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Abstract

We develop a wave-based tomographic imaging algorithm based upon a single rotating
radially outward oriented transducer. At successive angular locations at a fixed radius, the
transducer launches a primary field and collects the backscattered field in a “pitch/catch” oper-
ation. The hardware configuration, operating mode, and datacollection method is identical to
that of most medical intravascular ultrasound (IVUS) systems. IVUS systems form images of
the medium surrounding the probe based upon ultrasonic B-scans, using a straight-ray model
of sound propagation. Our goal is to develop a wave-based imaging algorithm using diffrac-
tion tomography techniques. Given the hardware configuration and the imaging method, we
refer to this system as “radial reflection diffraction tomography.” We consider two hardware
configurations: a multimonostatic mode using a single transducer as described above, and
a multistatic mode consisting of a single transmitter and anaperture formed by multiple re-
ceivers. In this latter case, the entire source/receiver aperture rotates about the fixed radius.
Practically, such a probe is mounted at the end of a catheter or snaking tube that can be in-
serted into a part or medium with the goal of forming images ofthe plane perpendicular to
the axis of rotation. We derive an analytic expression for the multimonostatic inverse but ul-
timately use the new Hilbert space inverse wave (HSIW) algorithm to construct images using
both operating modes. Applications include improved IVUS imaging, bore hole tomography,
and non-destructive evaluation (NDE) of parts with existing access holes.
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1 Introduction

Consider a wave-based tomographic imaging tool consistingof a single transducer rotating about
a fixed center. The transducer is oriented such that it launches fields radially outward. At each
angular location, the transducer launches a primary field and collects the backscattered field in a
“pitch/catch” operation. This configuration, in which a single transducer acts as both source and
receiver at multiple spatial locations, is known asmultimonostatic. The configuration is shown in
Figure 1(a). One may also consider an annular array of fixed transducers. In succession, each trans-
ducer launches a primary field and the backscattered field is measured on all the transducers. This
configuration, with multiple spatially diverse transmitters and receivers, is amultistaticoperating
mode and is shown in Figure 1(b). A second multistatic configuration, presented in Figure 1(c),
consists of a rotating sub-aperture formed by a single transmitter surrounded by multiple receivers.
At each angular location, the transmitter launches the primary field and the backscattered field is
measured on all receivers.

The goal of this tool is to use inverse wave techniques to reconstruct, that is, to form images,
of the medium surrounding the probe, in the plane perpendicular to the axis of rotation. Given the
arrangement of transducer(s) at a fixed radius collecting reflected scattered fields, we refer to this
as aradial reflectionconfiguration. We use the diffraction tomography[1, 2] technique, based upon
a linearized scattering model, to form images. Thus, given the physical transducer configuration
and the mathematical method used to invert the scattering, we call the algorithmradial reflection
diffraction tomography(RRDT).

When operating in a multimonostatic reflection mode, a spectrally wide band, that is a fre-
quency diverse, incident source must be used because there is insufficient spatial diversity to form
images of the surrounding medium. The planar reconstruction has two spatial variables, by the
“Golden Rule” of tomography[3], the measurement system must then have at least two free pa-
rameters. Angular location is one and incident source frequency is the other. Conceptually, the
forward scattering process maps the two spatial variables of a physical object into the angular
location and frequency parameters of the measured field.

Practically, such a probe is mounted at the end of a catheter or snaking tube that can be inserted
into a part or medium with the purpose of forming images of theplane perpendicular to the axis of
rotation. Applications include intravascular ultrasound(IVUS)[4], bore hole tomography, and non-
destructive evaluation (NDE) of parts with existing accessholes. We seek a wave-based imaging
algorithm rather than a straight-ray B-scan [2] algorithm which is used, for example, in IVUS
systems. A wave-based inversion more accurately describesthe physics of wave field propagation.

In the next section, we develop the forward linearized multimonostatic scattering model. We
initially develop a three-dimensional model. As we wish, however, to form images in a plane
normal to the probe axis, we specialize the model to 2.5-dimensions assuming no variation inz,
that is, along the axis of the catheter. In Section 3, we develop the RRDT Fourier Diffraction
Theorem [1, 2] (FDT) which governs how the medium’s spatial spectrum is sampled by the for-
ward measurement process. The RRDT FDT dictates the resolution of the reconstruction. We
develop an analytic expression for multimonostatic inversion in Section 4. This inverse, however,
proved impractical to implement numerically. In its place,we use the new Hilbert space inverse
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wave (HSIW) algorithm [5] outlined in Section 5 to achieve imaging algorithms not only for the
multimonostatic configuration but also for the multistaticconfigurations.

Due to the heavy computation nature of the HSIW, a trade-off must be made between the num-
ber of transducers and frequencies used in the reconstruction, and the quality of the reconstructed
image. Ideally, an aperture consisting of a 360 degree annular array would yield the best image.
Practically, it is currently not possible to construct sucha fully wired array in, for example, a 0.25
mm IVUS probe. Thus, we study rotating sub-apertures such aspresented in Figure 1 (c), and
compare reconstruction results to the single multimonostatic configuration.

