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Abstract

Better devices are needed for the detection of aerosolized biological warfare agents.
Advances in the ongoing development of one such device, the BioAerosol Mass
Spectrometry (BAMS) system, are described here in detail. The system samples
individual, micrometer-sized particles directly from the air and analyzes them in real-time
without sample preparation or use of reagents. At the core of the BAMS system is a dua-
polarity, single-particle mass spectrometer with a laser based desorption and ionization
(DI) system. The mass spectra produced by early proof-of-concept instruments were
highly variable and contained limited information to differentiate certain types of similar
biological particles. The investigation of this variability and subsequent changes to the DI
laser system are described. The modifications have reduced the observed variability and
thereby increased the usable information content in the spectra.

These improvements would have little value without software to analyze and identify
the mass spectra. Important improvements have been made to the algorithms that initially
processed and analyzed the data. Single particles can be identified with an impressive
level of accuracy, but to obtain significant reductions in the overall false darm rate of the
BAMS instrument, alarm decisions must be made dynamically on the basis of multiple

analyzed particles. A statistical model has been developed to make these decisions and



the resulting performance of a hypothetical BAMS system is quantitatively predicted.
The predictions indicate that a BAMS system, with reasonably attainable characteristics,
can operate with a very low false darm rate (orders of magnitude lower than some
currently fielded biodetectors) while still being sensitive to small concentrations of
biological particles in a large range of environments. Proof-of-concept instruments,

incorporating some of the modifications described here, have aready performed well in

independent testing.
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Executive Summary
Bioterrorism is not a new phenomenon, but the probability that a group will try to

inflict massive casualties and the probability that they will succeed seem to be growing.
Better devices are needed for the detection of airborne biological particles and this thesis
describes the ongoing development of one such device at LLNL, the BioAerosol Mass
Spectrometry (BAMS) system. This system samples individual, micrometer-sized
particles directly from the air and analyzes them in real- time without sample preparation
or use of reagents. At the core of the BAMS system is a dua-polarity, single-particle
mass spectrometer with a laser based desorption and ionization (DI) system. Mass spectra
produced by early proof-of-concept instruments were highly variable, which complicated
the differentiation of certain types of similar particles. This thesis describes the
investigation of this variability and changes made to the DI laser system that have
reduced the variability and thereby increased the usable information content in the
spectra. These changes will enable a more sensitive and selective detector.

These improvements would have little value, however, without software to anayze
and identify the mass spectra. The initial algorithms developed by the BAMS group often
performed surprisingly well, but an understanding of the mass spectra has continually
improved and shortcomings of the software have become apparent. This thesis describes
significant changes to the algorithms that initially processed and analyzed the data To
ultimately obtain false alarm rates orders of magnitudes less than those of existing
detectors, however, an atogether different type of modification is needed. A statistical
model has been developed to appropriately make alarm decisions on the basis of multiple

analyzed particles. This ensures that the BAMS system will be able to dynamically adapt

vii



itself to its environment to obtain the maximum possible sensitivity while satisfying a
particular false alarm rate requirement. A closely related performance model indicates
that a BAMS system, with reasonably attainable characteristics, will operate with a very
low rate of false adarm (orders of magnitude lower than some currently fielded
biodetectors) while still being sensitive to small concentrations of biological particlesin a
large range of environments. BAMS has not yet reached its full potential, but this thesis
will show that significant progress has been made. The first improvements developed in
this thesis have already been implemented in severa instruments, one of which has taken

part and performed well in independent testing.

Chapter Overview
Chapter 1 describes the imposing problem that is faced. Biological “agents’ have

aready demonstrated the ability to kill millions of people. Current detectors are ssimply
inadequate to prevent bioterrorists, or even nature itself, from inflicting massive
casudlties in the future. The nature of the aerosols that must be dealt with are described,
as are existing detectors. This ultimately motivates the choice of a particular type of
architecture for the BAMS system.

Chapter 2 describes the basic elements of most of the experiments used to develop and
refine BAMS. Biological and nonbiological samples are routinely procured and
prepared. Aerosols are then generated and analyzed by proof-of-concept instruments. The
“proof-of-concept instruments’ used for al of the experiments in this thesis are modified
commercial Aerosol Time-of-Flight Mass Spectrometers (ATOFMS) and are described in

detail.

viii



Chapter 3 discusses the software that analyzes the raw data. The data is loaded,
smoothed, calibrated and compressed to be useful for further analysis. Further analysis
frequently involves clustering routines that are discussed in detal. A very basic
component of any routine that clusters or identifies mass spectra is a metric that
quantifies the similarity of mass spectra. A unique new metric is proposed.

Chapter 4 utilizes the software described in chapter 3 to argue that the laser system
used for desorption and ionization in the commercial spectrometers causes unnecessary
variability in the mass spectra This is because a nonuniform laser profile allows
individual particles to interact with significantly different fluences from shot to shot.
Interactions with different fluences cause different amounts of energy to be absorbed and
it is shown that differences in absorbed energy are correlated with significant changes in
spectral features.

In chapter 5, the basic conclusion reached in chapter 4 is acted upon. The DI system is
modified to produce aflattop profile. It produces less spectral variability than the original
profile and the improvement is quantified. The flatter profile is used to determine the
fluence thresholds required to desorb and ionize significant numbers of ions from several
different types of particles. Not surprisingly, particles of any given type are found to have
a range of thresholds. This would appear to be a fundamental source of variability that
cannot be avoided by modification of the instrument. The determination of this threshold
and its range of values for spores, in particular, is believed to be a new and useful
measurement.

Chapter 6 describes initial results from new DI lasers with different wavelengths and

pulse lengths. The goal is to produce mass spectra with sufficient information content to



easily differentiate closely related particle types. Spectral changes are observed, but the
current mass spectrometer prevents, or makes difficult, the observation of new ions with
significantly higher masses than those aready produced and observed earlier. A model of
the ATOFMS instrument is developed that shows this plainly.

The final chapter (chapter 7) examines the potential effectiveness of the BAMS
system in real applications. A mathematical performance model is described and
implemented in software. Given a desired probability of detection and a maximum false
alarm rate, for example, the model determines the range of conditions in which a
hypothetical BAMS system can successfully operate. Different scenarios will place
different requirements upon the system so the model plays a critical and essential role in

determining the tradeoffs between false aam rate, sendtivity and speed.
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Chapter 1. Introduction, Motivation and Background

1.1 History
Bioterrorism is not a new phenomenon, but the probability that a group will try to

inflict massive casualties and the probability that they will succeed seem to be growing.
Just as troubling is the fact that nature is quite capable of spreading disease without a
terrorist’'s help. Better detectors are needed to rapidly identify infectious agents
irrespective of their source. History provides ample evidence of the misery that
unchecked bacteria, viruses and toxins can cause.

In 541 A.D., the Justinian plague began in Pelusium, Egypt. Within 160 years, North
Africa, Europe, central and southern Asia, and Arabia had experienced population losses
of 50 to 60%. In 1346, the Black Death (Figure 1 and Figure 2) began to spread in
Europe. It eventually killed a third of the population. In 1855, the third plague pandemic
erupted in China. More than 12 million people in China and India died. The outbreak

ultimately spread to every inhabited continent®. Some argue that plague may have killed

Figure 1. Plague patient with ulcerated,  Figure 2. Plague was known as the "Black Death" because of
swollen cervical lymph node (bubo). gangrene that often devel oped with advanced disease. Image
Image obtained from CDC. obtained from CDC.



as many as 200 million people throughout recorded history*. Although victims of
pneumonic plague could spread the disease directly, most cases were caused by the lowly
flee?. The bite of an infected flea injected thousands of plague bacteria into the skin. The
bacteria traveled to the lymph nodes and reproduced, usually causing bubonic plague.
Modern medicine has reduced the scale of natural outbreaks, but they continue to occur?.
Nature, however, has never been entirely to blame for the spread of plague. In 1346,
the trade city of Kaffa was besieged by the forces of Kipchak khan Janibeg®. The siege
succeeded in eroding the living conditions within the city, but in 1347, the surrounding
army, rather than the inhabitants of the city, started to die at a rapid rate. The plague had
come. So many soldiers were killed that the siege could not be maintained. Before
Janibeg left, he used his catapults to hurl the corpses of plague victims into the city.
Whether the infected corpses or other natural vectors were truly responsible for the
outbreak in the city is unclear, but the squalid living conditions resulting from the siege
ensured that the spread of the disease was rapid and devastating. Four ships that were
thought to be “untainted” fled from the city of Kaffa home to Italy. Unfortunately, the
ships were not as clean as thought. They carried the plague to Europe.
Plague has killed vast numbers of people in a horrific manner, but even worse

pestilences have tormented mankind. The foremost among these was smallpox.

“[Smallpox was] the most terrible of all the ministers of death. The havoc

of the plague had been far more rapid; but the plague had visited our

shores only once or twice within living memory; and the small pox was

aways present, filling the churchyards with corpses, tormenting with

constant fears all whom it had not yet stricken, leaving on those whose



lives it spared the hideous traces of its power, turning the babe into a

changeling at which the mother shuddered, and making the eyes and

cheeks of the betrothed maiden objects of horror to the lover.™
Some have claimed that “amost everyone eventualy contracted the disease” °. It was,
without doubt, highly contagious®. Even if direct contact was avoided, virions could be
inhaled. Lesions would appear and leave extensive and permanent scars if the victims
were fortunate enough to survive (Figure 3 and Figure 4). In the unvaccinated, the fatality
rate was 30% or more® (often much more). Even in recent times the disease inflicted
tremendous suffering. The following observations were made in Bombay less than fifty
years ago.

“The head was usually covered by what appeared to be a single pustule;

the nose and the lips were glued together. When the tightly filled vesicles

burst, the pus soaked through the bedsheet, became smeared on the

blanket and formed thick, yellowish scabs and crusts on the skin. When

Figure 3. Smallpox lesions on the hands of a patient in Figure4. A smallpox patient in Teheran,
Accra, Ghana. Image obtained from CDC. Iran, 1962. Image obtained from CDC.



the pulse was taken tags of skin remained stuck to the fingers...
Swallowing was so painful that the patients refused al nourishment and,
in spite of agonizing thirst, often refused al fluids... Wails and groans
filled the rooms.”

After a systematic program of eradication, the last endemic case of smallpox was
reported in Somalia in October 1977. The last known case of smallpox, of any type,
originated from a laboratory accident in England in September 1978". The only samples
known to remain are maintained by the CDC in the United Sates and by the Ingtitute for
Vira Preparations in Moscow. It is aleged, however, that the Soviets weaponized and
produced huge quantities of the virus®. It is uncertain how much was destroyed or if
unknown sources remain elsewhere.

In comparison to plague and smallpox, anthrax was historically little more than a
nuisance. It was primarily a disease of herbivores that grazed in areas where the soil was
contaminated with spores. Human infection resulted chiefly from contact with infected
animals. Spores deposited in the skin would germinate, reproduce and release toxins”
leading to local edema and an ulcerated sore (Figure 5). Less than one in five cases of this
cutaneous infection proved fatal'2. The more severe inhalational form of infection almost
never occurred outside of specialized labor groups such as goat hair mill workers.

In spite of this, anthrax’s potential as a biological weapon has long been clear. It was
easy to obtain and culture, and its spores were incredibly rugged. An airborne release of
the spores effectively produced inhaational infection and thus a high fatality rate if

medical care was not promptly administered. Germany is alleged to have used anthrax

against animals in WWI while Japan is thought to have used anthrax in China in WWII.



The United States, the Soviet Union and Iraq al weaponized anthrax'®, and other
countries are known or are suspected to have worked with it as well. In recent times,
however, none of those countries actually used anthrax directly against their enemies (or
at least no one detected them doing so).

In September of 2001, something new happened. Five letters filled with Bacillus
anthracis spores (Figure 6) were sent through the U.S. mail to journalists and
politicians'®. Twenty-two confirmed or suspected cases of anthrax resulted, half of which
were inhaational. Five people died. Those responsible have not yet been caught. A
troubling observation is that at least some of the letters appear to have contained
“weaponized” spores characterized by high concentration, uniform size, and a coating to
reduce clumping™ *°. A large volume of a similar preparation of spores could easily be
released over a major city. A 1993 publication of the Office of Technology Assessment
estimated that 100 kg of anthrax released as a line source under ideal conditions could
kill 1-3 million people in a densely populated area like Washington, D.C.°. In 1997, the

CDC estimated that the direct economic cost of such an attack could reach $26.2 billion

Figure5. A cutaneous anthrax lesion. Anthrax Figure 6. Spores from the Sterne strain of Bacillus
getsits name from the Greek word for coal. Image  anthracis. The spores used in the 2001 attacks were
obtained from CDC. of the Ames strain. Image obtained from CDC.



per 100,000 persons exposed’’.

Interestingly, anthrax itself does not directly kill the infected; it is the toxins that it
produces. There are, however, far more potent toxins than those created by anthrax.
Clostridium botulinum is a bacterium that produces botulinum toxin. If the bacteria are
consumed or infect awound, toxin is released into the bloodstream leading to disease (i.e.
botulism). Food-borne botulism has almost certainly occurred since ancient times'®.
Fortunately, the pure toxin is not encountered naturally; it is widely recognized as the
most poisonous substance known. The LDsp for a 70 kg man is though to be 70 pg oraly,
0.70-0.90 pg inhalationally, and only 0.09-0.15 ug intravenously™®. This is 15,000 times
more toxic than VX nerve agent®. It is not surprising that various countries have
diligently worked to manufacture it. After the Persian Gulf War, Iraq admitted to
producing 19,000 L of concentrated botulinum toxin solution™®. The majority of this had
been loaded into weapons with the intent of airborne dispersal.

Given the scale of past outbreaks, known efforts to weaponize biological agents and
the readiness of certain groups to inflict massive casudlties, it is clear that effective
biodetectors are needed. Since an aerosolized release of agent is the most direct means to

affect alarge number of people, the need for a bioaerosol detector is particularly acute.

1.2 Aerosols
This thesis describes the development of a detector for biological aerosols so it is

important to understand what an aerosol is and to understand what types of aerosols
might be encountered after a bioterrorist attack. Aerosol research is by no means a new

field and a number of books have been written on the subject?®. By definition, an



aerosol is a collection of solid or liquid particles suspended in a mixture of gases that has
some stability against gravitational settling. Particle sizes may range from nanometers to
a hundred micrometers or more, but particles on either the end of the distribution do not
generaly persist for long.

In practice, it is very useful to group aerosol particles on the basis of their size.
Particles less than one or two microns in diameters are called “fing” particles. These are
divided into two modes. Particles with a diameter less than or equal to 0.1 mm form the
“nuclei mode”. Particles with diameters between 0.1 nm and 2.0 nm form the
“accumulation mode’. Larger particles constitute the “coarse mode’. The relative
populations of these modes varies significantly from location to location, as does the
overall number of aerosol particles. Nonetheless, aerosol particle distributions presented
in terms of number, surface area or volume do in fact tend be modal (hence the above
names). One set of experiments reviewed by Higgins studied smog size distributions in
Pasadena in 1969. In a purely numerical sense, the vast mgjority of particles belonged to
the nuclei mode. Most of the smog'’s surface area, however, resulted from particles in the
accumulation mode. The volume (or equivalently mass) distribution was bimodal. The
greatest fraction of the volume was contained in the accumulation mode, but a distinct
and significant contribution was due to the coarse mode.

