model one obtains for the new asymptotic gap voltage

3 - ih Rn . .
/R

 (2'8)
USb • 1 +

A beam current i^ is such that

UUg - Ug(1 - e"
1*'1) - U g b (2.9)

will therefore terminate the filling period and begin the accelerating

period, during which the gap voltage amplitude remains Ug = Ug^. This

requires

ib - (Ug " V < | T
 + f) • (2.10)



Ug will continue to change until this condition is satisfied if i^ deviates

from this value. Successive bunches that pass while U g is changing will

receive different gains in energy. Such differences increase the energy

spread In the ultimate beam and are undesirable. It Is therefore important

that the power source, filling time, beam current and phases be matched

properly.

The number N c of cavities to reach a specified final energy YE0 is

simply:

N(J . 21a . Y En (2.11)
AEp Ug Ftr

where AEp . Ug F^r represents the energy gain per particle per gap and

the so-called transit time .factor, introduced to account for the fact that a

particle crosses a gap of non-zero length in a non-zero time, which may be as

long as half an r.f. period. It corrects also for the non-uniformity of the

gap field, due to end effects.

Before an expression can be written for the efficiency Tip a relation

between beam current and emittance must be established. If we assume that

the beam originates in a source of constant brightness, i.e., such that the

density it produces is x, xf, y, y1 phase space is independent of the current,

we may write

ib = B e
2

where B is the brightness of the particle source.

rip is now calculated by performing the division:



£dt
(2.13)

2NC

is the length in time of the beam pulse, LB its physical length -

length of interaction area, T S - xp + TB is the length in time of the power

pulse; the factor 2 keeps account of the fact that there are two, presumably

identical, beams. Rewriting (1.10) and (1.11) we have for the time

integrated luminosity:

,2
Mt • TttZ 7 LBF(LB/2B*) <2.U)J,

The energy delivered by the power sources is:

N C J T Psdt s- d p + T B)

2 Ro

ug Ftr

where we used ib - 2 ib, (2.6), (2.7) and (2.10).

The expression for rip may now be derived.

f £dt

h Y TB F(LB/28*)
o YEp 1 ,22 ̂ —f1- 2 ̂ug r t



• •

Eo

(2.16) may be represented by

x VT
nP " A

Here is x - A - (1+

2ibR

2irF,t
ROVC / , 2 » 2a *o

a

2 F t r . ln(1+x)
_

° a

4 .

2 F(LR/2B*) /g B G a F h r /c"
Mir e ' i GE 0 \ UT: -^L

energy gain per bunch
energy stored



with gX the length of the acceleration gap and G the field in it. At this

level of approximation x, a, A, g and a are all more or less independent of

the choice of the wavelength X, particularly if Ro/R << 1 and if (1 + R/Ro)

<< 2Q, with Q the quality factor of the unloaded cavities. We note that

L/C £ 200 Q, g £ 0.5, F^r < 1 are all geometrical form factors whose exact

values are set by the geometry of the accelerating cavities and the choice

of operating mode (ir, 2n/3 or other). The source brightness B and the accel-

erating field G should be maximized. The design of the accelerator cannot

affect B, presumably, while G - G(A,Tg) is restricted by surface effects

on the cavity walls: field emission of electrons, sparking, physical damage

due to dissipation, etc. Lg, the length of the beam pulse, but also the

- ? -

length of the interaction region, is restricted by the users, as is a ± o(X)

< 0.05, since the momentum spread in the beam tends to increase with a while

the beam becomes less stable with increasing a.

Returning to (2.17) one finds that np is maximized by choosing X * 1/a

and x * 1.4. For those values

rip ' 0.12 A/Va"

x can be manipulated via the product a Ro, thus

Substitution in (2.16) yields

n 217 « F C L R / 2 6 * ) g 5 B LB (C . Q .
° ' 2 1 7 4ir ec Eo ilir \ L ( 2 * 1 9 )



« o yj GBLB

*opt " °-8 f^ LB

Ro - 0.71 ^JX&

It is clear that for maximum np, a, Lg, B and G should all be as large

as possible and that the optimum wavelength and source impedance are directly

tied to the choice of a and LB-

At the optimum wavelength the filling time and beam pulse length

(in time) are equal, thus the source pulse length is then twice the beam

pulse length. Sinco the length of the interaction region Lg will not be

more than a few cm, the length of the power transmission system has to

exceed those few cm, in order to validate our initial assumption. In

practise it will be difficult to violate this condition, short of integra-

ting the power source directly with the accelerating cavity. It seems that

for optimum efficiency np one has to operate as close to the permissible

limits in beam current (via a) and accelerating gradient as possible. The

instantaneous luminosity can then only be controlled via the final focus,

i.e., 8*. The average luminosity can always be changed via the pulse

repetition rate.