As explained above, when operating in a reflection mode, the imaging mathematics dictate
that spectrally wide band pulses must be used. The range resolution of the reconstructed image
is proportional to the number of frequencies used in the reconstruction. Under the Hilbert space
inverse wave algorithm, however, increasing the number of frequencies and transducers, increases
the complexity of the reconstruction, the size of the intermediary data files, reconstruction time,
and computer memory requirement. Thus, the trade-off between computer resources and resolution
must also be considered.

We initially study these issues in the proof-of-principle presented in Section 6 where we re-
construct scattered fields obtained from a simulation basedupon the linearized forward scatter-
ing model of Section 2. The simulated medium consists of a collection of point scatterers. We
compare the multistatic and multimonostatic configurations. In Section 7, we provide a more
rigorous test of the HSIW algorithm by inverting data obtained from Lawrence Livermore Na-
tional Laboratory’s acoustic/elastic finite-difference time-domain propagation and scattering code,
E3D [6, 7, 8, 9, 10, 11]. We simulated a medium with two scattering objects whose physical prop-
erties varied from 5% below the background to 15% above it. Again, we compare multimonostatic
and multistatic configurations. Conclusions are presentedin Section 8.

2 Multimonostatic Forward Scattering Model

We develop here the linearized forward scattering model derivation for the multimonostatic con-
figuration. We are interested in imaging an area surroundingthe probe in the plane normal to
the axis of rotation. The geometry is that of Figure 2. The transducer location is specified by
r0 ≡ R0 (cos θ0, sin θ0) whereR0 is the probe radius, a constant. At each angular location,θ0, the
transducer launches the primary field radially outward intothe medium and measures the reflected
scattered field. The wave propagation and scattering is governed by the Helmholtz equation,

[

∇2 + k2(r)
]

ψ(r, ω) = −p(r, ω), (1)

wherer ≡ r (cos θ, sin θ) is the spatial coordinate of a point in the surrounding medium, ω is the
temporal frequency,k(r) is the wavenumber of the medium,ψ(r, ω) is the total field, andp(r, ω)
is the incident pulse temporal spectrum.

The derivation is simplified by rearranging Eqn. 1 to remove the spatial inhomogeneity in the
scattering operator in the left hand side. We add the background wavenumber,k0(ω) ≡ ω/v0, to
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both sides of Eqn. 1 and move the inhomogeneous term to the right hand side to obtain,
[

∇2 + k2
0

]

ψ(r, ω) = −p(r, ω) −
[

k2(r) − k2
0(ω)

]

ψ(r, ω). (2)

Define theobject functionas

o(r) ≡
k2(r)

k2
0

− 1, (3)

and express Eqn. 2 as
[

∇2 + k2
0

]

ψ(r, ω) = −p(r, ω) − k2
0(ω)o(r)ψ(r, ω). (4)

The second term on the right hand side is known as thesecondary sourcewhich creates the scat-
tered field. We may use Green’s theorem[12] to cast the differential equation of Eqn. 4 into an
integral equation via

ψ(R, ω) =
∫

dr G(R, r, ω) p(r, ω) + k2
0(ω)

∫

dr G(R, r, ω) o(r) ψ(r), (5)

where the Green function is

G(R, r, ω) =
eik0(ω)|R−r|

4π |R − r|
. (6)

The first integral in Eqn. 5 is theprimary field,ψinc(R, ω). Subtracting it from the total field yields
thescattered field,

ψscatt(R, ω) ≡ ψ(R, ω) − ψinc(R, ω) = k2
0(ω)

∫

dr G(R, r, ω) o(r) ψ(r, ω).

An expression for the measured scattered field is obtained whenψscatt(R, ω) is evaluated on the
measurement surface,r0,

ψscatt(r0, ω) = k2
0(ω)

∫

dr G(r0, r, ω) o(r) ψ(r, ω). (7)

Given the scattered field, the data, on the measurement surface,r0 = (R0, θ0) ∀ θ0, we wish to
invert Eqn. 7 to reconstruct an estimate of the scattering medium,o(r), in the plane perpendicular
to the axis of transducer rotation. The equation is nonlinear in that the total field which is the sum
of the incident and scattered fields, appears under the integral. We may simplify this if we assume
the medium is weakly scattering and that the first Born approximation holds. We then neglect the
scattered field term and express Eqn. 7 as

ψscatt
B (r0, ω) = k2

0(ω)
∫

dr G(r0, r, ω) o(r) ψinc(r, ω), (8)

where we use theB subscript to indicate the Born approximation has been used.We further assume
the incident field is the result of a point source located atr0, so thatp(r, ω) = P (ω) δ(r0 − r),
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whereP (ω) is the incident pulse spectrum. We model neither antenna characteristics nor beam
pattern. With this assumption, the incident field is,

ψinc(r, ω) = P (ω) G(r0, r, ω),

and Eqn. 8 reads

ψscatt
B (r0, ω) = P (ω) k2

0(ω)
∫

dr G2(r0, r, ω) o(r), (9)

where the squared Green function is a result of the transmitter and receiver being co-located. Using
Eqn. 6, we explicitly express the forward scattering model as