Particles in the nuclei mode may be formed directly by combustion processes. They
may also be formed by the condensation of gases. These small particles generally do not
persist for long because condensation and coagulation cause them to grow rapidly. The
growth of particles in the nuclei mode is actually an important source of particles in the

accumulation mode, although there are certainly other sources as well. Particles in the



accumulation mode persist for much longer periods of time because they grow relatively
dowly and are not rapidly removed by other means. Rain, for example, does not
efficiently remove particles less than ~5 mm in diameter (it can be quite efficient,
however, for larger particles). Johnstorf® states that typically encountered fine particles
(from both modes) are primarily composed of elemental carbon and condensable organic
and inorganic species such as sulfate, nitrate and ammonium.

Coarse particles are usualy generated by mechanical means, these include, for
example, wind, sea spray, volcanic eruptions and mining. Coarse particles are largely
composed of soil, minerals, sea salt and biogenic debris?®. The largest particles settle
rapidly because of gravity. Although coarse particles constitute a significant fraction of
the mass of typical aerosols, fine particles have far more surface area and are far more
numerous. As a result, fine particles generaly have a greater influence on human health
and atmospheric processes and have been the subject of more intensive research.

Bioaerosols, as the name implies, have a biological origin. The surfaces of living and
dead plants are important natural sources of airborne bacteria and fungal spores®®. Wind,
waves and even rain may aerosolize microorganisms from natural accumulations of
water. Bioaerosols occur naturally everywhere from the middle of the ocean to the middle
of the arctic. They consist of particles such as bacteria spores and cells, viruses, fungal
spores, protozoa, pollen, fragments of insects and skin scales. These include both fine and
coarse particles. Viruses are among the smallest bioaerosol particles; some species are
only a few tens of nanometers in size. On the other end of the size spectrum, pollen
grains can be over 100 mm in diameter. As with other types of aerosols, bioaerosol

concentrations vary significantly from location to location. Typical outdoor



concentrations of airborne bacteria range from 100 to 1000 cfu/n? (cfu=colony forming
units)?°. Bioaerosol concentrations as high as 10'° cfu/n® may occur in environments
such as textile mills*.

Biologica weapons congtitute a subset of the particles that can form biological
aerosols. They include pathogenic bacterial spores, vegetative cells, fungal spores,
viruses and toxins and frequently contain other materials to stabilize and protect the basic
biological agent aswell asto prevent clumping and aid dispersal'® 22”28 Even the basic
organisms and biological materials by themselves have a broad range of properties.
Anthrax (Bacillus anthracis), for example, is likely to be dispersed in spore form. (Spores
have a diameter of ~1 mm and a number of unique properties discussed in the next
section.) Plague (Yersinia pestis) is larger (~2 nm) and has only a vegetative state.
Smallpox is a 0.3 mm diameter virus, but it is unlikely to be released or detected in the
form of single virions®*. Spores and vegetative cells are amazingly complex structures,
but viruses are little more than protein and nucleic acid (with a lipid envelope in some
cases). Toxins such asricin are basically nothing more than protein.

The rapid, reliable and sensitive identification of any type of biological aerosol
particle is a daunting task. Many of these particles are “living objects and undergo
physical, chemical, and biological changes which are time and space dependent, and are
further connected with environmental properties” To make matters worse, it was
aready noted that it is unlikely that a biological warfare agent would be released in a
pure form. There is abundant information available on how to enhance the airborne
dispersal of biological materials with the addition of various chemicals. Data regarding

the spraying of microbial pesticidesis just one example®.
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In the case of anthrax, it is known that Van der Waals forces cause unprocessed spores
to clump together. Large particles are not deposited efficiently in human lungs and also
settle rapidly from the air. Both are undesirable properties if maximal lethality is desired.
Silica powders and nanoparticles have long been used to prevent ajent particles from
coming close enough together for Van der Waals forces to become significant. The U.S.
Army has experimented with silica nanoparticles such as WR-50, WR-51, Cab-O-Sil and
Sipernat D 13; the Soviet Union used Aerosil while Iraq used both Cab-O-Sil and
Aerosi*®. Bentonite (a clay containing silica particles) can also be used™®. Military
scientists have stated that the “weaponized” anthrax letters sent to Senator Daschle's
office contained silica™. In the Senate anthrax |etter, there is also evidence that the bond
between the silica nanoparticles and spores was further enhanced by the use of a sol-gel
or polymerized glass™. Some believe that the spores may have even been electrostatically
charged®® to further aid their dispersal. At any rate, the end result of the processing was a
powder far more potent than a ssmple combination of anthrax spores, cells and residual

growth medium.

1.3 Bacterial Spores
Many bacteria are highly pathogenic; anthrax is singled out and considered

particularly useful as a biological weapon because of its ability to produce spores. Spores
are incredibly rugged, dormant forms of bacteria. They are resistant to boiling, freezing,
drying, radiation, high pressures, acids and disinfectants. They can be aerosolized,
exposed to sunlight and harsh environmental conditions and still remain viable. Anthrax

belongs to the genus Bacillus and to the family Bacillaceae. All six of the genera in the
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Bacillaceae family can form spores. The “norma” state of these bacteria is vegetative.
Vegetative cells have active metabolisms, reproduce and actively carry out a whole array
of chemica processes just like “regular” bacterial cells. What makes Bacillaceae unique
is their response to harsh environmental conditions. Depletion of a critical nutrient, for
example, can trigger aremarkable transformation. Through the process of sporulation, the
vegetative cell packages DNA and other essential molecules into a compact structure that
is initially contained inside the cell wall. This spore (more precisely referred D as an
endospore) is ultimately released into the environment when the mother cell lyses and
dies. Other types of organisms can produce structures that serve roughly similar purposes,
but these structures form on the cell exterior and are known as exospores.

Sporulation has been most thoroughly studied in Bacillus subtilis. Historicaly, the
process has been described as lasting eight hours during which the cell progresses
through seven morphological stages (generaly labeled with Roman numerals). The
particular enumeration of the steps is not as important as the fact that the physical and
chemical properties of the cell are changing, which may affect the responses of some
biodetectors. The BioAerosol Mass Spectrometry (BAMS) group, for example, has
observed that the chemical properties (i.e. the mass spectra) of spores continue to evolve
well after eight hours have passed®. A number of important changesin B. subtilis spores
during sporulation are well documented, and these merit a brief discussion here because
of their relevance to various detection techniques.

In stage IV (i.e. the fourth morphological stage of development), the final ellipsoidal
shape of the spore develops as two layers of peptidoglycan are formed®2. This well-

defined shape can be used to differentiate spores from certain types of natura
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background particles®. (The spore shape and size change slightly, however, with relative
humidity®*.) At the same time, or shortly after the peptidoglycan layers begin to form,

proteins and other molecules formed in the cytoplasm of the mother cell*®

are deposited
on the surface of the outer membrane of the spore forming a “coat”. This coat becomes
apparent at approximately the fifth hour of sporulatior™® (marking stage V).

The coat is important because it varies significantly from species to species. In B.
subtilis, two layers are apparent. In B. anthracis two layers may be present, but they are
not easily discernible by electron microscopy®. Other Bacillus species can have more
than two layers. The coats of different Bacillus species also have different numbers of
polypeptide species. B. cereus has one maor protein, while B. subtilis has more than
25%°. These differences may serve as an additional means of differentiating closely
related Bacillus species.

At the same time the coat is being formed, small acid soluble proteins (SASPs) and
dipicolinic acid (DPA) are produced and packed into the core of the spore®’. DPA is an
important biomarker that differentiates Bacillus spores from most other bacteria It is
utilized in severa detectors and is apparent in the data produced by the currert BAMS
instruments. MALDI experiments have shown that the SASPs can be used to differentiate
a number of Bacillus species®. In stage VI (also known as maturation), the resistant
properties of the spore appear, the forespore becomes dormant and the potential for
germination is fully realized. In stage VII, the mature spore is released by lysis of the
mother cell.

Some Bacillus species (e.g. B. anthracis, B. cereusand B. thuringiensis) have an outer

covering called an exosporium. Its function is not well understood. In the case of anthrax,
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it does not appear to be important to sporulation or germinatiort®. Regardless of its
particular biological function, however, it may aso help differentiate certain Bacillus
Species.

Of al the potential biological warfare agents, B. anthracis is one of the most important
to analyze, understand and ultimately identify. Because of its lethality, however, it is not
particularly convenient to work with. Bacillus atrophaeus (B.at.) is a close relative of B.
anthracis that is expected to share many of its features. It is not, however, pathogenic.
For these reasons, it has been used frequently by the defense community and is utilized in
many of the experiments described in this thesis. B.at. was formerly known as Bacillus

subtilis var. niger and earlier as Bacillus globigii (BG).

1.4 The Present State of Biological Detection
Natural epidemics have caused millions of deaths. Intentional dispersal of anthrax,

plague, smallpox or other biological agents could be devastating. Rapid, sensitive and
accurate sensors are needed for the detection of many types of attacks and, in particular,
for airborne releases. Clearly one of the greatest challenges is that miniscule amounts of
material must be detected in very short periods of time. Consider, for example, that the
LDs for anthrax (the dose per person that would kill 5% of the exposed population) may
be as low as 14 spores®. Since an average person inhales approximately 10 liters of air
per minute, a one-minute exposure to an aerosol containing just 1 or 2 anthrax spores (i.e.
1 or 2 picograms of material) per liter of air could be fatal for 1 in every 20 people. In a
city of moderate size, that could mean thousands of fatalities. The Situation is even worse

for agents such as tularemia (Table 1). Clearly this makes it very difficult to create an
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instrument that can “detect to warn” (i.e. provide sufficient warning for individuals near
the instrument to avoid inhalation of an infectious dose of agent). The required response
time is obvioudy scenario dependent, but it is usually considered to be on the order of
one minute. Thisis very difficult, if not impossible, to obtain with many techniques.

Even if the ability to detect to warn proves unobtainable in the near future, the ability
to “detect to treat” (i.e. to detect the presence of agent and initiate treatment before
symptoms develop) still has significant value. The smallpox vaccine, for example,
significantly reduces the probability of mortality even when administered several days
after smallpox infection’. Anthrax can aso be effectively managed so long as treatment is
begun before symptoms develop. The same holds true for the treatment of plague?.
Fortunately, symptoms do not appear immediately for any of these diseases. Even a
detector that takes a day or more to respond still has value.

An additional challenge for biodetectors is that natural background aerosols are always

present. A detector cannot simply determine whether an aerosol is present or not, it must

CDC Category A Bioterrorism Agents/Diseases

Agent Approx. Infectious Dose

Anthrax (Bacillus anthracis) 2900 CFU (Inhalational LDsp)

Botulism (Clostridium botulinum toxin) 0.7-0.9 ny (Inhalational LDsp) *

Plague (Yersinia pestis) 100-500 organisms by aerosol**

Smallpox (variola mgjor) 10-100 virions by aerosol
(estimated)**

Tularemia (Francisella tularensis) 10 organisms *2

Vira Hemorrhagic Fevers a“few” virions (for Marburgin

(e.g. Ebola, Marburg, Lassa...) monkeys)*®

Table 1. CDC Category A bioterrorism agents and diseases are believed to pose the greatest potential threat
because of their ease of dissemination or transmission from person to person, high mortality rate and
potential to cause panic and social disruption.
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determine whether a miniscule amount of agent is present in a background that is usually
orders of magnitude more concentrated and that may contain a large variety of materials.
Components of the biological background may be closely related to certain agents but
still remain completely harmless. Other background materials may adhere to or ater any
agent that is present. Still other particles may interfere with the detector in unexpected
ways. In some locations, true agent organisms are present naturally and this should not be
interpreted as evidence of an attack. It is not difficult to understand, therefore, why many
techniques have been developed to identify microorganisms in the lab, but few have
made it to the field.

Historically, most fielded point detectors have been classified as triggers or identifiers.
In general, the purpose of a trigger is only to rapidly indicate that an agent may be
present. The trigger makes little if any effort to specifically identify the agent and may
frequently “aarm” when no agent is present. A crude trigger might be nothing more than
a simple particle counter. The appealing features of triggers are generally that they are
fast, relatively inexpensive and potentially reagentless. When a trigger believes that an
agent may be present, it triggers an identifier. The purpose of the identifier is to identify
the specific agent (if any) that is present. Unlike the trigger, the identifier must have a
low false darm rate. This typically means that more time consuming analyses must be
performed and that reagents, or at least some type of sample preparation, must be
utilized. Consequently, continuous operation is often impractical (hence the need for a
trigger).

A relatively small number of basic techniques (in a variety of slightly different forms)

are being investigated as potential triggers and identifiers. A few of the more established
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techniques will be mentioned here, starting with potential triggers. Stand-off detection
systems will not be described at all.

Various optical techniques can be used as triggers. Laser induced fluorescence, for
example, has been used to analyze individual particles very rapidly**#°. Spatially
resolved light-scattering can reveal information about the size and shape of particles™ .
Such measurements are reagentless and fast. Unfortunately, the information that they
provide is insufficient to consistently differentiate organisms at the species level. In fact,
it may be difficult to differentiate many particle types at any level.

A specific implementation of a fluorescence-based trigger is the Biological Aerosol
Warning System (BAWS). An early version of BAWS uses a frequency quadrupled, Q-
switched Nd:YAG laser to excite fluorescence from individual aerosol particles'®.
Photomultiplier tubes (PMTs) detect the fluorescence in two bands: 300-400 nm and 400-
600 nm. Based on the PMT signals, rough classification of particlesis possible. BAWS's
most appealing feature is that it is sensitive to concentrations of 5-10 particles per liter of
air and has an alarm time of less than one minute®. Newer versions have incorporated a
number of improvements, but the false alarm rate is still believed to be high. Another
system based on fluorescence detection is the FLuorescent Aerodynamic Particle Sizer
(FLAPS). It uses one laser to track and size aerosol particles and a separate laser to excite
fluorescence™. The excitation is provided by a CW helium-cadmium laser (325 nm), and
the fluorescence is detected in a band extending from 420 to 580nm. The original system
could detect at least some fluorescence from individual Bacillus spores. A newer
variation of FLAPS (the UV APS or FLAPS 1) has replaced the older excitation source

with a pulsed, frequency-tripled, neodymium-based laser®® 3. FLAPS Il can easily
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analyze single spores, but a cross-sensitivity to nortbacterial organic materials has been
observed®. Other fluorescence instruments exist™®, but BAWS and FLAPS are perhaps
the two most widely used.

Numerous molecular and microbiology techniques have been used as identifiers to
detect and fully identify biological particles. In general, their chief limitation is the time
required for analysis, which may range from hours to days when sample collection,
preparation, and actual analysis are considered® °°. Traditional microbiology techniques,
such &s culturing, are also labor-intensive and limited in that they can detect only living
cells. 1% or less of the microbes in a natural sample of dirt or water can typically be
cultured®®. Molecular methods, such as the Polymerase Chain Reaction (PCR), in-situ
hybridization, and immunoassays, are extremely sensitive and specific at the species
level, or below, but require sample collection and processing as well as specialized
reagents.

