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APERIODICITY IN ONE-DIMENSIONAL CELLULAR AUTOMATA

Erica Jen
Theoretical Division, MS-B258
Los Alamos National Laboratory
Los Alamos, NM 87545

ABSTRACT:

Cellular automata are a class of mathematical systems characterized by discreteness
(in space, time, and state values), determinism, and local interaction. A certain class
of one-dimensional, binary site-valued, nearest-neighbor automata is shown to generate
infinitely many aperiodic temporal sequences from arbitrary finite initial conditions on an
infinite lattice. The class of automaton rules that generate aperiodic temporal sequences
are characterized by a particular form of injectivity in their interaction rules. Included
are the nontrivial “linear” automaton rules (that is, rules for which the superposition
principle holds); certain nonlinear automata that retain injectivity properties similar to
those of linear automata; and a wider subset of nonlinear autornata whose interaction
rules satisfy a weaker form of injectivity together with certain symmetry conditions. A
technique is outlined here that maps this last set of automata onto a linear automaton,
and thereby establishes the aperiodicity of their temporal sequences.



APERIODICITY IN ONE-DIMENSIONAL CELLULAR AUTOMATA

81 Introduction

Cellular automata are a class of mathematical systems characterized by discreteness
(in space, time, and state values), determinism, and local interaction. A cellular automaton
consists of a lattice of sites whose values are restricted to a finite (typically small) set of
integers Z, = {0.1,-:-,k = 1}. The value of each site at any time step is then determined
as a function of the values of the neighboring sites at the previous time step. The general
form of a one-dimensional cellular automaton, for example, is given by

J.':+l=f(I:-rv"',Ifi"'qI:-i-r)! f:zzr-'-l—.zk (1.1)

where z! denotes the value of site i at time ¢, f represents the “rule” defining the au-
tomaton, and r is a non-negative integer specifying the radius of the rule. The simplest
cellular automata are those with r = 1 and k¥ = 2; designated by Wolfram [1] as “ele-
mentary,” these automata are defined on a one-dimensional spatial lattice, and consist of
binary-valued sites evolving in time according to a nezrest-neighbor interaction rule.

Cellular automata’s distinctive set of features has attracted, in recent years, substan-
tial attention as simple models for complex physical and biological phenomena ([2-3]). In
particular, cellular automata can be viewed as prototypicel models for systems consisting
of a large number of simple, identical, and locally connected components. Examples of phe-
nomena that have been modeled using cellular automata include turbulent flow resulting
from the collisions of fluid molecules, dendritic growth of crystals resulting from aggrega-
tion of atoms, and patterns of electrical activity in simple neural networks resulting from
neuronal interaction. Such problems are conventionally studied using continuous models
based on partial differential equations. Models based on cellular automata differ from. but
are qualitatively and to some extent quantitatively consistent with, those obtained from
a continuous approach. Simulations hased on cellular automata may provide an increase
in computational efficiency, as well as insight into the relation between continuous and
discrete modeling of the phenomena being studied.

In addition to providing modeling tools, cellular automata represent intriguing and
little-understood mathematical systems. At p.esent, few tools exist for the analysis of
their behavior. Problems in cellular automata research pose special difficulties since they
often fall outside the purvey of traditional continuous methematics; cellular autoruata
problems typically reflect, in both their formulation and their solution, the features of
discreteness and local interaction that make these systems distinctive. Although some
cellular automata are clearly equivalent to other standard mathematical constructs. in-
cluding shift-commuting maps and finite-difference schames for solving partial differential
equations. others are not. Many automata, such as that defined by

t+1
I,

=l-":4-1'5' max(.r:,::_l), (1.2)

where “+" denotes addition modulo 2, cannot easily be identified as discretizations of a
continuous system.



In fact, the evolution of a typical cellular automaton is governed typically not by a
function expressed in closec.-form, but by a “rule table” consisting of & list of the discrete
states that occur in an automaton together with the values to which these states are to
be mapped in one iteration of the rule. (The rule table can be converted to a function
involving Boolean expressions but such re-formulation is not usually profitable.) Not much
of calculus applies to such systems.

