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Abstract

& simplified Formulation 1s presented to deal with inter-
facial stability problems with mass and heat transfer. For
Rayleigh-Taylor stability problems of a liquld-vapor system,
it 1s found that the effect of mass and heat transfer tends to
enhange the stability of the system when the vapor is hotter
than the liguid, although the classical stability criteriocon
is still valid., For Kelvin-Helmholts stability problems,
however, the classical stability eriterion is found to be
modlifted substantially due to the effect of mass and heat

transfer.




Interfacial Stability with Mass and Heat Transfer

I. Introduction

In dealing with flow of two fluids divids=d by an interizce,
the problem of the interfaecial stability is usuwally studied on
the assumption that the fiuids are immiscible., Thus there is
no mass transfer across the interface. Thermal effects often
play only a secondary role. Therefore the effect of heat trans-
fer is also usually neglected. The classical Rayleigh-Taylor
stability (1,2] and the Kelvin-Helmholtz stabliity [3.,4,5] as
well as other variaztion of the problem such as the stability
of bubble motion in & liquid ESJ, all belong to this category.
However there are situations when the offect of mass and heat
transfer across the interface plays an essential role to deter-
mine the flow field, For instance, wheéen the fluid is boiling,
whether {1lm boiling or poal boiling, the mation of the filr
and the bubbles depends principally on the effect of mass and
heat transfer.

In &2 previcus paper [?], we have formulated the general
problem of interfacial fluid flow with mass and heat transfer
and applied to the specific problem of Raylelgh-Taylor instability
in ceonnection with the preblem of film boiling heat tranafer.
Adlthough explicit dispersion relation was found for the linear
problem, the expression is very complicated and is difficult to
grasp its essential feature. Moreover, for the specific problem
of boiling heat transfer, 1t is evident from the linear analysis

that the study of the nonlinear problem i1s required in order to



really understand its physical mechanism. Therefore it is desir-
able that a simplified version of the problem, which incorporates
the essentlal effects of mass and heat transfer, can be established
and egxpleored flrst. A& more comprehensive study can follow aftar
we have learned encugh from the simplified prcblem.

In the fallowiné, we present first & simplified formulation
of the problem of the interfacial {low with mass and heat transfer
based on & careful investigation of the results of the previcus
analysls of the more comprehensive formulation, Then the problems
of Rayleigh-Taylor stability and ¥elvin-Helmholtz stability are
studied. The linear dispersion relatlions are obtained and dis-
cussed. The study of the nonlinear stabvility problem will be

presented in a subsequent paper.
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II. Formulation of the Problem.

Ve are essentially concerned with the motion of a fluid

with two coexisting phases., Let

S5(x,t) = 0, (1)
represent the interface between these twoe phases., The interface
divlides the region inte two parts. Each part is occupied by a
homogenecus fluid. Within each regicon, the flow fields are
governed by the usual continuity, momentum and energy equalion
wlth their respective materilal parameters. Since the maszss lis
allowed to be tranaferred aecross the interface, the uwsuwal im-
misclbllity conditions no longer hold. The interfaclal con-
[?]

ditions, as derived from conservatlon of mass and momenta

become, on S(x,t) = O

{1).as (1)35 2} {2} as
D [gf g vy EEI}, {2}
and
(1) {1),28 {1y a3 L(1) 238
ViTRE Y YT ) T Tij EE
{2) (2),353 {2) 3s {2) 33 1 1 .35
(57 + vo° 2=y -1 o - g{E— b Ee)ee
j it i Exl 13 Exi Hl H2 Jx J
d =1,2,3, (3}

th

where p 1s the density of the fluld; v the 1 component of

11

the fluld veloclty; the strass component; o, the surface

Ti,j s

tension coefficient; and R

and R the two prineipal radii of

i 2
the curvature at the point of interest on 5 = 0. The radius of
curvature is taken toc be posltive if the center of curvature

lies on the side of filuid (2}, and negative ir otherwise. Ths

superacripts {1) and (2) designate the flulds in region (1} and

{2}




Réaliatically, since the transfer of mass across the interface
represents a transformation of the fluid from one phase to another,
there 1s lnvariably a latent heat asszoclated with the phase change.
It 1z egsentially through this interfacial coupling hetween the
mass transfer and the release of latent heat that the motion of
fluids is influenced by the thermal effects. Therefore when there
is significant mass transfer across the interface, the fransfer of
heat in the [luid has to be taken into conslideration.