A number of these techniques have successfully made it to the field. The Biologica
Aerosol Sentry and Information System (BASIS)>” was deployed at the 2002 Winter
Olympics Games in Salt Lake City, UT. A network of simple aerosol sampling
instruments collect and store aerosol samples on dry filters. The filters are collected daily,
or more frequently if desired, and taken to a central laboratory. The filters are there
processed to release the nucleic acids of any organisms or viruses collected. PCR is then
used to determine if pathogens are present. The BioWatch program is patterned after
BASIS and is deployed in severa cities’®. The time for detection in both systems is
obvioudy limited by the frequency of filter collection and may be 24 hours or more. The

Autonomous Pathogen Detection System (APDS) is much faster’®. It is a point detector
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that integrates sample collection, multiplexed immunoassays and confirmatory PCR as
well as sample archiving and data reporting in a fully autonomous unit. Immunoassays
can be performed on 30-60 minute intervals and have successfully performed in field
studies using live anthrax and plague®. This is certainly an impressive feat, but the
system still requires various reagents to operate and is too slow to detect to warn in many
scenarios.

Traditional mass spectrometry is well suited to the detection of biological agents, in
certain respects, due to its high information content and extreme sensitivity to small
samples. Unfortunately, most mass spectrometry techniques suffer from relatively long
analysis times when sample collection, culturing, and preparation are factored in. Another
practical concern is that a vacuum system is required, which makes it somewhat difficult
to produce small, rugged and energy efficient instruments. One general approach has
been to analyze the fatty acid methyl esters in microorganisms using Pyrolysis Mass
Spectrometry (PyMS)®%%. Another approach has been to use classical Matrix Assisted
Laser Desorption/lonization (MALDI) to analyze a broad range of biomolecules®*®,
Anaysis times are typicaly on the order of minutes to hours even when samples are
analyzed without culturing. Both approaches require ~10°-10" cells for typical analyses,
but they do have the potential to provide species level identification of bacteria®’. Both
approaches are sensitive to environmental contamination.

The Block Il Chemical Biological Mass Spectrometer (CBMS) is an instrument
capable of detecting and identifying both chemical and biological agents®®. Biological

agents are identified using PyMS. Respirable particles are collected and concentrated

with an opposed jet virtual impactor. The particles are then directed to a quartz pyrolysis
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tube where they are heated and treated with tetramethylammonium hydroxide (TMAH, in
methanol). The resulting products are transported to an ion trap mass spectrometer for
final analysis. The whole cycle takes about 5 minutes. The speed is very appealing, but
since al aerosol particles in the proper size range are collected at once there would
appear to be significant potential for background interference. The actual false alarm rate
is unknown. Another system worthy of mention is a MALDI-based miniature time-of-
flight mass spectrometer developed at the John Hopkins Applied Physics Laboratory?® ™.
The system collects aerosol particles on a VCR tape, deposits a small amount of matrix
on top of each sample (containing many collected particles) and then anayzes each
sample in a small mass spectrometer. The device is intended to be fast and portable, but
little information is available concerning its actual performance. As with the CBMS,
many particles are analyzed at once which may cause difficulties.

A BioAerosol Mass Spectrometry (BAMS) system is intended to combine the speed
and rough classification abilities of a trigger system like FLAPS with the specificity of a
highly specialized mass spectrometer for full identification of individual particles. It does
not require any reagents and it has the potential to be very fast. At the very least, the
BAMS system will be atrigger with a greatly reduced false aarm rate. The ultimate goal,
however, is to detect to warn without the need for a separate identifier (BAMS itself will
be the identifier). The specific details of the current BAMS instruments are described in
the next chapter, but a general review of single particle mass spectrometry is given in the

next section since thisis acritical core technology.
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1.5 The Appeal of Single Particle Mass Spectrometry

Typical aerosol samples are not likely to contain biological warfare agent particles (in
most locations). Nevertheless, there will amost aways be significant numbers of
harmless background particles. Since the background may interfere with recognition of
agent, it is advantageous to analyze or at least screen aerosol particles individualy. This
means, however, that the detection system must be able to analyze individual particles
very rapidly so that any agent particles that are present can be found and identified in a
reasonable amount of time. Single-particle mass spectrometry is an established technique
for the rapid chemical analysis of individua aerosol particles’?. With little or no
modification these instruments are capable of producing mass spectra from single
bioaerosol particles”™ ™. The real challenge is to produce spectra that are sufficiently rich
in information content and consistent enough to alow reliable agent identification (i.e.
species level differentiation and identification of single particles).

The general technique of single particle aerosol mass spectrometry has been developed
and implemented in forms such as RSMS'’, PALMS’®, LAMPAS™ & RTAMS®, and
ATOFMS®?, which members of the BAMS group at LLNL helped develop. Figure 7
shows a simple diagram of an ATOFMS instrument with several features common in
single particle mass spectrometers. In most modern systems, aerosol particles are sucked
directly from the atmosphere into vacuum through some type of inle®*. One or more
stages of differential pumping enable a high vacuum to be maintained in spite of the
constant flow of air into the system. As particles approach the ion source region of the
mass spectrometer they cross and scatter light from one or two CW laser beams®*. The
scattered light can be used to determine the particle's size, speed and location. This

information is then used to trigger one or two high-intensity pulsed lasers that desorb and
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ionize molecules from the particles. The full spectrum of ions can then be measured, at
once, in systems using a time-of-flight mass spectrometer. These instruments characterize
individual particles in a fraction of a second without reagents or sample preparation so
they clearly have some potential as rapid bioaerosol detectors.

New techniques have been developed to coat single aerosol particles “onthe-fly” with
amatrix before they enter vacuum®>®. Thisis much faster than traditional MALDI and it
still has the potentia to produce high mass ions, which is very appealing. Unfortunately,
it also requires the use of consumables, which is an undesirable characteristic for a fully
autonomous detector. As a result, the current BAMS system does not use MALDI, but

this could be changed easily if the use of reagent is acceptable in some particular future

application.
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Figure7. A simple diagram of an ATOFMS showing several features common in single particle mass
spectrometers. Aerosol particles drawn into an inlet pass through several stages of pumping and are focused
into abeam that passes downward through atracking and sizing region and into theion source region of a
mass spectrometer. The ATOFM Sisadual polarity mass spectrometer that effectively contains two mass
spectrometers: one for positiveions and one for negative ions.
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Chapter 2. Experimental Basics: Samples,
Aerosolization and a Mass Spectrometer.

This chapter covers the basic physical components of virtually every laboratory
experiment that the BAMS group performs. Clearly a variety of biological materials must
be worked with. Many of these can ssimply be purchased in a usable form, but bacterial
gpores and other organisms are grown and prepared in the BAMS group’s own facilities.
The preparation of bacterial spores is described in section 2.1. The properties of several
other particle types (utilized in chapter 5) are described in section 2.2. Artificialy
generated aerosols are needed to benchmark proof-of-concept systems as well as to better
understand the fundamental interactions between biological particles and lasers that
enable the systems to work. The methods used to aerosolize samples are discussed in
section 2.3. The “proof-of-concept” mass spectrometers used for the experiments in this
thesis are modified commercia single particle mass spectrometers. They are described in
section 2.4. Details of the desorption/ionization (DI) laser and triggering systems are
elaborated upon in section 2.5. Section 2.6 discusses several changes in the commercial
instruments that are necessary to produce useful BAMS systems (which will ultimately
be quite distinct from the current instruments). The specific changes listed are addressed
in subsequent chapters.

The basic layout for a typical experiment is shown in Figure 8. Spores, for example,
are aerosolized from solution, dried and sampled into the single particle mass
spectrometer ultimately producing mass spectra that are saved to disk. The saved data can
be retrieved for instant analysis and on-line identification, or stored and accumulated for

later analysis off-line. While the basic physical elements of experiments are described in
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Figure 8. Thelaboratory setup used to obtain mass spectrafrom individual aerosol particles. A nebulizer
() produces an aerosol of wet particles. A drier (b) removes the water and the dry particles are sucked into
the mass spectrometer inlet (c). They pass through asizingregion (d) and arrive at the ion source region

(e). A pulsed laser (f) creates ionized molecules. Positive ions (g) are accelerated and then reflected
towards a set of microchannel plates (MCP) (h). Negativeions (i) are accelerated in the opposite direction
and detected with a separate set of MCPs (j). The digitized MCP signals are finally stored and analyzed on
acomputer (k).

this chapter, the methods used to analyze the data produced by actual experiments are

described in chapter 3.

2.1 Spore Preparation
Growing microorganisms in such a way that reproducible results can be obtained is

not a trivial matter. The BAMS group includes several microbiologists who prepare the
vast mgjority of the samples used. The basic steps involved in the preparation of spores
are given below using Bacillus atrophaeus (B.at.) as a particular example. As mentioned
in chapter 1, B.at. was formerly known as B. globigii and is frequently used as a surrogate
for anthrax (Bacillus anthracis or B.a.) by the Department of Defense.

B.at. cells (ATCC #9372, Dugway Proving Ground, Dugway, UT) are typically grown

to mid-log phase in tryptone yeast extract broth (Y4 TY) and then aliquoted into 75 ml of
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fresh broth in a 1:25 dilution. The cells sporulate in a shaker incubator at 32°C until
approximately 90% of the cells are refractile (3-4 days). Phase contrast microscopy and
gpore staining are used to confirm that spores are present. Gram stains are used to identify
vegetative cells and/or non-refractile cells that are still developing into spores. Spores are
harvested by centrifugation at 8000 g for 12 minutes, and washed in cold double-distilled
water. After three washes the spores are reconstituted in double distilled-water at
concentrations of approximately 10° sporessml (as determined using a Petroff- Hauser
counting chamber). To confirm the purity of the cultures, a 500 base pair region of the
16s rDNA can be sequenced. The same basic process can be adapted for other Bacillus

species and different growth media.

2.2 Particle Types Used for Experiments
B.at. spores, prepared as just described, are used in chapter 4. A number of additional

types of particles are analyzed in chapter 5. B.at. spores prepared in %2 TY are studied as
well as B.at. spores prepared in resuspension (rs) media, Bacillus thuringiensis (B.t.)
spores grown in resuspension media, clumps of MS2 virions, clumps of bovine serum
adbumin (BSA) and clumps of dipicolinic acid (DPA). Two different growth media were
used to quickly see what types of effects different preparation routines might have on the
B.at. spore mass spectra. Tryptone yeast extract broth is an undefined medium.
Resuspension media is a defined medium. B.t. (ATCC No. 16494) is not used as a
surrogate for a particular agent but rather as serves as a surrogate for al of the naturally
occurring particle types that might easily be misidentified as B.a. (or B.at. in the current
experiments). B.t. is in fact frequently used as an insecticide and is likely to be found in

“natural” environments.
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For the studies here, MS2 serves as a crude ssmulant for viral agents such as smallpox
and Ebola. MS2 is a single stranded RNA bacteriophage that infects Esherichia coli. It is
approximately 26nm in diameter, contains 3569 base pairs in its genome, and has a
capsid containing 180 copies of its single coat protein. (Only three other proteins are
encoded by its genome®’.) It is perhaps unfortunate that the coat protein is structurally
unique compared to other RNA viruses®. A single virus is far too small to detect so
clumps of MS2 virions are aerosolized with a Collison nebulizer (described in section
2.3). The sample used here was obtained from the ATCC (No. 15597-B1) and may
contain significant impurities from buffers and salts.

BSA serves as a smulant for toxins such as ricin and botulinum toxin. Albumin is a
protein produced in the liver that constitutes a significant fraction of the protein found in
blood plasma. One of its several functionsisto maintain the pH level of the blood stream.
Most forms of albumin contain relatively low amounts of tryptophan and methionine and
high amounts of cystine and the charged amino acid$®. The lack of tryptophan in
particular may be relevant since tryptophan is known to absorb well at 266 nm, the
wavelength of the “standard” DI laser described in section 2.5. Albumin can be derived
from many different animals, bovine serum abumin (BSA) from Sigma (Fraction V,

3 96%) was used here. It was aso aerosolized using a Collison nebulizer.

2.3 Aerosol Generation
Although the spore samples can be dried to form a powder, it is usually most

convenient to work with them, or other types of samples, in the form of aliquid. Liquid

solutions are easily aerosolized using a Collison nebulizer® °*. In the nebulizer, a rapid
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flow of air is directed across the top of a narrow tube whose bottom end is submerged in
the solution to be aerosolized (Figure 8). The airflow generates a low-pressure region
above the solution drawing it towards the top of the tube where direct exposure to the
airflow causes small droplets to be formed. Large droplets may also be formed, but these
drop out of the aerosol quickly and run back into the solution reservoir. The wet
bioaerosols produced by the nebulizer are dried with a diffusion drier containing
activated silica gel desiccant and then piped through copper tubing to the aerosol mass
spectrometer inlet.

The Collison nebulizer is a convenient means of aerosolizing a solution, but it is
known to have several properties that may be undesirable in certain applications. The first
of these is that it does not produce a monodisperse aerosol; the range of particle sizes
directly produced is actually quite large. For the particular experiments described here,
however, this is usually not a problem. When spores are aerosolized, for example, the
initial aerosol particles do range significantly in size, but the particles consist mainly of
water and most contain either no spores or only a single spore. (Bigger drops containing
many spores may be formed, but most of them quickly fall out of the aerosol.) When the
water is removed with a drier, single spores are the predominant product and these
particles are, by their nature, relatively uniformin size.

In a typical experiment, using a solution of water and B.at. spores, the mean
aerodynamic diameter of the particles analyzed by the mass spectrometer was determined
to be 0.92 mm, which is consistent with the value expected for single spores. The
aerodynamic diameter of a particle is equivalent to the diameter of a unit density sphere

with the same settling velocity as the particle. Eighty percent of the particles had a
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diameter within £0.05 mm of the mean, but occasionaly much larger diameters (2-3 nm)
were observed. These most likely represent clusters of two or more spores.
Approximately one in ten particles had a smaller diameter, but few of these are believed
to represent intact spores. They may be fragments of spores or vegetative cells or other
types of residual impurities.

If a soluble analyte is aerosolized, rather than spores, the resulting dried particles may
vary significantly in size. Nonetheless, the aerodynamic diameter of each particle
analyzed by the mass spectrometer is measured (as described below) so it is possible to
choose a size-selected subset for more careful post-analysis. Thisis done in chapter 5 for
nebulized clumps of DPA. In some situations, even this may not be necessary. The inlets
of the current instruments significantly limit the range of particles sizes that can be
analyzed irrespective of the size range produced.

A second limitation of the Collison nebulizer is that the aerosolized biological
particles it produces may carry thousands of elementary charges’. This is relevant in the
current instruments because the particles travel for several centimeters through a high
electric field as they approach the center of the mass spectrometer (e in Figure 8).
Although the field is theoretically sufficient to push some highly charged particles away
from the DI laser, it has been possible to acquire mass spectra at an acceptable rate from
many types of particles so the nebulizer is ssimply used directly in practice. If the charges
prove to have a significant effect in some future experiment, it is possible to use a charge
neutralizer to correct the problem.