Thus. while it is natural to view cellular automata as dynamical systems, problems
arise in that many concepts standard to that field (for example, “stability,” “attractors.”
sensitive depeudence,” “chaotic behavior”) do not have unambiguous analogues in this
new context. In particular, the lack of a natural metric in either cellular automaton state
space or cellular automaton rule space makes it difficult to trruslate these concepts for
cellular automata and other spatially exterded systems defined with a finite set of state
values. In recent years, a number of simulation studies [1,2] have been undertaken to
identify appropriate statistical quartities for cellular automata - analogous to, say. dimen-
sions, entropies, and Lyapunov exponents - and to use these quantities to characterize the
dynamical behavior of these systems.

This paper focuses on one aspect of cellular automata for which the analogy with
continuous systems is relatively clear; namely, the periodicity of the behavior they gen-
erate. The question to be considered is, more precisely, the aperiodicity of the sequence
of values {z!,t = 0,1, -} assumed by a particular site z;, under successive iterations of
the automaton rule. Tle purpose of the paper is not to provide a sy.cematic or exhaus-
tive study of aperiodicity, but to present a collection of analytical results representative
of the phenomenon for these systems. A major theme throughout is the distinction be-
tween linearity and nonlinearity, and the development of techniques that permit results
on aperiodic behavior i linear automata to be extended to certain nonlinear cases.

The organization of the paper is as follows. Section 2 provides definitions and other
introductory material on elementary cellular automata. Section 3 considers the behavior
of linear rules and a certain subset of nonlinear but “injective” rules applied to finite
initial conditions (that i3, initial conditions with a compact support) on an infinite lattice,
and in particular establishes thet these rules generate infinitely many aperiodic temporal
sequences. Section 4 outlines an exact linearization technique that leads to the extension
of this result to a wider class of nonlinear automata. Concluding remarks are made in
Section 3.

82 Preliminaries

This section contains definitions and introductory discussion as groundwork for the
sections which follow.

An “elementary” [1] (that is, nearest-neighbor, binary site-valued) cellular automaton
is defined by

't:“ = f('t:—l"t:"t:+l)’ f: {Ov]-}3 - {0.1},

where r! denotes the value of site i at time ¢, and f represents the “rule” defining the
automaton.
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Since the domain of f is the set of 23 possible 3-tuples, the rule function f is completely
defined by specifying the “rule table” of values a; € {0,1} with ¢ =0,1,---,7 such that

000-"ao. 001 — a;, -, 111 — ar,

where ryz — a; indicates that f(zyz) = a,. There is a total of 256 distinct elementary
rules.
The conventional labelling scheme [1] assigns the integer

=T

R = Za.-2"

1=0

to the elementary rule defined by f. The rule number thus assumes an integer value
between 0 and 255.

The major focus of the sections which follow will be on the aperiodic behavior of
temporal sequences generated by automaton on infinite lattices. Note that in the case of
automaton rules operating on finite spatial lattices, the discreteness of state values and
determinism of the interaction rule imply that all initial conditions will be attracted into
“limit cycle” behavior; that is, aperiodic behavior cannot occur. Here, a limit cycle of
period p on a cylinder size n is defined to be a set of spatial sequences (z!;i =0,1,.--n -
1,6 =T,T+1,---,T + p—1} such that z! = r{*? for all t > T; that is, a set of spatial
sequences on the cylinder that repeat themselves periodically in time.

For clarity, notational distinctions will be made between an automaton's spatial se-
quences S*' with components {S! = z{; —00 < i < 00} at time ¢, and the te¢.  poral sequence:
W; with components {Wf = z{,t =0,1,---} representing the vaiues ass..med by the site
z; with successive iterations of the automaton rule.

Definition: The temporal sequence W, is periodic of period 0 < p < 20 with transience
0<T< xoif,z;t? =zt fort > T.

