

HAND CALCULATOR PROGRAMS FOR WEAPONS EFFECTS ANALYSES – THE PHYSICAL VULNERABILITY SYSTEM

Vaughn E. Culler

August 3, 1976

In States

N 1763 E 42777

Prepared for U.S. Energy Research & Development Administration under contract No. W-7405-Eng-48

NOTICE

This report was prepared as an account of work sponsored by the United States Gowmment. Neither the United States nor the United States Energy Research & Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infitting privately-owned rights.

NOTICE

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Energy Research & Development Administration to the exclusion of others that may be suitable.

Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Printed Copy \$: Microfishe 52.25

Page Range	Domestic Price	Page Range	Domestic Price
001025	\$ 3.50	326-350	10.00
026-050	4.00	351-375	10.50
051-075	4.50	376-400	10.75
076-100	5.00	401-425	11.00
101-125	5,50	426450	11.75
126-150	6.00	451-475	12.00
151-175	6.75	476-500	12.50
176-200	7.50	501-525	12.75
201-225	7.75	526-550	13.00
226-250	8.00	551-575	(3.50
251-275	9.00	576600	13.75
276300	9.25	601-up	•
301-325	9.75		

²Add \$2.50 for each additional 100 page increment from 601 to 1,000 pages: add \$4.50 for each additional 100 page increment over 1,000 pages.

LAWRENCE LIVERMORE LABORATORY

University of California Livermore, California 94550

UCRL-52103

HAND CALCULATOR PROGRAMS FOR WEAPONS EFFECTS ANALYSES – THE PHYSICAL VULNERABILITY SYSTEM

Vaughn E. Culler

MS. date: August 3, 1976

Contents

Abstract	
Introduction	
Programs	
WE-975-1.	Target Hardness Distribution Functions
WE-975-2.	Determination of Adjusted Vulnerability Numbers for P-Type Targets
WE-975-3.	Peak Overpressures and Adjusted Vulnerabilizy Numbers for P-Type Targets
WE-975-4.	Pk, WRO, and WR for P-Type Point Targets
NE-975-5.	P _k , WR ₀ , and WR for P-Type Point Targets - Optimum Reight of Burst
WE-975-6.	Determination of Adjusted Vulnerability Numbers for Q-Type Targets
WE-975-7.	Peak Dynamic Pressures and Adjusted Vulnerability Numbers for Q-Type Targets
WE-975-8.	Pk, MBO, and WR for Q-Type Point Targets - Surface Burst
WE-975-9.	Overpressure or Dynamic Pressure from the Adjusted Vulnerability Number
WE-975-10.	Pea', Overpressure Given Yield and Range for Surface Burst and Free Air Burst
We-975-11.	Peak Overpressure to/from VXad}
WE-975-12.	Peak Dynamic Pressure to/from VN adj

HAND CALCULATOR PROGRAMS FOR WEAPONS EFFECTS ANALYSES --THE PHYSICAL VULNERABILITY SYSTEM

Abstract

The physical vulnerability system for evaluating probable damage from a nuclear blast has received wide acceptance because it is a simple but general system applicable to a wide variety of target classes. We describe here a series of hand-calculator programs using this system that permit equally accurate but faster calculations than the conventional handbook method. The programs cover various interrelationships among peak overpressures, peak dynamic pressures, vulnerability numbers, weapons radii, and kill probability. The use of a programmable calculator greatly reduces the chance of operator error by eliminating individual hand calculations and graphical determinations of parameter values.

Introduction

Suclear-blast damage evaluations are usually prepared from a variety of graphs, nonographs, tables, and hand calculations.¹ Opportunities for error abound. Cross checks are either difficult or impossible. The tedium of a parameter study can be onerous; one often tries to lessen the burden by making simplifying approximations that can sometimes lead to erroneous conclusions.

We have found that exploitation of the capabilities of a programmable calculator - in our case, the Hewlett-Packard HP-65⁴ - leads to faster, more accurate calculations with fewer operator error. A tenfold, even hundredfold, increase in speed is often attainable. In Table 1 we list the titles of some weapons effects programs we have developed for the HP-65. The symbolism, basically that of Ref. 1, is explained in the individual programs. In Table 2 we give the input parameters, the output (what is calculated), and the typical running time for each program.

The balance of this document is given over to the individual programs. Each is presented in the same format: a short description, then user instructions, example(s) of use, and finally a program listing that can be recorded

-1-

Table 1.	Weapons	effects	programs	for	the	HP-65.	
----------	---------	---------	----------	-----	-----	--------	--

Program number	Title
WE-975-1	Target Hardness Distribution Functions
WE-975-2	Determination of Adjusted Vulnerability Numbers for P-Type Targets
WE-975-3	Peak Overpressures and Adjusted Vulnerability Numbers for P-Type Targets
WE-975-4	P_k , WE ₀ , and WR for P-Type Point Targets - Surface Burst
WE-975-5	P _k , WE _O , and WR for P-Type Point Targets — Optimum Height of Burst
WE-975-6	Determination of Adjusted Vulnerability Numbers for Q-Type Targets
WE-975-7	Peak Dynamic Pressures and Adjusted Vulnerability Numbers for Q-Type Targets
WE-975-8	Pk, WRO, and WR for Q-Type Point Targets - Surface Burst
WE-975-9	Overpressure or Dynamic Pressure from the Adjusted Vulnerability Number
WE-975-10	Peak Overpressure Given Yield and Range for Surface Burst or Free Air Burst
WE-975-11	Peak Overpressure to/from VN adj
WE-975-12	Peak Dynamic Pressure to/from VN adj

on a program card. The categorizing number system for the programs is somewhat arbitrary: first, there are identifiers WE (for Weapons Effects) and 975 (September 1975) to date the program, then there is a cardinal number to distinguish each program from others of the same family and age.

Because the procedures for weapons effects analyses have not yet been metricated, we retain English units in the programs but do include SI units if calculator memory is large enough to permit their inclusion. The trend is toward larger memories which, when available, will permit the use of either type units with very simple modifications. Many of the programs have been designed with the transition to more powerful calculators in mind. For example, input parameters and calculated results are stored in memory whenever conveniently possible.

-2--

Program number	Input	Output	Typical rurning time, s
WE-975-1	p and $p_{0.5}$ or q and $q_{0.5}$	P _k	15
WE-975-2	VNO, K, W	VN adj	<10
WE-975-3	VNO, K. W	p,VN adj	10
WE-975-4	VN adj and W (either entered	P _k , WR ₀ , WR	<10
	directly or from WE-975-2 or -11), CEP	(surface burst)	
WE-975-5	VN and W (either entered	P _k , WR ₀ , WR	<10
	directly or from WE-975-2), CEP	(optimum HOB)	
WE-975-6	VN ₀ , K, W	VN adj	15
WE-975-7	νΝ ₀ , κ, w	q, VN adj	20
WE-975-8	VN and W (either entered	P _k , WR _O , WR	<10
	directly or from WE-975-6 or -12), CEP	(surface burst)	
WE-975-9	P-type VN or adj	porq	<5
	Q-type VN adj		
WE-975-10	W,R	р	5
WE-975-11	VN adj or p	p or VN adj	<5
WE-975-12	VN _{adj} or q	q or VN adj	<5

Table 2.	Input	parameters,	outputs	(what	is	calculated),	and	typical	running
	times	of weapons of	effects p	program	ns.				