A third potential shortcoming of the Collison nebulizer is that it may damage delicate

biological particles™™ % .The rapid flow of air necessary to produce small droplets may
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produce large shear forces that rupture biological particles or strip off loosely connected
outer layers or appendages. If vegetative cells are to be aerosolized, thisis cause for great
concern. Fortunately, spores are much more rugged. Although spores may not escape
entirely undamaged, the size distribution of B.at. spores is observed to remain fairly
constant over the course of an extended experiment (Figure 9). In such experiments the
bulk of the solution is expected to pass through the nebulizer tube many times so if the
spores were broken apart the size distribution would become broader with time. If more
delicate samples must be aerosolized, a bubbling aerosol generator could be used® %°. It
is believed to be more gentle than the Collison nebulizer and is also observed to produce

less highly charged particles™.

2.4 The Present Mass Spectrometers
The two single particle mass spectrometers used in the experiments here were both

originally Model 3800 Aerosol Time-of-Flight Mass Spectrometers (ATOFMS) from
TSI. These instruments are licensed versions of the ATOFMS developed by Dr. Kimberly
Prather's group at UC Riverside. Several members of the BAMS group were once
members of the Prather group and had a large role in the development of the original
instrument. A detailed description of the Prather group’s single particle mass
spectrometer already exist$?, but a description of the closely related TSI spectrometer
will be given here for completeness and to point out its unique characteristics. Relevant
modifications of the instruments will be described as appropriate. Figure 8 shows many

of the features that are described below.
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Figure 9. Size distributions of B.at. spores measured by the single particle mass spectrometer over the
course of an experiment. Almost four hours elapse with minimal changesin the size distribution indicating

that the spores are not being fragmented significantly.
The spectrometer draws air and entrained aerosol particles from the environment (or

from an aerosolization device) through a converging nozzle?® into vacuum at a rate of ~1
L/min. The diameter of the nozzle is approximately 340 nmm. A supersonic expansion
from the nozzle into vacuum focuses the aerosol particles into a vertically orientated
beam that passes downward through two stages of differential pumping, through a sizing

region (which acts as an additional pumping stage) and finally into the ion source region
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at the center of the dua polarity mass spectrometer. The supersonic expansion imparts
each particle with a velocity dependent on its aerodynamic diameter. Small particles
travel faster than larger particles. An aerosol particle that has been properly focused and
accelerated crosses two 0.36 mm diameter (1/€?), 532 nm, CW laser beams in the sizing
region (at ~10™ Torr) causing two bursts of scattered light that are detected by separate
photomultiplier tubes. Ellipsoidal mirrors (which are not obvious in Figure 8) ensure that
a large fraction of the scattered light is collected. The times at which the scattered light
bursts occur are used to determine the particle's position velocity and, with proper
calibration, its aerodynamic diameter® . Once the particle’s position and velocity are
known, the system predicts when the particle will reach the ion source region (at ~10°’
Torr) and triggers the single 266 nm DI laser accordingly (as discussed in section 2.5).
The distance between the sizing lasers is ~6 cm and the distance from the lower tracking
laser to the center of the ion source region is~12 cm.

A single pulse from the DI laser both desorbs and ionizes molecules from individual
aerosol particles. The ionized molecules are then extracted from the single ion source
region into effectively two opposing reflectron time-of-flight mass spectrometers” %.
One spectrometer analyzes positive ions and the other analyzes negative ions. For both
polarities, a two-stage, static extraction potential® is used such that singly charged ions
are imparted with ~6.4 keV of energy over a 1 cm path. Since all particles are imparted
with the same amount of energy, small particles have higher velocities and cover a fixed
distance n less time than larger particles. This is, of course, the well-known basis of
time-of-flight mass spectrometry. In such systems, the mass-to-charge ratio of an ion can

generally be derived from its flight time using an equation of the form
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=cft- t, ).

Eq.1
m isthe mass, q is the charge and t is the flight time. ¢ and to are constants determined by

the voltages, distances and timing electronics used in the mass spectrometer (chapter 3
provides more details). The distarce the ions travel is determined primarily by the length
of the drift tube and reflectron, which have a combined length of ~70 cm in both
polarities (the ions traverse the drift tube twice, however, and penetrate only a finite
distance into the reflectron). The ions are ultimately detected with microchannel plates
(MCPs)1% |ocated on either side of the source region.

The MCPs are annular as shown in Figure 10. The central aperture allows ions that are
created in the source region to pass into the drift region. Upon traversing the drift region,
being reflected, and crossing the drift region again some of the ions hit the active region

of the MCP. The remaining ions that fail to hit the active area cannot be detected. Thisis

Figure 10. A simpleillustration of an annular microchannel plate detector and an enlarged view of one of
its channels. lons pass through the hole in the middle of the detector before they are reflected and return to
hit individual channelsin the active area. (The relative size of the channels has been greatly enlarged for
clarity). The inset shows that an initial ion (on the left) hits the channel wall producing a cascade of ever
increasing numbers of electrons. This electron avalanche ultimately produces a detectable burst of charge.
Two MCP plates are stacked in achevron configuration in the current detectors.
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a significant problem for certain masses as discussed in chapter 6. Each ion that hits a
channel of the MCP has a certain probability of producing one or more secondary
electrons that are then multiplied within the channel producing a detectable burst of
charge. RC coupling causes the brief current to generate a voltage and this voltage is the
quantity that is ultimately digitized and stored. One initial ion produces an average of
~10° fina eectrons in the two-plate, chevron detectors employed in the current systems.
The response is not perfectly consistent, however, a roughly Gaussian distribution of
values is produced with a bias-voltage dependent mean. The width of the distribution
(FWHM) is roughly equal to the mean. This distribution does not include saturation
effects. If a channel in the MCP has been hit by an ion, that channel (and potentially
neighboring channels) will become charge depleted and unable to respond properly to
ions that hit later within the acquisition of a single spectrum. This can cause inefficient
detection of large ions if numerous smaller ions are produced by the same aerosol
particle.

Once triggered (as described in ®ction 2.5), the data acquisition (DAQ) system
records the current (or more precisely the voltage) generated by the MCPs every 2 ns for
60 ns producing 30,000 data points per MCP (60,000 data points for the full dual polarity
mass spectrum, Figure 11). The instrument used in chapter 4, has one 8-bit Acqiris
digitizer for each polarity. The instrument used in subsequent chapters has dua 8bit
digitizers (Cougar 1000 from Acqiris) used in parallel with different gain settings to
produce ~12-bit data. A small but nonzero DC offset is intentionally added to the
baseline when digitizing the data so that the baseline and baseline noise are properly

recorded.
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Figure 11. Raw mass spectral data from individual aerosol particles. The horizontal axis shows the
digitizer channel number, which is proportional to the flight time (and not related to the MCP channels).
Each digitizer channel is 2 nswide. The vertical scale showsthe MCP signal in arbitrary units (which are
proportional to the magnitude of the negative voltages produced and hence the number of ions detected).
Datafrom positive and negative ions were recorded separately and combined for this figure. Negative ions
were defined to have negative flight times(i.e. negative channel numbers) for the purposes of plotting.

For each particle, the raw mass spectrum, laser pulse energy, particle size and severd

other parameters are saved to disk where they can be retrieved for automated real-time

identification or gored for later analysis, as described in the next chapter. Although the

identification and analysis are performed using software developed by the BAMS group,
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the software that actively runs the current mass spectrometers and saves the files is a

commercial product (TSI’s MS Control) that came installed with the spectrometers.

2.5 The Standard DI Laser and Triggering Scheme
The “standard” DI laser used for many of the measurements reported here was a Big

Sky Laser Technologies Ultra with an integrated fourth harmonic package. Thisis a Q-
switched, frequency-quadrupled Nd:YAG laser system that emits pulses with a
wavelength of 266 nm, a pulse length of ~6 ns and a roughly Gaussian spatial profile.
The 266 nm wavelength is particularly useful since it is nearly coincident with absorption
pesks in dipicolinic acid (DPA)!! and severa of the amino acids present in bacteria
spores. Typical pulse energies range from 0.2 to L0 mJ (at the point where the pulses
interact with aerosol particles). Unfortunately, in the default mode of operation set by Big
Sky, the Ultra’'s pulse energy is controlled by adjusting the power delivered to its flash
lamp. This is less than optimal because the laser beam profile is observed to change with
pulse energy as shown in Figure 12. The effects of the beam profile on mass spectra and
efforts to improve the profile will be discussed in chapters 4 and 5. (Chapter 5 actualy
utilizes a second, nearly identical Ultra with an improved harmonics package.) Other DI
lasers will be discussed in chapter 6.

In the standard TSI configuration, the laser pulses are reflected off of two mirrors (to
allow full freedom in positioning the beam) and then sent through a lens and window to
focus the pulses at a point inside the vacuum system of the mass spectrometer. The pulses

then expand to a diameter on the order of 400 nm at which point they interact with the

tracked aerosol particles (the laser diameter can easily be changed). The expanding pulses
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continue through another window and are incident on a pulse energy meter (a J25LP2
from Molectron) secured to the back of the mass spectrometer.

It is important to discuss the exact scheme used to trigger the gandard DI laser and the
DAQ system since thisis critical for successful operation of the instrument. If the laser is
fired too early or too late, it will not hit tracked particles. If the DAQ system is not
properly synchronized with the DI laser, the calibration of the mass spectrometer will
change; in particular, the to parameter in Eq. 1 will vary. (Calibration is discussed more
fully in chapter 3). A complication in this process is that proper triggering of the laser

requires not one but two signas (the flash lamp trigger and the Q-switch trigger) and the

MAPL3ET RGP W4PD
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Figure 12. Images of the 266nm Ultra beam profile at different pulse energies. The laser energy increases
monotonically from a. (~0.4 mJ) to d. (~2 mJ). The vertical scale shows the fluence (in arbitrary units) at
each point in the base plane. The base of each figure is approximately 900 rm”~ 900nm. The most
important features to note are simply that the shape of the profile changes dramatically and that there are a
broad range of fluences produced at every setting.
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first of these (the flash lamp trigger) is required amost 200 ns before the laser emits
light.

Since the distance from the second tracking laser to the middle of the mass
spectrometer is twice the distance from the first tracking laser to the second, the time
delay between the two scattering events is simply doubled and added to the time of the
second scattering event to determine the time when the particle will reach the center of
the ion source. The instrument supplies one trigger signal, 185 s before the particle
arrives, to trigger the standard DI laser’s flash lamp. The instrument supplies a second
signal, when the particle arrives at the middle of the ion source, to trigger the laser's Q-
switch. A finite delay exists between the Q-switch trigger and the emission of the laser
pulse, but thisis small (<100 ns) and is compensated for by a dlight vertical trandation of
the DI laser beam.

The laser itself provides a Qswitch sync pulse used to trigger the data acquisition
system. This is the default triggering scheme configured by TSI and was used in chapter
4. Unfortunately, the amount of time between the Q-switch sync and the actual emission
of laser light varies with laser energy. This means that the ion creation time varies with
respect to the start of data acquisition and thus the mass calibration of the spectrometer
changes every time the pulse energy is adjusted.

The second TSI mass spectrometer was used with different DI lasers for subsequent
chapters and an improved triggering scheme was implemented. The timing circuit was
modified so that the signa previously used to trigger the standard laser’s flash lamp
occurred even earlier in time (300 s before particle arrival rather than 185 ns). This

allowed external delay generators to be used to create all three required triggers with
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complete freedom. One trigger starts the flashlamp (if the laser employs a flash lamp).
The next trigger fires the Q-switch and the final trigger starts the data acquisition system.
An oscilloscope and a photodiode are used to synchronize the triggering of the data
acquisition system with the emission of the laser pulse (rather than the Q-switch sync).
This allows the laser power or the whole DI laser to be changed without altering the mass

cdlibration.

2.6 Challenges to the Production of a Useful BAMS System
An ATOFMS cannot simply be rolled into the field and used as a biodetector. This

thesis addresses severa of the problems that need to be solved in order for a future
BAMS system to successfully operate as a powerful detector of biological aerosols. The
desorption and ionization processes used to generate ions must be optimized to produce
mass spectra that have greater information content and that are also less variable than the
spectra produced by the unaltered commercia systems. In the present context, greater
information content basically means that ions with higher masses must be generated
(since these are more likely to be characteristic of a particular species than small ions
such as sodium). Software algorithms must also be developed and refined to effectively
identify particles on the basis of their mass spectra and afew other properties. Ultimately,
software is needed that will ke the results of many individua particle identifications
and determine whether there is sufficient cause to sound an alarm or not. All of these
issues are addressed in this thesis. Other challenges exist, but other members of the

BAMS group are actively addressing them. The group is already building a new, far more
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advanced instrument, based on our own designs, whose performance should far exceed

that of any existing single particle mass spectrometer.
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Chapter 3. Data Processing, Clustering, Identification
and Limiting Statistics

The BAMS system will rapidly produce huge amounts of data that must be processed.
Automated software algorithms are essential. Their ultimate goal is to identify individua
aerosol particles on the basis of dua polarity mass spectra and a few related statistics
such as particle size. This task might be relatively easy, if particles of a given type (e.g.
spores of a particular Bacillus species) aways produced identical spectra. Unfortunately,
this simply does not happen in practice. Identical particles produce only roughly similar
mass spectra and significant differences between the spectra may be present. Dealing
with this variability is perhaps the biggest single challenge to successful application of
the BAMS technique.

The BAMS software more or less supports two basic modes of operation: known
particle analysis and unknown particle identification. In the first mode, known samples
are aerosolized and sampled by the instrument. (This type of operation includes all of the
experiments performed in this thesis.) Some basic initial processing creates mass spectra
that can be examined visually or used in more quantitative applications. Frequently, it is
advantageous to group similar spectrainto “clusters’. Clustering has several applications,
but certainly one of the most important is that average spectra from the clusters can be
collected and stored to form a library of spectral types. In the second mode of operation
unknown particles are sampled by the instrument and identified by comparison to the
library. The basic processing of the raw spectra and many of the calculations performed

in the two modes of operation are actually very similar to one another.



40

This chapter describes the various mathematical operations performed on the raw data
produced in either of the modes just described. The algorithms and even the instruments
have been continually evolving so an assortment of processing and analysis methods have
been used throughout this thesis; methods used to analyze the data in chapter 4, for
example, were replaced with newer methods for use in chapter 5. At any rate, certain
operations are always performed to load the raw spectral data from file, smooth it (if
desired), remove the baseline offset (section 3.1) and then optionally refine the time-of-
flight calibration so that peaks can be assigned accurate mass-to-charge ratios (as
described in section 3.2). The dua polarity mass spectra are then represented in
compressed form by pairs of high-dimensional vectors (section 3.3). Once the spectra
have been represented in vector form, additional sets of operations can be used to either
cluster similar spectra or to identify unknown spectra (section 3.4).

Since the identification and clustering algorithms operate on the vector representations
of the spectra, any variability in the vectors is cause for concern. Potential sources of
variability are minimized whenever possible, but there is no reason to believe that the
mass spectra (or their vector representations) will ever be perfectly consistent. Simple
statistical arguments are developed to help quantify and deal with this variability more

effectively in section 3.5.

