

Vaughn E. Culler

August 3, 1976

Prepared for U.S. Energy Research \& Development Administration under contract No. W-7405-Eng-48

NOTICE

This neport was prepared a an sceount of work pponsored by the United Sutes Govemnenn. Neilher the United State! nor the United Sraten Energy Rewerch a Developanent Administation, nor any of their employwa, nor any of their contractors, mbeontuations, of their mployots, nuken my wursenty, exprem or umpled, or awomes any lejal lisblitiy or repponsibility for the securacy, completemes of uxfulsou of any information, appinatus, product ov procen dieclomed, of nepremats that its us would not infringe pervatelyawned thents.

hotice

Refertince to compary or product nume dous nol ingly upproval or recommendation of the product by the Unvarily of Colifonnis or the U.S. Energy Reseurch - Development Administration to the excluaion of okners that maj bos miltsble.

Pinted in the United States of Americe Avaliable from
National Technical Information Servioe
U.S. Department of Commerce

5285 Port Royal Road
Spring field, VA 22161
Prict: Pinted Copy $\$$: Microfiche $\mathbf{\$ 2 . 2 5}$

Prat Rump	$\begin{aligned} & \text { Domestic } \\ & \text { Pries } \end{aligned}$	Pre Renp	$\begin{gathered} \text { Donmatic } \\ \text { Pripe } \\ \hline \end{gathered}$
001-025	\$3.50	326-350	10.00
026-050	4.00	351-375	11. 50
051-075	4.50	376-400	10.75
076-100	5.00	401-425	11.00
101-125	5.50	426-450	11.75
126-150	6.00	451-475	12.00
151-175	6.75	476-500	12.50
176-200	7.50	501-525	12.75
201-225	7.75	526-550	h3.00
226-250	8.00	551-575	63.50
251-275	9.90	576-600	13.75
276-300	9.25	601 -up	-
301-325	9.75		

*add 32.50 tor ewch adeitional t 00 page increment trom 60 t to 1.000 paper: ede 34.50 fot each elditions 100 peap inctoment ont 1.000 math

LAWRENCE I.IVERMORE LAEORATORY
Universily of Cablorma Livermore Cahorma 94550

UZRL-52103

HAND CALCULATOR PROGRAMS FOR WEAPONS EFFECTS ANALYSES THE PHYSICAL VULNERABILITY SYSTEM

Vaughn E. Culler

MS. date: August 3, 1976

Coatents

Ahserast 1
Int rodurtion 1
Proprams
NE-975-1. Tarbice Hardewss Diseribut fon Functlams ,
WB-975-2. Determination of ndjusted Palnerability Sumbers for frype TariretsY
NE-975-3. Peak Overprossuress and Ndusted Yutnerabilizy Sumbers for forype Tintises 11
 Sarfince marst 1.
 Optimum thotithe af Butse 17
Bt:-975-6. Decermination of Adtuseed fulnerabilicy sumbers for R-Type Targes $\therefore 0$
 : औumbers for u-Tvenc Targots $2:$
 surface thurst 23
UE-975-9. Ovarpressurs or Dinatale prosistire from rhe Adjutecd Vulnerabilley Sumber 24
 Surfacc Burse ind f゙gee Air Burat 11
R4-975-14. ieak owerpretasure co/from Yind 3.5
We-975-12. Peak Dsnamic Trestire to/fram It ads 7

HAND CALCULATOR PROGRAMS

 FOR WEAPONS EFFECTS ANALYSES -
THE PHYSICAL VULNERABILITY SYSTEM

Abstract

The physical valnerabliliy systom for evaluating probable damage from a nuclear bhast has received wide acceptance because it is a simple but general susten appllable to wide variety of target classes. We describe here a sarfes of hand-cialculator proprims using this system that permite equally acurate but fatery calculations than ehe conventional handhook method. The programs .over various interrelationsiaps among peak overpressures, peak dyname presisires, vilnerability numbers, weapons radif, and kill probability. The me of a pronamabic alculator areaty reduces the chance of operator cror be eliminating individual hand calculations and eraphical determinations of parameter values.

Introduction

: :uclear-blati dampe evaluat lons are usually prepared from a variety of kriphos, nomographs, tables, and hand calculations. Opportunities for error abound. Cross checks are either difficult or impossible. The tedium of a parameter seudy cin be onerous; one of ten tries to lessen the burden by making simplifying approximations that can sometimes lead to erroneous conclusions.

We have found that exploltation of the capabilities of a programable calculator - in our case, the Henlett-packard IfP-65* - leads to faster, more aecurate calculacions with fewer operator error. A tenfold, even hundredfold, increase in sped $i=$ of ten attainable. In Table 1 we list the titles of some weapons effects programs we have developed for the HP-65. The symbolism, basically that of Ref. 1, ts explained in the individual programs. In Table 2 we give the inpur parameters, the output (what is calculated), and the typical running time for each progeam.

The balance of this document is given over to the individual programs. E.ach is presented in the same format: a short description, then user instructions, example(s) of use, and finally a program listing that can be recorded

Tabie 1. Weapons effects programs for the HP-65.

Program number	Title
WE-975-1	Target Hasdness Distrlbution Functions
WE-975-2	Determination of Adjusted Vulnerability Numbers for P-Type Targets
WE-975-3	Peak Overpressures and Adjusted Vulnerability Numbers ior P-Type Targets
WE-975-4	P_{k}, W_{0}, and WR for P-Type Point Targets - Surface Burst
WE-975-5	$P_{k}, W E_{0}$, and WR for P-Type Point Targets - Optinum Height cf Burst
WE-975-6	Detemination of Adjusted Vulnerability Numbers for Q-Type Targets
WE-975-7	Peak Dynamic Pressures and Adjusted Vulnerability Numbers for Q-Type Targets
WE-975-13	P_{K}, WRO, and WR for Q-Type Point Targets -- Surface Burst
WE-975-9	Overpressure or Dynamic Pressure from the Adjusted Vulnerability Number
WE-975-10	Peak Overpressure Given Yield and Range for Surface Burst or Free Air Burst
WE-975-11	Peak Overpressure to/from $\mathrm{VN}_{\text {adj }}$
WE-975-12	Peak Dynamic Pressure to/from VN ${ }_{\text {adj }}$

on a program card. The categorizing number system for the programs is somewhat arbitrary: first, chere are identifiers WE (for Weapons Effects) and 975 (September 1975) to date the program, tisen there is a cardinal number to distinguish each program from others of the samr: family and age.

Because the procedures for weapons effects analyses have not yet been metricated, we retain English units in the programs but do include SI units If calculator memory is large enough to permit their inclusion. The trend is toward larger memories which, when avallable, will permit the use of either type units with very simple modifications. Many of the programs have been desitned with the transition to more powerful calculators in mind. For example, input parameters and calculated results are stored in memory whenever conveniently possible.

Table 2. Input parameters, outputs (winat is calculated), and typical running times of weapons effects programs.