The programs with the longer running times have the common characteristic of using inefficient iterations, because of limited calculator memory. The choice of inefficient iterations over approximations of limited range or accuracy was deliberate; even the longest program has a typical running time of only 20 s, iterations and all.

Although we do not know of any "bugs" in the programe, we cannot guarantee there are none. If any are discovered, we would appreciate hearing about them. Washing of hands — an author's caveat! These programs were written in self-defense. I need to speak the "lingo" of the physical vulnerability system and to understand what others were saying when that lingo was used. Use the programs as tools, not as oracles!

Programs

Our weapons effects programs for the HP-65 are described on the following pages.

Description

A fundamental requirement of any handbook-type treatment of blast effects is that the effects must be calculable for a wide range of target types.

To meet this requirement, the physical vulnerability system is based on likelihood or probability that a specified level of damage to a given class of structures can often be described by a lognormal distribution of peak overpressure or peak dynamic pressure. Thus, the same types of equations, but with different constants, apply to a vide range of different target classes.

For "P-type" targets - those vulnerable primarily to peak overpressure (p) - the lognormal distribution describing the expected damage is

$$F(p,W) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$$
, (1)

where $F(\rho, W)$ is the probability that a target selected at random from the population will have a blast hardness less than or equal to p for a nuclear explosion of yield W and for z given by

$$z = \frac{1}{\alpha_p} \ln (p/p_{0.5}), \qquad (2)$$

Note that $p_{0.5}$ is the value of p for which F(p, N) is equal to 1/2.

One of the great generalizations of the physical vulnerability system for nuclear weapont is that, for every class of targets vulnerable to peak overpressure, α_p has the same value. A second great generalization is that the same types of relations hold for "Q-type" targets - those vulnerable to peak dynamic pressur: (q) - and that the corresponding α_q also has the same value for every class of such targets.

We therefore describe all peak-overpressure targets by Eqs. (1) and (2) or, in differential form,

$$f(p,W) = \frac{dF(p,W)}{dx} = \frac{1}{\sqrt{2\pi} \alpha_p} e^{-x^2/2\alpha_p^2},$$
 (3)

-5-

where $x = \ln (p/p_{0.5})$ and f(p,W) is interpreted as a probability density function. Thus f(p,W) dx is the probability that a target selected at random will have a hardness in the logarithmic increment x to x + dx.

Equations formally identical to (1), (2), and (3) apply for Q-type targets in that q, q_{0.5} and $\alpha_{\rm p}$ replace p, p_{0.5}, and $\alpha_{\rm p}$:

$$F(q,W) = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{2} e^{-t^{2}/2} dt; \qquad (4)$$

$$L = \frac{1}{\alpha_q} \ln (q/q_{0.5});$$
 (5)

$$f(4,W) = \frac{dF(q, W)}{dx} = \frac{1}{\sqrt{2\pi} \alpha_q} e^{-x^2/2\alpha_q^2},$$
 (6)

where $x = \ln(q/q_0)$.

This program calculates f and F for either P-type or Q-type targets as functions of either P (given $P_{0.5}$) or q (given $q_{0.5}$). The constants $\alpha_p = 0.29718$ and $\alpha_q = 1.0419$ are contained in the program. The appropriate one is generated in a preliminary operation. Once α_p or α_q is selected, there are some built-in constraints that the proper value locked into the program and hence tamperproof to any but a deliberate change. The results are calculated correctly to at least three significest figures.

User Instructions

Step	Instructions/ comments	Input data/units	Key	Output data/units
1	Enter program.			
2	Preliminary calculation:			
	for P-type		Ъ	α _. /0.30
	for Q-type		Е	α[/1.04
	The remaining instructions are			4
	for a P-type calculation. A			
	Q-type would be identical except			
	q would appear instead of p.			
3	Enter p.		А	Р
4	Enter p _{0.5} , calculate f(p,W).		R/S	f(p,W)

Users Instructions (Cont.)

Step	Instructions comments	Input data/units	Key	Output data/units
5	Continue calculation to obtain F(p,W).		R/S	F(p,W)
N.B.: may be	problem of same type, return to s If f is not wanted, the R/S stop a deleted. Then step 5 above is del will be F.	at key entry 37 (

Typical running time: 15 s.

Example

At a given yield, $p_{0.5}$ is 75 psi. What fraction of the same type targets would be expected to be damaged at least to the same characteristic level if p were 150 psi? 90 psi?

Step	Instructions/ Comments	Input data/units	Key	Output data/units
1	Enter program.			
2	P-type calculation, initialize			
	accordingly.		D	0.30
3	Enter p.	150 рый	A	150.00
4	Enter p _{0.5} , calculate f(p.W) or output. Note there are now			
	three decimal places in answer.	75	R/S	£/0.088
5	Continue calculation to ottain			
	F(p,W) for $p = 150$ psi.		R/S	F/0.990
Return	to Step 3 for p = 90 psi calculations	:		
3	Enter p.	90	A	90.000
4	Enter p _{0.5} , calculate f.	75	R/S	f/1.112
5	Continue calculation to obtain			
	F for p ≠ 90 psi.		R/S	F/0.730

Key entry	Code shown	Key entry	Code shown	Key entry	Code shown	Key entry	Code shown
LBL	23	 ÷	81	RCL 4	34 04		00
A	11	f	31	X X	54 64 71	4	04
1 1	41	√x	09	RCL 7	34 07	1	04
, R/S	84	STO 4	33 04	X X	54 07 71	9	01
÷	81	RCL 5	34 05		83	STO 5	33 05
f	31	+	81	5	05	RTN	24
- LN	07	R/S	84	÷	61	GTO	22
RCL 5	34 05	LBL	23	RTN	24	E	15
:	81	1	01	LBL	23	-	
DSP	21	RCL 1	34 01	B	12		
•	83	RCL 3	34 03	0	00		
3	03	кс г у ÷	54 05 81	R/S	84		
5 5TO 7	33 07	RCL 6	34 06	GTO	22		
	41	X	71	B	12		
x	71	STO 6	33 06	LBL	23		
STO 1	33 01	STO	33	D	14		
1	01	+	61	•	83		
STO 6	33 06	2	02	2	02		
STO 2	33 02	2	02	9	09		
2	02	STO	33	7	07		
						Reg	isters
÷	61	+	61	1	01		
STO 3	33 03	3	03	8	08	1	
RCL 1	34 01	EEX	43	STO 5	33 05	R ₂ Use R ₂ Use	
CHS	42	CHS	42	RTN	24	د	
f ⁻¹	32	4	04	GTO	22	R ₄ Use	
N	07	RCL 6	34 06	D	14		or a q
3	35	g х>у	35 24	LBL	23	R ₆ Use R ₇ Use	
Ŧ	02	GTO	22	E	15		u
•	41	1	01	1	01	8	1
۴	61	RCL 2	34 02	•	83	R ₉ Used	•

Program WE-975-1 Listing

.

PROGRAM WE-975-2. DETERMINATION OF ADJUSTED VULNERABILITY NUMBERS FOR P-TYPE TARGETS

Description

From the vulnerability number VN, of the form VN₀ ^p K, and the weapon yield W, the adjusted vulnerability number VN_{adj} is calculated. No approximations are made in the program. Parametric studies of VN_{adj} as a function of either K or W are readily effected.