3.1 Initial Processing: Smoothing and Baseline Subtraction
The commercia software that runs the ATOFMS instrument creates a separate data

file for each dual polarity mass spectrum collected (as described in the previous chapter).

Each file contains a header holding the particle size, measured laser energy and time
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stamp among other statistics. The bulk of each file consists of the raw mass spectral data:
30,000 data points representing the positive ion signal at different flight times and 30,000
data points representing the negative ion signal at matching flight times. To be precise,
the two sets of data representing the raw “half” spectra are actually just long lists of the
MCP voltage readings. The position of a reading in the list indicates the flight time (the
first point corresponds to t»0 ns, the second point to t»2 ns and so on). The sum of the
voltage readings corresponding to a single peak is proportional, on average, to the
number of detected ions that generated the peak. Several examples of raw mass spectra
were shown in Figure 11.

The data for the two half spectra obtained from each aerosol particle are treated
independently in the initial processing since this is simple and has historically produced
useful results. It is clear, however, that some correlations must exist between the two half
gpectra, which may prove useful in the future. In the first step of the processing, a
smoothing algorithm convolves each half spectrum with a narrow Gaussian to reduce
some of the point-to-point fluctuations in the data. This is equivalent to a Gaussian
frequency filter'®. To minimize processing time, the Gaussian (in the time domain)
contains only five discrete points and has a 1/e full-width of 4 ns (appendix A.1 contains
the actual code).

A simple basdline correction is next employed to remove the roughly constant baseline
offset. The baseline is not perfectly constant because large ion fluxes may cause ringing
and other non-ideal behavior in the detector circuitry (Figure 13). 4000 continuous data
points near the start of each half spectrum are selected and sorted by amplitude. The

second lowest quarter of the sorted data is averaged and the result is used as the baseline
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Figure 13. An average of ~200 positive raw half spectrais shown to make imperfectionsin the baseline
clear (the baseline correction is always applied to individual spectrain practice however). The two pairs of
vertical bars indicate the regions used to calculate two starting baseline values. The thick, nearly horizontal
line indicates the baseline estimate for the spectrum. Oscillations in the actual baseline are not desirable,
but they arerelatively small compared to the mean DC offset (~13 units) and are insignificant compared to
the height of the tallest peak (>3500 units).

value at the middle of the 4000-point region. The remaining data in the region is excluded
from the average in order to prevent real peaks, chemical noise or detector ringing from
unduly influencing the calculated value of the baseline. A second set of 4000 points is
selected at the erd of the spectrum and another baseline value is obtained. A straight line
is then constructed between the two points forming the full baseline estimate, which is
then subtracted from the data. In most cases, this does afairly good job of providing a flat

basdine with a mean near zero. A further refinement will be discussed later.

3.2 Calibration
At this point, the spectral data consists of dightly processed voltages measured at a

series of flight times. A calibration equation must be obtained so that each of these flight
times can be associated with a specific mass-to-charge ratio. An equation for the expected
flight time of an ion in the ATOFMS is derived in section 3.2.1. It is simplified to revea

a general form of equation that is actually more useful for calibration purposes. Once this
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is done, standard calibration methods are described in section 3.2.2 along with several
unique problems encountered in the ATOFMS that require more advanced methods to be

applied. In short, each spectrum has a dlightly different calibration. This necessitates an

“autocalibration” routine such as the one described in section 3.2.3.

3.2.1 Derivation of the BAMS Time-of-Flight Equation
The total flight time of an ion in a mass spectrometer, such as that shown in Figure 14,

can be predicted very easily if the eectric fields are assumed to result from simple linear
gradients between goplied potentials (i.e. no fringing effects). In Figure 14, x; t0 Xs
represent the lengths of the various regions of the mass spectrometer. V; to Vs represent
the applied voltages. Note that the entire drift region is held at a corstant potential. The

measured flight time of an ion, with mass m and charge q, initialy located at xo with

s
5o
£
Position
N
NN
I ! IMCP
Y rL\ il L b T ______‘__"__"'_'__:::__“_:‘-'—'—'
e — mmomommeoe- Reflectron
—I I— Drift Region
NNV
v, v, V, v, Vg

Figure 14. The basic configuration of theion source, drift tube, reflectron and M CP detector for one
polarity of the BAMS system is shown (not to scale). The detectors and part of the drift region for the other
polarity are also shown. The gray trapezoid in the source crudely represents the focused stream of aerosol
particles. The black dot at its center indicates the region where particlesinteract with the DI laser. The
simple plot at top shows the basic pattern of accelerating potentials.
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initial axial velocity s and trigger error to (the time interval between the ion’s creation

and the moment the digitizer starts acquiring the MCP signals) can be found by

sequentially calculating the acceleration in each region, the velocity at the end of each

region and finally the time spent in each region.

The accelerations are found using the simple equation F =ma = DVq/x.

_Vi-V, q
%= X, m
V, -V
% = 2x 3%
2

a, =0
4
V,-V
% = 4x 5%
5

The axial velocity or speed, s, at the end of each region is found using s,

(s istheinitid velocity).

Eq. 2
= (s + 2a]"

Eq.3

Note that the location at which te ion turns in the reflectron does not have to be

calculated explicitly. Finally, the flight time in each region can be caculated using

t=(s, - s)/a.
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Eq.4
These times correspond to the time spent in each region by the ion on asingle crossing (ts

is the time to required to stop in the reflectron or equivalently the time to reach maximum
penetration). The ion crosses severa of the regions twice, therefore, the total recorded
flight timeis
T =t +t, +1, + 2, + 20, +21,.

Eqg.5
Eg. 5 involves an additiona slight approximation because the ion does not quite retrace
the entire length of the drift tube before hitting the MCP. Although al of these equations
are quite smple, the full expansion of Eq. 5 is quite lengthy. If the initial axia ion
velocity is zero, however, it is not difficult to show that the mass-to-charge ratio

corresponding to arecorded flight time of t can be written as

m
E:c(t- t,).

Eq.6
The parameters ¢ and tp are constants determined by the properties of the mass

spectrometer. EqQ. 6 is perfectly equivalent to EQ. 5 so long as the initial axia velocity of
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the ion is zero. If the velocity is nonzero, EQ. 5 cannot be represented so compactly. An

approximation can be written as

%» Cl(t : to)2 +Cz(t } to)s-

Eq.7
The parameters c,, ¢1, and to could be written in terms of the voltages and distances used

in the derivation of Eq. 5, but Eq. 5 isitself an approximation. The true value of Eq. 6 and
Eq. 7 isthat they provide a general form of equation that can be fit to a limited set of data
(i.e. a few pars of mass-to-charge ratios and associated flight times) to derive a

calibration curve for an entire mass spectrum.

3.2.2 Standard Calibration Methods and Limitations in an ATOFMS
To obtain a calibration for most TOF spectrometers, it is usually sufficient to ssimply

generate a mass spectrum from a materia with a known (and idedly simple)
composition. Since the calibrant material’s composition is known, peaks in the resulting
raw mass spectrum can be assigned tentative masses by eye with relative ease. Once
several flight times have been associated with specific masses, a calibration equation
(usually with the form of Eq. 6) is fit to the data and the masses for any of the remaining
flight times can be found. In many cases it is even possible to incorporate a calibrant
directly in the sample that is being analyzed to provide an accurate internal standard.
Cdlibration is generally not a topic that merits much discussion, but the dual polarity
instruments used here accentuate a few problems that can often be ignored in standard
mass spectrometers. The most significant of these problems is that the exact position at

which ions are created varies from shot to shot and cannot be easily measured. The cause
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of this uncertainty is that the DI laser has afinite width (this is crudely represented by the
dot in the middle of the source in Figure 14). One aerosol particle can interact with the
left side of the laser beam and the next particle can interact with the right. Since thereisa
static potential gradient in the ion source region, the time-of-flight for an ion depends on
the axial position where t is created. To be perfectly clear, each axial position has a
different potential relative to the drift tube so ions that are created from aerosol particles
at different axial positions will have different velocities in the drift tube, different total

flight times and thus dightly different calibrations. Even dlight variations in the
calibration are potentially significant. If two identical raw spectra are calibrated such that
one or two of the prominent peaks in one of the spectra are offset by one mass unit (or
potentialy even less) from the matching peaks in the other spectrum, the software will

not recognize that the raw spectra were identical or even similar. This can cause particles
to be left unidentified, or worse yet, misidentified.

For the momert, Eqg. 5 will be applied directly to confirm that the finite DI laser sizeis
in fact a significant source of jitter in the calibration of the current instrument. Assume
that the ions have no initial velocity and that the trigger aror is zero. The relevant
parameters of the mass spectrometer are approximated as follows

X1=1cm, X2=0.5cm,  x3=60cm, x=0.5cm, Xs=14cm,
V1=2000V, V,=-3000V, V3=-7000V, V,=-2000V, Vs=2000V.
The flight times for ions with mass-to-charge ratios of 199 and initial positions spread
axialy over 400 mm (£200 nm relative to the middle of the ion source) range from

18.296 to 18.344 ns. Flight times for ions with mass-to-charge ratios of 200 and the same

initial positions range from 18.342 to 18.390 ns. The ranges overlap, which is clearly not
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desirable. On one laser shot, a particle may generate ions with a mass-to-charge ratio of
199 and a flight time of 18.343 ns. On the very next laser shot, an entirely different type
of particle could produce ions with a mass-to-charge ratio of 200 and exactly the same
flight time. This will cause significant difficulties in subsequent analyses if the proper
masses cannot be determined reliably. The overlap becomes even worse for larger
masses.

There are several means to address this problem. Idedly, the incoming aerosol
particles should be focused more tightly into the center of the ion source. This is a work
in progress (and is not discussed in this thesis). A second option is to reduce the diameter
of the laser beam, in order to reduce the width of the region in which aerosol particles are
ionized, but this would aso reduce the number of particles hit, which is unacceptable. A
final option is to calibrate each spectrum individually. This would be relatively easy if
certain marker peaks were always present in the mass spectra, but this does not usually
occur, even with pure samples. Nonetheless, an “autocalibration” routine has been
successfully developed that produces a refined calibration for each individual spectrum. It
is described in the next section (3.2.2), but first it is important to mention a final
peculiarity of the ATOFMS.

In an ATOFMS, the initid velocities imparted to the ions by the DI event are
geometrically unconstrained (there is no sample substrate). This should not be a
significant source of calibration jitter, but it will degrade the ultimate resolution of the
mass spectrometer. If peaks overlap significantly, they will not be identified accurately in
later analysis (as is explained in section 3.3). The unconstrained velocity distribution may

also contribute to odd peaks shapes that are occasionally observed and complicate
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accurate calibration. The reason for the peak broadening (and potentially related peak
shaping) is that individua ions are just as likely to have an initia velocity in the direction
of the electric field, as in the opposite direction. For ions with an initial axia velocity
antiparallel to their acceleration, the electric field must bring them to a stop (in the axial
direction) and then accelerate them back to the plane in which they were created. By the
time the ions reach this plane their axial velocity has been fully reversed and they behave
just as if they had started with the opposite velocity. A finite amount of time will have
passed during this turnaround, however, that cannot be compensated for by the static

fieldsin the rest of the spectrometer. The turnaround time is equal to

2SO,axial

turn — a/l j V2 &9
& x mg

Eq. 8
where $axia 1S the initial component of the velocity along the axis of the spectrometer.
The turn around time can be reduced by increasing the potential across the ion source, but
this causes other problems in practice. Other members of the BAMS group have begun
implementing a delayed extraction system that should help overcome this limitation. This
new system may aso enable the measurement of the initial ion velocity distribution so

that its effects can be better understood. Unfortunately the system was not available for

the experiments reported in this thesis.

3.2.3 Calibration Refinement (a.k.a. Autocalibration)
Each individual spectrum requires a potentially unique calibration, but it is too time

consuming to calibrate each spectrum manually (i.e. to identify individual peaks in the
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raw mass spectra, assign tentative masses based on knowledge or experience and then fit
a calibration equation). Fortunately, a nearly equivalent result can be obtained by
calibrating the average spectrum from a set of data manually and then using an automated
routine to refine that “average’ cdibration for each individua spectrum. The only
necessary assumption in the current autocalibration algorithm is that the majority of the
peaks observed in each spectrum should have integer mass-to-charge ratios. Because of
the small mass range of the ATOFMS (quantified in chapter 6) and the fact that multiply
charge ions are seldom observed, this assumption should be relatively safe. Utilizing the
“average’ calibration and the aforementioned assumption, the goal of the current routine

isto obtain two parameters, aand b, such that

m 2
—»la +b).
", a0

Eq.9
Thisisjust adight variation of Eq. 6.

At the core of the autocalibration routine is a “calibration quality function” that must
be maximized to obtain the refined calibration parameters. Its primary arguments consist
of a modified subset of the raw mass spectral data and test values for each of the two
calibration parameters (a and b). The quality function is designed to have a large value
when the correct calibration parameters are input for the spectral data provided and a
small value when the incorrect parameters are input. Clearly the real challenge is to
properly define the quality function. Once it is defined, the refined calibration parameters
are easily found using the “fminsearch” function built into MATLAB v6.5 (which was
used to develop al of the code described in this thesis). The code for the autocalibration

algorithm and the quality function (named “MassFit” in the code) can be found in the
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appendix (A.3). The quality function is described shortly, but it is important to first fully
understand the inputs passed to the function.

To facilitate rapid execution of the autocalibration routine (and the quality function in
particular), regions of the raw spectrum where the ion signal falls below a threshold value
are discarded. Regions representing mass-to-charge ratios greater than ~250 are aso
discarded since ions with such masses cannot be expected to have integer mass-to-charge
ratios. The sguare root of the remaining data (i.e. the actual voltage values) is then taken
to prevent large peaks from overpowering smaller peaks. The end result of al thisis the
modified spectra data that is actualy passed to the quality function. The “average”
calibration parameters are generally passed to the maximization routine as a starting
value. The maximization routine itself, however, determines the actual calibration
parameter values passed to the quality function.

The quality function operates as follows. It takes the modified spectral data and
calibrates it using whatever calibration parameters are provided by the maximization
routine. This modified bit of mass spectrum is then multiplied by a comb-like artificial
gpectrum that has a “tooth” at each integer massto-charge ratio. (If large peaks are
expected at noninteger mass-to-charge ratios, teeth can be added or removed from the
comb.) The resulting product is integrated to find its total area. The areais weighted by a
few additional factors, which prevent the new calibration parameters from deviating
significantly from their average values, and the result is the value returned by the quality
function. As aready stated, the calibration parameters that maximize this value are
assumed to be the correct calibration parameters for the spectrum under consideration.

The important operations performed by the function are illustrated in Figure 15.
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The reason the autocalibration routine works is fairly ssimple. Most of the prominent
peaks in the spectra will fal on integer mass-to-charge ratios and overlap significantly
with the teeth of the comb when the calibration parameters are correct. When the product
is integrated, a large value results. When incorrect calibration parameters are used, the
peaks are not located at integer mass-to-charge ratios and do not overlap well with the
teeth of the comb. The area of the resulting product is reduced (Figure 15).