It will be assumed that the automaton rules are operating on infinite lattices with
arbitrary finite initial conditions; that is, arbitrary spatial sequences of finite length with

compact support.

Definition: A finite initial condition on an infinite lattice is an initial condition {£% -x <«
i < o0} such that for some finite M,NV, ¢ =0fori < M and i > N with 2%, = 1%, = 1.

Finally, a distinction will be made throughout between “linear” and “nonlinear™ au-
tomaton rules.

Definition: A rule R is defined to be linear if it satisfies the additivity coudition; that is.
for any 3-tuples y and =, the function f defining the rule R satisfies

fy)+£(z) = fly+2),

where “+" denotes binary addition.

Linear elementary automata include Rules 0 (zero rule), 15 (right-shift with toggle
rule), 51 (toggle rule), 60, 90, 105 (sum-rule with toggle), 150 (sum-rule), 170 (left-<hift
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rule), and 240 (identity rule); together with their equivalents under symmetry transforma-
tions.

From the point of view of dynamical systems, most linear rules generate extremely
simple behavior. Extensive work [6,7] has been done, on the other hand, on the behavior of
the “nontrivial” linear rules (that is, Rules 60, 90, and 130) operating on finite lattices with
periodic or fixed boundary conditions. Techniques have been developed for enumeration of
their limit cyclee, and computation of maximal limit cycle periods and maximal transience
length. It has further been shown (7] that a given spatial sequence appears in limit cycles
for linear rules iff its values satisfy a linear recurrence relation defined by the automaton
rule, and thus the considerable mathematical machinery of recurring sequences over finite
fields can be used for for the analysis of the detailed structure of limit cycle sequences.

Nonlinear cellular automata are not susceptible to the approaches of [6.7] since many
of those resul‘s derive from algebraic properties of the linear operator representing the
automaton rule, and further, the inability to invoke the superposition principle cripples the
analysis of the behavior of nonlinear rules for »rbitrary initial conditions. In the following
sections, a simple result establishing aperiodic behavior for a linear rule on infinite lattices
will be shown to hold for certain nonlinear rules as well.

In extending results from linear to nonlinear rules, a central concept will be that of
a certain type of “injectivity” as a feature of certain nonlinear as well as linear rules. An
automaton rule will be said to be injective in a particular component if, for every 3-tuple,
the component uniquely determines the value assigned by the rule tables to that tuple
(assuming fixed values for the other components). The precise definition is as follows:

Definition: A rule R is injective in the (i + k)-th component (k = -1,0,1) if for every
tuple (z,-12,%,+; ), the rule table for R represents a one-to-one mapping between z,., and
f(z,-12,zi+1) when the two other components z4.;,J # k are fixed.

Thus, for example, Rule 15 defined by
{100,101,110,111} — 0, {000,001,010,011} — 1,

representing the action of a right-shift with toggle, is injective in the (i — 1)-th component:
and Rule 150 defined by

{000,011,101,110} — 0, {001,010, 100,111} — 1,

is injective in all three components. thase two automata.

The following proposition asserts that all linear automaton rules (with the exception
of Rule 0) are injective in at least one component. The result is stated for elementary
automata, but applies tc rules of arbitrary neighborhood size with sites assuming values
in F; = {0,1,--+,¢q = 1}, where g is a prime power. .

Proposition 1. Let R be a linear automaton rule. Then either R is injective in at least one
component, or R is the rule that maps all tuples to 0.

Proof: Suppose R is not injective in any component. Then for instance there must exist
r,y € {0.1} such that
f(zy0) = fizyl),
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where f is the interaction rule defining R. The additivity principle of linear rules implies
that .
f(001) = f(zy0+zyl),
= f(zy0)+f(zyl),
=0.

Similarly, f(010) = f(100) = 0, from which it follows using superposition that all tuples
are mapped to 0.