ψscatt
B (r0, ω) =

P (ω) k2
0(ω)

(4π)2

∫

dr
ei2k0(ω)|r0−r|

|r0 − r|2
o(r). (10)

The squared Green function is problematic in the development of an inverse scattering expression
since the diffraction tomography technique requires an expansion of the integral kernel in a series
along the measurement surface. We simplify Eqn. 10 following a technique used by Norton and
Linzer[13]. We first define theweighted scattered fieldas

ψscatt
W (r0, 2ω) ≡

4π

P (ω)k2
0(ω)

ψscatt
B (r0, ω) =

1

4π

∫

dr
ei2k0(ω)|r0−r|

|r0 − r|2
o(r), (11)

and then differentiate it with respect tok0(ω),

d

dk0(ω)
ψscatt

W (r0, 2ω) =
i2

4π

∫

dr
ei2k0(ω)|r0−r|

|r0 − r|
o(r),

= i2
∫

dr G(r0, r, 2ω) o(r). (12)

For notational convenience, we define

φ(r0, 2ω) ≡
d

dk0(ω)
ψscatt

W (r0, 2ω) = v0
d

dω
ψscatt

W (r0, 2ω), (13)

and express Eqn. 12 as

φ(r0, 2ω) = i2
∫

dr G(r0, r, 2ω) o(r). (14)

Eqn. 14 is our forward scattering model in three dimensions.Since our goal is to invert this
equation to reconstruct the medium in a plane perpendicularto the axis of rotation, we simplify
this further, in the next section, by assuming the object function,o(r), is independent of the vertical
(z) coordinate. This is known as a “2.5-dimensional” problem.
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2.1 2.5-Dimensional Problem

In cylindrical coordinates,r ≡ (r, θ, z) and the measurement surface isr0 ≡ (R0, θ0, z0) for R0

fixed and0 ≤ θ0 < 2π. Thus the volume integral of Eqn. 14 becomes

φ(r0, 2ω) = i2
∫ ∞

0
rdr

∫ 2π

0
dθ o(r, θ)

∫ ∞

−∞
dz G(r0, r, 2ω). (15)

The distance between the observation point,r0, and the scattering point is given by

|r0 − r|2 = R2 + (z0 − z)2 ,

where the planar component of the distance is

R2 ≡ R2
0 + r2 − 2R0r cos (θ0 − θ) .

With this definition, we note that thez-integral of the Green function reduces to

∫ ∞

−∞
dz G(r0, r, 2ω) =

i

4
H

(1)
0 (2k0(ω)R),

so that Eqn. 15 reads

φ(r0, 2ω) = −
1

2

∫ ∞

0
rdr

∫ 2π

0
dθ o(r, θ) H

(1)
0 (2k0(ω)R). (16)

This is the 2.5-dimensional forward scattering model. It can be interpreted as a mapping from the
object’s two-dimensional(r, θ) space into the measured data’s two-dimensional(θ0, ω) measure-
ment space. In the next section, we develop the equivalent ofthe Fourier Diffraction Theorem [1, 2]
(FDT) for this measurement system. The FDT determines the spatial resolution of the reconstruc-
tion by showing what part of the object’s spatial spectrum issampled by the measurement system.

3 Fourier Diffraction Theorem

The Fourier Diffraction Theorem (FDT) relates the one-dimensional spectrum of the measured
data along the measurement surface, to the planar (2-dimensional) spatial spectrum of the object
function. We begin the derivation by replacing the Hankel function in Eqn. 16 with the expansion,

H
(1)
0 (k0(ω)R) =

∞
∑

n=−∞

Jn(k0(ω)R0)H
(1)
n (k0(ω)r) ein(θ0−θ)

whereR0 < r. Substituting this into Eqn. 16 yields

φ(r0, 2ω) = −
1

2

∞
∑

n=−∞

∫ ∞

0
rdr

∫ 2π

0
dθ o(r, θ) Jn(2k0(ω)R0)H

(1)
n (2k0(ω)r) ein(θ0−θ). (17)
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We now Fourier expand the object and measured field functionsalong the measurement surface
using following transform pairs,

on(r) =
1

2π

∫ 2π

0
dθ o(r, θ) e−inθ, (18)

o(r, θ) =
∞
∑

n=−∞

on(r) einθ, (19)

and

φn(2ω) =
1

2π

∫ 2π

0
dθ0 φ(r0, 2ω) e−inθ0 , (20)

φ(r0, 2ω) =
∞
∑

n=−∞

φn(2ω) einθ0. (21)

Using Eqn. 20 to transform Eqn. 17, yields

1

2π

∫ 2π

0
dθ0 φ(r0, 2ω) e−imθ0 = −

1

4π

∞
∑

n=−∞

Jn(2k0(ω)R0)
∫ ∞

0
rdr H(1)

n (2k0(ω)r) ×

∫ 2π

0
dθ o(r, θ) e−inθ

∫ 2π

0
dθ0 e

i(n−m)θ0. (22)

We use Eqn. 18 and

1

2π

∫ 2π

0
dθ0 e

i(m−n)θ0 = δmn

to reduce Eqn. 22 to

φm(2ω) = −πJm(2k0(ω)R0)
∫ ∞

0
rdr H(1)

m (2k0(ω)r) om(r). (23)

Inverting Eqn. 23 to obtain the transform of the object function, om(r), is not possible because no
orthogonality relation exists for Hankel functions. If we make the assumption, however, that the
object,o(r, θ), is real we have from Eqn. 18 that

o∗−m(r) = om(r).