Program number	Input	Output	Typical rurning time, s
WE-975-1	p and $p_{0.5}$ or q and $q_{0.5}$	P_{k}	15
WE-975-2	VN_{0} : K, W	$\mathrm{in}_{\text {adj }}$	-10
WE-975-3	$\mathrm{VN}_{0}, \mathrm{~K}, \mathrm{~W}$	p, NN adj	10
WE-975-4	$V N_{\text {adj }}$ and W (either entered directly or from WE-975-2 or -11), CEP	$\begin{aligned} & P_{k}, W R_{0}, W R \\ & \text { (surface burat) } \end{aligned}$	<10
WE-975-5	$V N_{a d j}$ and W (either entered directly or from WE-975-2), CEP	$\begin{aligned} & P_{k}, W R_{0}, W R \\ & \text { (optimum } H O B \text {) } \end{aligned}$	<10
WE-975-6	$V N_{0}, \mathrm{~K}, \mathrm{~W}$	VN adj	15
WE-975-7	$\mathrm{VN}_{0}, \mathrm{~K}, \mathrm{~W}$	q, $\mathrm{VN}_{\text {adj }}$	20
WE-975-8	$\mathrm{VN}_{\mathrm{adj}}$ and W (either entered directly or from WE-975-6 or -12), CEP	$\begin{aligned} & P_{k}, W R_{0}, \text { WR } \\ & \text { (surface burst) } \end{aligned}$	<10
WE-975-9	$\begin{aligned} & \text { P-type } \mathrm{VN}_{\text {adj }} \text { or } \\ & \text { Q-type } \mathrm{VN}_{\text {adj }} \end{aligned}$	p or q	<5
WE-975-10	W, R	p	5
WE-575-11	$\mathrm{VN}_{\text {adj }}$ or P	p or $\mathrm{VN}_{\text {adj }}$	< 5
WE-975-12	$\mathrm{WN}_{\text {adj }}$ or Q	q or $\mathrm{WN}_{\text {adj }}$	< 5

The programs with the longer running times harje the common characteristic of using inefficient iterations, because of limited calculator memory. The choice of inefficient iterations over approximations of limited range or accuracy was deliberate; even the longest program has a typical running time of only 20 s , iterations and all.

Although we do not know of any "bugs" in the programs, we cannot guarantee there are none. If any are discovered, we would aprreciate hearing about them.

Washing of hands - an author's caveat! These programs were written in self-defense. I need to speak the "lingo" of the physical vulnerability system and to understand what others were saying when that lingo was used. Use the programs as tools, not as oracles!

Programs

Our weapons effects programs for the HP-65 are described on the following pages.

Description

A fundamental requirement of any handbook-type treatment of blast effects is that the effects must be calculable for a wide range of target types.

To meet this requirement, the physicial vulnerability system is based en likelianod or arobability that a specifted level of damege to a given class of structures can often be described by d lognormal distribution of peak overpressure ar peak dynamic pressure. Thus, the same types of equations, but with different constants, apply to a ude range of different target classes,

For "P-type" targets - those vulnerable primarily to peak overnressure (p) - the domnormal distribution describing the expected damage is

$$
\begin{equation*}
F(\Gamma, \omega)=\frac{1}{\sqrt{2^{+}}} \int_{-\infty}^{2} e^{-t^{2} / 2} d t \tag{1}
\end{equation*}
$$

where $F\left(, A^{\prime}\right)$ is thr probibility that \quad target selected at random from the popelition will hivi: a blast hardness less than or equal to p for a nuclear exolosion nf $\because i \operatorname{lid} W$ and for z given by

$$
\begin{equation*}
z=\frac{1}{1} \ln \left(p / p_{0.5}\right) \tag{2}
\end{equation*}
$$

Note chat $p_{0.5}$ is the value of p for which $F(p, N)$ is equal to $1 / 2$.
One of the great generalizations of the physical vulnerability system for nuclear weapon - is that, for every class of targets vulnerable to peak overpressure, ${ }_{p}$ p has the same value. A second grat generalization is that the same types of relitions hold for "Q-type" targets - those vulnerable to peak dynauic pressur. (q) - and that the corresponding α_{q} also has the some value for every class of such targets.

We therefore describe all neak-overpressure targets by Eqs. (1) and (2) or, in differential form,

$$
\begin{equation*}
f(p, W)=\frac{d F(p, W)}{d x}=\frac{1}{\sqrt{2 \pi} \alpha_{p}} e^{-x^{2} / 2 \alpha_{p}^{2}} \tag{3}
\end{equation*}
$$

where $x=\ln \left(p / P_{0.5}\right)$ and $f(P, W)$ is interpreted as a probability dencity function. Thus $f(p, W) d x$ is the probability that a target selected at random will have a hardness in the logarithmic increment x to $x+d x$.

Equations formally ldentical to (1), (2), and (j) apply for o-vpe targets in that $q, q_{0.5}$ and α_{q} replacs $P_{,} P_{0.5}$, and q_{p};

$$
\begin{align*}
& F(q, W)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{2} e^{-t^{2} / 2} d t \tag{6}\\
& \therefore=\frac{1}{\alpha_{\eta}} \ln \left(q / q_{0,5}\right) ; \tag{5}\\
& f(q, W)=\frac{d F\left(q_{4}, d\right)}{d x}=\frac{1}{\sqrt{2 \pi} \alpha_{q}} e^{-x^{2} / 2 \alpha_{q}^{2}} \tag{6}
\end{align*}
$$

where $x=\ln i^{\prime} q / q_{0.5}$).
This program calculates f and F for either p-type or Q-type targets as functions of either F (given $p_{0.5}$) or q (given $q_{0.5}$). The constants $\alpha_{p}=0.29718$ ard $\alpha_{q}=1.0419$ are contained in the program. The appropriate one is generated in a preliminary operation. Once α_{p} or a_{q} fs selected, there are some built-in constrafns that .eep the proper vaiv locked into the program and hence tamperproof to any but a deliberare change. The results are calculated correctly to at least three significai:. figures.

User Instructions

Step	Insreructions/ comments	Input data/units	Key	Output data/units
1	Eriter program.			
2	Preliminary calculation:			
	for P-type		L	$\alpha_{p} / 0.30$
	for Q-type		E	$\alpha_{q} / 1.04$
	The remaining instructions are			
	for a P-type calculation. A			
	Q-type vould be identical except			
	q would appear instead of p.			
3	Enter P.		A	P
4	Enter $\mathrm{P}_{0.5}$, calculate $\mathrm{f}(\mathrm{P}, \mathrm{W})$.		R/S	$f(P, W)$

Users Instructions (Cont.)

Example

it a given yield. $P_{0.5}$ is 75 nsi . What fraction of the same type targets would be expected to be damaged at least to the same characteristic level if p were 150 psi? 90 psi?

Step	Instructions/ Comments	Input data/units	Key	Nutput data/units
1	Enter program.			
2	P-type caiculation, inttfalize accordingly.		D	0.30
3	Enter p.	150 p6i	A	150.00
4	Enter $p_{0.5}$, calculate $f(p, W)$ or output. Note there are now three decimal places in answer.	75	R/S	f/0.088
5	Continue calculation to ottain $F(p, W)$ for $p=150 \mathrm{psi}$.		R/S	F/0.990
Return to Step 3 for $p=90$ psi calculations:				
3	Enter p.	90	A	90.000
4	Enter $\mathrm{P}_{0.5}$, calculate f .	75	R/S	f/1.112
5	Continue calculation to obtain F for $p=90 \mathrm{psi}$.		R/S	F/0.730

Answer: For $p=150$ psi, 99.0%; for $p=90 \mathrm{psi}, 73.0 \%$.