Based on a careful investigation of the results from the
previcus more comprehensive analysis £?], it is reasonable to
expect that the amount of the released iatent heat depends mainly
oh the instantaneous position ¢of the interface, More specifically,

let us express theinterface by
S{:‘i}tj =¥ =- E{K}Z:tjj EL:}

where ¥y = 0 represents the equilibrium interface. We propose
that the interfacial condition for ernergy transfer can be ed-

pressed as

Lo V28 +yMosy = r, (5)

where L is the latent heat released when the fluild is transformed
from phase (1} to phase (2). The expression F(Z) represcnts es-
sentially the net heat flux from the interface when such phase
Eransformation is taking place. .In general [?], the heat [luxes
tave to be determined from equations governlng the heat transfer
in the fluids, thus coupling completely the dyhamics and the
thermal exchanges in the entire flow region. In this simplified
version, the aszumption 1z that F is simply a functicon of L,

and moreover F is to be determined from the heat exchange rela-

tions in the equilibrium state.




Let us consider a spe¢ific equilibrium state. Take tuo Flulds

)

confined between two paralle planes y -h, and y = hE' Let the

1
0. {3ee Figure 1). Fluid

)

equilibriom interface he located at y
{1} ceccupies the region -hl < y < O, whlle the fluid {2) cccupies

the region ¢ < ¥ =< hg. Let the temperatures at y = -hl y = hE and

¥y = 0 be Tl, T2 and Tﬂ respectively. The heat flux in the +y di-
K(lzﬁlfTD) K(E)[?lfTDU
rection in regions (1) and (2) are o and -
1 2

respectively. Let us denote

F(y) =
he - ¥ hy + ¥

It is clear that F{0) represents the net heat flux from the Iiner-
face Into the {luid reglons. Since it is an equilibrium state,

we have
F(0) = 0. (7}

We now propose that when the interface is perturbed to Zecome
¥y = t, the function F in the equa’ lon (5) is given by (6). When
there is intense heat exchange and substantlal mass transfer,
this quasi-equilibrium assumption should be a good approximation.
With this simplification, then the dynamical equations are de-

coupled from the heat equations.




IIL. The Rayleigh-Taylor Instability.

Comsider two incowpressible, inviscid fluids confined
bhetween two parallel planes y = uhl angd y = hg. Let the inter-

face be given by

§ =35 - ti{x,z,t) = 0, (B)
Fluid {1) occupies the reglon —hl < ¥y £ &, while the {luig {2}
ocecuplies the region § ¢ y <« hgt Assume the flows of the [luids
are irrotational, and let the velocity potentials be 4\ 17 @

¢{2} respec¢tively. Thus, we have in each fiuid region:

v2l® =5, & =1,z (9)
and
{a) {a)
B dwelehZ s 2 L@ o020 20
(o)} gt

i

where ¢ = gy is the external gravitational potential, and f{ﬂ}

are constants.

The Interfacial condition (2}, (3) and (5) now becomes

p RS 4 (e tws)1 = o PEE v (me'®y ey, (11)
(13, pal2) 1. roeyp S (1), _
o reve My mrgd + (velPy.(usn
= 0800962y ()18 ¢ (70( Py (95))

cr [plB) - o) gl %Ejllvslz, (12)

and
Lol 7188 + (ve Py (v)7 - E(o). (13)




{2] - 0,

In the equilibrium state we can set ¢(1} = ¢ =

ffl) = ffg} = 0, pfl} = _ﬁiljgy, p{g} = -pfg}gy, and the

interface 1s specified to be y = 0. The egquilibrium temperzture

distribution is the same as that discussed in the last section.
How let usz perturb the interface from y = 0 £to y = ;ei{kx'wt)

