Civilian Power from Space in the Early 21st Century

PDF Version Also Available for Download.

Description

If power beamed from space is to be become widely used on Earth in the first half of the 21St century, several thus-far-persistent impediments must be obviated, including threshold effects and problematic aspects of cost, availability, reliability, hazards and environmental impacts. We sketch a generally-applicable route to doing so, noting key enabling technologies and practical features. Likely-essential features of any successful strategy include vigorous, systematic leveraging of all intrinsic features of space-derived power, e.g., addressing marginal, high-value-added markets for electric power in space- and time-agile manners to conveniently provide power-upon-demand, and incrementally ''wedging'' into ever-larger markets with ever more cost-efficient ... continued below

Physical Description

PDF-FILE: 21; SIZE: 2 MBYTES pages

Creation Information

Hyde, R; Ishikawa, M & Wood, L June 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

If power beamed from space is to be become widely used on Earth in the first half of the 21St century, several thus-far-persistent impediments must be obviated, including threshold effects and problematic aspects of cost, availability, reliability, hazards and environmental impacts. We sketch a generally-applicable route to doing so, noting key enabling technologies and practical features. Likely-essential features of any successful strategy include vigorous, systematic leveraging of all intrinsic features of space-derived power, e.g., addressing marginal, high-value-added markets for electric power in space- and time-agile manners to conveniently provide power-upon-demand, and incrementally ''wedging'' into ever-larger markets with ever more cost-efficient generations and scales of technology. We suggest that no prudent strategic plan will rely upon large-scale, long-term public subsidies--fiscal, regulatory, etc.--with their attendant ''sovereign risks'' and interminable delays, and that plan-essential governmental support likely will be limited to early feasibility demonstrations, provision of threshold technologies and a rational, competition-neutral licensing environment. If salient realities are uniformly respected and accessible technologies are intelligently leveraged, electricity derived from space-sourced power-beams may come into significant civilian use during the latter part of the first quarter of this century, and may become widely used by the half-century point.

Physical Description

PDF-FILE: 21; SIZE: 2 MBYTES pages

Source

  • Long-Term Technology Pathways to Stabilization of Greenhouse Gases Workshop, Aspen, CO (US), 07/06/2003--07/11/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-154032
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 15004855
  • Archival Resource Key: ark:/67531/metadc1416611

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2003

Added to The UNT Digital Library

  • Jan. 23, 2019, 12:54 p.m.

Description Last Updated

  • Feb. 5, 2019, 5:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hyde, R; Ishikawa, M & Wood, L. Civilian Power from Space in the Early 21st Century, article, June 1, 2003; California. (https://digital.library.unt.edu/ark:/67531/metadc1416611/: accessed April 24, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.