Program WE-975-1 Listing

$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown	$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown
LBL	23	\div	81	RCL 4	3404	0	00
A	11	f	31	X	71	4	04
\uparrow	41	\sqrt{x}	09	RCL 7	3407	1	01
R/S	84	STO 4	3304	X	71	9	09
\div	81	RCL 5	3405	-	83	STO 5	3305
f	31	\div	81	5	05	RT'N	24
LN	07	R/S	84	\div	61	GTO	22
RCL 5	3405	LBL	23	RTN	24	E	15
:	81	1	01	LBI,	23		
DSP	21	RCL 1		B	12		
-	83	RCL 3	3403	0	00		
3	03	\div	81	R/S	84		
STO 7	3307	RCL 6	3406	GTO	22		
\uparrow	41	X	71	B	12		
X	71	STO 6	3306	LBL.	23		
STO I	3301	STO	33	D	14		
1	01	+	61	-	83		
STO 6	3306	2	02	2	02		
STO 2	3302	2	02	9	09		
2	02	STO	33	7	07		
						Registers	
$+$	61	$+$	61	1	01	$\begin{array}{ll} R_{1} & \text { Used } \\ R_{2} & \text { Used } \\ R_{3} & \text { Used } \\ R_{4} & \text { Used } \\ R_{5} & \alpha_{p} \text { or } \alpha_{q} \\ R_{6} & \text { Used } \\ R_{7} & \text { Used } \\ R_{8} & \text { - } \\ R_{9} & \text { Used } \end{array}$	
STO 3	3303	3	03	8	08		
RCL 1	3401	EEX	43	STO 5	3305		
CHS	42	CHS	42	RTN	24		
f^{-1}	32	4	04	Gio	22		
LN	07	RCL ó	3406	D	14		
g	35	g $x^{7} \mathbf{y}$	3524	LBL	23		
π	02	GTO	22	E	15		
\uparrow	41	1	01	1	01		
+	61	RCL 2	3402	-	83		

PROGRAM WE-975-2. DETERMINATION OF ADJUSTED VULNERABILITY NITHERS FOR P-TYPE TARGETS

Descriptien

From the vulnerability number $V N$, of the form $V_{0} P K$, and the weapon yield W, the adjusted vulnerability number $\mathrm{VN}_{\mathrm{ad}}$ I is calculated. No approximations are made in the program. Parametric studies of $\mathrm{VN}_{\mathrm{ad}} \mathrm{as}$ a function of efther K or W are readily effected.

User Instructions

Typical running time: less than 10 s .

Example

The $V N$ of a target is 25P6. What is $\mathrm{VN}_{\text {adj }}$ for a weapon yield of 0.1 Mt? 1 Mt?

Step	Instructions/ comments	Input data/units	Key data/units	
1	Enter program.	25	A	-5.00
2	Enter VN_{0}.	6	B	0.60

Program WE-975-2 Listing

Key entry	Code shown	$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Cade shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown
1.BL	23	RCL 4	3404	STO 7	3307	f	31
A	11	-	51	1	01	LN	07
STO 3	3303	STO 6	3306	$+$	61	\div	81
R/S	84	RCL 4	3404	$+$	31	KCL 3	3403
LBL	23	\uparrow	41	\sqrt{x}	09	+	61
B	12	X	71	1	01	RTN	24
1	01	\div	81	+	61	LBL	23
0	00	4	04	\uparrow	41	D	14
\div	81	X	71	+	61	ECL 3	3403
STO 4	3304	RCL 5	3405	RCL 7	3407	RTN	24
R/S	84	5	05	\div	81	Registers	
LRI,	23	0	00	1	01	$\overline{\mathrm{R}_{1}}$	
C	13	X	71	+	61.	R_{2}	
STO 5	3305	2	02	RCL 6	3406	$\mathrm{R}_{3} \quad \mathrm{WN}_{0}$	
RCL 4	3404	\uparrow	41	X	71	$\mathrm{R}_{4} \mathrm{~K} /$	K/10
0	00	3	03	f	31	$\mathrm{R}_{5} \mathrm{~W}$	W(Mt)
$8 \mathrm{x}=\mathrm{y}$	3523	\div	81	LN	07	$\mathrm{R}_{6} \quad 1$	1-K/10
GTO	22	g	35	1	01	$\mathrm{R}_{7} \mathrm{U}$	Used
D	14	y^{x}	05	.	83	R_{8} -	
1	01	X	71	2	02	R_{9} Us	Used

PROGRAM WE-975-3. PEAK OVERPRESSURES AND ADJUSTED VULNERABILITY NUMBERS FOR P-'YPE TARGETS

Description

This program is similar to WE-975-2 but has the added feature of computing the peak overpressure p corresponding to $\mathrm{VN}_{\text {adj }}$ as well as $\mathrm{WN}_{\text {adj }}$ itsclf. If the peak overpressure (ordinarily interpreted as that associated with a 50% probability of damage; i.e., $\mathrm{P}_{0.5}$ of Ref. 1) is not desired, WE-975-2 is preferable. No approximations are made in the program.

User Inorructions

Step	Instructions/ comments	Input data/units	Key	Output data/units
1	Enter program. Vulnerability number is of form $\mathrm{VN}_{0} \mathrm{P}$ K.			
2	Enter VN_{0}	VN_{0}	A	VN_{0}
3	Enter K.	K	B	K/10
4	Enter W in Mt.	$W(M t)$	C	p (psi)
5	Optional step to obtain peak overpressure, P , in kPa .		E	$\mathrm{p}(\mathrm{kPa})$
6	Optional step to obtain $\mathrm{VN}_{\text {adj }}$.		RCL 1	$\mathrm{VN}_{\mathrm{adj}}$
	For other values of W, repeat, If it is desired to determine entry 11 may be changed from $\mathrm{R} /$ separately, once, in register may be repeated for other value	rting with a function o RCL5 and Then step f K, and s	step 4. of K f must (and 5 p 4 is	fixed N, n be enter d/or 6) ab itted.

Typical running time: 10 s .

Example

The $V N$ of a target is $25 P 6$. What are n and $V N_{\text {adj }}$ for a weapon yield of 0.1 Mt ? 1 Mt ?

Step	Instructions comments	Input data/units	Key	Output data/units
1	Enter program.			
2	Enter VN_{0}.	25	A	25.00
3	Enter K.	6	B	0.60
4	Enter W in Mt.	0.1	C	74.03 (psi)
5	(for P in kPa).		E	510.41 (kPa)
6	(for $\mathrm{VN}_{\mathrm{adj}}$).		RCL !	22.98
Repeat for $\mathrm{N}=1 \mathrm{Mt}$:				
4	Enter W in Mt.	1	C	55.33 (psi)
5	(for p in kPa).		E	381.50 (kPa)
6	(for $\mathrm{VN}_{\text {adj }}$).		RCL 1	21.38
Answer: For a weapon yield of 0.1 Mt and a 25 P 6 target, P is 74.03 psi or 510.41 kPa , and $\mathrm{VN}_{\mathrm{adj}}$ is 22.98 . For 1 Mt , we find p is 55.33 psi or 381.50 kPa , and $\mathrm{VN}_{\mathrm{adj}}$ is 21.38 .				