Step	Instructions/ comments	Input data/units	Key	Output data/units
1	Enter program			
	Vulnerability number is of form VN _O P K.			
2	Enter VNO.	VN O	A	VN 0
3	Enter K.	ĸ	в	K/10
4	Enter W in Mt.	W(Mt)	С	VN adj
	Step 4 may be repeated for other va	alues of W.		
	If it is desired to determine VN _{adj} key entry 11 (see listing) may be c be entered separately, once, in res	changed from R/S to	RCL5	and W must
Typica	calculate VN _{adj} as its output and m of K. Step 4 will be deleted. 1 running time: less than 10 s.	-	-	
Typica	calculate VN as its output and m adj of K. Step 4 will be deleted.	-	-	
	calculate VN _{adj} as its output and m of K. Step 4 will be deleted. 1 running time: less than 10 s. <u>Example</u>	-	othe	r values
	calculate VN _{adj} as its output and m of K. Step 4 will be deleted. 1 running time: less than 10 s. <u>Example</u> The VN of a target is 25P6. What i	nay be repeated for	othe	r values
Mt? 1	calculate VN _{adj} as its output and m of K. Step 4 will be deleted. 1 running time: less than 10 s. <u>Example</u> The VN of a target is 25P6. What i Mt? Instructions/	nay be repeated for .s VN _{adj} for a weap 	on yia	r values eld of 0.1 Output
Mt? 1	calculate VN _{adj} as its output and m of K. Step 4 will be deleted. 1 running time: less than 10 s. <u>Example</u> The VN of a target is 25P6. What i Mt? <u>Instructions/</u> comments	nay be repeated for .s VN _{adj} for a weap 	on yia	r values eld of 0.1 Output

User Instructions

Step	Instructions/ comments	Input data/units	Key	Output data/units
4	Enter W in Mt.	0.1	С	22.98
	Answer: VN_{adj} for $W = 0.1$ Mt is 22.98 for	a 25P6 target.		
	For $W = 1$ Mt, we need only repeat step	4:		
4	Enter W in Mc.	1	С	21.38
	Answer: VN_{adj} for W = 1 Mt is 21.38 for a	25P6 target.		

Example (Cont.)

Program	WE-975-2	2 Listing

Key entry	Code shown	Key entry	Code shown	Key entry	Code shown	Key entry	Code shown
I.BL	23	RCL 4	34 04	STO 7	33 07	f	31
A	11	-	51	1	01	LN	07
STO 3	33 03	STO 6	33 06	+	61	÷	81
R/S	84	RCL 4	34 04	+	31	RCL 3	34 03
LBL	23	↑	41	√x	09	+	61
В	12	х	71	1	01	RTN	24
1	01	÷	81	+	61	LBL	23
0	00	4	04	↑	41	D	14
÷	81	х	71	+	61	hCL 3	34 03
STO 4	33 04	RCL 5	34 05	RCL 7	34 07	RTN	24
R/S	84	5	05	÷	81	Regis	ters
LBL	23	0	00	1	01	R ₁ -	
с	13	x	71	+	61	R ₂ -	
STO 5	33 05	2	02	RCL 6	34 06	^R 3 ^{VN} 0	
RCL 4	34 04	t	41	x	71	R ₄ K/10	
D	00	3	03	f	31	R W(Mt	
g x≔y	35 23	÷	81	LN	07	$R_{6} = \frac{1-K}{2}$	10
GTO	22	g	35	1	01	R ₇ Used	
D	14	y x	05	٠	83	^R 8 -	
1	01	х	71	2	02	R ₉ Used	

PROGRAM WE-975-3. PEAK OVERPRESSURES AND ADJUSTED VULNERABILITY NUMBERS FOR P-TYPE TARGETS

Description

This program is similar to WE-975-2 but has the added feature of computing the peak overpressure p corresponding to VN_{adj} as well as VN_{adj} itself. If the peak overpressure (ordinarily interpreted as that essociated with a 50% probability of damage; i.e., $P_{0.5}$ of Ref. 1) is not desired, WE-975-2 is preferable. No approximations are made in the program.

Step	Instructions/ comments	Input data/units	Key	Output data/units
1	Enter program,			
	Vulnerability number is of			
	form VN _O PK.			
2	Enter VN _O	VN O	А	0 ^{NV}
3	Enter K.	к	В	к/10
4	Enter W in Mt.	W(Mt)	С	p(psi)
5	Optional step to obtain peak			
	overpressure, p, in kPa.		E	p(kPa)
6	Optional step to obtain VN adj		RCL 1	VN adj
	For other values of W, repeat, s	tarting with	step 4.	
	If it is desired to determine p	as a function	of K fo	or fixed W, key
	entry ll may be changed from R/S	to RCL5 and	W must t	hen be entered
	separately, once, in register 5.	Then step 3	(and 5	and/or 6) above
	may be repeated for other values	of K, and st	ep 4 is	omitted.
Typical	L running time: 10 s.			

User Instructions

-11-

Example

The VN of a target is 25P6. What are p and VN $_{\rm adj}$ for a weapon yield of 0.1 Mt? 1 Mt?

Step	Instructions comments	Input data/units	Key	Output data/units
1	Enter program.			
2	Enter VN _O .	25	А	25,00
3	Enter K.	6	В	0,60
4	Enter W in Mt.	0.1	С	74.03 (psi)
5	(for p in kPa).		E	510.41 (kPa)
6	(for VN _{adj}).		RCL 1	22,98
	Repeat for $W = 1$ Mt:			
4	Enter W in Mt.	1	С	55.33 (psi)
5	(for p in kPa).		E	381.50 (kPa)
6	(for VN _{adj}).		RCL 1	21.38
	Answer: For a weapon yield of 0.1 M	At and a 25P6	target,	p is 74.03 psi
	or 510.41 kPa, and VN is	22.98. For	1 Mt, we	find p is
	55.33 psi or 381.50 kPa, ar			

Key entry	Code shown	Key entry	Code shown	Key entry	Code shown	Key entry	Code shown
I.BL	23	5	05	ſ	31	•	83
٨	11	0	00	LN	07	8	08
STO 3	33 03	х	71	:	81	9	09
R/S	84	2	02	RCL	34 03	5	05
LB1.	23	t	41	+	61	х	71
8	12	3	03	GTO	22	RTN	24
1	01	:	81	1	01		
)	00	g	35	LBL	23		
:	81	y×	05	D	14		
STO 4	33 04	х	71	RCL 3	34 03		
R∕S	84	STO 7	33 07	LBI.	23		
BL	23	1	01	1	01		
;	13	+	61	STO 1	33 01		
STO 5	33 05	f	31	1	01		
RCL 4	34 04	√x	09	•	83		
)	00	1	01	2	02		
, x≃y	35 23	+	61	RCL 1	34 01		
T O	22	î	41	g	35		
)	14	÷	61	y ×	05		
l	01	RCt. 7	34 07	1	01		
RCL 4	34 04	:	81	•	83	Regi	sters
	51	1	01	1	01	R ₁ VN ad	
TO 6	33 06	+	61	2	02	R ₂ - 40	.1
CL 4	34 04	RCL 6	34 06	2	-02	R ₃ VN _O	
						к ₄ к/10	
	41	x	71	6	06	R ₅ W(Mt)
	71	f	31	X	71	R ₆ 1-K/	
	81	LN	07	RTN	24	R ₇ Used	
	04	1	01	LBL	23	^R 8 -	
	71	•	83	E	15	"S R _g Used	
Cl. 5	34 05	2	02	6	06	9	

Program WE-975-3 Listing

PROGRAM NE-975-4. Pk, WRO, AND WR FOR P-TYPE POINT TARGETS -

SURFACE BURST

Description

The adjusted vulnerability number VN_{adj}, the weapon yield W (Mt), and the CEP (ft) of the delivery vehicle are the input parameters for this calculation. Grdinarily, this program is used after WE-975-2 without clearing the calculator, in which case VN_{adj} and W are already entered for calculation and only the CEP must be entered by the operator. P_k , the probability of a "kill" at the damage level appropriate to the vulnerability number, is determined, as are the scaled weapon radius WR₀ and the weapon radius WR. Parametric studies based on CEP are particularly facile.