The resolution of averaged mass spectra is improved significantly by using the

autocalibration function. Figure 16 shows average spectra produced with and without the
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Figure 15. A graphical example showing that the correct calibration parameters produce alarger
“integrated area” when applied to araw spectrum than incorrect calibration parameters. Notice that most of
the peaks have near integer mass-to-charge rations when the correct calib ration parameters are first applied.
Thisis not the case when incorrect parameters are applied. Similar operations are performed by the
autocalibration routine.
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Figure 16. Averages of 1000 spectra obtained from single Bacillus spores. Note in particular that the peaks
near m/q=2167 are much more distinct when the spectra are individually calibrated (using the routine
described) before averaging. The peaks are sharper because thejitter in the calibration has been reduced.

autocalibration routine. The peak at m/z=-173 has a width of 0.8 mass units (FWHM) and
a height of 10 units when the autocalibration routine is not used. When the routine is
used, the peak has a width of 0.2 mass units and a height of 40. This represents an
improvement in resolution of 4 and an improvement in the peak height-to-width ratio of
16. This clearly demonstrates that the calibration jitter has been reduced by the
autocalibration routine. It should be pointed out, however, that the algorithm is not
perfect. The routine can make the calibration worse when it is forced to operate on poor
quality spectra thet have only a few peaks or large amounts of “chemical noise”. Poor
results are also more likely when a poor starting calibration is applied. In future versions
of the algorithm, it may be possible to take advantage of certain correlations, which must
exist between the positive and negative halves of each dual polarity spectrum, to increase
the agorithm’'s effectiveness in such cases. It should be clear, however, that the
autocalibration routine cannot produce an average spectrum with higher mass resolution

than the individual spectra.



3.3 Peak Finding and Vector Formation
Once the raw spectra have been smoothed, corrected for baseline offsets, and

calibrated, a peak finding algorithm is used to determine the location, height and area of
each peak in each spectrum and the spectra are finally represented in compressed form as
350-dimensional vectors. Two methods to produce the vectors have been developed and
used in this thesis. one requires the peak finding algorithm and the other does not. In
general they produce similar results, but each method has certain advantages and
shortcomings. The method dependent on the peak finder is used in chapter 4 and is
described here first.

The location, height and area of the ion peaks in each spectrum are determined using a
relatively simple algorithm (included in appendix A.4). In the case of 8 bit data (where
signal values range from 0 to 255 in arbitrary units), any contiguous region of data where
the signal is above a threshold value of 5 is considered a single peak. For ~12 bit data, the
threshold is set at 50. The height assigned to each peak (i.e. above threshold region) is the
maximum signa value in the region. The location assigned to the pesk is the mass-to-
charge ratio of the maximum signal point (as opposed to, for example, the middle of the
peak region or its center of mass). The area of the peak is smply the sum of the data
points in the region.

For each aerosol particle that produces a bipolar spectrum, two 350-element vectors
are formed (one vector for positive ions and one for negative ions). Generadly, it is
preferable to characterize spectra by the area of their peaks (rather than their heights)

because the area of a peak should be proportiona to the number of ions that generated it
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(on average). The i" element of each vector, therefore, represents the integrated area of
the ion peaks near the integer mass-to-charge ratio |[m/gl = n where n ranges from 1 to
350. lon peaks with mass-to-charge ratios greater than 350 (which are rare) are ignored,
but this can be changed easily.

Some peaks fall between integer mass-to-charge ratios because they represent random
chemical noise, multiply charged ions or are smply calibrated imperfectly; the exact
cause is often not clear. Peaks with masses greater than a few hundred Daltons may not
have integer masses to begin with. Based on the information present in a single mass
spectrum, it is also frequently difficult to determine whether a small peak represents
meaningful signal or not. Consequently, it is not always clear to which vector element a
particular peak area should be assigned (or if it should be assigned to any element at al).
The following rule was implemented to consistently associate peaks with one or more
vector elements. If an identified peak fals within 0.3 units of an integer mass-to-charge
ratio, its area is assigned entirely to the corresponding vector element. If a peak is more
than 0.3 units away, its area is split between the two neighboring vector elements. All
peaks identified in the proper mass range are included. The exact details of this procedure

are apparent in the code in appendix A.4. By splitting noninteger peaks, the effects of any
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Figure 17. A portion of the mass spectrum from a single spore is shown in the top plot. The bar plot below
it showsthefirst 100 elements of the vector representing that portion of the spectrum. Two vectors are
needed to represent the full dual polarity spectrum for the spore and each vector contains 350 elements.
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remaining jitter in the calibration should be reduced. A portion of a mass spectrum and
the vector elements that represent it are shown in Figure 17.

The main theoretical objections to this vector formation method are related to the
imperfect peak finder. One of the chief problems with the simple approach used here is
that when two large peaks are close together, the signal level between the peaks may not
drop below the threshold value and so the two peaks will be identified as one. Obviously,
any small peak that fails to cross the threshold will also be missed. In practice, thisis not
usually a gignificant problem. On a more practica note, however, the method is
computationally intensive.

A second method to produce vectors was developed to be more efficient and does not
rely on the peak finder (or a threshold value) at al. (To be precise, the method is more
efficient primarily because the peak finder is not used.) It smply sums al of the data near
an integer mass-to-charge ratio (whether there is an identified peak there or not) and uses
the result as the vaue of the corresponding vector element. This is the method used in
Chapter 5. It is more sensitive to small shifts in the baseline than the previous method so
an improved baseline subtraction method was also implemented. The mass spectrum is
broken into a number of sections (~10 per mass range of interest per polarity) and the
data within each section is sorted by signal amplitude. The mean value of a subset of the
sorted data is then treated as the value of the baseline at the center of each section (the
value is similar to the median of the data in practice). A linear interpolation between the
values is then used to determine the baseline for al the remaining data points of interest.

Similar to the previous vector forming routine, data points that fall near half-integer
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mass-to-charge ratios are not assigned entirely to one vector element or another, but are

shared. The relatively simple code can be found in the appendix (A.5).

3.4 Clustering and Identification
Once the individual spectra in a data set have been reduced to vector form, the angle

between vectors from different particles can be calculated and used as a quantitative
measure of their similarity (Figure 18). Similar spectra produce similar vectors separated
by a small angle. Spectra that have no peaks in common produce orthogonal vectors.
Using this metric, it is often possible to group a large number of individual particle
spectra into a fairly small number of clusters where each cluster contains only particles
with relatively similar spectra. This facilitates the visuaization of large data sets, as

shown in chapter 4. More importantly, however, the ability to group similar spectrais an

Spectrum 1 Spectrum 2
1
= 2
x2
z2
1
x1
Y
m1 m2 m3 m1 m2 m3
(x2,y2,22)
0
(x1,y1,21)
-~

/ —
z
Figure 18. The positive or negative spectrafrom two different particles can be represented as vectorsin
space. |n the picture the vectors contain three elements, but in practice they usually contain 350 elements.

The angle between vectors is a measure of their similarity. If the angle is small, the vectors (and more
importantly the spectra) must be similar.
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important step towards the automated identification of particles (section 3.4.3).

3.4.1 Structure of the Clustering Algorithm
The clustering algorithm used in this thesis is a refinement of earlier implementations

of the ART2a neural network, which were written by other members of the BAMS
group®. The current agorithm is named BART, which is an acronym for Bunched
Adaptive Resonance Theory. A brief description of the overall structure and operation of
BART is given in this section. Individual components of the algorithm are described in
more detail in the next section (3.4.2).

The goa of BART is to produce clusters of particles with similar mass spectra. Each
cluster is represented by a pair of synthetic vectors, which are referred to as neurons (one
neuron represents all the positive ion half spectra and one neuron represents all the
negative ion half spectra as explained later). BART accomplishes its goal using an
iterative routine. Each iteration begins with a list of all the dual polarity mass spectra to
be analyzed (with each spectrum represented by two vectors as described in 3.3). The
spectrum list is randomly shuffled and then the vectors corresponding to the spectrum at
the top of the list are compared with any neuron pairs that exist. If the spectrum’s vector
pair matches one or more of the neuron pairs, the spectrum is added to the cluster
represented by the most similar pair of neurons. The neurons representing that cluster are
then updated using a weighted average. (The definition of a match and the exact process
of updating are described in section 3.4.2.) If the spectrum can’t be added to any of the
existing clusters (or if no clusters exist) it becomes the first member of a new cluster. The

vector pair representing the second spectrum on the list is next compared to al of the
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existing neuron pairs and the process is repeated until al of the spectra have been
assigned to clusters.

In the next stage of the iteration, BART compares the clusters just produced to see if
any of them are so similar that they should be combined, in which case it combines them.
It also erases any empty clusters (i.e. neurons to which no particles have been assigned).
At this point one iteration cycle is basicaly over. BART compares the clusters of
particles formed in the current iteration to the clusters formed in the previous iteration
(assuming that there was one) and, if identical clusters are found, the routine stops. If
different clusters of particles were produced, the neurons are retained, but the actual
groups of particles are erased. The master list of spectra is reformed and reshuffled, and
the next iteration begins. The iterations continue until identical clusters are obtained or

until some maximum number of iterations have been performed (usually ~40).

3.4.2 Matching Spectra, Updating Neurons and Merging Clusters
Clearly it is important to define what conditions constitute a match. When the

algorithm compares pairs of vectors (neurons are a special type of vector), the angle
between the two positive ion vectors is calculated and then the angle between the two
negative ion vectors is calculated. The angle that is larger is used as the “score” for that
comparison. If the score is less than a specified value, the particles are considered a
match. At the moment, the “specified value’ is typically ~46° (the cosine of the angle is
referred to as the vigilance factor, cos(46°)»0.7). This particular value has no specia
significance; it is simply a value that has been used traditionally and that produces

reasonable results. If the vector pair representing a spectrum matches the neuron pairs
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from several clusters, the spectrum is associated with the cluster that produces the
smallest score. Vectors representing positive ions are never compared or combined with
vectors representing negative ions at any point in the entire BART a gorithm.

When a new cluster is formed by BART, it is represented by the vector pair of the
spectrum first put in to i (i.e. the first spectrum’s vectors are the first neurons). When
subsequent spectra are added to the cluster, the neurons must be updated using a
weighted average. The effect of this average is simply to pull the neurons slightly toward
the new vectors. Each new vector is multiplied by 0.05 and then added to the appropriate
neuron, which has been multiplied by 0.95 (i.e. 1.00-0.05). The weight of 0.05 is referred
to as the “learning rate’” and was chosen for the same empirical reasons the vigilance
factor was chosen above. It should be clear that the neurons are not generally equal to the
normal, unweighted averages of the vectors of the particles in a cluster, but they will
usually be similar, particularly if the cluster contains many particles.

Once al of the particles have been assigned to clusters, BART checks to see if any of
clusters match and, if so, combines them. Clusters are compared one by one. The
individual vector pairsin the smaller cluster are compared to the neuron pair of the larger
cluster. If al of the vector pairs match the neurons, then the mean vectors from the small
cluster are averaged with the neurons of the larger cluster, using the populations of the
two clusters as weighting factors, to obtain new neurons for the combined cluster. The
details of this procedure should be made clear by examining the code included in the
appendix (A.6). These comparisons and combinations are not performed on the final

iteration if the maximum number of iterations has been reached.
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One of the most significant differences between BART and earlier implementations of
the ART?2a agorithm is that BART considers both polarities of each spectrum “at once’.
Earlier methods would cluster spectra with similar positive spectra (and ignore
similarities or differences between negative spectra) or would cluster similar negative
spectra (and ignore differences in the positive spectra). Another significant difference is
that BART joins similar clusters and deletes empty clusters at the end of each iteration.
This step was atogether absent from the earlier ART2a implementations. This meant that
once a neuron was formed, it could not be removed regardless of whether it was virtually
identical to other neurons or was never associated with any particles. This caused the
earlier implementations to produce unnecessarily large numbers of clusters.

BART and its predecessors are useful tools that have significant value in some
applications, but they are certainly not perfect. One troublesome property is that they
produce somewhat variable results. If the same set of data is reshuffled and fed into any
one of the algorithms multiple times, at least dightly different clusters will generaly
result each time. In many cases this is easy to understand. There are many equally valid
ways to group the individual spectra. Nonetheless, distinct groups of spectra may be
broken apart while other separate and distinct groups of spectra may be combined. It is
possible to exert some influence over these types of events by redefining the vigilance
angle, but no angle will be perfect for all sets of data. It is important to note that the
current vigilance angle is ~46°. It may not be probable, but it appears theoreticaly

possible, that two orthogonal vectors could be included in the same cluster (both ~45°

from the neuron, but separated from each other by 90°). Clearly, care must be taken not

to overestimate the significance of a particular clustering result. Nonetheless clustering
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has proven itsaf to be a useful and powerful qualitative tool for the analysis of large sets
of data. Besides that, the single most important application of the clustering routines is
building spectral libraries for identification purposes. In this application, most of the

shortcomings mentioned are not significant.

3.4.3 Identification
Clustering of data involves taking individual spectra and matching them to groups of

smilar spectra. It is a relatively small leap from clustering to identifying unknown
spectra. Spectra from known samples are acquired and clustered to produce a spectral
library. Once a library is made, unknown particles can be sampled and compared to the
library using the angle between vectors as a measure of similarity just as was done for the
clustering. Although improved identification of aerosol particles is a genera goa of this
thesis, the work described here did not in fact require the use or modification of the actua
identification algorithms so they will not be described here.

Although significant and encouraging progress has been made (by other members of
the BAMS group) in developing new identification algorithms based on the angular
comparison of vectors, it is not clear the angle between vectorsis really the best means to
determine the similarity of mass spectra. The angle between vectors can be dominated by
a few prominent peaks. Differences between small but important peaks in the mass
spectra will have almost no effect on the angle even though these differences may have
significant value for differentiating similar types of particles (e.g. different, but closely

related Bacillus species). A new metric is needed to better measure the similarity of mass



63

gpectra. A very closely related metric is derived in the next sections to quantify the

variability of the spectrain a particular set of data.

3.5 Statistics and Quantification of Mass Spectral Variability
In MALDI experiments, materia is often ablated from a “large” area that may be

hundreds of microns in diameter. In addition to this, spectra from many separate laser
shots are often averaged. The end result of this is that a peak in an average MALDI
spectrum may represent thousands or perhaps even millions of ions. In a BAMS system,
on the other hand, single mass spectra generated from single 1 nm (1012 g) particles must
be analyzed without averaging. A peak in a BAMS mass spectrum may be generated by
only afew tens of ions. It is an inevitable consequence that statistical fluctuations will be
observed and contribute to the differences seen between spectra from “identical”
particles. The fact that many peaks are present in a given spectrum makes it likely that
the fluctuations of at least a few of these peaks will be significant. These fluctuations
ultimately limit the consistency of the data that can be obtained and thus the ability of the
system to differentiate very closely related particle types. The magnitude of these
variations must be quantified. The following derivations explicitly account for some of
the fundamentally statistical processes that govern the reproducibility of mass spectra.
The metric ultimately obtained here is applied to quantify the variability of rea data in
chapter 5.