The results assembled in Table II illustrate the behaviour of systems of

this type. We took



B - 8 x 101 0 (A/(rad-m)2)

G - 109 v/m

IT mode, I.e.

g - 0.5

F t r - 2/TT

V^/c " 200n

R/VT - 5.3MJ2/m1/2

F(LB/26») - 0.H4

8» - 1/2 LB.

We chose two interaction lengths:

Lg » 1 cm, 10 cm

corresponding with xs - Tp + xg * 2TB * 64 psec, reap 640 psec, and five

o values in the interval 0.01 £ a S 0.05.

<£> [fidt
In this table np - — T ^ Z — = -4 lom~2 sec"1 W"1 ]

NB number of bunches per pulse.

Ps r.f. power/cavity during the pulse

3Ps/3l = Ps/gA r.f. power per unit length during the
pulse.

N33 Pulse repetition rate for L=1O33 cm-2
at final energy YE0.



Table II.

LB
(cm)
1
10

1
10

1
10

1
10

1
10

a

0.01

0.02

0.03

0.04

0.05

do*2)
2.5
8

5
16

7.5
24

10
31

12
39

*opt
(mm)

0.12
1.25

0.25
2.51

0.38
3.77

0.50
5.02

0.63
6.28

Ro
(kn)

57

28

19

14

11

R
(kn)

59
188

84
265

103
325

119
375

133
420

ib
(A)

0.4
4

1.6
16

3.5
35

6.3
63

9.8
98

Ps
(MW)

0.025
2.5

0.201
20.1

0.68
68.0

1.60
160

3.15
315

3PS /31
(GW/m)

0.4
4.0

16
8.0

3.6
36

6.4
64

100
100

™33
1 IX

4.8x10 I
1.5x10
6.0x10]J
1.9x10

1.8x10]3
5.6x1010

7.4x10^
2.4x101U

1.2x10

MB

80

41

28

21

17

It is noted that for Lg and o small our approximation R 0«R breaks

down. The associated values should be recalculated, taking this effect

into account. It appears that heavy loading (a large) and long interaction

lengths are favourable for efficiency, but also that that leads to very high

peak powers Ps and 3Ps/3£, for which there is, presumably, an upper bound.

The pulse repetition rates are very high as a consequence of our very modest

estimate of the achievable source brightness B, they decrease as (B)" 1 / 2.

An important restriction is imposed by the beamstrahlung, i.e., by the

changes in the energies of individual particles due to synchrotron radiation

caused by the beam self field. So far this complex subject seems to have

been studied only for single bunch interactions, but not yet for the

multibunch mode discussed here [3]. There is a critical energy

3 S c re Y
2 N/(r<jz)

3 5 r e ib3/^5/2 g

2 x 10-11 ib3/"Y5/2 § B^Wg" Lev]



where fl - h/2ir Planck's constant

re classical radius of electron

B bunching factor (peak/average)

One finds, by simple scaling, that, in the crudest approximation, the

relative energy change 6 due to beamstrahlung should behave as B A 1 ^ for

Y<Ycr and as B~ 1'3A~1/2 for Y>Ycr. Since Y c r « Y
5 / 2 one is forced to operate

in the second regime if the energy is sufficiently high. Using the earlier

numerical assumptions one expects the changeover to occur somewhere in the

1-10 TeV range.

3.1 Accelerating structures.

A number of structures that support accelerating modes have been

described [4] and model studies, which demonstrated the existence of such

modes, have been performed on some of them. However, the support of

accelerating modes, though necessary, is not sufficient. A second condition

is that there be no beam deflection since such deflection would be the cause

of energy loss due to synchrotron radiation. Such loss is proportional to

Y^/p2 with Y =» E/Eo and p the local instantaneous radius of orbit curvature.