Program NE-975-3 Listing

$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown
1.BL	23	5	05	5	31	-	83
A	11	0	00	LN	07	8	08
STO 3	3303	X	71	:	81	9	09
R/S	84	2	02	RCL	3403	5	05
LBL	23	\uparrow	41	+	61	x	71
B	12	3	03	gTo	22	RTN	24
1	01	:	81	1	01		
0	(1)	g	35	LBL	23		
:	81	y^{x}	05	D	14		
STO 4	3304	X	71	NCL 3	3403		
R/S	84	STO 7	3307	LBL.	23		
LBL	23	1	01	1	01		
c	13	+	61	STU 1	3301		
STO 5	3305	f	31	1	01		
RCL 4	3404	\sqrt{x}	09	*	83		
0	00	1	01	2	02		
$\underline{x} \mathrm{x}=\mathrm{y}$	3523	+	61	RCL 1	3401		
(iTO	22	\uparrow	41	8	35		
D	14	\dagger	61	y^{x}	05		
1	01	RCI. 7	3407	1	a1		
						Registers	
RCl. 4	3404	:	81	-	33		
-	51	1	01	1	01	$k_{1} \quad N_{\text {adj }}$	
STO 6	33 06	+	61	2	02	H_{2}	
HCl. 4	3404	RCi. 6	3406	1.	נ)	$\mathrm{n}_{1} \mathrm{~B} \mathrm{in}_{0}$	
$\stackrel{4}{ }$	41	X	71	6	06	$\mathrm{K}_{4} \mathrm{~K} / 10$	
x	71	i	31	*	71	$\mathrm{R}_{5} \mathrm{H}$ (ML)	
:	BI	I.N	07	RTN	24	$\mathrm{R}_{6} 1-\mathrm{K} / 10$	
4	04	1	01	1.tit.	23	K_{7} U:sed	
N	71	-	81	E	15		
RCI. 5	3405	2	02	6	06	K_{g} ried	

PROGRAY WE-973-4. $i_{k}, W k_{0}$, AND WR FOR P-TYPF iOUNT TARCETS surface blest

Description

The adjusted vulnerability number $\mathrm{VN}_{\text {adj }}$, the weapon yield W (Nt), and the CEP ($f t$) of the delivery vehicle are the input parameters for this calculation. Grdinarily, this program is used after WE-975-2 without clearing the calculator, in which case $\mathrm{VN}_{\mathrm{adj}}$ and W are aiready entered for calculation and only the CEP must be entered by the operator. P_{k}, the probability of a "kil1" at the damage level appropriate to the vulnerability number, is determined, as are the scaled weapon radius $W R_{0}$ and the weapon radius $W R$. Parametric studies based on CEP are particularly facile.

Note that the calculation is for P-type point targets and for a surface burst. Error, defined as deviation from the results obtained using Ref. 1 , results from an analytic fit ${ }^{2}$ to obtain $W R_{0}$ from $\mathrm{VN}_{\mathrm{adj}}$. Typically this "error" is less than 5%. No further approximations are inde in obtaining $W R$ and P_{k}, so the "error" in $W R$ is the same as that for $W R_{0}$ and the "error" in the value of P_{k} is typically no more than ± 0.02.

User Instructions

Example

What are $P_{k}, W R R_{0}$, and WR for the first examole of WE-975-2 (a 25P6 target with W of 0.1 Mt) for a $1000-\mathrm{ft}$ CEP?

For these conditions, we found in WE-975-2 that $\mathrm{VN}_{\mathrm{adj}}$ was 22.98. Ordinarily, however, WE-975-4 is used as a continuation of WE-975-2, so that program is run first.

Program WE-975-4 Listing

$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown	$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown
LBL	23	-	83	X	71	\uparrow	41
A	11	9	09	2	02	+	61
STO 1	3301	RCL 1	3401	f	31	:	81
1	01	g	35	LN	07	CHS	42
2	02	y^{x}	05	2	02	f^{-1}	32
RCL 1	3401	3	03	X	71	LN	07
g $\mathrm{x}=\mathrm{y}$	3523	7	07	\div	81	CHS	42
GTO	22	3	03	STO 2	3302	1	01
1	01	0	00	RCL 5	3405	$+$	61
2	02	X	71	3	03	RTN	24
2	02	STO 1	3301	g	35		
RCL 1	3401	RTN	24	1/x	04		
$g \mathrm{x}=\mathrm{y}$	3523	LBL	23	g	35		
GTO	22	2	02	y^{x}	05		
2	02	-	83	1	01		
-	83	9	09	0	00		
9	09	1	01	X	71		
4	04	RCL 1	3401	RCL 1	3401		
RCL 1	3401	g	35	X	71		
8	35	y^{x}	05	STO 4			
						Registers	
y^{x}	05	3	03	\dagger	41		
1	01	2	02	χ	71	$R_{1} \quad W R_{0}$	
s	05	8	08	\uparrow	41	R_{2} Used	
8	08	0	00	\dagger	41	R_{3}	
0	00	X	71	-	83	R_{4} WR	
x	71	STO 1	3301	0	00	$\mathrm{R}_{5} \mathrm{~W}(\mathrm{Mt})$	
STO 1	3301	RTN	24	4	04	R_{6}	
RTN	24	LBL	23	X	71	R_{7}	
LBL	23	B	12	RCL 2	3402	R_{8}	
1	01	\uparrow	41	+	61	R_{9} Used	

PROGRAM WE-975-5. $P_{k}, W R$, AND WR FOR P-TYPE POINT TARGETS OPTIMUM HEICHTT OF BUKST

Description

The adjusted vulnerability number $\mathrm{VN}_{\mathrm{adj}}$, the weapon yield W (Mt), and the CEP (ft) of the delivery vehicle are the input parameters for this calculation, Ordinarily, this program is used after WE-975-2 without clearing the calculator, in which case $\mathrm{VN}_{\mathrm{adj}}$ and W are elready entered for calculation and only the CEP must be entered by the operator. P_{k}, the probability of a "kill" at the damage level appropriate to the vulnerability number, is determined, as are the scaled weapon radius $W R_{0}$ and the weapon radius $W R$.

Note that the calculation is for P-type point targets and for optimum height of burst. Optimum height of burst for this program is defined by an empirical fit, ${ }^{2}$ based on Table I-16 of Ref. 1, that maximizes the scaled weapon radius as a function of scaled height of burst. Error, defined as deviation from the results obtained using Ref. 1 , is typically less than 5%. No further approximations are made in obtaining $W R$ and P_{k}, so the "error" for $W R$ is the same as that for $W R_{0}$ and the "error" in the value of P_{k} is typically no more than ± 0.02.

User Instructions

Example
What are $P_{k}, W R_{0}$, and $W R$ for the first example of WE-975-2 (a 25P6 target with W of 0.1 Mt) for a $1000-\mathrm{ft}$ GEP?

For these conditions, we found in WE-975-2 that $\mathrm{VN}_{\mathrm{ad} . \mathrm{j}}$ was 22.98. Ordinarily, however, WE-975-5 is used as a continuation of WE-975-2, so that program is run first.

Step	Instructions/ comments	Input data/units	Key	Dutput data/units
Preliminary Run WE-975-2 for a 25P6				
	target, $W=0.1 \mathrm{Mt}$.			22.98
1	Enter this program (NE-975-5).	22.98	A	416.96
2	Enter CEP.	1000	B	0.88
3	Obtain WR.		RCL 4	1935.35
Answer: P_{k} is 0.88, WR_{0} is $416.96 \mathrm{ft/kt}{ }^{1 / 3}$ and $W R$ is 1935.35 ft .				
Question: If the CEP were 1500 ft instead of 1000 ft , what would				
2	Enter CEP.	1500	B	0.65
3	Obtain WR,		RCL 4	1935.35

Answer: P_{k} for 1500 ft CEP is 0.65 . W_{0} and $W R$ are unchanged because neither is a function of the CEP.

