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Abstract

Molecular surface computations are often necessary in order to perform synthetic
drug design� A critical step in this process is the computation and update of an
exact boundary representation for the molecular surface �e�g� the Lee�Richards sur�
face�� In this paper we introduce e�cient techniques for computing a molecular sur�
face boundary representation as a set of NURBS �non�uniform rational B�splines�
patches� This representation introduces for molecules the same geometric data struc�
ture used in the solid modeling community and enables immediate access to a wide
range of modeling operations and techniques� Furthermore� this allows the use of
any general solid modeling or visualization system as a molecular modeling inter�
face� However� using such a representation in a molecular modeling environment
raises several e�ciency and update constraints� especially in a dynamic setting�
For example� changes in the probe radius result in both geometric and topological
changes to the set of patches� Our techniques provide the option of trading accuracy
of the representation for the e�ciency of the computation� while still tracking the
changes in the set of patches� In particular� we discuss two main classes of dynamic
updates� one that keeps the topology of the molecular con�guration �xed� and a
more complicated case where the topology may be updated continuously� In general
the generated output surface is represented in a format that can be loaded into
standard solid modeling systems� It can also be directly triangulated or rendered�
possibly at di�erent levels of resolution� by a standard graphics library such as
OpenGL without any additional e�ort�
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� Introduction

The high combinatorial complexity of macromolecules makes it challenging
to compute and update their structures and properties in real time� Sev�
eral di�erent approaches have been developed to achieve this e�ciency for
molecular surface computations ���� ��� ��	��� �
� ���� Other work on sur�
face representations features the use of metaballs� molecular surfaces� and
blobby models ��� � ��� ��� �� ��� ��	��� ��	
��� In this paper we extend this
work by describing algorithms that dynamically update and render exact
smooth trimmed NURBS �non�uniform rational B�splines� representations
for growing the molecular surfaces� Trimmed NURBS are an industry�wide
CAD�CAGD standard and fast becoming optimized for graphics rendering
software �OpenGL��hardware ���� ����

In �
� we present an exact trimmed NURBS boundary representation of the
Lee�Richards solvent contact molecular surface ��
�� We show in this paper
how this trimmed NURBS representation can be e�ciently maintained to ani�
mate both the solvent accessible surface and the Lee�Richards solvent contact
surface of a molecule�

In our approach we combine the use of e�cient data structures ���� that have
already been shown useful for molecular modeling ���� with the use of standard
graphics libraries such as OpenGL and OpenInventor ����� The basic idea is to
dynamically maintain the primary structures and exactly compute and update
representations �tensor product rational B�splines� trimmed NURBS� of the
molecular surface which are directly displayed by optimized trimmed NURBS
rendering functions of OpenGL� In particular we focus on the special case
of dynamic� continuous modi�cation of the solvent radius� This allows us to
model molecular surfaces with probes of any radius�

We analyze the complexity of two main classes of updates that yield a family
of all the molecular surfaces obtained for di�erent solvent radii� ��� updates
that keep the Power Diagram ��� �xed �quadratic growing of the radius of the
solvent ball�� ��� updates that modify the Power Diagram �linear growing of
the radius of the solvent ball��

In both cases e�ciency is achieved through the introduction of a novel geo�
metric construction� In case ��� we use a new constructive approach to duality
that generalizes the standard �lifting� scheme ����� showing that the Power
Diagram of a molecule ��D union of balls� constitutes a compact represen�
tation of the collection of all the Power Diagrams of the trimming circles of
all the patches in a molecular surface� In particular the convex cell of the �D
Power Diagram relative to the ball B is the dual of the �D Power Diagram of
the trimming circles of B� As a �rst approximation �with the bonus of being
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simpler and more e�cient� we consider the molecular surfaces obtained by
disproportionally increasing the solvent radius so that the associated Power
Diagram remains unchanged� We show how we can keep track of the topo�
logical changes that occur in the trimming curves of the patches that form
the molecular surface so that its boundary representation can be updated e��
ciently� Furthermore� we compute and dynamically update an exact boundary
representation of the molecular surface so that the same dynamic data struc�
ture is also suitable for molecular modeling operations such as those supporting
synthetic drug design �����

In previous work on dynamic triangulations the focus has been mostly on the
simpler Delaunay�Voronoi structures �unweighted case� ��� �� ��� ��� ��� ��� ��
���� Little has been done on the more general case of dynamic Regular Trian�
gulation�Power Diagrams and for dimensions greater than two� Moreover� the
kinds of dynamic operations developed are usually just the insertion�deletion
of a single point� Such local operations become ine�cient when we need to
perform even a simple but global modi�cation� Here we adopt an approach
for global modi�cations where after preprocessing� each patch in the molecu�
lar surface is treated independently� By the �dividi et impera� paradigm we
increase e�ciency by solving several small problems in place of a single large
one�

In the case ��� setting� where the �D Power Diagram is subject to �ips� we use
the same construction as in ���� based on the de�nition of a �D complex of
convex polytopes C whose �horizontal� slices are all the possible �D Power Di�
agrams of the growing balls for any growth factor r� Hence we apply a simple
hyperplane sweep algorithm to optimally maintain the dynamic Power Dia�
gram of the linearly growing balls� Thus in this case we compute exactly the
o�set of the union of balls �so that its topology can be precisely determined��
even when it requires a change in the nearest neighbor �under power distance�
relations among the atoms corresponding to �ips in the associated Regular
Triangulation� More generally� for a set of balls in d�dimensional space this re�
quires the construction of a complex of convex polytopes in �d����dimensional
space whose �horizontal� slices are all the possible Power Diagrams�

In either case we prove and also demonstrate �Section �� that for small sol�
vent radius changes the global topological structure of the molecular surface
remains unaltered� requiring only scaling and a dynamic maintenance of the
arrangement of domain B�spline trimming curves� and that for large solvent
radius changes �Section ��� the regions in which the eventual updates of the
topological structure is required is also localized� Both of the constructions
are de�ned in general for unions of growing balls in any �xed dimension�

Our techniques are shown to be general enough to also deal with new smooth
molecular surfaces ��� proposed to avoid the singularities that may arise in

�



�a� �b�

Fig� �� The HIV�� PROTEASE �a� and one solvent accessible surface �b� for the
same molecule�

the Lee�Richards rolling ball surface� In particular� these procedures can be
used to deal with the molecular skin ��� ���� which is a smooth surface com�
prised of spherical and hyperboloidal patches� As such the molecular skin is
similar to the solvent accessible surface with hyperboloidal patches instead of
toroidal ones connecting the spherical patches� and in fact uses the same Reg�
ular Triangulation�Power Diagram structure� so we can use the same update
procedures e�ectively�

� Trimmed NURBS Molecular Surface Representation

One of our goals in developing algorithms for automatically maintaining dy�
namic molecular surfaces is to provide means for immediate display with a
standard graphics library like OpenGL without making the additional e�ort
of triangulating the surface as in ���� To this end we have developed �
� a bound�
ary representation scheme where patches are standard trimmed NURBS� We
show in this paper how this data structure can be e�ciently maintained to
animate the solvent accessible surface �see Figure �� and the solvent contact
surface �see Figure ��� of a molecule� In particular we focus on the special
case of dynamic� continuous modi�cation of the solvent radius � �

��� Regular Triangulation and Power Diagram

Our representation is based upon an underlying structure of the Regular Tri�
angulation of the atom centers in order to de�ne the set of boundary surface
patches� The Regular Triangulation and Power Diagram are generalizations of

� See the animation in http���www�ticam�utexas�edu�ccv�projects�

VisualEyes�visualization�geomod�surface�html
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the Delaunay Triangulation and Voronoi Diagram� with Euclidean distances
replaced by weighted distances� The weight of an atom B with radius r is
de�ned to be wB � r�� The power distance of a general point x in space to B
is then de�ned as

�B�x� � kp� xk� � wB �

where p is the center of B and kp � xk is the ordinary Euclidean distance
between p and x� The weighted Voronoi cell of a ball B in a molecule B is the
set of points in space whose weighted distance to B is less than or equal to
their weighted distance to any other ball in B ��� ����

VB � fx � ��j�B�x� � �C�x� �C � Bg �

The Power Diagram of a molecule is the union of the weighted Voronoi cells
for each of its atoms� The weighted Delaunay triangulation� or Regular Tri�

angulation� is the dual of the Power Diagram� where vertices are connected if
and only if their corresponding weighted Voronoi cells have a face in common�

��� Balls in �� and Halfspaces in ��

In this section we introduce the fundamental equations that form the basis
of the presented approach for molecular modeling� For a more extensive dis�
cussion of the conditions under which the present approach can be extended
to a more general case unifying geometries other than spheres� the interested
reader is referred to ���� While for our purposes we deal with d � �� the results
are easily extended to arbitrary dimension�

Consider in �� the implicit equation of the unit ball�

B�
� � �

�
� � ��� � ��� � ��� � � � � � ���

Its boundary has parametric equations which are�

�i �
�xi

x�� � x�� � x�� � �
� i � �� �� � �� �

x�� � x�� � x�� � �

x�� � x�� � x�� � �
� ���

The boundary of B�
� is the closure of the image of �� in �� under the map�

ping ���� The inverse map of ��� is given by

xi �
�i

�� ��
� i � �� �� � ���






for ���� ��� ��� ��� on the unit sphere ��� � ��� � ��� � ��� � �� The point ��� �� �� ��
in �� is the image of the point at in�nity of ���

Now consider the linear halfspace�

h � a� � a��� � a��� � a��� � a��� � � � ���

where not all of fa�� a�� a�� a�g are zero� Its pre�image in ��� given by the
mapping ���� is

b � a��x
�

� � x�� � x�� � �� � a� �x� � a� �x� � a� �x�

� a��x
�

� � x�� � x�� � �� � � � �
�

If a�� � a�� � a�� � a�� � a�� � � and a� � a� � �� this is the ball of center
��a�� a�� a����a��a�� and radius �a�� � a�� � a�� � a�� � a���

�����a��a��� If a
�
��

a��� a��� a��� a�� � � and a�� a� � �� this is the union of the sphere of center
��a�� a�� a����a��a�� and radius �a���a���a���a���a���

������a��a�� and its
exterior� When a��a� � �� this is a halfspace� and when a���a

�
��a

�
��a

�
��a

�
� � �

and a��a� �� �� this is a ball of imaginary radius� and contains no real points�

A fundamental relationship is that spheres that contain a point �c�� c�� c�� in
�� map to hyperplanes that pass through the point ��c�� �c�� �c�� c

�
��c���c���

����c�� � c�� � c�� � �� in ��� This is a result of the relation

�c�� � c�� � c�� � ��a� � ��c�a� � c�a� � c�a�� � �c�� � c�� � c�� � ��a� � � �

A consequence of this relationship is that a set of spheres passing through two
distinct points in �� corresponds to a set of hyperplanes in �� that contain a
certain line� Since the actual points of intersection in �� are mapped to points
on B�

� � the unit ball in ��� the line in �� must intersect B�
� in two points�

Spheres in �� that intersect at one point are mapped to hyperplanes whose
line of intersection is tangent to B�

� � Spheres whose combined intersection is
empty are mapped to hyperplanes whose line of intersection� if any� does not
intersect B�

� � This situation is illustrated for d � � in Figure �� Let l be the
line of intersection of the boundaries �h� � �h�� corresponding to two distinct
intersecting balls b� and b��� We have that �b� intersects �b�� if and only if l
intersects B�

� �the unit ball in ���� that is� if the distance from l to the origin
O is smaller than ��

�b� � �b�� � � or � points �	 l � B�

� �� 
 �	 dist�l� O� � � �

dim �b� � b��� � � �	 l � B�

� � � point �	 dist�l� O� � � �

Similarly we can consider three distinct disks b�� b��� and b���� If their intersection
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b
�

b
��

B�
�

l

Fig� �� The intersection between the boundaries of two disks b�� b�� in �� corresponds
to a line l intersecting the sphere B�

� �

b�

b��

B
�

�

b���

p

Fig� �� The non�empty intersection� when bounded by three circular arcs� between
three disks b�� b��� and b��� in ��� corresponds to a point p contained in the ball B�

� �

is a region bounded by three circular arcs� one from each disk� then the three
boundary circles correspond to three planes �h�� �h��� and �h��� that intersect
in a point p contained in B�

� � This is illustrated in Figure �� If the three circular
boundaries intersect in one or two points� then the planes intersect in a point
on �B�

� �or possibly in a line that intersects B�
���

b� � b�� � b��� � region bounded by � arcs �or points� �	 p � B�

� ���

dim ��b� � �b�� � �b���� � � � �	 p � �B�

� �

The proof of ��� is given in Appendix A�

�



��� Convex Hulls and Boolean Combination of Balls

Consider the intersection of n balls or their complements� such as b���b���b��
� � � � bn� We can map each of the bi or �bi to a halfspace h in �d�� so that the
computation of the intersection is reduced to a convex hull computation� Note
that if all the balls are complemented we get the complement of the union of
balls as in ����� In general� for the computation of the topological structure of
a non�linear� non�convex� possibly disconnected region in �d� the intersection
of inequalities of the type �
� is reduced to the computation of the boundary
of the convex polytope CP � intersection of halfspaces ���� and intersecting this
boundary with the unit sphere ����

This mapping generalizes the �lifting� scheme ���� so that it can represent both
the interior and the exterior of balls and so that one can compute any boolean
combination of balls instead of just their union� In the present formulation we
also represent the balls by their implicit inequality ��� instead of just a center
and a radius� so that one can deal with in�nite radius spheres �note that such
cases arise in practice in the computation of trimming curves��

An additional advantage of the present mapping with respect to the �lifting�
scheme is the compact representation of several collections of curve arrange�
ments in the special case of the collection of trimming circles of patches that
form a molecular surface� In fact� in this case we need only to observe that
the convex polytope CP � that is dual to each arrangement of trimming curves
of each patch� is indeed the cell of that patch in the ��dimensional Power
Diagram� This implies we need not represent a separate polytope for each
arrangement of trimming curves since the ��dimensional Power Diagram con�
tains them all� The advantage in storage comes from representing only once
any lower�dimensional face shared by more than one polytope� This sharing
of faces also provides savings in storage of explicit adjacency information for
each boundary curve of each patch�

��� Trimmed NURBS Patches

In this section we describe the components of the solvent accessible surface
and solvent contact surface are obtained� The solvent accessible surface ����
is the locus of the center of a sphere� or solvent atom� as it rolls along the
surface of the molecule� It is equivalent to a union of balls where each the
radius of each atom of the original molecule is increased by the radius of the
solvent atom� The solvent contact surface ��
� is de�ned as the boundary of
the region of space that a solvent atom cannot access because of the presence
of the molecule� For the solvent accessible surface �Figure ��� only �convex�
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spherical patches are used to create the molecular surface� The solvent con�
tact surface �Figure ��� involves more complex computations including also
�saddle� toroidal patches and �concave� spherical patches between the atoms�
and the computations of possible self�intersections�

����� Solvent Accessible Patches

Each atom�s spherical patch is the intersection of one sphere �representing the
atom� with the exterior of all its neighboring spheres� Let the �rst sphere be
S� and the exterior of a neighboring sphere be R� Then there is a halfspace
h such that S � R � S � h� Thus for each atom we can reduce our patch
representation problem to the intersection of a sphere with a set of halfspaces�

Given the Voronoi complex of the weighted centers of the molecule atoms�
the halfspaces whose common intersection generates the Voronoi cell of the
atom B are those with which S � �B must be intersected� Since we use a
parametric representation S � f�u� v�� we need to compute the domain D in
�u� v� space such that f�D� � S � h� Without loss of generality we assume
that S is the unit sphere� We adopt the following parametrization�

x �
�u

u� � v� � �
y �

�v

u� � v� � �
z �

u� � v� � �

u� � v� � �
� ���

This parametrization maps the �in�nite� rectangular domain ������� 
������� to the unit sphere� In practice we do not deal with in�nite domains
since we are only interested in representing proper molecules and not isolated
atoms� In order to determine the size of the domain we actually need� assume
that we are intersecting S with the halfspace z � d �in fact� with translation�
rotation� and scaling we always reduce the �rst intersection to this case�� Then
in view of ����

z � d�	
u� � v� � �

u� � v� � �
� d�	 u� � v� �

� � d

�� d
�

so we can choose the domainD to be the disk centered at the origin with radiusq
�� � d����� d�� A change in d corresponds to a scaling of D� that can be

performed by simply scaling its control polygon �once a NURBS representation
is de�ned for the trimming curve of D�� For any additional cutting halfspace
�h � Ax�By � Cz � D originating from other neighboring atoms� we have�

�C �D��u� � v�� � ��Au�Bv�� �C �D� � � � ���





The trimming curve derived from ��� is the circle

�
u�

A

C �D

��
�
�
v �

B

C �D

��
�

A� �B� � C� �D�

�C �D��

unless C � D� This occurs only when the plane Ax�By�Cz � D contains the
singular point ��� �� �� of the parametrization� and in this case the trimming
curve is the line

Au�Bv � C � � �

The trimming curves are all circles �possibly with in�nite radius� so that
the domain D can be modeled as the progressive intersection�di�erence of a
sequence of circles�

����� Solvent Contact Patches

In this section we describe how the convex and concave spherical patches� and
saddle toroidal patches of the solvent contact surface Sc are obtained from
the molecule and its Power Diagram� Here we will designate the boundary of
halfspaces hi and �hi by the planes �i and ��i�

We �rst describe the convex spherical patches� and how they relate to the
spherical patches of the solvent accessible surface� Let Sa be the solvent acces�
sible surface obtained with a solvent atom of radius r� so that Sa is comprised
of spherical patches whose radii are r larger than those of B� In this section
we use the Power Diagram and Regular Triangulation of Sa� which are similar
to those for B but with the radii of all atoms increased by r� As shown in
Figure �� let B be an atom of the molecule B of radius r� centered at v� and
let the Power Diagram cell of v be the intersection of halfspaces h� � � � �� hk�
Thus B� is the ball of radius r�� r centered at v� and B contributes the patch
�B�h�� � � ��hk to Sc and �B

���h�� � � ���hk to Sa� Each boundary hyperplane
��i is parallel to �i and is closer to v by the factor r���r� � r��

We now consider concave spherical patches� A typical patch is associated with
a triangle t of the Regular Triangulation of Sa with vertices v�� v�� and v��
and with a point �t in the Power Diagram� In this case the solvent atom Bs

has no degrees of freedom �it cannot roll since its center is �xed at �t�� De�ne
h�u�� u�� u�� u�� to be the halfspace containing u�� u�� u� in its planar boundary
and u� in its interior� Then the contribution of Bs to Sc is given by

�Bs � h�u�� u�� �t� u�� � h�u�� u�� �t� u�� � h�u�� u�� �t� u�� � ��

Saddle toroidal patches are associated with edges in the Regular Triangulation
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Fig� �� A solvent atom of radius r rolls on the molecule surface B� maintaining its
center on the solvent accessible surface Sa �medium arc�� Its point of contact with
B belongs to the solvent contact surface Sc �heavy arc�� The plane ��i marks the
border between a convex spherical patch and a saddle toroidal patch�

of Sa� As illustrated in Figure 
� let e be the edge with endpoints v� and v��
the centers of balls B� and B� with radii r� and r�� Also let B�

� and B�
� be

the balls with centers v� and v� and augmented radii r� � r and r� � r� Then
a solid torus E is generated by rolling a probe atom of radius r so that it is
constantly tangent to B� and B�� with its center traveling along the circle of
intersection �e of �B� � �B��

Let � be the Voronoi separating plane of B� and B�� As with the convex
spherical patches� we can construct two more planes ��� and ��� that are parallel
to � and closer to v� and v� by factors r���r��r� and r���r��r�� respectively�
The points of contact of the probe sphere with B� and B� lie on ��� and ����
and divide �E into two pieces� the inner saddle shaped surface whose cross
section is shown with two bold arcs in Figure 
� that is nearer e� and the outer
convex surface whose cross section is indicated by dashed arcs� The toroidal
patch that is part of the solvent contact surface is the former� and will be
denoted by �E��

If the edge e connects two atoms that do not share another neighbor when
the radii of all the atoms are increased by r� then �e is an entire circle� and all
of �E� is part of Sc� Otherwise� the probe atom encounters other atoms� �e is
a sequence of arcs� and the contribution of e to Sc is several toroidal patches
bounded by planes parallel to v�v�� These planes separate toroidal patches
from concave spherical patches �see Figure ���� and can simply be taken from
the planes that are the boundaries of the halfspaces appearing in ���

The remaining problem is the removal of �possible� self�intersections that the
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Fig� �� A solvent atom of radius r rolls on the molecule surface B� maintaining
contact with atoms B� and B� at all times� The inner toroidal patch between the
planes ��� and ��� is part of the solvent contact surface Sc �heavy arc��

Fig� �� Three possible self�intersections of the rolling ball surface �top�� and the
corresponding solvent contact surface �bottom��

rolling ball surface might have �see Figure ��� The solution for this and creation
of the actual solvent contact surface is detailed in �
��

� Maintaining the Molecular Surface Under Quadratic Growth

We call quadratic growth the scheme of growing balls that keeps the Power
Diagram unaltered� and thus the topology of the union of balls is given by the
corresponding ��shape ���� ���� Under this growth we only need to maintain
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the set of trimming curves of each patch in the surface� In particular we need
to e�ciently detect any topological changes �new intersections between curves�
creation�deletion of connected components� that occur in the trimming curves
�circles and lines� in the domain plane�

This goal can be achieved by looking at each patch separately �actually the
computation can be performed in parallel for all patches� and classifying the
faces of its associated polytope CP with respect to the relative ball B at the
current size� This is achieved by using the relations stated in Section ��� as
follows�

� Each facet of CP that intersects �B corresponds to a circle that is e�ectively
involved in the set of trimming curves�

� Each edge of CP that intersects �B corresponds to two intersecting circles�

This leads to the following algorithm for maintaining trimming curves� For
each face f of CP we determine its minimum distance dm and its maximum
distance dM from the center of B� This tells us when the circle associated
with f is involved in the boundary of the trimming circles� We organize the
ranges of all the faces in an interval tree so that we can e�ciently perform
range queries that are optimal in space and time� While growing the ball B
we look at the faces of CP whose range �dm� dM � contains the current radius r
of B to directly determine the topology of the trimming circles� For example�
if the range of a facet of CP contains f but none of its boundary edges� then
one of the trimming curves is an entire circle� At the same time this tells us
that in the growing process the values of dm� dM of the faces of CP constitute
the set of �event points� at which the growth of r produces some topological
change in the trimming circles� Hence we can e�ciently maintain the dynamic
arrangement of circles in the plane�

The topological structure of the molecule is given by the Regular Triangulation
and its dual� the Power Diagram� We examine the family of triangulations that
yield the topological structure of the molecular surfaces �solvent accessible or
solvent contact surfaces� while the solvent radius grows� The determination
of the topological structure of such molecular surfaces is an important prob�
lem addressed by several papers ����� The family of shapes obtained from a
weighted ��shape ������� is based on quadratic growth of the radii of the balls
and is therefore not directly related to the family based on the growth of the
solvent ball radius� In fact the fundamental property on which the ��shape
construction is based on is that for any �� the Power Diagram�Regular Tri�
angulation remains the same� This is achieved by growing each sphere by a
di�erent amount� namely the radius of each sphere is augmented by a quantity
such that the square of each radius is increased by the same quantity �see Fig�
ure ��� This implies that smaller spheres are grown more than the larger ones�
As a consequence the resulting surface does not re�ect exactly the required
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radius

growth

equal increase

di�erent increase

equal growth

�a

�b

Fig� 
� �a� If the radii of two balls are incremented by the same amount� then their
Voronoi separator moves towards the smaller one� �b� If the squares of the radii
of two balls are incremented by the same amount� then their Voronoi separator
remains the same�

molecular surface �see Figure ��� When this level of approximation �possibly
incorrect both in geometry and in topology� is not satisfactory� one needs to
resort to the method introduced in the following section�

� Maintaining the Molecular Surface under Linear Growth

The fundamental dynamic setting we consider is the case of a global linear
growth of all the atoms of a molecule� corresponding to a linear growth of
the solvent atom radius r� In this case the Voronoi �or more exactly Power
Diagram� plane that separates the two balls moves as a function of r� resulting
in topological changes of the triangulations and in the set of NURBS patches
de�ning the molecular surface �see Figure �� In fact� as the radius of each
ball is increased by r� the Voronoi plane that separates the two balls moves
towards the smaller ball� For example in Figure �� the distances l�� l� of the
Voronoi plane � from the centers of the two balls must be such that the power
distances of � are equal� that is�

l�� � r�� � l�� � r�� �

��



Quadratic
Growth

Linear
Growth

Fig� �� The di�erence between a quadratic and a linear growth of the molecule for a
given probe radius� The molecular surface �top� is grown quadratically �middle left��
hence maintaining the topology of the set of patches� giving an approximation to
the real molecular surface computed by linear growth �middle right�� The topology
di�erences can be seen in the weighted zero alpha shapes �bottom� from a di�erent
viewpoint�

Fig� 	� Examples of several topological changes in the set of NURBS patches� while
growing the probe radius linearly�

Moreover� the distance between the two balls is constant �the two balls grow
but do not move��

l� � l� � l �

From these two equations we obtain for l��

l�� � r�� � �l � l��
� � r�� � l� � l�� � �l�l � r��

l� �
l� � r�� � r��

�l
�
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� � r�

r

Fig� �� The ��dimensional case of ball growth� The quadratic growth �a� keeps the
Power Diagram hyperplane �a point� still� The linear growth �b� moves the Power
Diagram hyperplane linearly with r�

When r� and r� change to r� � r and r� � r we have�

l� �
l� � �r� � r�� � �r� � r��

�l
�

l� � r�� � r�� � �r�r� � r��

�l
�

In general� consider two balls B�� B� �of radii r� and r� respectively� in �d and
assume� without loss of generality� a coordinate system with the center of B�

at the origin and the center of B� on the positive x� axis �say at �l� �� � � � � ����
The hyperplane of the Power Diagram that separates B� from B� has the
equation�

� � x� �
l� � r�� � r��

�l
� r

��r� � r��

�l
����

which is linear in r� Hence this is also a hyperplane in the �d����dimensional
space �x�� � � � � xd� r�� Figure �� shows the ��dimensional case of two balls �seg�
ments� that grow quadratically �a� or linearly �b�� In the �rst case the hyper�
plane of the Power Diagram that separates B� from B� remains the same for
all values of r� In the second case� the hyperplane of the Power Diagram that
separates B� from B� moves linearly with r with a slope towards the center
of B��

This fundamental observation leads to the construction of the Power Diagram
of a set of growing balls as the intersection of a hyperplane r � const with a
complex C of convex polytopes in the �d����dimensional space �x�� � � � � xd� r��
If the molecule B is composed of n balls fB�� � � � � Bng then the complex C is
a collection of n convex polytopes fC�� � � � � Cng� one per ball� In particular
the cell Ci associated with the ball Bi is the intersection of all the halfspaces
of points �nearer� to Bi than to Bj �with j � �� � � � � i � �� i � �� � � � � n�� The
boundary hyperplane of such halfspaces is given by equation ����� Note that
cell Ci is de�ned as the intersection of all possible n � � halfspaces since by
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linear growing many �ips can occur in the Regular Triangulation� A �ip occurs
when an edge connecting two opposite vertices of a quadrilateral comprising
two triangles in the triangulation is replaced by the edge connecting the other
two vertices� as illustrated for the ��dimensional case in Figure ��� The brute
force application of the technique as described here requires the computation
of n convex hulls ���� in four�dimensional space� which leads to an O�n�� time
worst case complexity� For our purposes this is just a preprocessing step needed
to construct the data structure used for animating the molecular surface� so we
do not report in the present paper the details of an e�cient computation of this
complex C� Note however� that in the case of a molecule in three dimensions
�d � �� we have to compute a set of ��dimensional convex hulls that can be
computed more e�ciently� in an output sensitive sense� by using the algorithm
given in ����� The use of this algorithm would indeed be bene�cial because the
overall number of faces in C is indeed O�n��� This is proved by a technique
introduced in ��� that generalizes the �lifting� scheme for the computation
of Power Diagrams ���� and maps the construction of the complex C to a
convex hull computation �intersection of halfspaces� in one dimension higher
�that is in dimension d � ��� In the case of a molecule in three dimensions�
this leads to the computation of the convex hull in dimension �ve that can
be computed optimally ���� in O�n�� time� This is certainly optimal in odd
dimension �and in particular in the case of molecules where d � �� since a
single Power Diagram �and C contains many of them� already has the same
number of faces as a �d� ���dimensional convex polytope�

In the previous section we introduced the construction of a complex of convex
polytopes C embedded in the �d � ���dimensional space �x�� � � � � xd� r� whose
�horizontal� slices �that is an intersection with the hyperplane r � const�
are the Power Diagrams of the balls B with radii uniformly increased by r�
This data structure allows us to animate �update� e�ciently the representa�
tion of a molecular surface �solvent accessible or solvent contact� with respect
to a change in the solvent radius� In particular we can achieve simple and
e�cient updates on the Power Diagram localized in regions where the topo�
logical changes actually occur� In this way we can then in turn directly apply
the method described in Section ��

Being that the Power Diagram is the intersection of a horizontal hyperplane
H � r � const with the complex C� in the dynamic setting the linear growth of
the radii is simply a sweep of such horizontal hyperplanes H along the r�axis�
Hence the �event points� at which we have to update the topological structure
of the Power Diagram are the vertices of C� In particular to compute these
hyperplane sections of C we apply the robust approach in ��� which is based on
the robust �above or below� classi�cation of the vertices of C with respect to
H� We sort the vertices of C by their r coordinates so that their classi�cation is
obtained in logarithmic time by locating the current height value of H in such
a sorted list of vertices� This approach is also suitable for the dynamic growth
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Fig� ��� A simple case of a Regular Triangulation for which the topology changes
in a simple linear growth of the radius of the balls�

setting in which we will be continuously moving the hyperplane H� In fact in
such a scenario� each time we cross a vertex of C� we will need to update only
the cells incident to this vertex� Moreover in general� if we suddenly change
our solvent radius from a value r� to a value r�� we will be able to detect the
vertices whose r coordinate is in the range �r�� r��� change their above�below
classi�cation and consequently update all the incident faces of H�C� We reach
the conclusion that when spheres grow linearly� some �ips can occur in the
Regular Triangulation� unlike the quadratic growth� so that the usual ��shape
construction is invalid �see Figure ����

� Implementation Details and Examples

In this section we describe the implementation details of our algorithm� First�
a complex corresponding to the molecule is constructed� Second� we sweep a
hyperplane across the complex and record the topology changes� or �ips ��
��
that occur� and perform those �ips that are between given initial and �nal
probe radii� For each topology� we compute the trimming curves for all of
the intersections of atoms� These trimming curves� together with the atom
center locations� then allow us to reconstruct the molecular surface patches in
��space�

The �rst stage in the implementation is a preprocessing step� We construct
the complex C� and then let the hyperplane H sweep along the r�axis from
r � �� to r � �� and record the �ips ��
� that occur dynamically� Second�
once an array of �ips sorted by r is obtained� we perform the �ips that are
between the initial probe radius r� and the destination probe radius r��

Figure �� illustrates an example of how the smoothed molecular surface
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Fig� ��� Several snapshots in two views of a dynamic molecular surface in which the
radius of the probe atom is grown linearly� The individualmolecule atoms are colored
blue� Patches between two and three atoms are colored green and red� respectively�
As can be seen� the topology of the union of patches changes over time�

changes as the radii of the atoms grow linearly� As the atoms grow� some
of the interior balls are engulfed� Also the patches interpolating three atoms
tend to get consistently wider�

In the following two subsections we provide detailed development of the

�



method for two relatively simple cases� Any general setting can easily be con�
verted to those cases by locally translating to the origin� scaling to a unit
sphere� and rotating the related atom� This implies we need only one NURBS
spherical patch representation in our implementation� corresponding to this
atom position and scale� We then compute the trimming curves from the neigh�
boring atoms with given expressions that are precoded instead of recomputing
them every time in the general position� To place the result in the correct posi�
tion in the molecule we apply the inverse mapping to the control points of the
trimmed NURBS patch� This mapping is not applied to the trimming curves
themselves since they are de�ned in the parameter space of the NURBS patch�

The two following examples show the details of the trimming curves compu�
tation in the case of Figure �� In particular Figure ���a� shows a section of
the ball B of Figure � along a plane ����� orthogonal to the line l� The other
possible case is shown in Figure � where the start and end points of the trim�
ming curve result from the intersection of �� with di�erent planes� Is this case
one can easily compute a new plane �� �distinct from ��� through the two end
points and use it to compute the trimming curve parameters in the same way
as the previous case�

��� Example �

Here we choose a coordinate system so that two of the balls have centers on
the ���axis in ��� Speci�cally� consider three balls B�� B��� and B���� Choose a
coordinate system so that their centers are located at ��� �� ��� �l��� �� ��� and
�l�� cos 	� l�� sin 	� ��� where l�� and l�� are the distances between the centers
of B� and B��� and between the centers of B� and B���� respectively� and 	 is
the angle made by the three centers� with B� at the vertex� We can assume
� � 	 � �� Let the solvent ball have radius r�

We consider the two planes ��� �� relative to two trimming curves c�� c�� The
position of the line l � �� � �� of intersection is used to track the intersection
between c� and c� and to give their �D NURBS representation�

With the above coordinate system� the two planes have equations �see Fig�
ure ����

�� � �� � a� � ra�
�� � �cos 	��� � �sin	��� � a� � ra�

where

a� �
l��� � r�� � r��

�l��
a� �

r� � r�
l��

a� �
l��� � r�� � r��

�l��
a� �

r� � r�
l��

�

��



in accordance with �����

The image of the trimming curve is the intersection of the spherical surfaces
of the balls B��r� and B���r�� which we de�ne as the balls of radii r� � r and
r�� r centered at ��� �� �� and �l��� �� ��� respectively� The implicit equation of
the spherical surface of B��r� is then ��� � ��� � ��� � �r� � r��� and one �nds
that the �� coordinate of the two points of intersection between this sphere
and the line l is