For small ¢, we see that in order to satisfy the boundary conditions

that the normal velocities vanish at ¢ = -hl and y = hg, the pear—

turbed velpeity potentials are given by

¢(l} = Al sosh k{y+hl}, {14}
and
¢(2} = A, cosh kiy-h,), (15}
i{kx-wt)

where the factor e is suppressed in writing {or simplicity

as with the subseguent expressions.
Heglecting the nonlinear terms, we cbtain from (10} the ex-

pression of the pressures on & = 0:

{16)
{1}
pil} = —Dil) g%——— - pil}gc = imp{l} Al cosh khl - pfl}g;,
and
1:r{E]I = iuaig) A, cosh kh, - piz}gc. {17)

The linearized interfaclal conditlons (11} and {(12) then lead to

pfl}{nlk sinh khy + jug) = 0l (iug - A, k sinh kny), (18)
and
p{l}[iwﬂl cosh khy - gr] = p(E}[imAE cosh khy - ar] + UkEE, (19)
silnce
Z 2
f%— + %—} = [E—% + §~%} when n is small.

=%
]



Now we can expand F{r)} about [ = 0 by
F(z) = F'{0)g +E~—g-‘ll;2 .,

since F(0) = 0. From (6) we obtain

1 1
Fr{0) = G{z— + ), (20}
h, = by
B p-r,y kv 1))
where G = h R — is the eguilibrium heat
2 1
flux from the plane y = —hl to ¥y = hg. Thus the linearized inter-

facial condition {13} becomes

ptl}{hlk sinh khl + iwg) = o, {21)

where

(22}

w0

1]
O 6e
—
:FJ
.-'-.
:WH
e

3% ]
-

Llthoughn the above formulatlion can be applled guite generally,
the physical system we keep in mind in the background 1s the liguid-
vapor system,

Now the vapor phase 1s usually hotter then the liquid phase,
therefore o 1ls always posltive., Because if the fluid (2} 1s
liguid and the fluld (1) is vapor, then L is positive and G 13
poaltive since 'I'l > Tﬂ > TE' If the fluigd (i) 1s liquid and the
fluid {(2) is vapor then L and ¢ both are negative,

Eliminating A,, 4, and ¢ from {183, (15) and {(21), we obtaln
the dispersion relation:
°r

pfl} ¢osh kh, sinh kb, + pr) cosh kh

w 1 2

5 sinh khl]

+ iaw sinh k{h1+h2} + [gk(p{zj-pfl}} - ij]ﬁiﬂh khl sinh kh2 = 0,
{23}




When a = O, we recover the classical Rayleigh-Taylor dispersion

relatlion. Let us denote

a = ¢ sinh k{h1+h2}//%fp(1} cosh khl sinh khE

+ p{E] cosh kh, sinh khll s

[gk(ﬂfz)rptl)} - Gk3] sinh khl sinh kh2
B Ny

b

pTET cosh kh, sinh khl}

cosh kh. sinh kh, + 2

1 2

Thus (23) ean be rewritten as

w = ~1la + [-.:‘312-1:1-]1’"r2

i (le-wt) is attached to each perturbed

Recalling that 2 factor of e
gquantity, thus when b > €, the system is unstable, since one root
of w i3 positive lmaginary. However, since a * 0, the growth rate
of the 1lnstablility is reduced from that of the c¢laszsical caze when
& = 0. When b < 0, the syatem is stable. But in contrast to the
classical case, Lhere is no permanent perlodi-wave state, and

the system will settle down Lo an asymptoetic equilibrium because
of the evaporation effect.

In most physical situvations, RhE is very large, then the

expressions of a and b are simpliflied o

{l}cosh khl + p{E}sinh khl}.

fur
n

o
E{Einh khl + cosh khl} {p

[Ekfpfg)-p(l}) - ckalainh Ih (pfl}cosh kh, + ﬂ{E}Sinh khq).