Note: Since we knew $\mathrm{VN}_{\mathrm{adj}}$ was 22.98 , we could have entered W in register 5 and $\mathrm{VN}_{\text {adj }}$ in the x-register without first running WE-975-2. We would obtain, for the $1000-\mathrm{ft} \operatorname{CEP}, \mathrm{P}_{\mathrm{k}}=0.8 \overline{8}, \mathrm{UR}_{\hat{U}}=416.95 \mathrm{ft} / \mathrm{kt}^{1 / 3}$, and $W R=1935.29 \mathrm{ft}$. The negligible numerical differences from the above example are, of course, a result of rounding in the direct entry of $\mathrm{VN}_{\text {adj }}{ }^{\prime}$

Program WE-975-5 Listing

$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown	$\begin{aligned} & \mathrm{K} \in \mathrm{y} \\ & \text { entry } \end{aligned}$	Code shown	Key entry	Code shown
LBL	23	-	83	3	03	+	61
A	11	9	09	g	35	RTN	24
STO 1	3301	3	03	1/x	04		
2	02	7	07	8	35		
1	01	6	06	y^{x}	05		
-	83	2	02	1	01		
3	03	RCL 1	3401	0	00		
4	14	8	35	*	71		
g $x \leq y$	3522	y^{x}	05	RCL 1	3401		
GTO	22	1	03.	X	71		
1	01	8	08	STO 4	3304		
-	83	3	03	\uparrow	41		
8	08	1	01	X	71		
8	08	-	83	STO 3	3303		
4	04	9	09	-	83		
6	06	K	71	0	00		
RCL 1	340 i	5701	3301	4	04		
\&	35	RTN	24	X	71		
y^{x}	05	LBL	23	RCL 2	3402		
6	06	B	12	\pm	61		
						Registers	
3	03	4	41	\dagger	41		
4	04	X	71	+	61	$R_{1} \quad W R_{0}$	
3	03	2	02	RCL 3	3403	$\mathrm{R}_{2} \text { Used }$	
-	83	\dagger	41	E ${ }^{\text {x }}$ - ${ }^{\text {a }}$	3507	R_{3} Used	
5	05	f	31	\div	81	R_{4} WR	
X	71	LN	07	CHS	42	$\mathrm{R}_{5} \mathrm{~W}$ (Mt)	
STO 1	3301	X	71	f^{-1}	32	$\mathrm{R}_{6}-$	
KTN	24	:	81.	LN	07	R_{7}	
1.BL	23	STO 2	3302	CiS	42		
1	01	RCL 5	3405	1	01	R_{9} Used	

PROGRAM WE-975-6, DETERMINATION OF ADJUSTED VITNERABILITY' NUNBERS FOK Q-TYPE TARGETS

Descrintion

From the vulnerability number $V N$, of the form V_{0} o K, and the weapron yield N, the adjusted vulnerability number $W N$ adj is calculated. An iteration made in the program could result in an "error" of no more than 1 in the second decimal place of $\mathrm{VN}_{\text {adj }}$ " Prametric studies of $V \mathrm{~N}_{\mathrm{ad}}$ as a function ff elther K or W are readily effected.

User Instructions

Step	Instructions comments	Input data/units	Key	Output data/units
1	Enter program.			
	Vulnerability number is of form $\mathrm{VN}_{0} \mathrm{Q} \mathrm{K}$.	of form $\mathrm{WN}_{0} \mathrm{Q} \mathrm{K}$.		
2	Enter $\mathrm{VN}_{0}{ }^{\text {. }}$	VN_{0}	A	N_{0}
3	Enter K.	K	B	K/10
4	Enter W in Mt.	W(10)	C	$\mathrm{VN}_{\mathrm{ndj}}$
	Step 4 may be repeated for other values of W.			
	If it is desired to det key entry 11 (see listi must then be e' - ed se above will calculace VN other values of K. Ste	as a func changed frow ce, in reg output and deleted.	of Sto r 5. be	or fixed W LL 5 , and W Then, step ated for

Typical running time: 15 s.

Example

The VN of a target is 25 Q 6 . What is $\mathrm{VN}_{\text {adj }}$ for a weapon yield of 0.1 Mt ? 1 Mt?

Step	Instructions/ comments	Input data/units	Key	Output data/units
1	Enter program.			
2	Enter VN_{0}.	25	A	25.00
3	Enter K.	6	B	0.60

Example (Cont.)

| Step | Luteructions/
 comments | Input
 data/units | Key | Output
 data/units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 4 | Enter W in Mt. | 0.1 | C | 24.07 |

Answer: $V N_{\text {adj }}$ for $W=0.1 \mathrm{Mt}$ is 24.07 for a $25 Q 6$ target.
For $W=1$ Mt, we need only repeat step 4:
4
Enter W in Nt.
1
C 23.27
Answer: $V N_{\text {adj }}$ for $W=1 \mathrm{Mt}$ is 23.27 for a 2506 target.

Program WE-975-6 Listing

$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown
LBL	23	8	35	1	01	f	31
A	11	1/x	04	+	$\epsilon 1$	LN	07
STO 3	3303	g	35	RCL 4	3404	1	01
R/S	84	y^{x}	05	-	51	-	83
LBL	23	RCL 4	3404	STC 6	33 06	4	04
B	12	X	71	RCL 1	3401	4	04
1	01	STO 2	3302	-	51	f	31
0	00	1	01	g	35	LN	07
\div	81	STO 6	3306	ABS	06	\div	81
STO 4	3304	LBL	23	EEX	43	RCL 3	3403
R/S	84	1	01	CHS	42	+	61
LBL	23	RCL. 6	3406	3	03	RTN	24
C	13	ST0 1	3301	g $\mathrm{x}^{\text {P }} \mathrm{y}$	3524	Registers	
STO 5	3305	3	03	GTO	22		
-	83	g	35	D	1.4	R_{1} Used	
0	00	1/x	04	GTO	22	R_{2} Used	
2	02	g	35	1	01	$\mathrm{R}_{3} \quad \mathrm{VN}_{0}$	
$g \stackrel{3}{x+y}$	3507	y^{x}	05	LBL	23	$\mathrm{R}_{4} \mathrm{~K} / 10$	
\div	81	RCL 2	3402	D	14	$\mathrm{R}_{5} \mathrm{~W}(\mathrm{Mr})$	
3	03	X	71	RCL 6	3406	R_{6} U	Used
						R_{8}	
						R_{9} Us	

Description

This program is similar to WE-975-6 but has the added feature of computing the peak dynamic: pressure corresponding to $\mathrm{VN}_{\mathrm{adj}}$ as well as $\mathrm{VN}_{\text {adj }}$ itself. If the peak dynamic pressure (ordinarily interpreced as that associated with a 50% robability of damage; i.e., $q_{0.5}$ of Ref. 1) is not desired, WE-975-6 is preferable. An interation made in the program could result in an "error" of no more than 1 in the second decimal pl:ce of $\mathrm{VN}_{\text {adj }}$. No other approximations are made in the program.

User Instructions

Step	Instructions comments	Input data/units	Key	Output data/units
1	Enter program.			
	form $\mathrm{VN}_{0} Q \mathrm{~K}$.			
2	Enter VN_{0}.	VN_{0}	A	VN_{0}
3	Enter K.	K	B	K/10
4	Enter W in Mt.	W(Mt)	C	q(psi)
5	Optional step to obtain peak dynamic pressure q in $k P a$.		E	$\mathrm{q}(\mathrm{kPa})$
6	Optional step to obtain $\mathrm{VN}_{\text {adj }}$. For other values of W, repeat, If it is desired to determine entry 11 may be changed from R/ separately, once, in register may be repeated for other value calculating q (psi) without sto	with step unction of 5 , and W m step 3 (an and step 4 r the entry	RCL 1 for fix t then 5 and s dele of W.	$\mathrm{VN}_{\mathrm{ad}} \mathrm{j}$ d W, key e entered 6) above d, step 3
Typical running time: 20 s .				

Example
The $V N$ of a target is $25 Q 6$. What are η and $W_{\text {adj }}$ for a weapon yield of 0.1 Mt? 1 Mt?