Using this and the property of Hankel functions,

(−1)m H
(1)
−m(2k0(ω)r) = H(1)

m (2k0(ω)r),

we may solve forom(r) by observing that

φm(2ω) + (−1)mφ∗
−m(2ω) = −2π Jm(2k0(ω)R0)

∫ ∞

0
rdr Jm(2k0(ω)r) om(r), (24)
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results in a Bessel transform of the object,

om(2k0(ω)) ≡
∫ ∞

0
rdr Jm(2k0(ω)r) om(r), (25)

which is invertible. Using Eqn. 25, we solve Eqn. 24 for the object Bessel transform,

om(2k0(ω)) = −
1

2π Jm(2k0(ω)R0)

[

φm(2ω) + (−1)mφ∗
−m(2ω)

]

. (26)

Explicitly expressing Eqn. 26 in terms of the measured field,we obtain the “Fourier-Bessel Diffrac-
tion Theorem” for RRDT:

om(2k0(ω)) = −
2v3

0

Jm(2k0(ω)R0)

d

dω

[

1

ω2

(

ψm(ω)

P (ω)
+
ψ∗
−m(ω)

P ∗(ω)

)]

. (27)

We believe it is more intuitive to relate the Fourier-Besseltransform of the object to its conventional
two-dimensional Fourier transform. We do so in the next section.

3.1 The RRDT Fourier Diffraction Theorem

We wish to relate the Fourier-Bessel object transform of Eqn. 27 in the(k,m) wavenumber/angular
index space to a continuous variable wavenumber/angle Fourier space. The relation is developed in
Appendix A. We substitute Eqn. 27 into Eqn. 66 of Appendix A, to obtain the Fourier Diffraction
Theorem for RRDT,

O(2k0(ω), φ) =
∞
∑

m=−∞

(−i)m eimφ om(2k0(ω)),

= −2v3
0

∞
∑

m=−∞

(−i)m eimφ

Jm(2k0(ω)R0)

d

dω

[

1

ω2

(

ψm(ω)

P (ω)
+
ψ∗
−m(ω)

P ∗(ω)

)]

, (28)

where the Fourier space polar pair(2k0(ω), φ) are related to the Fourier space Cartesian pair
(kx,Ky) via Eqn. 63.

This relationship shows that at each spatial spectrum angular location,φ, the locus covered in
the object’s spatial spectrum is a radial line,k0(ω), that extends over the temporal spectral band-
width of the pulse. When all angular locations are combined,the area is a torus whose inner and
outer radii are proportional to the lower and upper pulse spectrum cutoff frequencies, respectively.
If, for example, the pulse spectrum has a lower cutoff ofωL and an upper cutoff ofωU , the inner
and outer radii of the torus are given by2k0(ωL) and2k0(ωU), respectively. This shown in Fig-
ure 3. The implication of this relationship is that radial resolution (alternatively, range resolution)
is related to the spectral bandwidth of the incident field: the wider the bandwidth, the greater the
resolution.
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4 Analytic Multimonostatic Inverse

We use the orthogonality of Bessel functions to invert Eqn. 24 to obtain the transform of the object
function:

om(r) = −
1

π

∫ ∞

0
k0(ω)dk0(ω)

[

φm(2ω) + (−1)mφ∗
−m(2ω)

Jm(2k0(ω)R0)

]

Jm(2k0(ω)r). (29)

Combining Eqns. 19 and 13 with Eqn. 29 yields the reconstruction:

ô(r, θ) = −8v0

∞
∑

m=−∞

eimθ
∫ ∞

0
ωdω

d

dω

[

1

ω2

(

ψm(ω)

P (ω)
+
ψ∗
−m(ω)

P ∗(ω)

)]

Jm(2k0(ω)r)

Jm(2k0(ω)R0)
. (30)

This analytic inversion has proved impractical to implement numerically. The reciprocal of
the Bessel function results in poles along the real frequency axis obliging a contour integral. We
were unsuccessful, however at identifying a contour in which every function within the integrand
remained finite. This compelled us to seek a purely numericalsolution to the inversion problem.
We used the Hilbert space wave inversion algorithm developed by Devaney [5], and summarize it
in the following section.

