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8: 1 Thermal  Cavity Problem 

P. M. Gresho and S. Sutton 

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 

Abstract 

We present results for the 8: 1 thermal  cavity  problem(’) using FIDAP on 3 meshes-each 

using 3 elements. A brief summary of related results is also included. 

Keywords: Finite elements, FIDAP,  thermal convection, CFD 

1. Introduction 

This contribution comes via the rather versatile and general commercial finite element 

code, FIDAP(*). This code still offers the user a wide selection with respect to element 

choices,  statement of governing  equations, (e.g., advective  form,  divergence  form) 

implicit time integrators (variable-step or fixed step, first-order or second-order), and 

solution techniques for both the nonlinear and linear sets of equations. We have tested 

quite a number of these variations on  this problem; here we report on an interesting 

subset and will present the remainder at the conference. 

2. Methodology 

Most of  the results were obtained using the classical “plane vanilla” (and less expensive) 

Galerkin finite element method-no tricks, such as stability-enhancing upwind-related 

modifications  to  the  advection terms-combined with  an  ‘honest’  non-dissipative 

second-order accurate time integrator: trapezoid (TR). However, to demonstrate 

the often-deleterious effects of “stabilizing” modifications, we shall present some SUPG 

(Streamline-Upwind Petrov-Galerkin) results as well one from a highly-dissipative time 

integrator: backward Euler (BE). 
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In  the results to be summarized herein, two types of solvers were employed on  the linear 

systems resulting after the successive substitution (Picard) method was applied to each 

nonlinear  algebraic  system: (1) After applying the penalty approximation method to 

eliminate the pressure (P= -?Xu,), thefully-coupled (u, 0) systems were solved using an 

efficient form of Gaussian elimination (skyline method (233) ). (2) The segregated solution 

method (2y3) was employed to generate an iterative sequence of smaller (uncoupled) linear 

systems (for u, v, 0 & P, as well as one for a Lagrange multiplier), each of which is 

solved by an iterative method. The symmetric systems (P and the Lagrange multiplier) 

were solved using the SSOR-preconditioned CR (conjugate residual) method and  the 

diagonal (Jacobi) scaling. Convergence criteria employed were as follows: EN = 1 0-7 for 

the outer (Picard) iterations and EL = lom4 for the linear subsystems. The outer iterations 

typically converged in 3 - 5 iterations and the linear subsystems required 2-6 via CGS & 

20-80 via CR. Sufficient testing assured us that our E’S were sufficiently small-via both 

relative error and relative residual (Euclidean) norms; i.e., ~ ~ A x ~ ~ / ~ ~ x ~ ~  < E and IIR(x) Il/ll 

R(xo)ll < E, where R (x) = Ax-b. 

3. Results 

In this ‘short’ presentation, we will show results from 3 elements on 3 grids-most via 

TR but with one using BE. The elements used were: ( I )  QlQo (bilinear velocity and 

temperature,  piecewise-constant pressure on  Quadrilaterals), (2) Q2P- 1 (biquadratic 

velocity and temperature, piecewise-linear pressure) and (3) 424-1, (same as QZP-1 except 

pressure is piecewise-bilinear). Even though the first and third have some (div-) stability 

problems (3), they produced excellent results and are still quite useful in general. The 

Q2P-1 (9/3) element, while possibly the most popular higher-order element extant (at least 

2 



when  using  quadrilaterals), was often less  accurate  than QzQ -1. This may be  more 

important in 3D simulations, where neither of these higher-order  elements has been 

adaquately testedevaluated. Some(3) suspect that 424-1, even though somewhat unstable, 

may  be the winner in  this race. 

The results presented in Tables 1-3 are self-explanatory, with the possible need to explain 

one ‘outlyer’: The Q2P-1 element performed poorly (low amplitudes) on Mesh 1 ,  but 

recovered strongly on Mesh 2. A final caveat: All results herein were at very slightly 

different parameter values; Ra - 3 . 4 1 ~  lo5 and Pr - 0.709. The correct values will be 

used prior to the conference, and  reported there. 

Figure 1 gives the time history of the temperature at Point 1 for 424-1 on  Mesh 2. Figure 

l a  focuses  on  the developing time regime, showing the frequency beating during the 

early stages that gives way to a single frequency. Figure lb  shows the single frequency 

behavior  at  later  times in the solution. Figure 2 shows  the  pattern of temperature 

variations with respect to the local time average. The dark regions have an instantaneous 

temperature less than the local mean while in the gray regions it is greater. The arrows 

track a single disturbance ‘bubble’ over one oscillation period as it propagates up  the hot 

wall. 

# 

In addition to those in the tables, we  report  briefly a few more results: 

(1) The following elements failed totally  (i.e.,  they went to a steady, non-oscillating flow 

state). 
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(i) QlQo on meshes 1 & 2 when streamline upwinding was employed. (Not a 

surprise, considering that the fluid dynamical instabizity is in the boundary 

layer in the flow direction.) 