Step	Instructions/ comments	Input data/units	Key	Output data/units
1	Enter program.			
2	Enter VN_{0} *	25	A	25.00
3	Enter K.	6	B	0.60
4	Enter W in Mt.	0.1	C	187,89 (psl)
5	(for q in kPa)		E	1295.50 (kPa)
6	(for VN adj)		RCL 1	24.07
Repeat for $W=1$ Mt:				
4	Enter W in Mt.	1	C	140.06 (psi)
5	(for q in kPa)		E	965.70 (kPa)
6	(for VNadj)		RCL 1	23.27

$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown	Key entry	Code shown
LBL	23	1	01	f	31	-	83
A	11	RCL 6	3406	LN	07	8	08
STO 3	3303	STO 1	3301	1	01	9	09
R/S	84	3	03	-	83	5	05
LBL	23	g	35	4	04	X	71
B	12	1/x	04	4	04	RTN	24
1	01	8	35	f	31		
0	00	$y^{\text {x }}$	05	LN	07		
\div	81	RCL. 2	3402	\div	81		
STO 4	3304	x	71	RCL. 3	3403		
R/S	84	1	01	+	61		
LBL	23	+	61	STO 1	3301		
c	13	RCL 4	3404	1	01		
STO 5	3305	-	51	-	83		
-	83	STO 6	3306	4	04		
0	00	RCL 1	3401	4	04		
2	02	-	51	RCL 1	3401		
$g \vec{x} \vec{y}$	3507	g	35	g	35		
\div	81	ABS	06	y^{x}	05		
3	03	EEX	43	-	83		
						Registers	
g	35	CHS	42	0	00	$\mathrm{R}_{1} \quad \mathrm{VN}_{3 \mathrm{dj}}$	
1/x	04	3	03	2	02		
g	35	g x>y	3524	8	08	$R_{2} \text { Used }$	
$y^{\text {x }}$	05	GTO	22	9	09	$\mathrm{R}_{3} \quad \mathrm{VN}_{0}$	
RCL 4	3404	D	14	3	03	$\mathrm{R}_{4} \mathrm{~K} / 10$	
X	71	Gro	22	X	71	$\mathrm{R}_{5} \mathrm{~W}(\mathrm{Mt})$	
STO 2	3302	1	01	RTN	24	R_{6} Used	
1	01	LBL	23	LBL	23	R_{7} -	
STO 6	3306	D	14	1:	15	R_{8}	
LBL	23	RCL 6	3406	6	06	R_{9} Used	

PROGRAM WE-975-8. P_{k}, WR $_{0}$, AND WR FOR Q-TYPE POINT TARGETS SURFACE BURST

Description

The adjusted vulnerability number $\mathrm{VN}_{\text {adj }}$, the weapon yield W (Mt), and the CEP ($f t$) of the delivery vehicle are the input parameters for this calculation. Ordinarily, this program is used after WE-975-6 without clearing the calculator, in which case $\mathrm{W}_{\mathrm{adj}}$ and W are already entered for calculation and only the CEP must be entered by the operator. P_{k}, the probability of a "kil1" at the damage level appropriate to the vulnerability number, is determined, as are the scaled weapon radius $W R_{0}$ and the weapon radius $W R$. Parametric studies based on CEP are particularly facile.

Note that the calculations is for Q-type point targets and for a surface burst. Error, defined as deviation from the results obtained using Ref. 1 , results from an analytic fit ${ }^{2}$ to obtain $W R_{0}$ from $V_{a d j}$. Typically, this "error" is less than 5\%. No further approximations are made in obtaining WR and P_{k}, so the "error" in WR is the same as that for $W R_{0}$ and the "error" in the value of P_{k} is typically no more than ± 0.02.

User Instructions

Example

What are $P_{k}, W R_{0}$, and WR for the first examiple of WE-975-N (. 2596 target with W of 0.1 Mt) fot a $1000-\mathrm{ft}$ CEP?

For these conditions, we found in WE-975-6 that $\mathrm{Va}_{\mathrm{adj}}$ was 34,07 . Ordinarlly, however, NE-975-8 is used as a continuation of WE-97i-6, so that program is run first.

Step	Instructions/ comments	$\begin{gathered} \text { Input } \\ \text { data/units } \end{gathered}$	Koy	$\begin{gathered} \text { Outpu: } \\ \text { daca/unit: } \end{gathered}$
Preliminary	Run WE-975-6 for a 2506 target,			
	$N=0.1 \mathrm{Mt}$.			14.07
1	Enter this program (NE-975-8).		\wedge	365.15
2	Enter CEP.	1000	1	0.77
3	Obtain WR.		MCS. 4	169:9,87

Answer: P_{k} is 0.77 , $W R_{0}$ is $365,15 \mathrm{ft} / \mathrm{kt}^{1 / 3}$, and wR is 1694.87. Question: If the CEP were 1500 ft instead of 1000 ft , what wouid $P_{k}, W R_{0}$, and WR be?

2	Enter CEP.	1500	B	0.53
3	Obtain WR.		RCI. 4	169.4 .87

Answer: P_{k} for $1500 \mathrm{ft} \operatorname{CEP}$ is 0.53 . $^{W} R_{0}$ and WR are unchanged because neither is a function of the CEP.

Note: Since we knew $\mathrm{VN}_{\text {adj }}$ was 24.07 , we could have entered N in register; and $\mathrm{VN}_{\text {odj }}$ in the x-register without first running $\mathrm{NE}-975-6$. We would obtain. for the $1000-\mathrm{ft} C E P, P_{k}=0.77, W R_{0}=365.31 \mathrm{ft} / \mathrm{kt}^{i / 3}$, and $W R=1695.61$ The neglipible numerical differences from the above example are, of course, a result of rounding in the direct entry of $\mathrm{VN}_{\text {adj }}$.

PROGRAM WE-975-9. OVERPRESSURE OR DYNAMIC PRESSURE FROM THE ADJUSTED vUladRAbIlity Number.

Description

This program determines the peak overpressure or peak dynamic pressure from $\mathrm{VN}_{\text {adj }}$ for efther P-type or Q-type targets. The pressures obtained are ordinarily interpreted as those associated with 50% probability of damage $P_{0.5}$ or ${ }^{q_{0.5}}$ of Ref. 1. Results may be obtained in either psi or kPa or both.

This program does not in any way equate the two types of vulnerability numbers or pressures. Because the individual calculations are short, both the P-type and the Q-type calculations are contajned in one program but they are not used together. Calculations will be accurate to at least four significant figures.

User Instructions

Step	Instructions/ comments	$\begin{gathered} \text { Input } \\ \text { data/units } \end{gathered}$	Key	Output data/units
1	Enter prosram.			
2	Enter $\mathrm{VN}_{\text {adj }}$ in keyboard if it has not been left in the x-register from the frevious calculation. For P -type targets			
		$\mathrm{WN}_{\text {adj }}$	A	P(psi)
		vNadj	B	P (kPa)
	For Q-type targets:	VN ${ }_{\text {adj }}$	C	Q(psi)
		VN adj	D	Q(kPa)
3	If p or q has been determined in psi and its value in kPa			
	is also wanted.	$\begin{aligned} & p(p s i) \text { or } \\ & q(p s i) \end{aligned}$	E	$\begin{aligned} & P(k P a) \text { or } \\ & Q(k P a) \end{aligned}$

Note: Values of p or q determined by these calculations are ordinarily interpreted as 50% probability values.

Typical running time: less than 5 s .

Eximple

1. For a P-type target, VN adj has been determined to be 22.98. To what peak overpressure does this correspond?
2. For a Q-type target, $V N_{i d j}$ has heen determined to be 24.07. To what peak dynamic pressure does this correspond?