5 Hilbert Space Wave Inversion

The Hilbert space inverse wave (HSIW) algorithm permits us to develop an inverse for any geom-
etry with any combination of sources, receivers, and frequencies. Because we have this flexibility,
we develop the HSIW theory for the most general multistatic,wide band case where we have
spatial diversity in both the sources and receivers, as wellas frequency diversity. In an actual ra-
dial reflection device such as an intravascular ultrasound probe, the data are collected at discrete
angular locations. We denote by

R
t
n ≡ R0 (cos θn, sin θn) (31)

the transmitter locations whereθn = n∆θsrc for n = 0, 1, · · · ,Nsrc− 1 whereNsrc = 2π/∆θ.
Similarly, the receiver locations are given by

R
r
m ≡ R0 (cos θm, sin θm) (32)

whereθm = m∆θrcv for m = 0, 1, · · · ,Nrcv − 1 whereNrcv = 2π/∆θrcv.
For each source, the receiver(s) record the backscattered field as a time series that is digitized

for processing. Fourier transforming the time series data results in the spectrum of the measured
wave form at discrete frequencies. The forward scattering equation under the Born approximation
with both spatial and frequency diversity is

ψscat
B (Rr

m,R
t
n, ωl) = P (ωl) k

2
0(ωl)

∫

dr′ G(Rr
m, r

′, ωl) o(r
′) G(r′,Rt

n, ωl), (33)
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whereωl, l = 0, 1, · · · ,Nf − 1 are the discrete frequencies andNf is the number of frequencies in
the pulse band width. For the multimonostatic case of Eqn. 9,this reduces to

ψscat
B (Rt

n, ωl) = P (ωl) k
2
0(ωl)

∫

dr′ G2(Rt
n, r

′, ωl) o(r
′).

The HSIW interprets Eqn. 33 as a mapping from acontinuous object spaceto adiscrete mea-
surement space. The object space is the physical(x, y) space of the object function. The measure-
ment space consists of the discrete angles and temporal frequencies at which the scattered data are
collected. The scattering operator projects the object onto the measurement space. We define the
forward propagation or projection kernel as

Π∗(r) ≡ P (ωl) k
2
0(ωl) G(Rr

m, r, ωl) G(r,Rt
n, ωl), (34)

whereΠ(r) is aJ ≡ (Nsrc×Nrcv ×Nf ) element column vector. Mathematically, the projection
is represented as an inner product between the object function and the kernel via,

D =
∫

dr Π∗(r) o(r) ≡ 〈Π, o〉 , (35)

whereD is aJ element column vector where each element represents a particular source, receiver,
and frequency combination. Symbolically, we define the forward scattering operator,K, as

K[·] ≡
∫

dr Π∗(r) [·]. (36)

The HSIW is a method used to derive an inverse of this operator. Consider the singular value
decomposition (SVD) ofK:

K = USV †, (37)

where the columns ofU form an orthonormal set of column vectors,uj, which span the measured
data space, and the components ofV form an orthonormal set of vectors,vj(r), which span the
object space.S is a diagonal matrix of singular values,σj. We wish to emphasize that theuj are
column vectorswhere as thevj(r) arecomplex functions ofr. The set of normal equations for this
singular system are

Kvj(r) = σjuj, (38)

K†uj = σjvj(r), (39)

KK†uj = σjKvj(r) = σ2
i uj, (40)

K†Kvj(r) = σjK
†uj = σ2

i vj(r). (41)

The inversion goal is to estimate the object function of Eqn.35 given the measured data inD.
We do so by expanding the object function in terms of thevj(r),

ô(r) =
J−1
∑

j=0

αj vj(r), (42)
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where theαj are constant coefficients to be determined. Substituting the object expansion into
Eqn. 35, we obtain,

D =
∫

dr Π∗(r)
J−1
∑

j=0

αj vj(r) =
J−1
∑

j=0

αj

∫

dr Π∗(r) vj(r). (43)

Applying the definition of theK operator in Eqn. 36 to Eqn. 38, yields an expression for the
integral of Eqn. 43,

Kvj =
∫

dr Π∗(r) vj(r) = σjuj, (44)

which reduces Eqn. 43 to

D =
J−1
∑

j=0

αj σj uj. (45)

Using the orthogonality of theuj vectors, we may solve for the unknownαj as follows:

u†iD =
J−1
∑

j=0

αj σj u
†
iuj =

J−1
∑

j=0

αj σj δij = αi σi, (46)

resulting in

αi =
u†iD

σi
. (47)

We now require expressions for the adjoint of the forward scattering operator,K†, and the sin-
gular values and singular vectors,σj, uj, andvj(r). Consider the following inner product equation
which defines the adjoint,

〈

u,Kv
〉

=
〈

K†u, v
〉

. (48)

Using the definition of the forward scattering operator fromEqn. 36, we have

u†
∫

dr Π∗(r) v(r) =
∫

dr
(

u†Π∗(r)
)

v(r) (49)

Comparing the right hand sides of Eqns. 48 and 49, we obtain the following definition of the adjoint
of the forward scattering operator:

K†[·] ≡ [·] · ΠT (r). (50)

Theσj anduj are determined by solving the eigenvalue equation of Eqn. 40formed by the outer
product of the forward scattering operator with its adjoint. Explicitly, the outer product is repre-
sented by

(
∫

dr Π∗(r)ΠT (r)
)

uj = σ2
juj, (51)
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which is aJ × J eigenvalue equation of the formAx = λx. The Π(r) vectors are known
analytically and can be evaluated numerically. It follows that the elements of the outer product
matrix can be computed numerically and the resulting systemsolved numerically for theσ2

j and
uj. Given these, we solve forvj(r) using Eqn. 39,

vj(r) =
1

σj
ΠT (r)uj (52)