�� � �
q
�r� � r�� � ��� � ���

The segment of the line l � ����� within B��r� then has the parametrization�

��� a� � ra�
��� a� � ra�

���
q
�r� � r�� � �a� � ra��� � �a� � ra��� u �

�� � u � � �

where

a� �
a� � a� cos 	

sin	
a� �

a� � a� cos 	

sin 	
�

For brevity� these quantities which will appear frequently in the sequel will be
named as follows� Keep in mind that all of these bi are functions of r�

b� � r� � r b� � a� � ra� b� � a� � ra� b� � a� � ra�

b� �
q
b�� � b�� � b�� b� �

q
b�� � b�� b� �

q
b�� � b�� �

To map the surface of the ball B��r� to a plane� we use an inverse mapping
similar to ��� but for a sphere of radius r� � r instead of � and speci�cally
d � ��

x� �
��

r� � r � ��
x� �

��
r� � r � ��

�

From this one obtains the intersection points q� and q� �see Figure ���b�� these
points lie on a line through the origin� in the �x��r�� x��r�� parameter space
as

q� �

�
b�

b� � b�
�

b�
b� � b�

�
q� �

�
b�

b� � b�
�

b�
b� � b�

�
�
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and the trimming curve is an arc of the circle with center

q� �

�
b�
b�
� �

�

and radius

b�
b�

�

One next needs to �nd suitable break points q� and q� �see Figure ���� Ideally
we want none of the arcs

�
q�q��

�
q�q��

�
q�q� to be close to ����� We can make

sure that none of these arcs exceeds ���� as follows� Let q	 be the midpoint
of segment q�q�� and let q
 be the intersection of the perpendicular bisector of
q�q� with the arc

�
q�q�� Now choose q� and q� to be on the line perpendicular

to
��
q	q
 that intersects

��
q	q
 at a point ��� of the way from q	 towards q
� In

the limiting case when q� and q� coincide� which occurs when �r� � r�� �
�a� � ra��

� � �a� � ra��
�� the three arcs

�
q�q��

�
q�q��

�
q�q� are all ���

�� and they
all shrink as the arc q� � q� � q� � q� shrinks�

In the x�x��plane� line
��
q�q� has the equation �a� � ra��x � �a� � ra��y � ��

We also have
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From this we get
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We now determine q�� q�� and q� as the points of intersection of the tangent
lines through q�� q�� q�� and q�� We get
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Fig� ��� �a� ���� ��� section of the ���� ��� ��� space� The circle is a cross section of
ball B��r� of radius r�� r� Line l� which is parallel to the �� axis� is the intersection
of the planes �� and ��� which in turn are the Voronoi planes separating B��r� and
B���r� and separating B��r� and B����r�� �b� control points of the trimming curve
that is part of the boundary of b��r� for Example �� �c� the same control points for
Example ��

where

c��
q
�b��b

�
� � �b��b

�
� � �b�b�b�b�

d�� b���b� � b�����b�b�b� � b��b� � b�b
�
��c�

� b��b�b�b� � b�b�b
�

� � b�b�b�b
�

� � �b�b�b�b�b� � �b�b
�

�b�b� � �b�b
�

�b��

d�� b���b� � b����b�b�b� � b��b� � b�b
�

��c�

� b��b�b�b� � b�b�b
�
� � b�b�b�b

�
� � �b�b�b�b�b� � �b�b

�
�b�b� � �b�b

�
�b��

We now need rational parametrizations of the circular arcs� The parametriza�
tion for arc q� � q� � q� is provided by

�x�� x�� �
��� t��q� � �t��� t�w�q� � t�q�

��� t�� � �t��� t�w� � t�
� � � t � � �

for a particular value for the weight w�� which turns out to be the cosine of
half the angle � q�q�q�� or cos q�q�q�� This can be computed as

w� �
�q� � q�� � �q� � q��

kq� � q�kkq� � q�k
�

Analogous parametrizations hold for arcs q� � q� � q� and q� � q� � q��

��



��� Example �

Here we place the balls in �� so that the line through the endpoints of a
trimming arc is parallel to the x��axis in x�x��space� Consider three balls B

��
B��� and B���� Choose a coordinate system so that their centers are located at
��� �� ��� �l�� cos���l�� sin�� ��� and �l�� cos�	���� l�� sin�	���� �� where l��
and l�� are the distances between the centers of B� and B��� and between the
centers of B� and B���� respectively� 	 is the angle made by the three centers�
with B� at the vertex �� � 	 � ��� and

� � tan��
�
�a� � ra��� �a� � ra�� cos 	

�a� � ra�� sin	

�
�

With this de�nition we have that � is the angle between the ray through the
centers of B� and B��� and the ���axis� and

cos��
b� sin	

�b�� � �b�b� cos 	 � b������

sin��
b� � b� cos 	

�b�� � �b�b� cos 	 � b������
�

Note that � is a function of r� This coordinate system is chosen so that the
Voronoi planes de�ned below intersect at the ���axis�

Let the solvent ball have radius r� We consider the two planes ��� �� relative to
two trimming curves c�� c�� The position of the line l � ����� of intersection is
used to track the intersection between c� and c� and to give their �D NURBS
representation�

With the above coordinate system� the two planes have equations�

�� � �cos���� � �sin���� � a� � ra�
�� � �cos�	 � ����� � �sin�	 � ����� � a� � ra�

where the ai are the same as in Example ��

a� �
l��� � r�� � r��

�l��
a� �

r� � r�
l��

a� �
l��� � r�� � r��

�l��
a� �

r� � r�
l��

�

in accordance with �����

The image of the trimming curve is the intersection of the spherical surfaces
of the balls B��r� and B���r�� which we de�ne as the balls of radii r� � r and

�




r��r centered at ��� �� �� and �l�� cos���l�� sin�� ��� respectively� The implicit
equation of the spherical surface of B��r� is then ��� � ��� � ��� � �r� � r��� and
one �nds that the �� coordinate of the two points of intersection between this
sphere and the line l is