Any curvature leads always, regardless of its sign, to a loss because of the

quadratic relationship, and the loss increases sharply with increasing energy.

The radiation is directed along the beam and will have practically the same

velocity as the electrons so that each bunch is a mixture of electrons

(or positrons) and photons. Some of it will hit the accelerator structure,

and cause emission of electrons and Y rays. Minimization of the synchrotron

radiation requires evidently minimization of orbit curvature. The net field

in the accelerator, basically a standing wave, may be described as a



superposition of many modes. Only a few of these, if any, are accelerating

modes, but nearly all can contribute to beam deflection. Requiring virtual

absence of deflection presents therefore a severe restriction, which,

however, can be met by imposing certain symmetry conditions on the transverse

geometry, as demonstrated by existing linacs. These machines have circular

cylindrical symmetry about the machine axis. Though their structures still

support certain deflecting modes, such modes occur only due to asymmetry in

the excitation, e.g., in the connection to the power source, or, in the case

of collective effects, to beam-axis misalignments; they are generally weak.

Circular cylindrical symmetry becomes increasingly difficult to arrange if

the wavelength becomes smaller, but structures with two-fold and higher

symmetry offer similar characteristics relative to deflection: although

deflecting modes are possible, the nominal net field has no transverse dipole

component in the vicinity of the axis.

Lately the emphasis of our studies has been on two structures which

might be acceptable. One, the foxhole structure, can be seen as

extrapolation from the conventional linac structure, the other, the

colonnade, invented by Palmer, .may be seen as a development of the gratings

with which this enterprise began [4]. Both seem feasible down to a; i

including A = 10 ym on the basis of the experience with micro machining by,

e.g., ion etching, we have gained so far. Model studies are in progress for

each.

3.2 Foxhole structure (2ir mode).

Let me consider the foxhole structure first because it is relatively

simple and closest to present practice. A sketch for its simplest version is



given in Fig. 3. It shows a base plate in which rectangular holes, the

foxholes, have been formed. The cross section of each hole is of order

1/2 X x 1/2 X, depth an integer multiple of 1/4 A and the distance between

centers is X. Here is A the local wavelength in the foxhole. They are

interconnected by slots through which the beam passes, each slot has a width

of order 0.1X and reaches from top to bottom. Geometries of this type can be

realized, presumably with sufficient accuracy, by means of techniques with

which we have some experience at BNL. The structure is excited by a

travelling wave of e.m. radiation that propagates perpendicularly to the base

plate with its E vector directed along the slots. Each foxhole acts as a

resonator, I shall neglect the coupling between them. The incident radiation

generates a standing wave, in each foxhole with a node for the magnetic field

and a maximum for the electric one in the midplane at 1/4 A from the bottom.

The beam axis is located at that height. The fields in all resonators are in

phase and the acceleration process is reminiscent of that in an Alvarez

proton linac, with the slots acting as drift tubes and the resonators as

accelerating gaps. Regarding each resonator as a cavity with dimensions

h x w x d, as indicated in Fig. 3. and assuming a transverse electric mode

one finds for the resonant wavelength in free space

when n is the number of quarter wavelengths along the height. Choosing n « 2

the electric field across the open end of the resonator will be zero if there

is no energy loss in the cavity, for n » 3 the magnetic field will be zero at



that location. In both cases the incident radiation will reflect totally,

the Poynting vector will be zero everywhere in this end surface and the

amplitudes of the magnetic and electric fields in the cavity will be twice

those In the incident wave. In actuality some energy is lost in the cavity

to dissipation in the resistivity of the walls and to the beam. The lost

energy is replenished by the incident wave, resulting in a small in phase

component of the electric, reap, magnetic field in the open end plane of the

cavity. There will be no reflection if the E/H ratio of the incident wave

matches that at the mouth of the cavities and all its energy is absorbed.

The first.case represents a low impedance match with a small value for E/H,

the second with its large electric field and low magnetic field represents a

high impedance match. The value of the impedance Z - E/H is easily

calculable from the physical constants of the cavity, the matching conditions

can be realized by proper arrangement of the source and of the optical system

between it in the cavity orifice.