Note that the calculation is for P-type point targets and for a surface burst. Error, defined as deviation from the results obtained using Ref. 1, results from an analytic fit² to obtain WR₀ from VN_{adj}. Typically this "error" is less than 5%. No further approximations are mode in obtaining WR and P_k, so the "error" in NR is the same as that for WR₀ and the "error" in the value of P_k is typically no more than ±0.02.

Step	Instructions comments	Input data/units	Key	Output data/units
1	Enter program.			
	If used after WE-975-2, W is			
	in register 5, VN is in adj			
	the x-register. If not,			
	enter them in the correct			
	registers.		А	WR ₀ (ft/kt ^{1/3})
2	Enter CEP.	CEP(ft)	В	P. k
3	Optional step to obtain WR			
	if desired.		RCL 4	WR(ft)
	Step 2 may be repeated for othe	r CEP's:		
2	Enter CEP.		в	P _k
3	Optional step to obtain WR			ĸ
	if desired.		RCL 4	WR(ft)
Typical	running time: less than 10 s.			

User Instructions

Example

a construction of the second sec

an an age to preserve and the start of the Market Start of the Start o

What are P_k , WR₀, and WR for the first example of WE-975-2 (a 25P6 target with W of 0.1 Mt) for a 1000-ft CEP?

For these conditions, we found in WE-975-2 that VN $_{adj}$ was 22.98. Ordinarily, however, WE-975-4 is used as a continuation of WE-975-2, so that program is run first.

Step	Instructions/ comments		Input data/units	Key	Output data/units
Prelim	ninary	Run WE-975-2 for a 25P6			
		target, $W = 0.1 Mt$.			22.98
1		Enter this program			
		(WE-975-4).	22.98	A	381.20
2		Enter CEP.	1000	в	0.84
3		Obtain WR.		RCL 4	1769.35
	Answer:	P _k is 0.84, WR ₀ is 381	.20 ft/kt ^{1/3} ,	and WR is	1769.35 ft.
	Question	n: If the CEP were 1500	ft instead of	1000 ft,	what
		would P_k , WR_0 , and W	R be?		
2		Enter CEP.	1500	В	0.59
3		Obtain WR.		RCL 4	1769.35
	Answer:	P _k for 1500 ft CEP is because neither is a f	-		inchanged
Note:	Since we and VN _{od}	knew VN was 22.98, was in the x-register with	e could have en out first runni	ntered W ing WE-97	in register 5 5-2. We would
	obtain, f	for the 1000 ft CEP, P _k	= 0.84, WR ₀ = 3	381.18 ft	/kt ^{1/3} , and
		.30 ft. The negligible			
	example a	are, of course, a result	of rounding in	the dir	ect entry of
	VN _{adj} .				

Key entry	Code shown	Key entry	Code shown	Key entry	Code shown	Key entry	Code shown
LBL	23	•	83	x	71	†	41
A	11	9	09	2	02	+	61
STO 1	33 01	RCL 1	34 01	f	31	:	81
1	01	g	35	LN	07	CHS	42
2	02	y ^x	05	2	02	f ⁻¹	32
RCL 1	34 01	3	03	х	71	LN	07
g x ≈y	35 23	7	07	÷	81	CHS	42
CTO	22	3	03	STO 2	33 02	1	01
1	01	0	00	RCL 5	34 05	+	61
2	02	x	71	3	03	RTN	24
2	02	STO 1	33 01	g	35		
RCL 1	34 01	RTN	24	1/x	04		
g x=y	35 23	LBL	23	g	35		
GTO	22	2	02	y ^x	05		
2	02	•	83	1	01		
•	83	9	09	0	00		
9	09	1	01	х	71		
4	04	RCL 1	34 01	RCL 1	34 01		
RCL 1	34 01	g	35	х	71		
B	35	y ^x	05	STO 4	33 04		
						Regi	sters
,×	05	3	63	1	41		
L	01	2	02	х	71	R ₁ WR ₀	
5	05	8	08	+	41	R ₂ Used	
3	08	0	00	t	41	R ₃ -	
)	00	х	71	•	83	R ₄ WR	
ĸ	71	STO 1	33 01	0	00	R ₅ W(Mt)
5 TO 1	33 01	RTN	24	4	04	R ₆ -	
RTN	24	LBL	23	х	71	R ₇ -	
LBL	23	В	12	RCL 2	34 02	R ₈ -	
Ł	01	t	41	+	61	^R g ^U sed	

Program WE-975-4 Listing

PROGRAM WE-975-5. P_k, WR₀, AND WR FOR P-TYPE POINT TARGETS --OPTIMUM HEIGHT OF BURST

Description

The adjusted vulnerability number VN_{adj}, the weapon yield W (Mt), and the CEP (ft) of the delivery vehicle are the input parameters for this calculation. Ordinarily, this program is used after WE-975-2 without clearing the calculator, in which case VN_{adj} and W are clready entered for calculation and only the CEP must be entered by the operator. P_k , the probability of a "kill" at the damage level appropriate to the vulnerability number, is determined, as are the scaled weapon radius WR_o and the weapon radius WR.

Note that the calculation is for P-type point targets and for optimum height of burst. Optimum height of burst for this program is defined by an empirical fit,² based on Table I-16 of Ref. 1, that maximizes the scaled weapon radius as a function of scaled height of burst. Error, defined as deviation from the results obtained using Ref. 1, is typically less than 5%. No further approximations are made in obtaining WR and P_k , so the "error" for WR is the same as that for WR₀ and the "error" in the value of P_k is typically no more than ±0.02.

Step	Instructions Comments	Input lata/units	Кеу	Output data/units
1	Enter program.			
	If used after program			
	WE-975-2, W is the register 5,			
	VN is in the x-register. adj			
	If not, enter them in the			
	correct registers.		A	WR ₀ (ft/kt ^{1/3})
2	Enter CEP.	CEP(ft)	В	P k
3	Optional step to obtain WR			R
	if desired.		RCL 4	WR(ft)
	Step 2 may be repeated for other	CEP's:		
2	Enter CEP.		В	P k
3	Optional step to obtain WR			
	if desired.		RCL 4	WR(it)
Typical	l running time: less than 10 s.			

User Instructions

-17-

Example

What are P_k , WR_0 , and WR for the first example of WE-975-2 (a 25P6 target with W of 0.1 Mt) for a 1000-ft CEP?

For these conditions, we found in WE-975-2 that VN $_{ad\,j}$ was 22.98. Ordinarily, however, WE-975-5 is used as a continuation of WE-975-2, so that program is run first.