�� � �
q
�r� � r�� � ��� � ��� �

The segment of the line l � ����� within B
��r� then has the parametrization�

����a� � ra��� cos�

����

���
q
�r� � r�� � �a� � ra���� cos� � u �

�� � u � � �

To map the surface of the ball B��r� to a plane� we use an inverse mapping
similar to ��� but for a sphere of radius r� � r instead of � and speci�cally
d � ��

x��
��

r� � r � ��

x��
��

r� � r � ��
�

From this one obtains the intersection points q� and q� �see Figure ���c�� in
the �x��r�� x��r�� parameter space as

q��

	

b� cos��

q
b�� cos� �� b��

b�
� �

�
A �

q��

	

b� cos� �

q
b�� cos� �� b��

b�
� �

�
A �

and the trimming curve is an arc of the circle with center

q� �

�
b� cos�

b�
��

b� sin�

b�

�

and radius

b�
b�

�

��



In the x�x��plane� line
��
q�q� is just the x��axis� and line

��
q	q
 is x� � b� cos��b��

We also have

q	 �

�
b� cos�

b�
� �

�
� q
 �

�
b� cos�

b�
��

b� sin� � b�
b�

�
�

From this we �nd that the break points q� and q� are

q��

�
b� cos�

b�
�

��b�� � b�� sin
� � � �b�b� sin��

���

�b�
��

�

�

b� sin� � b�
b�

�

q��

�
b� cos�

b�
�

��b�� � b�� sin
� � � �b�b� sin��

���

�b�
��

�

�

b� sin�� b�
b�

�
�

We now determine q�� q�� and q� as the points of intersection of the tangent
lines through q�� q�� q�� and q�� We get

q� �

�
b� cos�

b�
��

b� sin�

b�
�

�b��
b��b� sin�� �b��

�
�

Also

q��

�
b� cos�

b�
�

�b���b� sin� � b��

b��b��c� � c�� sin� � �b�c��
�

�
b� sin�

b�
�

b���c� � �c��

b��b��c� � c�� sin� � �b�c��

�

and

q��

�
b� cos�

b�
�

�b���b� sin� � b��

b��b��c� � c�� sin� � �b�c��
�

�
b� sin�

b�
�

b���c� � �c��

b��b��c� � c�� sin� � �b�c��

�

where

c� �
q
b�� cos� �� b�� � c� �

q
�b�� � b�� sin

� � � �b�b� sin� �

��



� Conclusions

We have described modeling and animation algorithms that dynamically up�
date and render exact and smoothed molecular surface representations for
growing collections of balls� Two main classes were considered� one where the
radii of the atoms grow quadratically so that the Power Diagram remains
�xed� and the other in which the atom radii grow linearly and the Power Di�
agram is updated continuously� In the �rst case accuracy of the solution is
sacri�ced for speed of the computation to allow fast user interaction times� In
the latter case the exact solution is given at a higher computation cost for the
case where higher accuracy is needed� The use of these algorithms can enable
one to manipulate molecular models and smoothed molecular surfaces in a
wide variety of applications�

Appendix A� Proof of equation ���

Let the three circles be �x � xi�
� � �y � yi�

� � r�i � i � �� �� �� Then the
three corresponding planes are �� � x�i � y�i � r�i �� �xi�� � �yi�� � ��� x�i �
y�i � r�i ��� � �� Their point of intersection� if unique and �nite� is given by
���� ��� ��� � �D��D�� D��D�� D��D��� where

D� �

�����������

��� x�� � y�� � r�� ��y� �� x�� � y�� � r��

��� x�� � y�� � r�� ��y� �� x�� � y�� � r��

��� x�� � y�� � r�� ��y� �� x�� � y�� � r��

�����������
�

D� �

�����������

��x� ��� x�� � y�� � r�� �� x�� � y�� � r��

��x� ��� x�� � y�� � r�� �� x�� � y�� � r��

��x� ��� x�� � y�� � r�� �� x�� � y�� � r��

�����������
�

D� �

�����������

��x� ��y� ��� x�� � y�� � r��

��x� ��y� ��� x�� � y�� � r��

��x� ��y� ��� x�� � y�� � r��

�����������
�

D� �

�����������

��x� ��y� �� x�� � y�� � r��

��x� ��y� �� x�� � y�� � r��

��x� ��y� �� x�� � y�� � r��

�����������
�

��



The condition that this point of intersection lies in the interior of B is

D�

� �D�

� �D�

� �D�

� � � � ����

If D� � �� then the point of intersection is at in�nity� and the inequality ����
cannot be satis�ed� �If D� � D� � D� � D� � �� then the three planes have
a line in common which intersects B� and it can be shown that the centers of
the three circles are collinear and the circles intersect in two points��

The intersection of three disks is bounded by three circular arcs exactly when
each disk contains exactly one of the two points of intersection of the other
two circles� In order for the �rst two circles to intersect in two points� we need
that the distance between their centers is strictly between jr� � r � �j and
r� � r�� This can be expressed algebraically as

A�� ��x� � x��
� � �y� � y��

� � �r� � r��
��

���x� � x��
� � �y� � y��

� � �r� � r��
�� � � �

Next� we need that r� is between the distance from �x�� y�� to the two points of
intersection of the �rst two circles� This condition turns out to be expressible
as

�����������

x� x� x�

y� y� y�

� � �

�����������

�

A� � A�
�

��x� � x��� � �y� � y�����
� � ����

where

A�� ��x� � x���x� � x�� � �y� � y���y� � y���r
�

�

� ��x� � x���x� � x�� � �y� � y���y� � y���r
�

�

� ��x� � x��
� � �y� � y��

��

���x� � x���x� � x�� � �y� � y���y� � y��� r��� �

Remarkably�

D�

� �D�

� �D�

� �D�

� �

�����������

x� x� x�

y� y� y�

� � �

�����������

�

A� � A�

� �

�



Therefore� if the intersection of the three disks is bounded by three circular
arcs ����� and ���� hold�� then the intersection point of the three planes is
within B ����� holds�� If the intersection point of the three planes is a point
within B ����� holds�� then ���� holds� Since ���� holds� we must have A� � ��
so that ���� holds as well� and then the three circles intersect pairwise in two
points� and each disk contains exactly one of the two points of intersection of
the other two circles�
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