The power source would produce a beam which is focussed on the apertures

of the resonators. Its cross section in that aperture plane would be a pulse

length, i.e., C T S , long in the direction of motion of the beam, and its width

would cover the resonator apertures. The beam spot might be made to move

synchronously with the train of bunches it is accelerating, or the

accelerator could be built in sections, each with its own power source, as is

standard practice for conventional accelerators. There would have to be many

short sections for reasons of energy efficiency. The length of the radiation

pulse would have to be longer than the beam pulse by 2NS r.f. periods plus

a filling time if a section is Na wave lengths long: the last cavity is



excited during N3 periods before the head of the beam reaches it while the

first one is driven during N s periods after the last bunch of a bunch train

has left it.

I have disregarded so far the perturbation introduced by the slots.

Slots in the boundary walls of wave guides and cavity resonators have been

used for a long time and for various reasons. In this particular case their

effect is thought to be small for the desired mode of operation, since there

are no wall currents that have to cross them. The slots themselves act as

wave guides that are driven in a higher mode, their characteristic impedance

is low and they are close to a half wavelength long. Our model studies show

the existence of the desired mode in a single cavity with the appropriate

slots, which, however, are only a small fraction of a wave length long in the

model used.

The presence of the slots, which divide the structure into two mirror

symmetric halves suggests the possibility of constructing it in two halves.

Doing so adds important flexibility to the design of the resonators and

slots, they have no longer to be cylindrical and fabrication may be easier

since the depressions to be generated are less deep by factors of 2 to 3.

3-3 Foxhole structure (ir and 2TT/3 modes).

The foxhole structure described above operates in the 2n mode, like most

Alvarez linacs; its effective accelerating gradient is therefore only

F t r * 1/ir - 0.31 of the amplitude of the resonator field. Operation in the

ir, resp 2ir/3 modes would yield factors of Ftr * 0.62 and • 0.86, because they

use the available space and field more efficiently than the 2TT mode. Their



realization requires the use of two or three resonators per wavelength and a

large reduction in the lengths of the slots between successive resonators.

The resonators would no longer run in phase but with phase differences of

it rad (* mode) or 2ir/3 rad (2ir/3 mode) between them. Although the latter is -

standard practice in conventional electron linacs it produces problems if the

power- source excites the resonators in parallel. These angles are too large

to be obtained by simple detuning of the resonators relative to the frequency

of the power source: the relative loss in field amplitude due to the detuning

is larger than the gain derived from this mode of operation.

One solution for a ir mode structure could be to dimension alternate

resonators differently: both types would resonate with the source frequency

but their heights would have the ratio h-i/hg - 5/6. As indicated in Fig. U

the shorter one would be 3/^ of a local wavelength long, the longer 5/1 of a

different local wavelength. The field maximum in the longer one would occur

at the same depth as the second field maximum in the shorter one, so that the

beam sees a phase reversal. This trick cannot be used for the 2ir/3 mode

since in essence the cavity fields are still in phase. Other solutions may

be achieved by driving the resonators in groups of two (IT mode) or three

(2ir/3 mode) while coupling the resonators within a group in a suitable manner.

This is likely to require more complex geometries for the resonators than the

simple cylindrical ones considered so far.

3.if Colonnade (2ir mode).

A second structure under study is Palmer's colonnade. This structure is

a truly "open" one, in contrast with the foxholes, which are only semi-open



at best. As shown in Fig. 5 it consists of a base plate on which two

parallel rows of cylinders have been placed. The cylinders are not

necessarily circular in cross section. The beam axis is located in the

raidplane between the cylinders at some distance from the base plate. In the

simplest version, which operates in the 2ir mode, the distance between

successive cylinders along the axis is exactly X, the distance between the

rows about 1/2 X. Fig. 6 shows an experimental realization of a colonnade

intended for 10 pm radiation. The structure is illuminated from above by a

long source with its axis parallel to the beam path axis, the e.m. beam is

focussed down to a narrow strip which covers the tops of the cylinders. The

beam is polarized with its electric vector along the system axis. All

cylinders oscillate in phase, and the distance between the rows is adjusted

to prevent any net radiation perpendicular to the system axis. The system

may be regarded as an antenna array and it *is easy to see that it supports

waves that travel in both directions along the axis [5] The absence of

radiation in the transverse plane depends upon the mutual cancellation of the

elementary waves from each element and requires high dimensional accuracy.