Ste	Instructions/ p comments	Input data/units	Key	Output data/units
Prelim	inary Run WE-975-2 for a 25P6			
	target, W = 0.1 Mt.			22.98
1	Enter this program (WE-975-5).	22.98	Α	416.96
2	Enter CEP.	1000	В	0.88
3	Obtain WR.			1935.35
	Answer: P_k is 0.88, WR_0 is 416.96 f	t/kt ^{1/3} and W	R is 193	5.35 ft.
	Question: If the CEP were 1500 ft i	nstead of 100) ft, wh	at would
	P_k , WR_0 , and WR be?			
2	Enter CEP.	1500	В	0.65
3	Obtain WR.		RCL 4	1935,35
	Answer: P _k for 1500 ft CEP is 0.65. because neither is a functi	0		anged
Note:	Since we knew VN _{adj} was 22.98, we could and VN _{adj} in the x-register without fir obtain, for the 1000-ft CEP, $P_k = 0.88$, WR = 1935.29 ft. The negligible numeri example are, of course, a result of rou VN _{adj} .	st running WE- WR _O = 416.95 cal difference	975-2. ft/kt ^{1/} s from	We would ³ , and the above

Key entry	Code shown	Key entry	Code shown	K∈y entry	Code shown	Key entry	Code shown
LBL	23	•	83	3	03	+	61
А	11	9	09	g	35	RTN	24
STO 1	33 01	3	03	1/x	04		
2	02	7	07	g	35		
1	01	6	06	у ^ж	05		
•	83	2	02	1	01		
3	03	RCL 1	34 01	0	00		
4	()4	8	35	х	71		
g x≤y	35 22	y ^x	05	RCL 1	34 01		
G T O	22	1	02	х	71		
1	01	8	08	STO 4	33 04		
•	83	3	03	t	41		
8	08	1	01	х	71		
8	08	•	83	STO 3	33 03		
4	04	9	09	•	83		
6	06	х	71	0	00		
RCL 1	34 01	STO 1	33 01	4	04		
8	35	RTN	24	х	71		
y ^x	05	LBL	23	RCL 2	34 02		
6	06	В	12	÷	61		
						Regi	sters
3	03	f	41	t	41		
4	04	х	71	+	61	R ₁ WR ₀	
3	03	2	02	RCL 3	34 03	R ₂ Used	
•	83	t	41	g x∔y	35 07	R ₃ Used	
5	05	f	31	÷	81	R ₄ WR	
x	71	LN	07	CHS	42	R ₅ W(Mt)	
sto 1	33 01	x	71	f ⁻¹	32	R ₆ -	
RTN	24	÷	81	LN	07	R ₇ -	
1.8L	23	STO 2	33 02	CHS	42	^R 8 -	
1	01	RCL 5	34 05	1	01	R ₉ Used	

Program WE-975-5 Listing

PROGRAM WE-975-6. DETERMINATION OF ADJUSTED VULNERABILITY NUMBERS FOR Q-TYPE TARGETS

Description

From the vulnerability number VN, of the form VN₀ Q K, and the weapon yield W, the adjusted vulnerability number WN_{adj} is calculated. An iteration made in the program could result in an "error" of no more than 1 in the second decimal place of VN_{adj} . Parametric studies of VN_{adj} as a function of either K or W are readily effected.

Step	Instructions comments	Input data/units	Key	Output data/units					
1	Enter program.			 					
	Vulnerability number is								
	of form VN _O Q K.								
2	Enter VN _O .	VNO	Λ	VN O					
3	Enter K.	к	В	к/10					
4	Enter W in Mt.	W(Mt)	С	VN _{adj}					
	Step 4 may be repeated for othe	er values of W.		ъ. ^с					
	If it is desired to determine '	VN as a functi adj	on of K	for fixed W					
	key entry ll (see listing) may	be changed from	R/S to	RCL 5, and W					
	must then be er 🐄 ed separately, once, in register 5. Then, step 3								
	above will calculate VN as a	its output and ma	y be re	peated for					
	other values of K. Step 4 will								
Typical	running time: 15 s.								

User Instructions

Example

The VN of a target is 25Q6. What is VN $_{\mbox{adj}}$ for a weapon yield of 0.1 Mt? 1 Mt?

Step	Instructions/ comments	Input data/units	Key	Output data/units
1	Enter program.			
2	Enter VN _O .	25	A	25.00
3	Enter K.	6	В	0.60

Step	Instructions/ comments	Input data/units	Кеу	Output data/units
4	Enter W in Mt.	0.1	с	24.07
	Answer: VN for W = 0.1 Mt is 24.0	7 for a 25Q6 ta	rget.	
	For W = 1 Mt, we need only repea	t step 4:		
4	Enter W in Mt.	1	С	23.27

Example (Cont.)

Answer: VN_{adj} for W = 1 Mt is 23.27 for a 25Q6 target.

Key ent ry	Code shown	Key entry	Code shown	Key entry	Code shown	Key entry	Code shown
LBL	23	g	35	1	01	f	31
٨	11	1/x	04	+	61	LN	07
sto 3	33 03	g	35	RCL 4	34 04	1	01
r/s	84	y ^x	05	-	51	•	83
LBL	23	RCL 4	34 04	STC 6	33 06	4	04
В	12	x	71	RCL 1	34 01	4	04
1	01	STO 2	33 02	-	51	f	31
0	00	1	01	g	35	LN	07
•	81	STO 6	33 06	ABS	06	÷	81
STO 4	33 04	LBL	23	EEX	43	RCL 3	34 03
r/s	84	1	01	CHS	42	+	61
LBL	23	RCL 6	34 06	3	03	RTN	24
С	13	STO 1	33 01	g x>y	35 24	Regi	sters
STO 5	33 05	3	03	GTO	22		
•	83	g	35	D	1.4	R ₁ Used	
0	00	1/x	04	GTO	22	R ₂ Used	1
2	02	g	35	1	01	R ₃ VN ₀	
вх┽у	35 07	у ^ж	05	LBL	23	R ₄ K/10	
÷	81	RCL 2	34 02	D	14	R ₅ W(Mt	
3	03	x	71	RCL 6	34 06	R Used	l
						R ₇ -	
						^R 8 -	
						R ₉ Used	

PROGRAM WE-975-7. PEAK DYNAMIC PRESSURES AND ADJUSTED VULNERABILITY NUMBERS FOR Q-TYPE TARGETS

Description

This program is similar to WE-975-6 but has the added feature of computing the peak dynamic pressure corresponding to VN_{adj} as well as VN_{adj} itself. If the peak dynamic pressure (ordinarily interpreted as that associated with a 50% probability of damage; i.e., $q_{0.5}$ of Ref. 1) is not desired, WE-975-6 is preferable. An interation made in the program could result in an "error" of no more than 1 in the second decimal place of VN_{adj} . No other approximations are made in the program.

Step	Instructions comments	Input data/units	Key	Output data/units
1	Enter program.			
	Vulnerability number is of			
	form VN _O Q K.			
2	Enter VN ₀ .	VNO	А	VN o
3	Enter K.	ĸ	В	K/10
4	Enter W in Mt.	W(Mt)	С	q(psi)
5	Optional step to obtain peak			
	dynamic pressure q in kPa.		Е	q(kPa)
6	Optional step to obtain VN_{adj} .		RCL 1	^{VN} adj
	For other values of W, repeat, star	ting with step	4.	
	If it is desired to determine q as	a function of	K for fi:	ked W, key
	entry 11 may be changed from R/S to	RCL5, and W m	ust then	be entered
	separately, once, in register 5. T	hen step 3 (an	d 5 and/o	or 6) above
	may be repeated for other values of	K, and step 4	is delet	ed, step 3
	calculating q (psi) without stoppin	g for the entr	y of W.	