Step	Instructions/ comments	Input datu/units	Key	Output data/units
Solution to question 1:				
1	Enter progras.			
2	Enter VN ${ }_{\text {adj }}$	22.98	A	74.03 (psi)
3	For p in $k P a$ also.		E	510.45 (kPa)
Solution to question 2:				
1	Enter program.			
2	Enter VNadj	24.07	C	187.56(psi)
3	For q In kPa also.		E	1293.21 (kPa)

Note that labels B and D were not used because the answers were determined in both psi and kPa. If the answers had been wanted only in $k P a$, labels B and D would have been keyed in step 2 and step 3 would (and could) not have been used.

Program WE-97S-9 L.isting

Key entry	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown	Key entry	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown
LBL	23	6	06	8	08	9	0.9
A	11	-	83	9	09	5	05
STO 1	3301	8	08	3	03	x	71
1	01	9	09	X	71	RTN	24
-	83	5	05	RTN	24		
2	02	x	71	LBL	23		
RCL. 1	3401	RTN	24	D	14		
8	35	LBL	23	C	13		
y^{x}	05	C	13	6	06		
1	01	STO 1	3301	*	83		
						Register	
-	83	1	01	8	08	R1 VN	
1	01	-	83	9	09		
2	02	4	04	5	05	$\mathrm{R}_{2}=$	
1	01	4	04	X	71	R_{3} -	
6	06	RCLL 1	3401	RTN	24	$\mathrm{R}_{4}-$	
X	71	8	35	LBL	23	R_{5} -	
RTN	24	y^{x}	05	E	15	$\mathrm{R}_{6}-$	
LBL	23	-	83	6	06	R_{7} -	
B	12	0	00	-	83	$\mathrm{R}_{8}-$	
A	11	2	02	8	08	R_{9} -	

PROGRAN WE-975-10. PEAK OVERPRESSLRE GIVEN YIELD AND RANGE FOR

 surface burst or gref alk burst
Description

This program combines the analytic approximations given by Brode ${ }^{3}$ for surface bursts and free air bursts. Because no approximations are made in this progrian, the error discussion in Chapter III of Brode's report applies.

Yield entries are in Mt, and range is in thousands of feet (kilofeet) or in kilometres. The peak overpressure is determined in both psi and kPa.

User Instructions

Step	Instruceions/ comments	Input data/units	Key	Oucput data/units
1 Enter program.				
2	Enter N in Mr.			
	If surface burst:	W(Nt)	A	
	If free air burst:	W(Mt)	E	
3	Enter R			
	If R is in kilofeet:	R(kft)	B	p (psi)
	If R is in kilometres:	R(km)	C	$p(p s i)$
4	If p is wanted in kPa :		D	$\mathrm{p}(\mathrm{kPa})$
Typical running time: 5 s .				

Examples

We list a few examples in shorthand notation:
Q. What is the peak overpressure from a $5-\mathrm{Mt}$ surface burst at 10000 ft ?
A. 5 A 10 B ; read 32.85 psi

D; read 226.50 kPa .
Q. What is the peak overpressure in psi from a 1-Mt free air burst at 1 km ?
A. 1 ElC ; read 73.37 psi .
Q. What is the peak sverpressure in both psi and kPa 1000 ft from a 1 -Mt surface burst?
A. 1 A 1 B ; read 3393.40 psi D; read 23397.48 kPa .

Iteration may be used to answer questions such as:
Q. At what distance from a $500-k t$ surfice burst is the neak overpressure 2 psi?
A. Try: 0.5 A 10 B ; read 6.99 ps 1
0.5 ג 20 B ; read 2.13 psi
0.5 A 21 Ri read 2.97 pil.

The distance is thus about 21000 fi.

Progrim $4 \mathrm{E}-975-10$ I. ist Ing

Key entry	Code shown	Key entry	Code shown	$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown
LBi	23	5	05	X	71	cто	22
E	15	2	02	RCL 2	3402	B	12
2	02	RCL 1	3401	:	81	1.hl	23
$\stackrel{\square}{\square}$	81	X	71	+	61	D	14
LBL	23	RCL 2	3402	-	83	6	06
A	11	\uparrow	41	0	00	-	83
1	01	X	71	2	02	8	08
0	00	:	81	1	01	9	07
0	00	RCL 2	3402	5	05	5	05
0	00	\div	81	+	61	X	71
X	71	RCL 1	3401	STO 3	3303	Kin	24
STO 1	3301	RCL 2	3402	R/S	84	Registers	
RCL 2	3402	\div	81	LBL	23		
R/S	84	f	31	c	13	${ }^{\text {R }}$ i Used	
LBL	23	\sqrt{x}	09	-	83	R_{2} Used	
B	12	7	07	3	03	R_{3} Used	
STO 2	3302	-	83	0	00	R_{4}	
3	03	6	06	4	04	R_{5}	
-	83	3	03	8	08		
1	01	$?$	03	\div	81	R_{7}	

PROCRMA WE-975-11. JEAK OVERPRESSURE TOJFROM VN adj

Description

This propram determines the prak overpressure p, ordinarily interpeated A: that presture associnted with 50% prohability of damage (0.5 of Ref. 1), from the adiusted vilncrability number $\mathrm{VN}_{\mathrm{ad}, \mathrm{j}}$ of a P -type target. It also performs the reversi calculation: determining N_{ad} from the peak neve pressure. Either conventional or St units of pressure may be used or determined in the calculations.

User Instructions

Step	Instructions/ comments.	Input data/units	Key	Output data/unfts
1 Finter program				
2	```Prepare for calculation. If W (Mt) is entered at this point, it will be stored in register 5.```	No entry required	A	1.12
3	$\text { For } \mathrm{VN}_{\text {adj }} \rightarrow \mathrm{p}(\mathrm{psi}) \text {, enter } \mathrm{VN}_{\text {add }}$	Vn adj	B	$p(p s i)$
3	$\text { For } \mathrm{VN}_{\mathrm{adj}} \underset{\text { or }}{ } \quad \mathrm{p}(\mathrm{kPa}) \text {, enter } \mathrm{VN}_{\mathrm{adj}}$	VN ${ }_{\text {adj }}$	C	$\mathrm{p}(\mathrm{kPa})$
3	$\text { For } \begin{aligned} p(p s i) & \rightarrow v_{\text {adj }}, \text { enter } p(p s i) \\ & \text { or } \end{aligned}$	p (psi)	D	VN adj
3	For $\mathrm{p}(\mathrm{kPa}) \rightarrow \mathrm{VN}_{\text {adj }}$, enter $\mathrm{p}(\mathrm{kPa})$.	$\mathrm{p}(\mathrm{kPa})$	E	$\mathrm{VN}_{\text {adj }}$
Since each of the four possible step $3^{\prime} s$ is an independent calculation, any one may be repeated after any other.				
Typical running time: less than 5 s .				

Examples

We use a "shorthand" notation to illustrate uses of the program:
Q. What is $\mathrm{p}(\mathrm{psi})$ if $\mathrm{VN}_{\mathrm{adj}}$ is 28?
A. Enter: (Λ) 28 B ; read $\mathrm{p}=184.89 \mathrm{psi}$.

The parentheses around A Indicate that LBL A must be keyed in once only and does not necessarily have to be keyed in for subsequent calculations.
Q. What is $\mathrm{VN}_{\text {adj }}$ for a 1000 -psi target?
A. This is a sloppy question. We assume it means "What is $\mathrm{VN}_{\mathrm{adj}}$ if $\mathrm{p}_{0.5}$ is 1000 psi?"