The basic calculations proceed as follows. The magnitude of the fluctuations in the
area of asingle peak is calculated in section 3.5.1. In section 3.5.2, the result from section

3.5.1 is applied so that whole spectra (with many peaks) or even sets of spectra can be



64

dealt with. In particular, the expected “distance” between an individual spectrum and its
true mean value is considered. A new normalization scheme must be (and i)
implemented to make this basic concept more useful. The scheme alows peak of vastly
different sizes to be more fairly compared. Ultimately, the variability of an entire data set

is quantified with a single number.

3.5.1 Statistical Fluctuations in a Single Peak
Assume that a certain type of particle produces spectrawhere an average of N ions are

detected at a particular mass-to-charge ratio with a standard deviation of sy. N includes
only the ions detected and does not include ions that missed the detector, hit charge-
depleted detector channels (in the case of an MCP) or were otherwise lost. The
probability to detect exactly n ions given an average of N is denoted as Pn(n) (no
particular functional form is assumed). Notice that these parameters and this distribution
entail al of the physics of the desorption and ionization event and all of efficiencies (or
inefficiencies) of the mass spectrometer up to the point of ion impact onto the detector. N
describes the number of ions detected, but not the actual response of the detector. Assume
that the response of the detector to a single ion has a distribution of signal values with a
mean of r and a standard deviation of s, This does not include ions that hit the detector
but fail to produce a detectable signal because of saturation or other factors. In the case of
the MCP detectors in the ATOFMS system, s»0.4r, but the exact value of r (i.e. the
mean voltage pulse area for a single ion impact) is currently unknown in terms of the

units in which the raw datais acquired.
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The mean signal observed (i.e. the average peak area) will simply be Nr — assuming
that r is independent of N. The standard deviation of the observed signal, sy, must be
derived more carefully. The first step is to calculate the probability to obtain an observed
signal within dy of a particular value y given the average of Nr. Once this probability is
known, the forma definition of the standard deviation (i.e. the root- meansquare
deviation from the mean) is applied to derive a more useful result.

Let Pn(y)dy denote the probability to observe a peak height within dy of y, given that
exactly n ions are detected (not an average of N). This distribution has a mean value of nr
and a standard deviation of n's,. (This assumes that n isindependent of r, which should
be relatively accurate as long as the MCP detector is not heavily saturated.) The last
result follows from the fact that the sum of a series of independent random variables is a
new random variable with a mean equal to the sum of the means and a standard deviation
equal to the sum in quadrature of the standard deviations.

Since the number of detected ions is not actually fixed, Pn(y)dy must be summed over
al the possible values of n weighted by the probability to obtain n. The resulting

probability to observe a peak signa within dy of y given an average signal of Nr is

Pe (Y)dy =& Py(n)P,(y)dy-

n=0

Eq. 10
Applying the definition of the standard deviation leads to

s% =dy- Nrf R, (y)dy = fy- Nr)zgeél P, (n)F’n(y)gdy-
0 0 n=0

Eq. 11
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The integral can be pulled inside the summation while the §-Nr)? term is expanded,
added to zero (i.e. -2nry+n?r>+2nry-n?r?) and rearranged to obtain

¥ ¥
s2 =4 P, (n)d(y nr)? +2nry - n’r?- 2Nry + Nzrz)Pn(y)dy.

n=0 0

Eq. 12
When integrated, the first term in the integral results smply in the variance of Py(y). The

second and fourth terms produce the mean multiplied by a constant. The third and fifth
terms are just constants unaffected by the integration. The mean and variance of Pn(y) are

already known so the integrated result can be written as

¥

s% =8 Pu(n)ns 2+ (N- n)’r?).
n=0

Eq. 13
The mean and standard deviation of Py(n) are known as well so the summation can be

easily evaluated

s2 =s fgaé P, (n)n9+r2€a§ P, (n)(N - n)29: Ns2+r%s 2, or
en=0 [} €n=0 2

S\ :\/(Nllzsr)2 +(rs )7 .

Eq. 14
This result for the standard deviation of the observed signal, sy, is smply the sum in

quadrature of the standard deviation of the signal if the number of ions detected was
perfectly fixed (sn=0), but the detector response varied, and the standard deviation of the
signal if the detector were perfect (s,=0), but the number of ions varied (assuming that N
and r are independent). This result is not particularly surprising, but it is important to note

that it was obtained without making any assumptions about the particular forms of Py(n)
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and Py (y)dy. The two distributions do not have to be Gaussian (or of any other standard
type). To quickly summarize, a peak generated by an average of N detected ions will
have a mean value of Nr (where r is the mean single ion detector response) and a
standard deviation of sy, given by Eq. 14. With this information in hand, a metric for the

calculation of the variability of a data set can now be devel oped.

3.5.2 Quantification of Variability in a Data Set
From the earlier discussions it should be clear that it is useful to represent or think of

mass spectra as vectors in space. For the purposes of clustering, it has historically proven
useful to measure the similarity of spectra by calculating the angle between the vectors
representing the spectra®. This measure, however, is less than ided. In practice,
differences between small peaks in the spectra are often very important for differentiating
similar, but distinct, particle types. Unfortunately, these differences may have little effect
on the angle. The angle can be dominated by a few large peaks that are shared by the
smilar particle types. A new metric is needed that appropriately weights the
contributions from all of the potentially relevant peaks.

It is more convenient mathematically to consider a distance, rather than an angle
between vectors. A raw distance measurement, however, suffers from many of the same
limitations as the angle. Fortunately, this can largely be fixed by applying a new
normalization scheme. A few calculations relevant to the determination of distances will
be described next and then the normalization will be described afterward.

In order to calculate the meansquared distance between an individual vector and its

mean value (i.e. the mean vector for that particle type), the meansquared difference
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between the area of a peak in a given gectrum and the area of that same peak in the
mean spectrum is calculated next. Let the difference between a peak area and its mean be
described by P4(y). P4(y) has a mean value of zero and a standard deviation of sq=Sn
(the value of s\ was derived in the last section and given in EQ. 14). The mean vaue of

the squared difference is thus

¥

d” = 'R (yly =5 = (N¥s ] +(rs )"

-¥

Eq. 15
The integral is equivalent to the variance of Py(y) since the mean of Py(y) is known to be

zero. The important point to notice is smply that the mean squared difference depends
upon the mean number of detected ions, N.

The mean sguared distance between an individual vector and its corresponding mean
vector can be (and is) now determined. The mean squared distance is smply equa to the
sum of a series of terms like Eqg. 15, where each term represents a different vector
element (this is just the Pythagorean theorem, D?=Dx*+Dy*+DZ+...). As aready
mentioned, this distance metric isn't much better than the corresponding angle at this
stage. Big peaks still dominate small peaks because Eq. 15 depends on N (sy is likely a
monotonically increasing function of N). A method is needed to normalize the data so
that equation Eg. 15 no longer depends so strongly on the number of detected ions.

To determine the appropriate normalization scheme an idealized system is considered.
In such a system, it may not be unreasonable to expect a binomial distribution of detected
ions. If each particle contained the same number of parent molecules, each one of the
molecules had the same probability of being ionized and detected, and the probability of

detecting any given molecule was independent of the probabilities for all other
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molecules, the number of detected ions would in fact be described perfectly by a
binomial distribution. Since the number of ions detected is amost certainly a very small
fraction of the total number of molecules, even in an idealized case, it should be safe to

approximate the binomial distribution with a Poisson distribution. In this limit, sn=N?

and Eqg. 15 can be rewritten as

CF—NrasrzHZQ
r g

Eq. 16
Nr is simply the mean peak signal (i.e. ared). A potential normalization scheme is now
apparent. When a set of data is collected, the mean value of any peak signal can easily be
found. The value of each peak signal in each individual spectrum will smply be divided
by the square root of its average value (or more precisaly, each element of each vector
will be divided by the square root of its mean value). It is not difficult to show that after
this normalization is employed, the mean squared difference between a peak and its mean

vauewill be

Eq. 17
As was desired, this value no longer depends on N. If the vectors under consideration

contain m elements, the mean squared distance between an individual spectrum and the

mean spectrum will simply be

D?=m
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Eq. 18
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The root mean square distance between a normalized spectrum and it’s mean value will

simply be the square root of Eq. 18,

Eq. 19
This is independent of the value of N (for any vector element) and is thus the same for

any type of particle that behaves in a manner consistent with the assumptions made. This
is avery appealing property. It doesn’'t matter what type of particle is looked at (so long
as only one particle type is examined at a time), or what laser power is used. If the
assumptions remain valid, the same RMS distance will be obtained. In reality, most
particles will probably not produce a Poissonian distribution of detected ions. It is likely,
for example, that the probability to ionize and detect a specific ion is correlated with the
probabilities for other ions. The assumption that s\=NY? will thus generally be an
underestimate of the true variability in the number of ions detected. If areal set of datais
collected, normalized and used to directly caculate the rms distance, the result will

generally be bigger than the theoretical result in Eqg. 19. This is, however, precisely what
makes the metric useful: the more variable the set of data, the larger the rms distance will
be. The rms distance can be calculated for any set of data, but Eq. 19 is only relevant to
data sets containing a single type of particle.

Ancther important property of this metric (at least in the idealized limit) is that
differences between peak areas are weighted by their statistical significance; big peaks do
not necessarily have any greater influence on the results than small peaks. Once the
spectra are normalized, every peak has the same standard deviation (in the idea limit).

When the difference between peaks areas or the distance between spectra is found, the
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result is really just a measure of how many standard deviations separate pairs of peaks on
average.

Because al of the elements in a vector representation of a spectrum are given
essentially equal weight in determining the ultimate value of the rms distance, care must
be taken when calculating an rms distance directly from areal set of data. The standard
practice when clustering spectra is to produce 350 element vectors (one for the positive
peaks and one for the negative peaks). Most of the elements in these vectors are zero or
near zero. They don’'t contain any information about the ions that are actually present in
the aerosol particle being analyzed; they simply represent noise. This means that the
portions of the spectrum smply representing random chemical noise can dominate
portions of the spectrum representing true signal. The solution is simply to choose
carefully which massto-charge ratios are represented by elements in the vectors.
Examination of an average spectrum is usualy all that is required to determine which
vector elements represent real ions (even if the ion peaks are very small) and which
elements ssimply represent various types of background noise. In chapter 5, it is simply
the ten largest positive peaks (i.e. vector elements) and the ten largest negative peaks that
are included in the calculations. The ideal number will likely vary from experiment to
experiment. Once again, it also should be noted that this particular metric should only be
applied to a homogenous set of data (i.e. data from a single particle type).

At this point, all of the tools required to analyze the data from real experiments have
been described. Chapter 4 describes the first real experiments performed. All of the data

is smoothed, calibrated and so on. At the end of chapter 4, the clustering routine from
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section 3.4 (i.e. BART) is used. In chapter 5, similar initial data processing is used and

the variability metric just described is applied.
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Chapter 4. Spectral Consistency and Laser Power

Dependence
Chapter 2 described the ATOFMS instrument and a number of experimental details.

Chapter 3 described the algorithms used to process the raw time-of-flight data. This
chapter shows the results of their use. The material covered in this chapter constitutes the
bulk of the first paper published by the BAMS group®. That paper is believed to be the
first published report showing both positive and negative mass spectra collected from the
same individual spore. The fact that so much information can be obtained from such a
small sample (~10*2 g) in so short a period of time (~1 s) is truly impressive.

A useful BAMS system, however, must do much more than simply produce mass
spectra from single particles. It must be able to identify particles on the basis of their
spectra. Unless the spectra produced by a given type of particle are consistent and distinct
from those of another particle type, the two types will not be identified or differentiated
efficiently. Significant spectral variability is a shortcoming of the data produced by the
current systems. This variability has many potential sources. Some of it may result from
natural particle variations. More importantly, some of it may result from the instrument
itself. If true, this must be prevented. As will be described in detail, the DI laser and in
particular its beam profile are easily identified as potential sources of variability. The first
experiments described here were performed using the standard DI laser to assess, as best
as possible, its actual contribution to the observed spectral variability. (An improved laser
setup is described and used in the next chapter.)

The laser pulse used to desorb and ionize molecules from aerosol particles is clearly
one of the most important variables in BAMS. 1t is, after al, the source of energy that

actually desorbs and ionizes the molecules that are analyzed to produce a mass spectrum.
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It is widely known that MALDI ion yields and ion velocities are fluence dependent®¢1%,
Furthermore, spectra from single non-biological particles have been observed to change
dramatically with laser energy’® %°. Other groups have used single particle mass
spectrometers to look at biological particles’ ", but the experiments presented here are
believed to be the first attempt to systematically correlate single particle mass spectra
from bacterial spores with laser energy and beam profile measurements. (A related paper
was just recently published by the Prather group concerning their DI laser profile and the

variability of spectra produced from 2,4-dihydroxybenzoic acid particles'®.)

4.1 Desorption/lonization Laser
A Big Sky Laser Technologies Ultra was used as the DI laser for the experiments

described here. This is the “standard” Q-switched, frequency-quadrupled Nd:YAG laser
described in chapter 2. The laser pulse energies used range from 0.2 - 1.0 mJ and were
obtained by adjusting the laser’s flash lamp power. After proper focusing and alignment,
the laser beam diameter was roughly 400 mm (FWHM) at the target plane (the plane
perpendicular to the laser beam where particles are most likely to be hit).

Terms describing laser energy, power, fluence and intensity are often used loosely in
practice so it is worthwhile to clarify their meaning here. Intensity (measured in W/cn?
or nW/mm¥) is used here to describe the rate at which energy is incident on an area at a
particular point in time (the strict definition is power per solid angle). Fluence (in Jcn?
or n¥m¥) describes the net energy incident on an area and is equivalent to the

“intensity” integrated over the tempora duration of the 6 ns laser pulse. The total pulse
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energy (in J or mJ) is the fluence integrated over the spatial cross-section of the laser
beam.

The total pulse energy can be recorded for every analyzed particle, as was done here,
but this quantity has limited value. The area over which the laser profile has a fluence
greater than or equal to half its peak fluence is ~1.3" 10° mm. The cross sectional area of

a spore is less than 1 nmf. Over the course of a 6 ns laser pulse the spore does move

dightly, but even a spore traveling at 400 m/s traverses only 2.4 nm and samples a very
small fraction of the laser pulse. It is, therefore, the local intensity and local fluence that
determine the maximum energy a spore may absorb.

Figure 19 contains an image of the standard laser’s profile (obtained with a Coherent
LaserCam IIID camera) that is clearly not uniform in fluence or intensity. This is

significant because preliminary experiments indicate that the focused stream of aerosol

MS axis é
L asex Particle

axis

beam axis
Al
Potential spore
interaction
regions \ y J
N ~400 mm laser diameter (FWHM) )
Y
~1000 mm particle beam diameter

Figure 19. The profile of asingle laser pulse is shown with two examples of regions (A and B) in which
spores could interact with the pulse. The dimensions of the regions, which are elongated because of the
spore velocity, have been magnified by afactor of 10 (area’ 100). The width of the focused particle stream
isroughly 1 mm, asindicated by the vertical lines, so successive spores will interact with different regions
of the laser pulse. The amount of area enclosed by the large circleis equal to the amount of areain the
profile where the fluence is greater than or equal to half of the maximum fluence. Neighboring shades on
the stepped linear gray scale represent fluences differing by 10% (of the maximum).
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particles is more than 1 mm wide at the point where it intersects the laser (Figure 14).