User Instructions

Typical running time: 20 s.

The VN of a target is 25Q6.	What are q and VN for a weapon yield of
0.1 Mt? 1 Mt?	3

Step	Instructions/ comments	Input data/units	Key	Output data/units
1	Enter program.			
2	Enter VN _O .	25	A	25,00
3	Enter K.	6	В	0,60
4	Enter W in Mt.	0.1	С	187.89 (psi)
5	(for q in kPa)		Е	1295.50 (kPa)
6	(for VN _{adj})		RCL 1	24.07
	Repeat for $W = 1$ Mt:			
4	Enter W in Mt.	1	C	140.06 (psi)
5	(for q in kPa)		E	965.70 (kPa)
6	(for VN adj)		RCL 1	23.27
1	Answer: For a weapon yield of 0	1 Mt and a 25Q	6 target	, q is 187.89 psi
	or 1295.50 kPa and VN_{ad}	is 24.07. Fo	r 1 Mt, v	we find q is
	140.06 psi or 965.70 kPa			

A substitution and substitution of the substitution o

ż

Key ent r y	Code shown	Key entry	Code shown	Key entry	Code shown	Key entry	Code shown
LBL	23	1	01	f	31	•	83
A	11	RCL 6	34 06	LN	07	8	08
STO 3	33 03	STO 1	33 01	1	01	9	09
R/S	84	3	03	•	83	5	05
LBL	23	g	35	4	04	х	71
В	12	1/x	04	4	04	RTN	24
1	01	g	35	f	31		
0	00	y ^x	05	LN	07		
÷	81	RC1. 2	34 02	÷	81		
STO 4	33 04	х	71	RCL 3	34 03		
r/s	84	1	01	+	61		
LBL	23	+	61	STO 1	33 01		
С	13	RCL 4	34 04	1	01		
STO 5	33 05	-	51	•	83		
•	83	STO 6	33 06	4	04		
0	00	RCL 1	34 01	4	04		
2	02	-	51	RCL 1	34 01		
g x∓y	35 07	g	35	g	35		
÷	81	ABS	06	y ^x	05		
3	03	EEX	43	•	83		
						Regi	sters
g	35	CHS	42	0	00		
1/x	04	3	03	2	02	R ₁ VN	lj
8	35	g x>y	35 24	8	08	r ₂ Usec	ı
y ^x	05	GTO	22	9	09	R ₃ VN ₀	
RCL 4	34 04	D	14	3	03	R ₄ K/10	
х	71	GTO	22	х	71	R ₅ W(Mt	
STO 2	33 02	1	01	RTN	24	R Used	l
1	01	LBL	23	LBL	23	R ₇ -	
STO 6	33 06	D	14	Е	15	^R 8 -	
LBL	23	RCL 6	34 06	6	06	R ₉ Used	

Program WE-975-7 Listing

•

PROGRAM WE-975-8. P_k , WR_0 , AND WR FOR Q-TYPE POINT TARGETS - SURFACE BURST

Description

The adjusted vulnerability number VN_{adj}, the weapon yield W (Mt), and the CEP (ft) of the delivery vehicle are the input parameters for this calculation. Ordinarily, this program is used after WE-975-6 without clearing the calculator, in which case VN_{adj} and W are already entered for calculation and only the CEP must be entered by the operator. P_k, the probability of a "kill" at the damage level appropriate to the vulnerability number, is determined, as are the scaled weapon radius WR₀ and the weapon radius WR. Parametric studies based on CEP are particularly facile.

Note that the calculations is for Q-type point targets and for a surface burst. Error, defined as deviation from the results obtained using Ref. 1, results from an analytic fit² to obtain WR₀ from VN_{adj}. Typically, this "error" is less than 5%. No further approximations are made in obtaining WR and P_k, so the "error" in WR is the same as that for WR₀ and the "error" in the value of P_k is typically no more than ±0.02.

Step	Instructions comments	Input data/units	Кеу	Output data/units
1	Enter program.			
	If used after WE-975-6,			
	W is in register 5,			
	VN is in the x-register. adj			
	If not, enter them in the			
	correct registers.		А	WR ₀ (ft/kt ^{1/3})
2	Enter CEP	CEP(ft)	в	P k
3	Optional step to obtain WR			ĸ
	if desired.		RCL 4	WR(ft)
	Step 2 may be repeated for other C	EP's:		
2	Enter CEP.		В	P k
3	Optional scep to obtain WR			ĸ
	if desired.		RCL 4	WR(ft)
Typical	running time: less than 10 s.			

User Instructions

What are P _k , WR ₀ , a	and WR for the first	example of	WE-975-6 (a	2506 targ	et
with W of 0.1 Mt) for a 1	000-ft CEP?				

For these conditions, we found in WE-975-6 that $\rm VN_{adj}$ was 34,07. Ordinarily, however, WE-975-8 is used as a continuation of WE-975-6, so that program is run first.

Step	Instructions/ comments	Input data/units	Key	Output data/units
Preliminary	Run WE-975-6 for a 2506 target,)		
	W = 0.1 Mt.			24.07
1	Enter this program (WE-975-8).		λ	365.15
2	Enter CEP.	1000	в	0.77
3	Obtain WR.		RCL 4	1694.87
	swer: P _k is 0.77, WR ₀ is 365,15 ft estion: If the CEP were 1500 ft in would P _k , WR ₀ , and WR be? Enter CEP.			
3	Obtain WR.		RCL 4	1694.87
	swer: P _k for 1500 ft CEP is 0.53. because neither is a functio	n of the CEI	· ·	
and VN in Sor the 1000 negligible n	we knew VN _{adj} was 24.07, we could the x-register without first runni -ft CEP, $P_k = 0.77$, $WR_0 = 365.31$ ft umerical differences from the above	ng WE-975-6. /kt ^{1/3} , and example are	We wou WR = 169	ild obtain, 15.61 The
result of ro	unding in the direct entry of VN adj	•		

Example

.

Key ent ry	Codø shovti	Key ont ry	Code shown	Key entry	Code shown	Key ont ry	Code shown
1.81,	23	U	07	ò	00		
л	н	RCL 1	34 01	х	71		
STO 1	11 01	•	83	RCI. 1	34 01		
1	01	3	01	X	71		
5	05	0	00	STO 4	33-04		
RCI. 1	34 01	9	0.0	•	41		
e ×⊴y	35 22	x	71	X	71		
c t o	22	f ⁻¹	32	•	41		
1	01	1.32	07	•	41		
۱	03	:	#1	•	\$3		
1	01	STO 1	31 01	0	00		
8	08	RTN	24	9	09		
)	00	LBL	23	x	71		
RCL 1	34 01	51	12	RC1. 2	34 02		
•	83	•	41	+	61		
)	00	х	71	ę	41		
3	08	2	02	+	61		
•	09	f	31	:	81		
•	09	1.8	07	CHS	42		
(71	2	02	r ⁻¹	32	ور بارد و دارد و دارد و دارد و	
						Regi	sters
-1	32	x	71	LN	07	R ₁ WR	
N	07	:	81	CHS	42	R ₂ Used	
:	81	STO 2	33 02	1	01	R ₂ -	
5 TO 1	33 01	RCL 5	34 05	+	61	"3 R ₄ WR	
TN	24	3	03	RTN	24	R ₅ W(Mt)
.BL	23	g	35			R ₆ -	<i>.</i>
L	01	1/x	04				
4	04	g	35			R ₇ -	
1	01	у ^х	05			R ₈ - R ₉ VN ad	
)	00	1	01			R VN ad	j

Program WE-975-5 Listing

PROGRAM WE-975-9. OVERPRESSURE OR DYNAMIC PRESSURE FROM THE ADJUSTED VULNERABILITY NUMBER.