The converse is not true. Rule 30, for example, defined by
{000,101, 110,111} — O, {001,010,011,100} — 1,

is injective in the (: — 1)-th component, but does not satisfy the definition of linearity.
§3 Aperiodic Behavior of Injective Rules on Infinite Lattices

In this section, it will be shown that, starting from arbitrary finite initial conditions
on infinite lattices, a certain class of elementary automaton rules generates infinitely many
aperiodic temporal sequences; that is, sequences that are not periodic of any period. This
class of rules is characterizable as exhibiting injectivity together with a feature that ensures
infinite-time “propagation” of the automata.

The aperiodicity of temporal sequences generated of a particular nontrivial linear rule
will be singled out for discussion here. The rule is defined by

{000,010, 101,111} — 0, {001,011,100.110} — 1, (3.1a)
alternatively specified by the functional form
it =zl 4zl (3.1b)

to be referred to hereafter as Rule 90. Figure 1 provides an example of the rule’s evolution
on a finite initial. Note that Rule 90 is injective in both its (i — 1) and (: + 1) components.
A simple argument (easily extended to the case of the other nontrivial linear automata.
including Rules 60 and 150) establishes the aperiodicity of all temporal sequences generated
by Rule 90 (with the exception of a trivial case to be described below). The proof rests on

showing that there exists a K such that every temporal sequence contains a subsequence
of 2% 0's for all £ > K.

Proposition 2: With the exception of the trivial case, every temporal sequence generated
by Rule 90 with arbitrary finite initial conditions on an infinite lattice is aperiodic. The
trivial case is the temporal sequence of all 0's generated by Rule 90 from an initial condition
that is spatially symmeiric, of odd length, with the central component being 0.

Proof: Let the initial condition be specified by {z?, -20 < i < } with %, = =1
being the “leftmost” and “rightmost” 1's. For convenience, assume M < 0 < .NV. From
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(3.1), it can be seen that the left and right “borders” of 1’s propagate with unit speed.
Also from (3.1), it follows that
ot =20 +2%, (3.2)

whenever ¢t is a power of 2. Consider an arbitrary tempora! sequence IV; and assume,
without loss of generality, j > 0. Define A" to be a positive integer such that

j—2X<M and j+2K> N
Then (3.2) implies that for any k such that k > K,
=0, for2*<t<2*+minl2*-;j-M2"+;-V]

since the values of the temporal sequence W; in this range are given as sums of the values
of the temporal sequences W;_,» and W, ., each of which consists of 0's until terminated
by the propagation of the left and right borders. (Termination on the left occurs at
t = 2% - j — M and on the iight at t = 2¥ + j — V.) Moreover the temporal sequence IV,
cannot have all values equal to 0 since the the spatial sequence generated at time step 2*
consists of two “copies” of the initial condition with a block of 0's in the center, and the two
1's bordering the block propagate toward the center with unit speed, thereby generating
a 1 at each site (except possibly the center). Since the result holds for k arbitrary large.
it follows that the temporal sequence W; is aperiodic except in the trivial case where it
is the “center” sequence of all 0’s generated by an odd-length spatially symmetric initial
condition.

The above result depends on the use of the (essentially) linear representation of Rule
90. In what follows, it will be shown that by discarding linearity but retaining injectivity.
certain nonlinear rules exhibit aperiodic behavior as well.

Consider now the class of automata injective in either their (i — 1)-th or their (i +1)-
the component. Each such class contains a total of 2¢ elementary rules, with linear Rules
90 and 150 the only automata belonging to both classes.

In order to establish aperiodicity of temporal sequences generated by these injective
rules, a lemma [8] is needed. The lemma asserts that the existence of two periodic temporal
sequences anywhere in an automaton implies the periodicity of every temporal sequence
in between. Note that the lemma makes no assumption on the automaton rule (in other
words, it is not restricted to injective rules).