(ii) QlQo on mesh 1 using mass  lumping,  caused by poor  phase  speed 

accuracy (and inaccurate group velocity). 

(iii) Q 2 Q 1  (pressure is bilinear continuous) on mesh 1 ; also not a surprise - see 

Ref. 3. 

(iv) Backward Euler for QlQo on Mesh 1 using the same At that succeeded for 

TR (-25 steps/period). 

3 .  The(1ess-expensive) advective form (e.g., u.V 0) was generally more accurate than 

either the conservation form [e.g.. V.(uO)] or a quadratically-conserving (skew- 

symmetic) fonn- an average of the first two. 

4. QlQo seems to converge %om above’;  e.g..,  the amplitudes of the oscillations are too 

large, whereas all three ‘Q2) elements seem to mostly converge from below-and, of 

course, faster. 
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Table 1; Point 1 Data 

Mesh 1 
Grid  resolution:  27x1  2  1 

Mesh 2 
Grid resolution:  53x241 

""""" """""- 

om 1 

riod: -25 I Stem / Deriod: -25 
Amp. I Period 1 Avg. I Amp. I Period 

.02926 1 3.4583 1 ,05861 I .02822 1 3.4341 ."_"""" """""* _l"""l__""""""- ,.""""" 

.~~02597~"3~4285-~"~0568s"~~~02782"~~3~426~" .00271  3.4245  .05703  -02765  3.4265 

.04123 3.4582 .4651 .03969 3.4342 

.00420 3.4428 .4631 .03877 3.4265 

.03658 3.4285 .4627 .03912 3.4261 
,02291 3.4582 .2664 ,02197 3.4341 
,00221 3.4429 .2658 .02144 3.4265 
.02025 3.4286 ,2651 ,02162 3.4261 

."""""."""""""""""""""""""""""" 

."""""."""""""""""""""""""""""" 

."""""."""""""""""""""""""""""" 

"""""_ """""""""""" """""_ : l : I i l : t :  """""_ """""" """""_ """""_ 

Mesh 3 
Grid resolution: 105x48 1 

Stem / Deriod: -25 
Avg. I Amp. I Period 

0 ."""""_ """""_ """""- o l : l :  """""_ """""_ 
0 

-.07293 -.07397 .00360 
-.07398 ,00353 
-.07409 .00355 

"""""""""""" 

"""""""""""" 

"07450 1 .00356 1 3.4276 """""_  """""_ """""" 

-.07444 ,00354 3.4259 
-.(I7439 .00355 3.4259 

"""""_ """""_ """""" 

-2.2379  .5764  3.4581  -2.3428 S399 3.4341  -2.4144 -5388 3.4279 o1 """"_ * *" """" """"" """""_ """""" """""_ """""_ """""_ ""_""" """""" 1 zi: -2.4106  .0536 1 3.4414 1 -2.4240 1 .5431 1 3.4266 1 -2.4498 1 ,5408  3.4259 I 
""""" """""- ""1""" 1""""" """""" """""_ """""_ """""_ """""_ """""" 
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Table 2; Nusselt Numbers 

Mesh 1 
Grid resolution:  27x1 21 

Ste s / eriod:  -25 

""~"""""""""""""-" QzPL1 4.63 18 4.39e-4 
Q2Q-1 4.6328 3.70e-3 

Period 

3.4582 
3.4410 
3.4286 
3.45 82 
3.442 1 
3.4286 

""""" 

""""" 

""""" 

.""""" 

Mesh 2 
Grid  resolution:  53x24 1 

Steps / period:  -25 
Avg. I Amp. I Period 

Mesh 2 
Grid resolution:  105x48 1 

Steps / period: -25 
Avg. I Amp. I Period I 
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Table 3; Mean Quantities 

Mesh 1 Mesh 2 Mesh 2 
Grid resolution:  27x1  2 1 Grid resolution:  105x48  1 Grid resolution: 53x24 1 

I I  Steps / period: -25 Steps / period: -25 Steps / period: -25 
Avg. Period Amp.  Avg. Period Amp.  Avg. Period Amp. 

QIQo 

3.4259  .00161 3.0179 3.4260 .00162  3.0180  3.4285 .00153 3.0171 Q2Q-I 
3.4258  .00161 3.0179  3.4275 .00161 3.0180 3.4419  ,00019  3.0188 
3.4280 .00161 3.0075 3.4342 ,.00160 2.9769 3.4582 .00155 2.8728 

0.l 
"""""" ~ """"""". -Q&! 
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Figure 1. The temperature at Point 1 .  (a) the early stages of flow development showing 

the frequency beating. (b) the latter stages of the solution, after stabilization, showing 

single frequency behavior. 

Figure 2, Patterns of the  instantaneous  temperature  variation  from  the  local  time 

averaged mean; time interval between  plots is (approximately) 1/6 of one period. In dark 

regions the temperature is less than the local mean,  in  gray regions it is greater. 
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