The Potential Application of Gas Chromatography to the Analysis of Hydrogen Isotopes

David K. Warner, Ronald E. Sprague and Donald R. Bohl

September 20, 1976
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
The Potential Application of Gas Chromatography to the Analysis of Hydrogen Isotopes

David K. Warner, Ronald E. Sprague and Donald R. Bohl

Issued: September 20, 1976

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

PRINTED IN THE UNITED STATES OF AMERICA

Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
Price: Printed Copy $3.50; Microfiche $2.25

MONSANTO RESEARCH CORPORATION
A Subsidiary of Monsanto Company

MOUND LABORATORY
Miamisburg, Ohio 45342
operated for

UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
Abstract

Gas chromatography (GC) is used at Mound Laboratory for the analysis of hydrogen isotopic impurities in gas mixtures. This instrumentation was used to study the applicability of the GC technique to the determination of the major components of hydrogen isotopic gas mixtures. The results of this study, including chromatograms and precision data, are presented in this paper.
Introduction

Gas chromatography (GC) has been used at Mound Laboratory since 1973 for the analysis of isotopic impurities in hydrogen isotopic gas mixtures. Examples of the impurity determinations are listed in Table 1, and a chromatogram of a highly impure T$_2$ sample is shown in Figure 1. Although the present use of GC at Mound is exclusively in the analytical range of 40 ppm to 0.5%, there are strong indications that GC techniques could be extended to the analysis of the major isotopic components in such mixtures. This report is a feasibility study that examines the potential of GC for the analysis of major components of H-D-T mixtures, a major component being defined as greater than 0.2%. Chromatograms are presented to illustrate the current status of GC isotopic separation technology, and the conclusions are based on experiments performed on instrumentation designed for impurities analyses.

Table 1
EXAMPLES OF ANALYSES PERFORMED BY GAS CHROMATOGRAPHY

<table>
<thead>
<tr>
<th>Components Determined</th>
<th>Sample Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Ar, N$_2$</td>
<td>Purified T$_2$</td>
</tr>
<tr>
<td></td>
<td>H$_2$, D$_2$, T$_2$, 3He Mixtures</td>
</tr>
<tr>
<td>b) 3He, HT, DT</td>
<td>Purified T$_2$</td>
</tr>
<tr>
<td>c) HD</td>
<td>D$_2$</td>
</tr>
<tr>
<td>d) HD, HT</td>
<td>Isotopic Mixtures of 3He, D$_2$, T$_2$</td>
</tr>
</tbody>
</table>

FIGURE 1 - Chromatogram of high level impurities in T$_2$.
The chromatograms shown in this report were obtained from three D-T mixtures whose approximate concentrations are shown in Table 2. The absolute accuracy of the compositions in Table 2 is not critical since the purpose of these experiments was to observe the effective separation of the D₂-DT-T₂ isotopes with various isotopic ratios. Thus the sampled mixtures contain (1) a high T₂ mix, (2) a high D₂ mix, and (3) a 50-50 D₂-T₂ mix. Helium-3 decomposition gas present in the mixtures was factored out to give the net isotopic compositions shown. The mixtures were sampled using standard GC operation procedures, but the sample pressures were varied to avoid overloading the column with the D-T isotopes. Large recorder attenuations (up to 50X) were also required to maintain the larger peaks on the recorder scale. A chromatogram for each mixture sampled is shown in Figures 2, 3, and 5, and one "combination" analysis of major and minor isotopes is shown in Figure 6.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>D₂</th>
<th>DT</th>
<th>T₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix A</td>
<td>0.2</td>
<td>9.2</td>
<td>90.6</td>
</tr>
<tr>
<td>Mix B</td>
<td>25.3</td>
<td>49.5</td>
<td>25.2</td>
</tr>
<tr>
<td>Mix C</td>
<td>74.1</td>
<td>21.5</td>
<td>4.4</td>
</tr>
</tbody>
</table>

FIGURE 2 - Chromatogram of Mixture A. (HT and HD are present due to wall exchange phenomena.)
Discussion

Mixture A, the high T₂-low D₂ composition, is shown in Figure 2, and is seen to have an HT impurity of roughly the same magnitude as the combined ortho-para D₂ components (∼0.2%). The HD and HT are well separated from the initial D₂-DT-T₂ mixture, and from the standpoint of assessing the general quality of the separation for GC analysis, the individual isotopes are considered to be completely separated. Note that for recorder presentation the DT and T₂ are attenuated by 50X, and also that the nuclear spin isomers of D₂ are separated. This spin isomer separation can be eliminated by coating the column alumina with Fe₂O₃, which causes a rapid interconversion of the nuclear spins among D₂ molecules; thus a single mean-value D₂ peak would appear where the two (ortho and para) forms are located in the chromatogram.