Lemma: Let W, and W, i < j, be two temporal sequences periodic of periods pi. p;. respec-
tively. Then for i < k < j, the temporal sequence W, is periodic of period p | lem(p,.p,)
(where ::|y indicates that z divides y evenly), and of transience bounded by T < 0. where
T is a constant independent of k.

On the basis of the above lemma, the following proposition [8] asserts that (propagat-
ing) automaton rules belonging to Class A and B generate at most one aperiodic temporal
sequence.

Proposition 3: Let R be a rule injective in its (i + 1)-th component with {100} — 1 (or
injective in its (i — 1)-th component with {001} — 1). Then with arbitrary finite initial
conditions, there can exist at most one periodic temporal condition.
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Proof: The argument will be given for rules injective in their (i + 1)-th components. The
fact that {100} — 1 implies that the “rightmost” 1 in the initial condition propagates
with unit speed to the right. Suppose that within the “borders” of the automaton there
exists a periodic temporal sequence W; with transience T;, and a periodic sequence 17
with transience T}, with i < j. Then the lemma establishes that every sequence W is
also periodic with some transience T < 20 for i < k < j. In particular, W;_; - that
is, the temporz! sequence immediately to the “left” of IV is periodic with transience T.
The fact that R is injective in its (i + 1)-th component (the “mirror” argument holds
for injectivity on the left) implies that the values of the two adjacent temporal sequences
W;~1 and W; determine the values (and hence the periodicity properties) of the temporal
sequence ;. Hence that temporal sequence is periodic with transience T, as is in fact
every temporal sequence to the right of W;. A contradiction results however since there
must exist beyond the righthand “border” a temporal sequence that is not periodic with
transience 7.

The conditions of the above theorem hold for elementary automata Rules 30, S6.
90, 150, 154, 210. The nature of the aperiodicity of temporal sequences generated by
these automaton rules differs significantly from case to case. In the case of Rule 90 (the
purely linear rule) evolving on, say, an initial condition consisting of a single non-zero site,
the aperiodicity of the temporal sequences takes the formn of an orderly sequence of 1's
separated by sequences of 0’s with lengths that are powers of 2. By contrast, the temporal
sequences generated by Rule 30 (depicted in Figure 2) are aperiodic in a much stronger
sense, and have been proposed by Wolfram (9] as highly efficient pseudo-random number
generators.

84 Aperiodicit,; in Nonlinear Rules That Mimic Rule 90

As has been noted elsewhere [10,11], several nonlinear rules - in particular, Rules
18. 22, 122, 146, 182 - have been observed to “simulate” Rule 90 in that their behaviors
coincide when restricted to certain spatial subsequences. In addition, as indicated by the
numerical simulations in [10], the evolution of these rules on an infinite lattice can be
viewed as consisting of multiple “domains” within which the system emulates Rule 90. In
the infinite case, the positions of the domain walls vary in an ostensibly random fashion.
with collision of walls leading to annihilation and merging of domains. This annihilation
process leads gradually to the emergence of a more and more “ordered” configuration.
much as in the case of spontaneous symmetry breaking [10).

A technique is outlined here (see [12] for details) for the exact linearization of nonlinear
one-dimensional automata rules that “mimic” Rule 90 in a sense to be de’ined below. The
technique will be discussed in detail for Rule 18 whose rule table is given by

{000.010,011,101,110,111} — O, {001,100} — 1. (4.1)

Like the automaton rules of the previous section, Rule 18 exhibits injective behavior
on the subsets

{00+}, {104}



and
{=00}, {01},

where “s” denotes the two values {0,1}, and as before, “injective” implies that the tuples
in each subset are mapped to pairwise differing values. Unlike those rules, however. Rule
18 maps

{01«}, {11%}

and
{#10}, {11}

to pairwise equal values; it is in the values to which it maps these subsets - in particular.
the tuples {011,110} - that Rule 18 differs from Rule 90. (The mapping of the tuple 111
can be ignored here since it is easy to show that the rule never generates more than two
adjacent 1's.)

