Detailed Study of Defects in Silicon Solar Cells by Cathodoluminescence Spectrum Imaging

Preprint

M.J. Romero, M.M. Al-Jassim, and P. Sheldon
National Renewable Energy Laboratory

S. Ostapenko and I. Tarasov
University of South Florida

To be presented at the 13th Workshop on Crystalline Silicon Solar Cell Materials and Processes
Vail, Colorado
August 10-13, 2003
NOTICE

The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: reports@adonis.osti.gov

Available for sale to the public, in paper, from:
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste
We have recently developed a spectrum imaging system for cathodoluminescence (CLsi) at NREL, which has been successfully applied to different semiconductors. The advanced multi-channel detection required for CLsi consists of an ultrafast spectrum acquisition triggered by the electron beam during scanning. Spectra are acquired either with a Roper Scientific silicon EEV-1340×400 cryogenic CCD or an InGaAs 512×1 cryogenic PDA, depending on the range of spectral emission. Acquisition times by pixel are typically of 10 to 20 ms (180 seconds for a 100×100 pixel image). The output of spectrum imaging measurements is thus represented by a series of emission spectra. CCDIMAG, the software developed for CLsi, processes this spectrum series to reconstruct monochromatic images or extract the spectrum from any area on the image. This system is operated on the JEOL-5800 scanning electron microscope (SEM). CLsi measurements can be performed at temperatures between 15 K and 300 K. A low-vibration ARS Displex DE-202 closed-circuit cryostat provides cryogenic operation. The interface for vibration isolation has been developed to be compatible with SEM observation.

Because of the technological importance of silicon for photovoltaics, a collaboration between NREL and USF has been established to study defects in multi-crystalline silicon solar cells (mc-Si) combining scanning photoluminescence and CLsi. From photoluminescence mappings, defective areas of the solar cells are selected to perform cathodoluminescence measurements with higher resolution.

The figure shows images of a selected area with a strong defect-band emission near 0.8 eV, as confirmed previously by scanning photoluminescence. At low temperatures, band-to-band emission is substituted with the TO phonon replica of the boron-bound exciton at 1.093 eV (B+TO). Defect-band recombination is associated with linear defects highly effective as non-radiative recombination centers: DB recombination is observed for a linear defect with a contrast of 60%, but not for linear defects with contrast below 40%.

Based on a detailed analysis of the cathodoluminescence results, a model for these defects will be further discussed.
Detailed Study of Defects in Silicon Solar Cells by Cathodoluminescence Spectrum Imaging: Preprint

M.J. Romero, S. Ostapenko,* M.M. Al-Jassim, I. Tarasov,* and P. Sheldon

National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3393
*University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620

We have recently developed a spectrum imaging system for cathodoluminescence (CLsi) at NREL, which has been successfully applied to different semiconductors. The advanced multi-channel detection required for CLsi consists of an ultrafast spectrum acquisition triggered by the electron beam during scanning. Spectra are acquired either with a Roper Scientific silicon EEV-1340×400 cryogenic CCD or an InGaAs 512×1 cryogenic PDA, depending on the range of spectral emission. Acquisition times by pixel are typically of 10 to 20 ms (180 seconds for a 100×100 pixel image). The output of spectrum imaging measurements is thus represented by a series of emission spectra. CCDIMAG, the software developed for CLsi, processes this spectrum series to reconstruct monochromatic images or extract the spectrum from any area on the image. This system is operated on the JEOL-5800 scanning electron microscope (SEM). CLsi measurements can be performed at temperatures between 15 K and 300 K. A low-vibration ARS Displex DE-202 closed-circuit cryostat provides cryogenic operation. The interface for vibration isolation has been developed to be compatible with SEM observation.