&
I

1 1

{E}chl}

In many cases, the ratio p is also very large, then

the expressions of a8 and b can be further simplified to




2 = a{l + coth khlipr{E},
UkE

b = gk[l - ].
g0 (2

Although a direct compariscn betwsen the present result and
the resuits from the previcus more general formulation 1s not
gasy to make., If may be seen that the present result agrees
with some of the limiting cases from the general result as
discussed in the previous works [T’B]. It is noteweorthy that the
effects ¢f mass and transfer are revealed through a4 single parameter
e in this simplified verslon. It would be interesting to see whather

axperimental data can 1ndeed be correlated by this parameter.



IV. The Kelvin-Helmholtz Instability.

Let us now consider the case that the primary flow state is
given by two uniform stireams moving with1unifcrm velocities U1 and
UE in the x-direction, co?fined again in the same reglion as in
Sectlon III. Then in this primary [low state we have for o = 1,2:

(e}

i = qus
p{u] - -D{u}EF,
and pla) _ g(u} g

The interface is agaln ¥ = {, and the temperature distribution the
same as thabt discussed in Section II.

After a small perturbation of the interface 3 = 0 from y = 0

to y = cei{kxﬁwt}, then the velocity potentials become
¢{l} = le *+ A, cosh k(y+hl)ei(kx_mt}, {24}
and
{2)
o = UEx + ﬂE cosh k(y-hzlei{kx-Wt}. {25)

Neglectling the nonlinear terms 1n Hl,ﬂz and ¢ , and suppressing

i{kzx-wt)

the expression e , we obtain from (10} that the pressures

on 3 = 0 are given by

p(1)

i[m—kUl}p{Ij A, cosh khy - pil}gﬂ, (26)

‘and

1(m-ku21p(23 AE cosh kh, - ﬁ{E]yg . (27}

p(E]

Substituting (24) - (27) into (11} - (13), and neglecting the non-

linear terms, we obtain

+ i(m-kul}CJ = prj[ifm~kU2]; - A, k sinh khE],
{28)

(1)
p " (A k sinh kh,




. -1
| . ' :

1 - 2
p{ }[i{m-kﬂl}ﬂl cosh khl - B ] p{ )[i{w-kUEJAE cosh kh2 - g4
+ ﬂkEC, {23)

|

and

ﬂ{l}[ﬂlk sinh kh, + i{m—kUl}gl ag. {30}

1
Eliminating Al’ ﬂE and t from the eguations {28) - {30}, we obtain

the following dispersion relatlon:

@+ B V22

wliv 100 (2)y _ aupen 1)y ul+

1

ey (23
-[gk{pfl}—pfz}} + Uk3]sinh kh, sinh kh, + iu[{~T~7 -T_T w

U(llul (z}u
- Ky {2}11 - o, (31)
where
W 1Y o ) oen kh, sinh kb,
arnd (2) (2)

g\ = p sinh khl cosh kh?‘

Equation (31) can be solved to give

(l} (23
1 (1} {23 1u W v
w = k(v "0, + v 57U,) - ( + VW], (32)
where
2z (1) (2)
i o= (DR y 52 %_(:{1} . {2}12
p oWy e (V205 Uk3]sinh kh, sinh kh,
+ 1uku(l]uigj

(Ul-UE}{;%TT - ;%?T}' (33)

It 3is clear that when o = 0, the dispersion relation is reduced

to that of the classical Xelvin-Helmholtz problem. When Ul = Ll2 = U,
the expression of w 18 the same as that of the last section, except

for an additive term ki to take care of the streaming of the Cluid.



Thus when |U1-U 1s smzl1l, the behavior of the {flow system diiffers

2 |
little from the Rayleigh-Taylor case.

The stability ceriterion may be determined by the condition
that w is real. Thus we obtain from either (32) cor (33), the

following critical condition:

7= 6@ er(p M2y 4 gk3Jsinh khy sinh kh,

(2)_.(1})
2 2,01),.{2) p - 2 (1) {231 _

- K5 (U . =-U,3%v W [1 + ) IalY} W 1 = 0.