Hence for any sequence consisting only of isolated 1's (separated by 0’s), Rule 18
mimics exactly the behavior of Rule 90. Figure 3 depicts the evolutions of Rules 18 and
90 on various finite initial conditions. It is easy to see that the a pair of adjacent 1's is
generated in the evolution of Rule 18 whenever, and only whenever, a block of 0's of even
length has been generated at some previous time step. In the discussion that follows, such
a block will be termed a “deviant” block.

Suppose now an arbitrary spatial sequence is to be iterated for one time step under
Rule 18. Assume for the moment that the deviant blocks in the sequence are sufficiently
separated (in space) so as not to affect one another. The action of Rule 18 and Rule 90 is
identical on all but the deviant blocks. Moreover, since the definition of Rule 18 specifies
that

{000,010,011,101,110} — O,

it follows that the insertion of an extra 0 in each deviant block, and subsequent application

of Rule 18, produces a spatial sequence that is identical to the result of applying Rule 90

to the transformed sequence, and yet faithfully reproduces - except with the retention of

the extra 0 - the effect of applying Rule 18 to the original sequence. For example, suppose
that the sequence contains the block 0001101, which under iteration by Rule 18 generates

01000. The transformed sequence is given by 00010101, which under iteration by either

Rule 18 or Rule 90, generates 010000, where 0 denotes the inserted 0.

Thus, Rule 18 possesses the property that a subset of its rule table is injective (and
in fact identical to the linear Rule 90), and the remainder - the part that deviates from
linearity - collapses onto 0. This combination of features permits linearization by the
procedure consisting of the following steps:

(1) identification of the subsequences ou which the action of the rule deviates from lin-
earity;

(ii) transformation of the spatial lattice (specifically, insertion of new site values) so as to
exclude the occurrence of these subsequences while leaving the evolution of the rest
of the system undisturbed;

(1i1) analysis of the resultant linear system.



To summarize, the linearization procedure relies upon transformation of the nonlinear
system’s spatial lattice so as to induce the rule to mimic the evolution of a linear rule on
the transforrned lattice while preserving its own evolution on the unperturbed lattice. The
transformation has the effect of suppressing the occurrence of spatial subsequences upon
which the action of the rule deviates from linearity (“deviant blocks” ), and can be defined
whenever these subsequences possess certain symmetry properties related to the injectivity
properties of the nonlinear rule table. The technique may be applied to the analysis of
nonlinear rules evolving on either finite or infinite lattices. In the finite case. it permits
the analysis of the limit cycle structure (including features such as transience length and
maximal limit cycle period) [12]; in the infinite case, as will be discussed here, it leads to
an extension of the results on aperiodicity of temporal sequences.

As suggested by the discussion above, the linearization of Rule 18 depends critically
on the definition of a quantity to be denoted c; that represents the number of deviant
blocks in a spatial sequence S*. Precisely, define

¢; = number of even-length blocks of 0’s in sequeuce S*,

noting that 11 is encompassed in this definition.

Further, define a transformation G(S) that acts upon a spatial sequence S! so as to
insert an extra zero into each of the deviaat blocks, thereby converting it into an odd-length
block. The transformation G applied to the sequence, for example,

S =---0100011010010000010 - - -

produces the scquence
G(S) = ---010001010100010000010 - - - .

Note that the transformation is many-to-one.

Finally, for any spatial sequence S, let R3[S] denote the spatial sequence generated
by iteration of the automaton with rule number a for 3 time steps on the sequence S. For
example, R7,[S] denotes the result of T iterations of Rule 18 applied to the sequence S.

In [12], the following proposition is established.

Proposition 4. For Rule 18 evolving on (either finite or infinite) lattices with arbitrary
initial conditions,
(i) the quantity c; is monotonically non-increasing as a function of t;
(ii) for any range of iterations [T, T;] for which the quantity c; is conserved, the sequences
S* evolving under Rule 18 “mimic” the sequences G(S*) evolving under Rule 90; that
is.