Substituting Eqns. 47 and 52 into Eqn. 42, yields the final expression for the reconstruction,

ô(r) =
J−1
∑

j=0

1

σ2
j

ΠT (r) uju
†
jD. (53)

As described above, theΠ(r) vectors of Eqn. 34, and outer products and eigenvalues of Eqn. 51
are computed numerically. The system is inherently ill-conditioned due to the limited aperture of
the measurement system which only measures part of the scattered field, and due to the loss of
the evanescent field information. Thus, some of the eigenvalues,σ2

j , are close to zero. Those
eigenvalues and their corresponding eigenvectors determine the rank of the outer product matrix,
and they must not be used in the reconstruction of Eqn. 53. A decision must be made on the
number of singular values/vectors to use. We have chosen to use thebest rank Napproximation.
We compute the ratio

R(N) =

N−1
∑

j=0

σ2
j

J−1
∑

j=0

σ2
j

, (54)

where we assume the singular values are arranged from smallest to largest:σ2
0 ≤ σ2

1 ≤ · · · ≤ σ2
J−1.

PlottingR(N), we graphically identify the point at which the function starts to rise rapidly. The
index of the singular value at which this occurs, we label asJ0. With this value determined, our
final reconstruction is

ô(r) =
J−1
∑

j=J0

1

σ2
j

ΠT (r) uju
†
jD. (55)

Our experience reconstructing both simulated and experimentally collected scattered field data
have shown that this criterion works consistently well.

The HSIW is extremely flexible in that it allows any transducer configuration and any number
of frequencies to be used in forming the reconstruction. Thedisadvantage is the potentially large
amount of computer resources required for processing. Computing the outer product of Eqn. 51
and its eigenvalues is time consuming for high resolution reconstructions. Short term disk storage
space for theΠ(r) vectors of Eqn. 34 was approximately 2Gb for the reconstructions of Section 7.

In the next section, we present the results of a proof-of-principle example based upon the exact
Born approximation scattering model of Eqn. 8.
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6 Proof-of-Principle

Our proof-of-principle consists of two radial reflection simulations run under the Born approxi-
mation of Eqn. 8. The geometry, shown in Figure 4, consists offive point scatterers at a fixed
radius but with increasing angular separation so as to achieve an angular resolution test. The first
simulation was performed using a multimonostatic operating mode with 84 transducers and 100 re-
construction frequencies, the second used a multistatic operating mode with 20 sources co-located
with 20 receivers and 21 frequencies. These numbers were selected so that in both cases the num-
ber of elements,J, in the projection kernel of Eqn. 34, is 8400. This was done inorder to equalize
the comparison of the reconstruction results and minimize algorithmic differences. We did not
model any shadowing due to the probe. That is, fields launchedand/or received by transducers 180
degrees away from a scatterer were able to propagated to/from the scatterer. The forward scattered
field is computed via

ψscat
B (Rr

m,R
t
n, ωl) = P (ωl) k

2
0(ωl)

S−1
∑

s=0

G(Rr
m,Xs, ωl) G(Xs,R

t
n, ωl), (56)

whereS is the number of point scatterers,Xs is the location of thes-th scatterer, andG(r, r′, ω) ≡

(i/4) H
(1)
0 (k0(ω)|r − r

′|) is the two-dimensional Green function.
The incident pulse used in the simulation is described by thefirst derivative of a Gaussian, or

“DOG” pulse, given by

p(t) = −e1/2 ω0 (t− t0) e
−(ω0(t−t0))2/2, (57)

whereω0 ≡ 2πf0 andf0 is the peak frequency of the pulse in Hertz. The pulse is presented
in Figure 5(a). Figure 5(b) and (c) show the pulse spectrum with the frequencies used in the
multimonostatic and multistatic reconstructions, respectively. Figure 6 shows the singular value
ratio,R(N), of Eqn. 54. The selection of the number of singular values touse was performed
manually and the threshold is shown in the figure. The multimonostatic reconstruction used 5880
of the 8400 eigenvalues (70%), and the multistatic required2100 (25%).

The reconstructions are shown in Figure 7. The multimonostatic reconstruction reveals better
resolution and somewhat better contrast over the multistatic reconstruction. This reflects the greater
number of frequencies used in the reconstruction. As shown in Figure 3, the more frequencies used
results in a larger area in the object’s spatial spectrum being reconstructed. For point scatterers, the
multimonostatic operating mode is sufficient. The results of the next section demonstrate that this
mode is insufficient for imaging extended scatterers under realistic wave propagation conditions.

7 Full Wave Simulation

We performed a two-dimensional finite-difference time-domain (FDTD) simulation of wave prop-
agation in a domain similar to that of the proof-of-principle example. We used E3D, an ex-
plicit 2D/3D elastic/acoustic propagation code designed for modeling seismic waves, developed
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at Lawrence Livermore National Laboratory [6, 7, 8, 9, 10, 11]. The code simulates full wave
scattering and requires as inputs a longitudinal velocity distribution, a shear velocity distribution,
and a density distribution. In this case, unlike the proof-of-principle, the probe was included in the
simulation, shadowing fields from transducers and scatterers with large angular separation.