1 -2 p(EJufl}+pfl}U{2}

(343
The system is stable 4if T > 0, and unstable if J <« 0. The expres-
sion of J differs Ffrom that of the eclassical Kelvin-Helmholtz
problem by the additional last term. It is somewhat surprising
that the parameter a does not appear in the expression. Thus
this expression is valid even for infinitesimal a, and yet when
# = 0, the last term 15 absent. There is no anomaly, however, if
we look at the growth rate of the instability., When o is infini-
teslmally small, the additicnal effect on the growth rate of the
instability is alsc infinitesimally small.

The additional last term In the expresslion J 1s always negative,

Thus it is always a destablllzing term. It iz not a small term

unless the density difference or the velocity difference is small.

When ﬂ(E] -2 p{l} {or p{l} e p{g}}, the term in the bracket is
{2) 1}

of the order of {or ET_T}' Therefore the medlification on
o il 5 2

Keilvin-Helmholtz stablllty can be very large for such two fluld

systems as water-vapor or waier-air.

We can also obtain from {34) the critical value of U -ty such

that the system is stable for all k if JUl—Ugf does not exceed this
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value. 1In order to bring out the salient feature without involving
two much computaticon, let us take both hl and h2 to be Iinfinitely

large. Then we have

J = (pfl}+p(2]}[gk(pclj-p(2}} + ok ]

2
(B)_g(2))°
DI EIaEE

- kgiul—UEJEpil}g{E}[l + (E
p

{1), (2)

When p *p » the system is thus stable for all K, if

8
fU]_-UE}E < —{'IT(?T[UE;{D(I}-%(E}}]:UE. (35)
e P

(5]

In contrast, the classiecal Kelvin-Helmholte eriterion is

2(p' D4pt2?)

2 {1) (2)y4 172

When p(l} > pfg}, the right hand sides of (35} and (36) differ
{27
p

by a factor of H-T——.
M L

For the case of the azlr-water szystem, the classical result

(36) yields
|Ul-U2| ¢ 65° em/sec, (or 23 km/ir}

while the relation {35) yields
fUl—U2| < 47 em/zec. (or 1.7 km/hr)

Az we apply the new result to the phenomenon of the surface
waves generated by the wind on the ocean, we may make the folliowing
interpretation. When the wind speed is below 1.7 km/hr, the sea
would be calm. Waves begin to appear when the wind speed exceeds
1.7 lm/hr. 43z g 1ls indeed extremely small for this case, the
growth rate for the 1nstability is s¢ small that the amplitude of

the wave remains very small. The growth rate becomes slgnificant




*

only when the wind speed exceeds the elassical value,

Then white caps start fo appear on the acean surface as observed

l.e.

23

km/hr
(51
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V.  Summary.

Ton sum up, we have presented a simplified formulation for the
interfacial stability problems with mass and heat transfer. For
the case of Rayleigh-Taylor stability problem, it is found that
the simplifiled version retains the essentlal feature that although
the effect of mass and heat transfer tends to reduce the growth
rate of the instabillty, the criterion for stablility is still the
same as the classical result. For this formulation, the effects
of mass and heat transfer are reveazled through one slngie parater o,
Thus correlation of experimental data would be greatly facilitated
by this simplification. For such physical problems as f1lm boiling,
nonlinear effects are esszentizl. Then the simplified formulation
is even more valuable for the difficult analysis of the aonlinean
stability. The study of nonlinear Rayleigh-Taylor stabllity with
mass and heat transfer wlll be reported tin 2 subseguent paper.

For the case of Kelvin-Helmholtz stability problem, a remark-
able result 1s that the classical stablility criterion is sub-
stantially modified when the effect of mass and heat transfer is
taken into conslderation, and the mediflcation is independent of
the parameter «. The result ls less surprislng from the perspective
of the growth rate of the instability. The growth rate of the in-
stability is indeed small if o is small, when the system is classi-
cally stable. Experimental verificaticn and a detailed analysis
from a more comprehensive formulation are both desirable for fuller

vnderstanding of the problem.
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