Description

This program determines the peak overpressure or peak dynamic pressure from VN_{adj} for either P-type or Q-type targets. The pressures obtained are ordinarily interpreted as those associated with 50% probability of damage – $P_{0.5}$ or $q_{0.5}$ of Ref. 1. Results may be obtained in either psi or kPa or both.

This program does not in any way equate the two types of vulnerability numbers or pressures. Because the individual calculations are short, both the P-type and the Q-type calculations are contained in one program but they are not used together. Calculations will be accurate to at least four significant figures.

Step	Instructions/ comments	;	Input data/units	Кеу	Output data/units			
1	Enter program.							
2	Enter VN adj not been left in the x-reg							
	from the previous calculat	ion.						
	For P-type targets		VN adj	А	P(psi)			
		or	VN adj	В	P(kPa)			
	For Q-type targets:		VN adj	С	Q(psi)			
		or	VN adj	D	Q(kPa)			
3	If p or q has been determined	d	221					
	in psi and its value in kPa	a						
	is also wanted.		p(psi) or q(psi)	Е	P(kPa) or Q(kPa)			
	Note: Values of p or q determined by these calculations are							
	ordinarily interpreted	d as 5	0% probability	values	,			
Typical	l running time: less than 5 s.							

User Instructions

Example

1. For a P-type target, VN_{adj} has been determined to be 22.98. To what peak overpressure does this correspond?

2. For a Q-type target, VX_{adj} has been determined to be 24.07. To what peak dynamic pressure does this correspond?

Step	Instructions/ comments	Input data/units	Key	Output data/units
Solution	to question 1:			
1	Enter program.			
2	Enter VN adj	22.98	A	74.03(psi)
3	For p in kPa also.		E	510.45(kPa
Solution	to question 2:			
1	Enter program.			
2	Enter VN adj.	24.07	С	187.56(psi)
3	For q in kPa also.		Е	1293,21(kPa)

Note that labels B and D were not used because the answers were determined in both psi and kPa. If the answers had been wanted only in kPa, labels B and D would have been keyed in step 2 and step 3 would (and could) not have been used.

Key entry	Code shown	Key entry	Code shown	Key ent ry	Code shown	Key entry	Code shown
LBL	23	6	06	8	08	9	09
٨	11	•	83	9	09	5	05
STO 1	33 01	8	08	3	03	х	71
1	01	9	09	x	71	RTN	24
•	83	5	05	RTN	24		
2	02	x	71	LBL	23		
RCL 1	34 01	RTN	24	D	14		
8	35	LBL	23	С	13		
y [×]	05	С	13	6	06		
1	01	STO 1	33 01	•	83		
						Regi	ster
•	83	1	01	8	08	· · · · · · · · · · · · · · · · · · ·	
1	01	•	83	9	09	R ₁ VN	lj -
2	02	4	04	5	05	^K 2 -	
1	01	4	04	х	71	R ₃ -	
6	06	RCL 1	34 01	RTN	24	R ₄ -	
x	71	8	35	LBL	23	R -	
RTN	24	y ^x	05	Е	15	^R 6 −	
LBL	2 3	•	83	6	06	R ₇ -	
В	12	0	00	•	83	R ₈ -	
A	11	2	02	8	08	R ₉ -	

Program WE-975-9 Listing

PROGRAM WE-975-10. PEAK OVERPRESSURE GIVEN YIELD AND RANGE FOR SURFACE BURST OR FREE AIR BURST

Description

This program combines the analytic approximations given by Brode³ for surface bursts and free air bursts. Because no approximations are made in this program, the error discussion in Chapter III of Brode's report applies.

Yield entries are in Mt, and range is in thousands of feet (kilofeet) or in kilometres. The peak overpressure is determined in both psi and kPa.

Step	Instructions/ comments	Input data/units	Key	Output data/units
1	Enter program.			
2	Enter W in Mt.			
	If surface burst:	W(Mt)	A	
	If free air burst:	W(Mt)	E	
3	Enter R			
	If R is in kilofeet:	R(kft)	В	p(psi)
	If R is in kilometres:	R(km)	С	p(psi)
4	If p is wanted in kPa:		D	p(kPa)

User Instructions

Examples

We list a few examples in shorthand notation:

Q. What is the peak overpressure from a 5-Mt surface burst at 10 000 ft?

A. 5 A 10 B; read 32.85 psi D; read 226.50 kPa.

 Q, \quad What is the peak overpressure in psi from a 1-Mt free air burst at 1 km?

- A. 1 E I C; read 73.37 psi.
- Q. What is the peak overpressure in both psi and kPa 1000 ft from a 1-Mt surface burst?
- A. 1 A 1 B; read 3393.40 psi D; read 23397.48 kPa.

Iteration may be used to answer questions such as:

- Q. At what distance from a 500-kt surface burst is the peak overpressure 2 psi?
- λ. Try: 0.5 Å 10 B; read 6.99 psi
 0.5 Å 20 B; read 2.13 psi
 0.5 Å 21 B; read 1.97 psi.

The distance is thus about 21 000 ft.

Program WE-975-10 Listing

Key entry	Code shown	Key entry	Code shown	Key entry	Code shown	Key e nt ry	Code shown
LBL	23	5	05	x	71	G T O	22
E	15	2	02	RCL 2	34 02	В	12
2	02	RCL 1	34 01	ŧ	81	LBL	23
÷	81	x	71	+	61	D	14
LBL	23	RCL 2	34 02	•	83	6	06
A	11	ŧ	41	0	00	•	83
1	01	x	71	2	02	8	08
0	00	*	81	1	01	9	00
0	00	RCL 2	34 02	5	05	5	05
0	00	÷	81	+	61	х	71
x	71	RCL 1	34 01	STO 3	33 03	RTN	24
STO 1	33 01	RCL 2	34 02	R/S	84	Regi	sters
RCL 2	34 02	÷	81	LBL	23		
R/S	84	f	31	с	13	R _l Used	
LBL	23	√x.	09	•	83	R ₂ Used	
в	12	7	07	3	03	R ₃ Used	
STO 2	33 02	•	83	0	00	R ₄ -	
3	03	6	06	4	04	^R s [–]	
•	83	3	03	8	08	^R 6 -	
1	01	3	03	÷	81	R ₇ -	
						^R 8 -	
						R ₉ -	

PROGRAM WE-975-11. PEAK OVERPRESSURE TO/FROM VN adi

Description

This program determines the peak overpressure p, ordinarily interpeated as that pressure associated with 50% probability of damage $(p_{0.5}^{}$ of Ref. 1), from the adjusted vulnerability number VN_{adj} of a P-type target. It also performs the reverse calculation: determining VN_{adj} from the peak overpressure. Either conventional or S1 units of pressure may be used or determined in the calculations.