G(R1s[S™]) = Ryo[G(S" )],
for0<t< T, -T,.

The above proposition asserts that in any range of iterations for which the number of
deviant blocks is conserved, the evolution of Rule 18 may be mapped onto the evolution
of Rule 90 by inserting an extra 0 into each of the deviant blocks. The analysis of Rule 18

)



is then achieved by characterizing the behavior of the appropriate linear automaton, and
then “inverting” the transformation to re-capture the features of the original nonlinear
system. The many-to-one nature of the transformation G, and it3 implications for the
limit cycle structure for Rule 18, is the subject of much of the discussion in [12]. In the
context of this paper, however, the inversion procedure is not necessary to characterize
the periodicity properties of temporal sequences generated by Rule 18. The following
proposition establishes the desired resuit.

Proposition 5: With the exception of the trivial case, every temporal sequence generated
by Rule 18 with acbitrary finite initial conditions on an infinite lattice is aperiodic. The
trivial case is the temporal sequence of all 0's generated by Rule 18 from an initial condition
that is spatially symmetric, with all 0-blocks of odd length, and the central component
being 0.

Proof: The proof closely resembles that used to prove the aperiodicity of temporal se-
quences generated by Rule 90, but requires a slight modification reflecting the lack of a
linear operator representation for Rule 18.

Since for arbitrary initial conditions evolving under Rule 18, the quantity c; representing
the number of deviant blocks is a monotonically non-increasing function of ¢, it follows that
it converges after some finite t* iterations some integer ¢* > 0. Take the infinite spatial
sequence at tiwe t* to be the initial condition S$” for the automaton. For all subsequent
iterations, the evolution of Rule 18 mimics that of Rule 90 in the sense described by
Proposition 4.

Suppose there exists a temporal sequence W, which is periodic of period p < > under
Rule 18, and for convenience, suppose that ; > 0 and that the sites in the initial condition
59 are labelled so that z, lies in the “center” of the nonzero portion of 5% (As before.
z%, and z%, with M < 0 < N are the left- and rightmost 1's in the initial condition.)

Consider now the evolution under Rule 90 of the transformed initial condition G(S°).
From the relation (3.2) provided in the proof of Proposition 2,

R;O[G(So)],- = G(S°),-_,-i-G(S°),-...., (+.2)

for all i and any value of ¢ that is a (sufficiently large) power of 2. The above implies that
at each such time step ¢, the spatial sequence R$,[G(S5°)] consists of two “copies” of the
i.itial condition G(S°) separated by ¢t — 1 0's (see, for exaTple, Figure 1).

Let A = 2* be a power of 2 that
j~-K < M, i+ K >N, and K > p, (4.3)

where p is the period of the temporal sequence W;. Proposition 4 implies that the spatial
sequence RK[5°] mimics the sequence R(G(S?)). The discrepancies between the two
sequences occur either in the “copies” of S? appearing in Rule 18, or in the length of the
center block of 0's (the Rule 18 center block may be shorter by 1 unit than the Rule 90
block). Regardless of th+ discrepancies, the temporal subsequence W, is entirely contained
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in the “cone™ generated by the spatial subsequence of consisting of the block of 0’s together
with its two bordering 1's. From the definition of Rule 18, it follows that

2K -M-N -
=0 frKgt<K+ =M=Vl

where the quantity in the parentheses represents the number of iterations within the cone
for which the temporal sequence W; is necessarily equal to 0. The values of ¥, cannot
be identically equal to 0, however, since the 1's on the border of the cone propagate with
unit speed toward the center, and therefore

K-y _
z, = 1.

This relation holds for all powers of 2 greater than or equal to A, and hence there can
be no periodic temporal sequence for Rule 18 with the possible exception of the center
temporal sequence generated by a spatially symmetric initial condition with no deviant
blocks and a 0 in its central site.

A similar result can be obtained for the other nonlinear rules (including Rules 22, 126,
146, 182) that mimic Rule 90.