The FDTD simulation domains are shown in Figure 8. The domains consist of a homogeneous
background with two elliptical inclusions. One inclusion’s longitudinal velocity and density are
15% above the background; the other’s are 5% below. There is no variation in shear velocity. The
dashed line indicates the transducer outline.

As in the proof-of-principle example, we performed both a multimonostatic and multistatic
simulation. The former used 50 transducer locations with 120 reconstruction frequencies resulting
in J = 50 × 120 = 6000 elements in the forward propagation kernel. The latter used50 source
locations and a receiving aperture of 15 transducers centered about the active source. As the
transmitting element rotated, so did the receiving aperture, as indicated in Figure 1(c). The exact
multistatic configuration for this simulation is shown in Figure 9. The multistatic reconstruction
used 8 frequencies to achieve aJ = 50 × 15 × 8 = 6000 element kernel. As in the proof-
of-principle example, we used kernels with identical number of elements to minimize variability
when comparing the quality of the reconstructions. The simulation configurations and parameters
are listed in the first two lines of Table 1.

The full wave simulations used the same “DOG” pulse as the proof-of-principle example. The
frequencies used in the reconstruction for each of the two cases are presented in Figure 10. Again,
we used the best rankN approximation to determine the number of singular values and vectors
to use in the reconstructions. The singular value ratio,R(N), and the singular value distribution
are plotted in Figure 11. The multimonostatic case required4260 (71%) of the singular values,
and the multistatic required 1020 (17%). The magnitude of the reconstructions are shown in Fig-
ure 12. The high-pass nature of reflection mode diffraction tomography as represented in Figure 3
is demonstrated in the multimonostatic reconstruction of Figure 12 (a) where the edges of the scat-
tering objects are clearly highlighted. There is, however,an azimuthal ambiguity resulting from
the use of only one transducer: off radial axis scattering can only be resolved to within a fixed
range from the transducer. Thus, off radial axis scatteringlimits the usefulness of multimonostatic
operation. Better azimuthal localization is achieved whenmore receiving transducers are included,
widening the agular receiving aperture, permitting the resolution of the azimuthal ambiguity. This
is demonstrated in the multistatic reconstruction of Figure 12(b). Observe however, when fewer
frequencies are uses, range resolution is lost.

We studied the receiver number/reconstruction frequency trade-off further in the three other
multistatic simulations listed in Table 1. We decreased thenumber of receivers and increased the
number of reconstruction frequencies while keeping the size of the problem within our computer
resources. The reconstructions are shown in Figure 13. We confirm that scatterer azimuthal local-
ization improves with the number of receivers but there is a loss of radial resolution when fewer
frequencies are used. We conclude that azimuthal resolution is achieved by increasing the number
of receivers, where as range resolution increases with the number of frequencies.
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8 Conclusions

We set out to develop a wave-based tomographic imaging tool based upon an intravascular ultra-
sound probe model in which a single rotating transducer bothinsonofies the surrounding medium
and measured the backscattered field. Our goal was to developa wave-based inversion algorithm
to image the surrounding medium rather than using the standard B-scan currently used that are
based upon straight ray sound propagation.

We developed an analytic inverse for the multimonostatic configuration but were unable to
implement it numerically. We then implemented a purely numerical inverse based upon the new
Hilbert space inverse wave (HSIW) algorithm. The flexibility of the HSIW is such that it allows
any configuration of transducers and frequencies to be used in the reconstruction. This permitted
us to test not only a multimonostatic operating mode but alsovarious multistatic modes.

We concluded that the multimonostatic mode lacks sufficientspatial diversity to image cor-
rectly scattering targets, and that scatterer azimuthal localization improves as more receivers are
used and that range resolution improves as more frequenciesare used.

A Relationship Between the Fourier & Fourier-Bessel Trans-
form

We wish to relate the Fourier-Bessel Diffraction Theorem ofEqn. 27 to the Fourier Diffraction
Theorem so that we may understand how the object’s spatial spectrum is covered by the radial
reflection measurement system. In order to do so, we require arelation between the Fourier-
Bessel transform of the object to its Fourier transform. We consider a two dimensional function
represented in Cartesian coordinates asf(x, y) or in polar coordinates asf(r, θ) where we have
the following relationship between the coordinate pairs,

x = r cos θ,
y = r sin θ.