Enter 1000 D ; read $\mathrm{Vn}_{\mathrm{adj}}=3726$. If no previous calculation has been made enter $A 1000 \mathrm{D}$; read $\mathrm{VN}_{\text {at } 1}=37.26$.
Q. What is $\mathrm{VN}_{\mathrm{sdj}}$ if $\mathrm{P}_{0.5}$ is 7000 kPe for a $500-\mathrm{kt}$ surface burst with a 10C0~ft CEP?
A. If the intent is to go on to a calcuiation of p_{k} using NE-975-4, it is better to get W stored betore calculating $\mathrm{VN}_{\text {adj }}$. Remember that W is entered in Mt: Enter 0.5 A 7000 E ; read $\mathrm{VN}_{\mathrm{adj}}=37.34$. The calculator is now ready to accept WE-975-4.
Q. What is $\mathrm{p}(\mathrm{kPa})$ if $\mathrm{NN}_{\text {adj }}$ is 12 ?
A. Enter 12 C ; read $\mathrm{p}_{0.5}=68.95 \mathrm{kPa}$.

Program WE-975-11 Listing

$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code shown	
LBL	23	RCL 2	3402	-	83			
A	11	X	71	2	02			
STO 5	3305	RTN	24	f	31			
1	01	LBL	23	LN	07			
-	83	C	23	:	81			
1	01	B	12	STO 1	3301			
2	02	6	06	RTN	24			
1	01	-	83	J.BL	23			
6	06	8	08	E	15			
STO 2	3302	9	09	6	06	Registers		
RTN	24	5	05	-	83	$\begin{array}{ll} \mathrm{R}_{1} & \text { Used } \\ \mathrm{R}_{2} & \text { Used } \end{array}$		
LBI	23	X	71	8	08	$R_{3}^{2}-$		
B	12	RTN	24	9	09			
STO 1	3301	LBI	23	5	0.5		$R_{5} \quad W(N C)$	
1	01	D	14	\div	81	$R_{6}-$		
-	83	RCL 2	3402	GTO	22			
2	02	\div	81	D	14			
RCL 1	3401	f	31					
E	35	LN	07			$R_{9}-$		
y^{x}	05	1	01					

Description

This program determines the peak dynamic pressure \boldsymbol{c}, ordinarily interpreted as that pressure associated with 50% probabjifily of damage $\left(q_{0.5}\right.$ of Ref. 1), from the adjusted vulnerability number $\mathrm{VN}_{\text {adj }}$ of a Q-type target. It also performs the reverse calculation: determining $\mathrm{VN}_{\text {adj }}$ from the peak dynamic pressure. Either conventional or SI units may le used or determined In the calculations.

User Instructions

Step	Instructions/ comments	Input data/units	Key	Output data/units
1	Enter program.			
2	Prepare for calculation, If N (Nt) is entered at this point, it will be stored $i, 7$ register 5 .	No entry required	A	0.03
3	For $\mathrm{VN}_{\text {adj }}+\mathrm{q}(\mathrm{psi})$. enter $\mathrm{VN}_{\text {adj }}$ or	$\mathrm{VN}_{\text {adj }}$	B	q(psi)
3	For $\mathrm{VN}_{\text {adj }} \rightarrow \mathrm{q}(\mathrm{kPa})$, enter $\mathrm{VN}_{\mathrm{adj}}$ or	$\mathrm{VN}_{\mathrm{adj}}$	C	$\mathrm{C}_{(1 \mathrm{kPa}}$)
3	For $\mathrm{q}(\mathrm{psi}) \rightarrow \mathrm{VN}_{\mathrm{adj}}$, enter $\mathrm{q}(\mathrm{psi})$ or	$\mathrm{q}(\mathrm{psi})$	D	$\mathrm{Na}_{\text {adj }}$
3	For $\mathrm{q}(\mathrm{kPa}) \rightarrow \mathrm{VN}$ adj ,	q (kPa)	5	$\mathrm{VN}_{\text {adj }}$

Since each of the four pnssible step $3^{\prime} s$ is an independent calculation, any one may be repeated after any other.

Typical running time: lass than 5 s .

Examples

We use a "shorthand" notation to illustrate uses of the program:
Q. What is q (psi) if $\mathrm{VN}_{\text {adj }}$ is 28?
A. Enter (A) 28 E ; read $\mathrm{q}_{0.5}=786.14 \mathrm{psi}$.

The parentheses around A indicate that LBL A must be keyed in once only and does not necessarily have to be keyed in for subsequent calculations.
Q. What is $\mathrm{VN}_{\mathrm{adj}}$ for a 1000 -psi target?
A. This is a sloppy question. We assume it means "What is $\mathrm{NN}_{\mathrm{adj}}$ if $\mathrm{q}_{0.5}$ is 1000 psi?"
Enter 1000 D ; read $\mathrm{VN}_{\text {adj }}=28.66$ if no previous calculations has been
made
Enter A 1000 D ; read $\mathrm{WN}_{\mathrm{adj}}=28.66$.
Q. What is $\mathrm{VN}_{\text {adj }}$ if $\mathrm{q}_{0.5}$ is 7000 kPa for a $500-\mathrm{kt}$ surface burst with a 1000-ft CEP?
A. If the intent is to go on to a calculation of P_{k} usjing WE-975-8, it is better to get W stored before calculating $V^{\text {adj }}$. Remember that N is entered in Mt: Enter 0.5 ^ 7000 E ; read $\mathrm{VN}_{\text {adj }}=28.70$. The calculator is now ready to accept WE-975-8.
Q. What is $q(\mathrm{kPa})$ if $\mathrm{wN}_{\mathrm{adj}}$ is 12 ?
A. Enter $12 \mathrm{C} ;$ read $\mathrm{q}=15.86 \mathrm{kPa}$.

Program WE-975-12 Listing

$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	$\begin{aligned} & \text { Key } \\ & \text { entry } \end{aligned}$	Code snown	$\begin{gathered} \text { Key } \\ \text { entry } \end{gathered}$	Code shown	Key Code entry shown
LBL	23	y^{x}	05	1	01	
A	11	RCL 2	3402	-	83	
STO 5	3305	X	71	4	04	
-	83	RTN	24	4	04	
0	00	LBL	23	f	31	
2	02	C	13	LN	07	
8	08	B	12	\div	81	
9	09	5	06	STO 1	3301	
3	03	-	83	RTN	24	
STO 2	3302	8	08	LBL	23	Registers
RTN	24	9	09	E	15	$\mathrm{R}_{1}-$
LBL	23	5	05	6	06	R_{2}
B	12	X	71	-	83	R_{3}
STO 1	3301	RTN	RTN	8	08	R_{4}
1	01	LBL	23	9	09	$\mathrm{R}_{5} \mathrm{~W}(\mathrm{Mt})$
-	83	D	14	5	05	R_{6} -
4	04	RCL 2	3402	\div	81	R_{7} -
4	04	\div	81	GTO	22	R_{8}
RCL 1	3401	f	31	D	14	$\mathrm{R}_{9}-$
g	35	LN	07			

References

1. Physical tulnerability Handbook - Nuclear Weapons, Defense Intelligence Agency, Washington, D.C., Rept. AP-550-1-2-INT (1969; with changes, 1974) (title U, report C). The material pertinent to this report is also included in two unclassified reports: Mathematical Background and Programming Aids for the Physical Vulnerability System for Nuclear Weapons, Defense Intelligence Agency, Rept, DI-550-27-74 (1974); Kill Probabilitij cmad the Related Analysis for Blast-Type Targets, TRW Systems Group, Redondo Beach, Calif., TRW Sales No. 23942 (1974).
2. O. J. Loper and W. A. Barletta, Lawrence Livermore Laboratory, private communication, (1975).
3. H. L. Brode, Height of Burst Effects at High Overpressures, RaND Corp., Santa Monica, Calif., Rept. DASA-2506 or RM-6301-DASA (1970).