The process is illustrated for the 50-50 D₂-T₂ mix, whose chromatogram is shown in Figure 3. The ortho and para forms of D₂ are seen to be incompletely separated from each other and from the DT for this mixture, as evidenced by the failure of the peak "valleys" (the arrows in Figure 3) to return to the normal baseline. The trace of a single D₂ peak caused by spin interconversion is shown in Figure 4 for the same 50-50 D-T mixture. The mean value of the single peak's retention time has been demonstrated for H spin isomers. The actual D₂ spin isomers are the broken lines in Figure 4.

A similar D₂-DT separation problem is present in the high D₂-low T₂ mix of Figure 5. The o-D₂ and p-D₂ trailing edges do not return to the baseline, and errors would be introduced into a calibration of these incompletely separated species. Although integration techniques such as dropping vertical lines to the baseline can partially compensate for the peak overlap, it would be preferable to try to achieve a full separation by the merging of the two D₂ spin isomers as discussed previously.

The last chromatogram (Figure 6) is an attempt to demonstrate a combination of major component and impurity analysis for mixture C that also contains He as a major species. The attenuation is

FIGURE 3 - Chromatogram of Mixture B.

FIGURE 4 - Representation of a single D₂ peak for Mixture B.
required only for a recorder presentation since any modern electronic integrator will accommodate the disparate peak sizes. The limiting factor in attaining a complete analysis would clearly be the D2-DT separation problem that has previously been discussed.

The discussion so far has included only a consideration of D2-DT-T2 and 3He as major components. The inclusion of H2 as a major species adds a totally new dimension to the problem, and experiments have not been performed that realistically show its influence upon the separations. One can conjecture, however, about the effects of adding H2 to these mixtures:

An H2-HT-T2 mixture would not pose an analytical problem since the three are well separated, and H2 elutes before HD (to the right of HD in Figure 2). If, however, all isotopic species are present as major components (H2, HD, HT, D2, DT, T2), and using the premise that an Fe3O3 column coating prevents ortho-para separation of the D2 or H2, then the most likely pair to cause problems would be HD-HT because their separation factor is smaller than for other adjacent pairs. The problem does not occur with HD and HT as impurities, but with the wider of larger peaks, an incomplete separation could cause analytical problems. The HT-D2 and H2-HD peaks would probably be adequately separated, and would cause no problems.

Sample size has an extraordinary influence upon GC isotopic separations, and an increase in sample volume can cause a deterioration in separation by both (1) changing the retention times of species and (2) by simple diffusion spreading. Since this separation parameter was not investigated, one can speculate that a slight improvement in the general separation could be effected by reducing the sample size. This reduction, however, would be limited by the necessity of providing a measurable peak size of the component with the smallest concentration.

An important aspect of this evaluation is how well the GC method would compare with the conventionally used method for major component analysis, i.e., mass spectrometry. Some data are shown in Table 3 that compare GC and MS results at a few selected low concentrations, but these error estimates should be examined with the knowledge that the table does not represent a complete statistical data base. The most revealing comparison of Table 3 is for T2 where the precision estimates suggest that the GC precision is superior in the 0.5-1.5% concentration range. The

FIGURE 5 - Chromatogram of Mixture C.

FIGURE 6 - Chromatogram of Mixture C: major and minor components.
MS precision (0.9%) for the analysis of 0.2% D₂ is unusually low for this concentration and is not considered to be too representative of the MS method for the purpose of this comparison. A better assessment of major component precision for the GC method is shown in Table 4. An isotopic mixture containing about 40% D₂, 41% DT, 11% T₂, and 8% ³He was sampled five times in one day in order to establish reasonable values for GC within-day variations for major components determinations. The conclusions of this experiment are that the within-day variations are primarily a function of the peak area integration process, and that the error for major components of 2% concentration or greater is of the order of 0.2% to 0.5% (2 x relative standard deviation). The D₂-DT peaks are not entirely separated due to the nuclear spin isomer separation problem, but the reproducibility of all the isotopes is good. The ³He and T₂ peaks are completely separated, and their errors may be used with confidence as being representative of the within-day variation expected with the GC method.