Step	Instructions/ comments	Input data/units	Key	Output data/units
1	Enter program.			
2	Prepare for calculation. If W (Mt)			
	is entered at this point, it will	No entry		
	be stored in register 5.	required	А	1.12
3	For VN _{adj} → p(psi), enter VN _{adj} or	Vn adj	В	p(psi)
3	For VN _{adj} → p(kPa), enter VN _{adj} or	VN adj	с	p(kPa)
3	For p(psi) → VN adj, enter p(psi) or	p(psi)	D	VN adj
3	For $p(kPa) \rightarrow VN_{adj}$, enter $p(kPa)$.	p(kPa)	Е	VN adj
	each of the four possible step 3's is an 7 be repeated after any other.	independent c	alculat	

User Instructions

Typical running time: less than 5 s.

Examples

We use a "shorthand" notation to illustrate uses of the program:

- Q. What is p(psi) if VN adj is 28?
- A. Enter: (Λ) 28 B; read p = 184.89 psi.

The parentheses around A indicate that LBL A must be keyed in once only and does not necessarily have to be keyed in for subsequent calculations.

- Q. What is VN_{adi} for a 1000-psi target?
- A. This is a sloppy question. We assume it means "What is VN adj if P_{0.5} is 1000 psi?" Enter 1000 D; read Vn adj = 37 26. If no previous calculation has been made enter A 1000 D; read VN at 37.26.
- Q. What is VN_{adj} if P_{0.5} is 7000 kPe for a 500-kt surface burst with a 10C0-ft CEP?
- A. If the intent is to go on to a calculation of P_k using WE-975-4, it is better to get W stored before calculating VN_{adj} . Remember that W is entered in Mt: Enter 0.5 A 7000 E; read $VN_{adj} = 37.34$. The calculator is now ready to accept WE-975-4.
- Q. What is p(kPa) if VN adj is 12?
- A. Enter 12 C; read $p_{0.5} = 68.95$ kPa.

Key entry	Code shown	Key entry	Code shown	Key entry	Code shown	Key entry	Code shown
LBL	23	RCL 2	34 02	•	83		
A	11	x	71	2	02		
STO 5	33 05	RTN	24	f	31		
1	01	LBL	23	LN	07		
•	83	С	23	:	81		
1	01	В	12	STO 1	33 01		
2	02	6	06	RTN	24		
1	01	•	83	LBL	23		
6	06	8	08	Ē	15		• ··
STC 2	33 02	9	09	6	06	Regi	sters
						R ₁ Used	
RTN	24	5	05	•	83	R ₂ Used	
LBL	23	х	71	8	08	R ₃ -	
В	12	RTN	24	9	09	R ₄ -	
STO 1	33 01	LBL	23	5	0.5	R ₅ W(Me)
1	01	Ð	14	•	81	R ₆ -	,
•	83	RCL 2	34 02	GTO	22	^R 7 -	
2	02	÷	81	D	14		
RCL 1	34 01	f	31			к ₈ – к –	
g	35	LN	07			^R 9 -	
y ^x	05	1	01				

Program WE-975-11 Listing

A R. S. Same and S.

Description

This program determines the peak dynamic pressure q, ordinarily interpreted as that pressure associated with 50% probability of damage ($q_{0.5}$ of Ref. 1), from the adjusted vulnerability number VN_{adj} of a Q-type target. It also performs the reverse calculation: determining VN_{adj} from the peak dynamic pressure. Either conventional or SI units may be used or determined in the calculations.

Step	Instructions/ comments	Input data/units	Key	Output data/units
1	Enter program.	*		
2	Prepare for calculation. If W (Mt)			
	is entered at this point, it will	No entry		
	be stored in register 5.	required	A	0.03
3	For VN adj → q(psi), enter VN adj or	VN adj	В	q(psi)
3	For VN _{adj} → q(kPa), enter ^{VN} _{adj} or	VN adj	C	q(kPa)
3	For q(psi) + VN _{adj} , enter q(psi) or	q(psi)	D	VN adj
3	For $q(kPa) \rightarrow VN_{adj}$	q (kPa)	ų,	VN adj
		•••	-	

User Instructions

Since each of the four possible step 3's is an independent calculation, any one may be repeated after any other.

Typical running time: less than 5 s.

Examples

We use a "shorthand" notation to illustrate uses of the program:

- Q. What is q(psi) if VN_{adi} is 28?
- A. Enter (A) 28 E; read $q_{0.5} = 786.14$ psi.

The parentheses around A indicate that LBL A must be keyed in once only and does not necessarily have to be keyed in for subsequent calculations.

- Q. What is VN adj for a 1000-psi target?
- A. This is a sloppy question. We assume it means "What is VN_{adj} if q_{0.5} is 1000 psi?" Enter 1000 D; read VN_{adj} = 28.66 if no previous calculations has been made Enter A 1000 D; read VN_{adj} = 28.66.
- Q. What is VN_{adj} if $q_{0.5}$ is 7000 kPa for a 500-kt surface burst with a 1000-ft CEP?
- A. If the intent is to go on to a calculation of P_k using WE-975-8, it is better to get W stored before calculating VN_{adj}. Remember that W is entered in Mt: Enter 0.5 A 7000 E; read VN_{adj} = 28.70. The calculator is now ready to accept WE-975-8.
- Q. What is q(kPa) if VN adj is 12?
- A. Enter 12 C; read q = 15.86 kPa.

Key entry	Code shown	Key entry	Code snown	Key entry	Code shown	Key entry	Code shown
LBL	23	y ^x	05	1	01		
A	11	RCL 2	34 02	•	83		
STO 5	33 05	х	71	4	04		
•	83	RTN	24	4	04		
0	00	LBL	23	f	31		
2	02	с	13	ln	07		
8	08	В	12	÷	81		
9	09	6	06	STO 1	33 01		
3	03	•	83	RTN	24		
STO 2	33 02	8	08	LBL	23	Reg	lsters
11/1711	24	9	09	Е	16	R ₁ -	
RTN			09	6	15	R ₂ -	
LBL	23	5			06	$R_3^2 -$	
B amo 1	12	X	71	•	83	$R_4^3 -$	
STO 1	33 01	RTN	RTN	8	08	R ₅ W(Mt))
1	01	LBL	23	9	09		
•	83	D	14	5	05	R ₆ -	
4	04	RCL 2	34 02	÷	81	R ₇ -	
4	04	÷	81	GTO	22	^R 8 -	
RCL 1	34 01	f	31	D	14	R ₉ -	
g	35	LN	07				

Program WE-975-12 Listing

References

- Physical Vulnerability Handbook Nuclear Weapons, Defense Intelligence Agency, Washington, D.C., Rept. AP-550-1-2-INT (1969; with changes, 1974) (title U, report C). The material pertinent to this report is also included in two unclassified reports: Mathematical Background and Programming Aids for the Physical Vulnerability System for Nuclear Weapons, Defense Intelligence Agency, Rept. DI-550-27-74 (1974); Kill Probability and the Related Analysis for Blast-Type Targets, TRW Systems Group, Redondo Beach, Calif., TRW Sales No. 23942 (1974).
- O. J. Loper and W. A. Barletta, Lawrence Livermore Laboratory, private communication, (1975).
- H. L. Brode, Height of Burst Effects at High Overpressures, RAND Corp., Santa Monica, Calif., Rept. DASA-2506 or RM-6301-DASA (1970).