Misalignments from the design cause radiation which shows up as a reduction

of the Q of the system. Such a depression has nothing to do with the

dissipative losses in the cylinders.

The cancellation of transverse waves and the presence of longitudinal

waves suggest strong coupling between the cylinders. Local e.m. energy will

be redistributed along the length of the structure with group velocity as in

conventional linacs. This is wasteful since the beam is no more than a few

mm long along the axis. Local energy concentrations become possible if the



group velocity is sufficiently small. A convenient measure is that the power

loss due to radiation from a cell (formed by 1 adjacent half cylinders)

should be small compared to the dissipation in that cell.

Let me assume that a sufficiently long, if need be infinitely long,

section of the colonnade is uniformly illuminated. The incident beam wave

fronts will continue to travel towards the base plate after they have arrived

at the tops of the cylinders. They will be reflected there and return,

forming a standing wave with planes of nodes and maxima that are parallel to

the surface of the base plate and separated from it by multiple 1/4 A's, with

A the local wavelength, as modified from the free space A by the presence of

the cylinders. The system axis is defined by the intersection of the

midplane with the first magnetic nodal plane.

The magnetic dipole field is zero in the vicinity of this axis while the

amplitude of longitudinal electric field is maximum. The fields are periodic

in time with the frequency of the incident radiation and periodic in space

with the periodicity of the structure. The field distribution in the

vicinity of the axis is similar to the one in the foxhole structure, each

pair of cylinders (one on each side of the midplane) acting as one of the

slot sections, longitudinal space between pairs as a foxhole. It is suitable

for the acceleration of particles.

Neither the foxhole structure nor the colonnade depend for their

operation on a resonance with the power source, but resonating them is

essential for energy efficiency. Whenever there is a mismatch between the

impedances of source and load, e.g., through lack of resonance, reflections

occur and the energy in the rejected beam is wasted if it cannot be recovered.

The colonnade can be tuned by adjustment of the length or height of the



cylinders and the impedance it presents to the load can be made either low

(cylinder height - t/2A) or high (cylinder height - 3 A A). The actual

value of the impedance is determined by the physical characteristics, among

them the rate of energy loss to dissipation and radiation.

3.5 Colonnade (ir mode).

A tr mode colonnade is much more attractive than a 2n mode one for the

same reasons that a iv mode foxhole structure is to be preferred above a 2ir

mode one: a potential gain in effective accelerating gradient of close to

two without serious loss of energy efficiency. It is thus well worth

pursuing. It differs geometrically from the 2ir colonnade in the longitudinal

distance between successive cylinder pair centers, which is 1/2 A rather

than X. The electrical difference is that the accelerating field along the

axis alternates between successive pairs. Even a single row colonnade will

not radiate transversely when operated in the IT mode, thus the transverse

geometry of a two row colonnade is less critical in this respect for the ir

mode than it is for the 2TT mode. The equivalent of an infinitely long ir mode

single row colonnade with circular cylinders has been measured and the

existence of an accelerating mode has been demonstrated. For this simulation

a metallic circular cylinder was placed between two parallel metallic mirror

sheets with its axis in the midplane between the mirrors. Field measurements

were made as function of frequency, length and diameter of the cylinder.

Lack of time has so far prevented similar measurements from being made for

the 2ir mode. These would require a more complex and less flexible model:

identical half cylinders have to be attached to each mirror, properly located

and oriented, facing each other.



The tr mode structure requires that spacially alternating fields in the

vicinity of the axis be obtained from a single power source. Palmer

predicted that nearly any superperiodic perturbation with a super period of

two periods, i.e., treating neighbours differently but next neighbours

identically, will drive the IT mode. Computer simulations of IT mode

structures of point dipoles have substantiated this.[6] However, the

coupling factors must be sufficiently large to produce, from the same power

source, and in a real structure, a mean accelerating gradient that is

substantially larger than what can be achieved with the simple 2TT mode. This

is still a challenge.
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Fig. 6 Experimental Realization of Colonnade
for Y = 10 urn

(Courtesy J. Warren, BNL)