(58)

The Fourier-Bessel transform pair are

Fm(k) =
1

2π

∫ 2π

0
dθ
∫ ∞

0
rdr f(r, θ) e−imθ Jm(kr), (59)

f(r, θ) =
∞
∑

m=−∞

∫ ∞

0
kdk Fm(k) eimθ Jm(kr), (60)

and the Cartesian Fourier transform pair are,

F (kx, ky) =
∫ ∞

−∞
dx
∫ ∞

−∞
dy F (x, y) e−i(kxx+kyy), (61)

f(x, y) =
1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky F (kx, ky) e

i(kxx+kyy). (62)
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The Cartesian Fourier transform pair are cast into polar coordinates using the following change of
variables,

kx = k cosφ,
ky = k sinφ,

(63)

to yield,

F (k, φ) =
∫ 2π

0
dθ
∫ ∞

0
rdr f(r, θ) e−ikr cos(θ−φ), (64)

f(r, θ) =
1

(2π)2

∫ 2π

0
dφ
∫ ∞

0
kdk F (k, φ) eikr cos(θ−φ). (65)

To determine the relationship betweenF (k, φ) andFm(k), we substitute the expansion

e−ikr cos θ =
∞
∑

m=−∞

(−i)m Jm(kr) eimθ

into Eqn. 64 to find

F (k, φ) =
∞
∑

m=−∞

(−i)m eimφ Fm(k). (66)

Using
1

2π

∫ 2π

0
dθ ei(m−n)θ = δmn, we may invert Eqn. 66 to find

Fm(k) =
(−i)−m

2π

∫ 2π

0
dφ F (k, φ) e−imφ. (67)
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Simulation Number of Number of Aperture Number of Number of
Configuration Source Receivers Angle Reconstruction HSIW Kernel

Locations Frequencies Elements,J
Multimonostatic 50 1 n/a 120 6000

Multistatic 50 15 100.8◦ 8 6000
Multistatic 50 15 100.8◦ 12 9000
Multistatic 50 9 57.6◦ 21 9450
Multistatic 50 5 28.8◦ 37 9520

Table 1:FDTD simulation configuration and reconstruction parameters.
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Figure 1: Three radial reflection transducer configurations. (a) The multimonostatic mode: a
single transducer rotates about a fixed center. At each angular location it launches the primary
field and collects the reflected scattered field. (b) A multistatic case consisting of a fixed annular
array of outward looking transducers. In succession, each transducer launches the primary field
and the reflected scattered field is measured at all the transducers. (c) A multistatic configuration
consisting of a rotating aperture.
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Figure 2: Radial reflection geometry.R0 is the probe diameter,r0 ≡ R0 (cos θ0, sin θ0) is the
planar location of the transducer,r ≡ r (cos θ, sin θ) is a point within the surrounding medium.
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Figure 3:Radial reflection Fourier diffraction theorem.
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Figure 4: Proof-of-principle geometry. Two simulations were performed: a multimonostatic run
with 84 transducers which used 100 frequencies for the reconstruction, and a multistatic run with
20 transducers which used 21 frequencies.
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Figure 5: Proof-of-principle pulse. (a) Time domain derivative of a Gaussian (DOG) pulse. (b)
DOG pulse spectrum with the 100 frequencies used in the multimonostatic reconstruction high-
lighted. (c) DOG pulse spectrum with the 21 frequencies usedin the multistatic reconstruction.
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Figure 6: Proof-of-principle singular values. The top plots show theeigenvalue ratios,R(N),
of Eqn. 54. The vertical line shows where the selection was made “zero” and non-zero singular
values. The bottom plots show the actual singular values. The highlighted shows those singular
values used in the reconstructions. The (a) column is the multimonostatic case where 70% or 5880
out of 8400 singular values/vectors were used; the (b) column is the multistatic case where 25%
or 2100 singular values/vectors were used.
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Figure 7: Proof-of-principle reconstructions. (a) Multimonostatic. (b) Multistatic. (c) Angular
slices through the reconstructions at the radius of the scatterers. The× indicate the actual location
of the scatterers. The multimonostatic case shows better resolution and somewhat higher contrast
than the multistatic case. This is a consequence of the greater number of frequencies used in the
reconstruction which increased the coverage in the object’s spatial spectrum.
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Figure 8: Finite-difference time-domain simulation domains. The domains consist of a homoge-
neous background with two elliptical inclusions. One inclusion’s longitudinal velocity and density
are 15% above the background; the other’s are 5% below. Thereis no variation in shear velocity.
The dashed line indicates the transducer outline.
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Figure 9: The transducer geometry for the FDTD simulations. The× mark the 50 sourc posi-
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aperture, the aperture angle is100.8◦.
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Figure 10:FDTD pulse spectrum. (a) DOG pulse spectrum with the 120 frequencies used in the
multimonostatic reconstruction highlighted. (b) DOG pulse spectrum with the 8 frequencies used
in the multistatic reconstruction.
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Figure 11:FDTD simulation singular values. The top plots show the singular values ratios,R(N),
of Eqn. 54. The vertical line shows where the selection was made distinguishing between the
“zero” and non-zero singular values, thus determining the rank of the system. The bottom plots
show the actual singular values. The highlighted trace shows those singular values used in the
reconstructions. The (a) column is the multimonostatic case, the (b) column is the multistatic case.
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Figure 12:Reconstructions of the FDTD simulations. (a) Multimonostatic using 71% of the sin-
gular values. (b) Multistatic using 17% of the singular values.
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Figure 13:Additional multistatic reconstructions to evaluate the trade-off between receiving aper-
ture size and the number of frequencies used in the reconstruction. Radial resolution increases
with the number of frequencies used, and azimuthal resolution increases aperture size.
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