Table 3

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>GC Precision Error Estimates (2σ)³</th>
<th>MS² Precision Error Estimates (2σ)³</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>1.0%</td>
<td>1.0%</td>
<td>-</td>
</tr>
<tr>
<td>D₂</td>
<td>0.2%</td>
<td>-</td>
<td>0.9%</td>
</tr>
<tr>
<td>DT</td>
<td>1.0%</td>
<td>1.4%</td>
<td>-</td>
</tr>
<tr>
<td>T₂</td>
<td>0.5%</td>
<td>-</td>
<td>6.9%</td>
</tr>
<tr>
<td></td>
<td>1.0%</td>
<td>1.6%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.6%</td>
<td>-</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

³2σ = Two times estimated relative standard deviation.

²Variability of triplicate samples of three days (9 samples).

³Analysis of variance results for within-day variability.

Table 4

MAJOR ISOTOPIC COMPONENT ANALYSIS BY GAS CHROMATOGRAPHY

<table>
<thead>
<tr>
<th>Component</th>
<th>³He</th>
<th>HD</th>
<th>HT</th>
<th>o-D₂</th>
<th>o-D₂</th>
<th>DT</th>
<th>T₂</th>
<th>Total Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate Concentration (%)</td>
<td>7.8</td>
<td>0.7</td>
<td>0.2</td>
<td>39.6</td>
<td>39.6</td>
<td>40.7</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>Run #1 Counts</td>
<td>48270</td>
<td>3282</td>
<td>1125</td>
<td>122500</td>
<td>43170</td>
<td>142400</td>
<td>36570</td>
<td>397400</td>
</tr>
<tr>
<td>Run #2 Counts</td>
<td>48220</td>
<td>3258</td>
<td>1142</td>
<td>122300</td>
<td>42970</td>
<td>142100</td>
<td>36490</td>
<td>396600</td>
</tr>
<tr>
<td>Run #3 Counts</td>
<td>48130</td>
<td>3213</td>
<td>1120</td>
<td>122200</td>
<td>43030</td>
<td>142000</td>
<td>36520</td>
<td>396300</td>
</tr>
<tr>
<td>Run #4 Counts</td>
<td>48250</td>
<td>3224</td>
<td>1132</td>
<td>122500</td>
<td>42910</td>
<td>142300</td>
<td>36590</td>
<td>396900</td>
</tr>
<tr>
<td>Run #5 Counts</td>
<td>48226</td>
<td>3242</td>
<td>1129</td>
<td>122420</td>
<td>43006</td>
<td>142260</td>
<td>36558</td>
<td>396900</td>
</tr>
<tr>
<td>σ</td>
<td>56.8</td>
<td>18.0</td>
<td>8.3</td>
<td>163.2</td>
<td>101.3</td>
<td>207.4</td>
<td>52.6</td>
<td>463.7</td>
</tr>
<tr>
<td>Relative Standard Deviation (%)</td>
<td>0.12</td>
<td>0.86</td>
<td>0.75</td>
<td>0.13</td>
<td>0.24</td>
<td>0.15</td>
<td>0.14</td>
<td>0.12</td>
</tr>
<tr>
<td>2σ (%)</td>
<td>0.24</td>
<td>1.72</td>
<td>1.50</td>
<td>0.26</td>
<td>0.48</td>
<td>0.30</td>
<td>0.28</td>
<td>0.24</td>
</tr>
</tbody>
</table>

*Counts = Mv-sec.
Conclusions

From the chromatograms and discussion, the analysis of major components in hydrogen isotopic mixtures is judged to be feasible with the qualification that the ortho-para spin forms of D₂ and H₂ should be eliminated via the use of Fe₂O₃ coated column packings. Also it is concluded that it is possible to determine both major components and impurities in a single sample, but the advantage of using one sample might be offset by the necessity of reducing the pressure to improve overall separation, and thus raising the detection limits of the impurities. More experimentation will be required to fully assess the impact of H₂ presence in mixtures, and sample size effects, but overall, gas chromatography appears to be a viable analytical method for major isotopes determination.

Based on the variation of data demonstrated in this study (Table 4), the overall error of the method should be comparable to other techniques for hydrogen isotopes analysis.

References

Distribution

EXTERNAL

TID-4500, UC-4 (159)

W. E. Moddeman
University of Dayton Research Institute

R. K. Flitcraft, MRC
Library, St. Louis
J. A. Chacon, DAO

INTERNAL

D. P. Bohl
W. T. Cave
C. W. Huntington
L. V. Jones
J. R. McClain
T. B. Rhinehammer

D. E. Sellers
R. E. Sprague
R. E. Vallée
D. K. Warner
Publications
Library (15)