§5 Concluding Remarks

The preced:ng sections have established the aperiodicity of the temporal sequences
generated by a certain class of one-dimensional. binary site-valued, nearest-neighbor au-
tomata evolving from arbitrary finite initial conditions on an infinite lattice. [icluded in
this class are those linear (here “linearity” implies that the superposition principle holds)
automaton rules whose evolutions are nontrivial in that they represent something other
than a simple shift, the identity, or the zero rule ; certain nonlinear rules exhibiting an
“injective” property together with a feature that ensures infinite-time propagation; and a
subset of nonlinear rules that exhibit linear behavior when restricted to certain subspaces.
and thereby mimic the behavior of linear rules when applied together with a well-defined
transformation to arbitrary spatial sequences.

It should not be concluded from the above that aperiodicity is in any sense generic
to cellular automaton rules. As mentioned earlier, all automaton rules operating on finite
lattices (with either fixed or periodic boundary conditions) generate limit cycle (that is.
periodic) behavior. Even on infinite lattices, the systematic simulation studies performed
by Wolfram (1] indicate that many automata evolve either to a homogeneous state or to
limit cycle behavior (specifically, the generation of fixed domain walls within which the
automaton undergoes periodic behavior) or to behavior that is extremely complicated but
possibly not aperiodic. (Moreover, the periodicity properties of temporal sequences for
these rules may well depend on the details of the initial conditions used. A simple example
is that of a shift rule.) Loosely speaking, such automata may be viewed as possessing “lis-
sipative” characteristics that force the contraction of arbitrary initial conditions onto limit
cycle attractors. Again loosely speaking, the automaton rules that generate aperiodicity

11



are distinctive in that the special “injective”-like features of their rule tables preclude suci
contractive behavior.

The connection between the aperiodicity of temporal sequences in cellular automata
and chaotic behavior in dynamical systems is as yet unclear. (Aperiodicity of course
encompassez a much broader set of behavior.) Given & continuous dynamical system
that exhibits chaotic behavior, it is probably correct to assume that aperiodicity should
appear as a feature of any cellular automaton representing an “appropriate” discretization
of that system. Since procedures do not yet exist (and may not in general be feasible)
for construction of continuous systems corresponding to arbitrary cellule- automnata, the
implications in reverse are not known.
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Figure 1. Evolution of Rule 30 defined by
{000,010,101,1i1} — 0, {001,011, 100,110} — 1,

from a flnite initial condition on an infinite lattice. In the figure, each row of dots
represents the spatial sequence generated at time ¢, with the top row corresponding
tot m 0. A dot represents a site value of 1, a blank represents a site value of 0.
Proposition 2 establishes the aperiodicity of temporal sequences (“columns” in this
figure) generated by Rule 90 from arbitrary finite initial conditions.



Figure 2. Evolution of Rule 30 defined by
{000,101,110,111} — 0,  {001,610,011, 100} — 1.

Proposition 3 establishes that, with arbitrary finite initial conditions, at most one
temporal sequence can be periodic.



Figure 3. Evolutions of Rule 90 defined by
{000,010,101,111} — 0, {001,011,100,110} — 1,
and Rule 18 defined by
{000,010,011,101,110,111} —» 0, {001,100} — 1.

Proposition 3 establishes the aperiodicity of temporal sequences generated by Ruie 13
from arbitrary finite initial conditions.

a) Rule 18 “mimics” Rule 90 in the absence of “deviant blocks”; that is, blocks of 0's
of even length.

b) The mimicking fails in the presence in the Rule 18 automaton of deviant blocks:
the transformation G that inserts an extra 0 into each such block results in a mapping
of the automaton into the automaton a).

¢) For arbitrary initial conditions evolving under Rule 18, the number of deviant
blocks is monotonically non-increasing and converges to a finite non-negative integer.
In this case, there are two deviant blocks in the initial condition whose collision and
annihilation at t = 3 precludes the occurrence of deviant blocks anywhere in the
automaton’s subsequent evolution.
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