The result of thisisthat successive aerosol particles interact with different portions of the
laser beam and absorb different amounts of energy even if the pulse energy is fixed. A

spore located near region B in Figure 19, for example, would encounter higher fluences
and absorb more energy than an identical spore located near region A. Unfortunately, it is
not currently possible to determine precisely where a given particle interacts with a laser
pulse. As a result, it is not possible to determine the loca fluence that a particle
encounters or how much energy a given particle absorbs. Nonetheless, it is quite possible
to control and measure the average fluence (i.e. the pulse energy) and use statistical

arguments to infer the fluence dependence. It should be noted that simply focusing the
aerosol particles more tightly would not solve the problem. The profile changes from shot

to shot so even if particles always interacted at the same position within the profile, the
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Figure 20. a-c show individual pulse profiles at ~0.2 mJ. d-f show profiles at ~1.0 mJ. The profiles have all
been scaled to the same range to maximize contrast and to remove the effects of any pulse energy
variations. Thetrue average fluence distributions are shown below. The profiles clearly change from shot to
shot. (Vertical fringein a-c result from filtering optics and are not actual features of the profile.)
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range of fluences encountered would still vary (Figure 20).

Figure 21 shows fluence distributions for the six laser settings used (0.21, 0.34, 0.50,
0.66, 0.84 and 1.02 mJ average pulse energies) and a different view of the profile shown
in Figure 19. The units of n¥m? (1 n¥m? = 0.1 Jcnf) are convenient since the
physical cross-section of a spore is on the order of 1 mm?. The distributions in Figure 21
are useful, but not commonly presented (they are not line-outs or 1-D projections of the
profile images), so a short description of their generation and significance is in order.

For each of the six laser settings, multiple images of the laser beam cross-section
dightly in front of, at, and slightly behind the target plane were acquired. For each image,
the absolute fluence was calculated for each pixel and a histogram of the values was
produced. The number of pixels falling in each fluence bin was multiplied by the area per
pixel (~10.7 m) to find the total area represented by the bin in the laser cross-section.
Histograms from the 49 images collected at each laser setting were then combined to
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Figure21. Laser fluence distributions produced by the six |aser energy settings used. Distributions
correspond to average laser pulse energies of 0.21 (a), 0.34 (b), 0.50 (c), 0.66 (d), 0.84 (e), and 1.02 mJ (f)
respectively. A broad range of fluencesis present in all laser pulses. Thisis expected to cause variability in
the patterns of ions produced by the DI laser from shot to shot. The inset shows atypical 0.5 mJ, 266nm DI
laser pulse profile (single shot). The diameter of the profile is ~400 mm (FWHM).
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Figure22. Laser beam profiles for an ideal Gaussian (@) and flattop (b) are shown. The fluence
distributions for these profiles are shown in ¢. Only two distinct fluences are present in the flattop (the
value at the top, and the background of zero). A range of fluencesis present in the Gaussian profile with
increasing area present at lower and lower fluences.

produce the results in Figure 21. The curves show the range of fluences that an individual
aerosol particle may encounter. To help properly interpret these distributions, the fluence
distributions for a perfect Gaussian and a perfect flattop profile are shown in Figure 22.
The fluence distributions produced by the standard laser are not entirely consistent with
those of atrue Gaussian (some of the fluences are over represented in the cross section of
the standard laser). Nonetheless, the standard laser’s profiles will be referred to as
roughly Gaussian for convenience.

If the smplifying assumption is made that the aerosol particle distribution is uniform
across the laser pulse (recdl that the particle beam diameter is much larger than the laser

beam diameter), the area in the beam at a given fluence should be roughly proportional to
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the probability of a spore interacting with that fluence. By including data from multiple
laser shots and three spatial planes the effects of shot-to-shot energy and profile
variations are reflected in the curves for particles whose positions may vary in al three
gpatial dimensions.

As expected, a broad distribution of fluences are observed for all the laser settings
used. At the highest setting, the fluence ranges from zero to more than 7 n¥mm?. The
broad distributions result primarily from the laser profile, but pulse-to-pulse energy
variations also contribute. The distribution of laser pulse energies (measured while
actively collecting spectra at a fixed laser energy setting) isapproximately Gaussian with
a standard deviation of 14% at the lowest setting, which shrinks to 4% at the highest.
Ignoring profile variations for the moment, these pulse energy variations could cause the
fluence to vary from its mean value by +14%. The profile, however, causes the fluence to
range from zero to perhaps severa times the mean. Any effects due to shot-to-shot pulse
energy variations (at fixed laser setting) will be smaller than those due to the laser profile.

A potential source of error in the calculated fluence values is the camera system and
associated optics. Inhomogeneities in the CCD response have not yet been fully
guantified. Furthermore, the system produces images of a particular plane in space, but it
is very difficult to ensure that this plane is exactly coincident with the center of the
aerosol particle stream (i.e. the target plane). The focusing error may be 1-2 mm thus the

errors in the calculated fluences may be 5-10%.
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4.2 Data Collection and Initial Processing

B.at. spores were aerosolized using a Collison nebulizer. 1000 dual-polarity mass
spectra from individual spores were collected at each of the six laser settings mentioned
earlier. The data was collected without modification of the ATOFMS or associated laser
systems so the range and particular values of the average laser energy were limited. Laser
settings below 0.2 mJ did not produce spectra at a practical rate. Furthermore, the
majority of the spectra that were produced had very few ion peaks, which made them
difficult to calibrate accurately and ill-suited for identification purposes. Energies above
~1.0 mJ did not produce significant spectral changes compared to spectra taken at 1.0 mJ
except for increasing fragmentation. The raw spectral data was smoothed, corrected r

baseline and “autocalibrated” as described in chapter 3.

4.3 B.at. Spore Mass Spectra and Their Energy Dependence
Figure 23 shows individual dual-polarity mass spectra obtained from single spores at
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Figure 23. Individual spectra (IS) from single spores collected with three different laser energy settings.
The vertical scaleisarbitrary but consistent from spectrum to spectrum in all figures. Although the three
middle spectra are taken with the same approximate pulse energy, the first (1S2) resembles the low energy
spectrum (1S1), the last (1S4) resembles the high energy spectrum (1S5) and the middle (1S3) resembles
neither. It isargued that the similar spectramay have been generated with similar fluences even though the

total pulse energies were different.
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three (of the six) DI laser energy settings. Since this is the first time true dual polarity
mass spectra are presented, it should be noted that each full spectrum in Figure 23
consists of a “haf” spectrum from positive ions and a “half” spectrum from negative
ions. Negative ions have negative mass-to-charge ratios (m/g<0) and positive ions have
positive mass-to-charge ratios (i.e. the “charge” or “q” is the actual net charge on the ion
and not just the magnitude). There are of course separate microchannel plate detectors for
the positive and negative ions and thus the vertical scaling (gain) may be somewhat
different for the two halves of each spectrum. Nonetheless, the scales are consistent from
spectrum to spectrum in al of the figures in this chapter (i.e. if two positive peaks have
roughly the same area, they represent roughly the same number of ions, but this may be a
different number than represented by similarly sized negative peaks).

The spectra I1S1, 1S3 and 1S5 in Figure 23 are more or less typical of the spectra
collected at the laser energies used to generate them (0.21, 050 and 1.02 mJ
respectively). Although the three middle spectra were taken with the same approximate
pulse energy, the 0.56 mJ spectrum (1S2) resembles the 0.18 mJ spectrum (1S1), the 0.50
mJ spectrum (1$4) resembles the 1.03 mJ spectrum (1S5) and the 0.53 mJ spectrum (1S3)
is unique. It is apparent that 1S1, collected with the lowest pulse energy, has the most
prominent “high mass’ peaks (defined here as |[m/q| > 150 for negative ions) and the least
prominent low mass peaks. 1S5, collected with the highest pulse energy, has the least
prominent high mass peaks and the most prominent low mass peaks. All of this can be
consistently explained as a result of the laser profile once it is demonstrated below that
differences in absorbed energy produce these kinds of variations. Before that is done,

however, some of the ion peaks will be identified.
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Most of the prominent peaks seen in the spectra shown in Figure 23 have been
tentatively identified (by other members of the BAMS group). The identifications are
based on spectra acquired from DPA, DNA and various amino acids as well as Bacillus
grown in isotopicaly labeled growth media (an article detailing the experiments is in
preparation). The peak at m/g=-173 is ascribed to arginine. A metabolic precursor of
DPA, 2,3 dihydrodipicolinate, was assigned to the peak at m/g=-169. The peaks at m/qg=-
167, -166 and -122 are believed to represent the molecular ion of DPA and two of its
fragments. DPA is found almost solely in spore forming bacteria so these peaks are
particularly useful for identification purposes. The peak a m/g=-146 is attributed to
glutamic acid, which is known to be common in Bacillus sproes. The peak at m/g=-134 is
thought to be related to aspartic acid. Peaks at m/g=-97 and -79 are attributed to HbPO4
and PO3™ from phosphates found, for example, in nucleic acids and cell membranes.
Peaks at m/g=-42, -26 and +23 are identified as CNO", CN" and Na' respectively. The
DPA in spores is usually associated with calcium. Peaks at m/g=+40, +57, +66 and +82
are attributed to Ca’, CaOH", CaCN"* and CaCNO", respectively. The prominent peaks at
m/g=-90 and +74.3 remain to be identified. (The mass of the latter peak was the only
prominent peak mass to vary significantly from an integer mass-to-charge ratio so an
extra decimal value was kept.) Several of the peaks discussed here are similar to peaks
that were identified in single particle B. subtilis spectra obtained by Gieray et al.”®. That
study, however, utilized significantly higher fluences (~20 nJmm?) at a different
wavelength (308nm), which most likely explains some of the differences between those

spectra and the ones presented here.
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As explained earlier, profile variations produce variations in the energy absorbed by
spores, but it remains to be proven that these absorbed energy variations actually have an
effect on the mass spectra. (Obvioudly large differences in absorbed energy must have
some effect on the mass spectra, but this doesn’'t mean that differences on the scae
produced here will.) Since the energy absorbed by a single spore cannot be determined,
the average energy absorbed and the average spectrum produced by a collection of spores
must be considered instead. Figure 24 shows averages of 1000 spectra collected at each
of the six laser settings used. Variations due to factors other than the laser setting are
averaged out and cannot account for differences between spectra (ignoring very small
statistical fluctuations). Figure 21 shows that each laser energy setting produces a

different average fluence. This means that spores must absorb different amounts of
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Figure 24. Averages of the 1000 spectra (AS) collected at each laser energy setting. The average pulse
energy islabeled on each spectrum. The highest mass negative ion peaks arein AS1 and steadily decrease
in AS2-AS6. The highest mass positive ion peaks, however, steadily increase and are greatest in AS6. The
spectral differences result from changesin the average fluence produced by each laser setting. Thisleadsto
the conclusion that the laser profile must introduce spectral variability from shot to shot since successive
sporeswill interact with different regions (and different fluences) in the non-uniform profile and absorb
different amounts of energy.
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energy, on average, at each of the laser settings. Since the spectrain Figure 24 are clearly
different, the energy absorbed by a spore must affect the spectrum that it produces. This
proves that the laser profile will produce variations in the mass spectra.

Before the magnitude of the profile induced variations is further quantified, it is
important to note the general trends in the average spectra of Figure 24. As the laser
energy is increased, the amplitudes of high mass negative ion peaks (in particular m/q = -
173 and -167) are reduced and the negative low mass peaks become more prominent. At
low energy, the positive data is dominated by the peak at 74.3. As the pulse energy is
increased, the peak initially grows and then declines. Most of the other peaks in the
positive part of the spectrum grow monotonically with energy. In fact, the highest mass
positive ion peaks are seen most clearly at the highest pulse energies (although they are
much smaller than the low mass positive ion peaks). The trends in the average spectra are
consistent with the changes observed above between the individual spectra IS1, 1S3 and

|S5.

4.4 The Magnitude of the Profile Induced Variations
At this point, it is clear that profile related fluence variations must produce variations

in the mass spectra, but the magnitude of these variations has not yet been determined. It
is readily shown that the range of profile-induced spectral variations is at least as large as
the difference between the average spectra AS1 and AS6 (and could be even larger). The
line of reasoning used to reach this conclusion is based on the hypothesis that spores that
interact with the same fluence must, on average, produce the same mass spectra (even if
the laser setting is changed or there are other sources of variability). Figure 21 reveals

that the ranges of fluence produced by the six laser settings are broad and overlap
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significantly. Note in particular that the highest laser setting produces a range of fluences
that covers and exceeds the range of fluences produced by any of the lower laser settings.
If alarge number of mass spectra were collected using the highest laser setting, it would
be possible, in principle, to select a subset of the spectra that were produced by the same
distribution of fluences that led to AS1 and, therefore, when averaged would produce a
spectrum identical to AS1. It would in fact be possible to reproduce any of the average
gpectrain Figure 24. Similarly, subsets of data collected at the second highest laser
energy setting could reproduce spectra AS1 through AS5 and so on. Since averaged
subsets of data can produce variations of this magnitude, the variations between
individual spectra must be at least as great.

Finally, it can be argued that spectral variations due to natural variations between
particles (or other potential factors) are not likely to be significantly larger than the
profile induced variations. It will be shown that when similar spectra are grouped
together, the resulting groups appear and behave as though the spectra in a given group
were generated at a similar fluence level. If natural variations (or other random
variations) were significantly larger than profile induced variations, the spectra would not
be expected to group together in this manner. It must be admitted, however, that these
arguments are not entirely rigorous. Independent of the profile arguments, however, the
clustering of similar spectra is important for automated identification algorithms so this

topic merits discussion here.
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The clustering agorithm employed is a modified ART2a neural networ
BART. It was described in the last chapter so it will not be described again here. The data
collected at al six laser energy settings was combined and then processed with BART.
Although BART is an improvement over earlier implementations of the ART2a neura
network, it still produced an unwieldy number of clusters that were further concatenated
or eliminated using a simple agorithm. This resulted in a total of five “super” clusters of
spectra containing 5105 of the initial 6000 spectra (85%). The 895 spectra that were
excluded had atypical features resulting, for example, from calibration errors (introduced
by the automated calibration routine), impurities in the spore solution, or fragmented
spores. The individual spectra in each cluster were averaged to obtain the spectra shown

in Figure 25. Since individual spectra are only averaged with similar individual spectra,

Figure 25 presents a better picture of the range of variability in the data than Figure 24
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Figure 25. Averages from five clusters of spectra are shown. Each cluster isagroup of similar individual
spectra and so its average spectrum can be thought of as a spectral type (ST). The spectral types are sorted
by the average of the laser pulse energies measured for every laser shot used to generate the spectrain each
cluster. This produces an arrangement that is clearly consistent with the power dependent trends established
inFigure 24. Thisis consistent with the belief that each spectral typeislargely formed from spectra
generated at a particular fluence. The number of spectrain each cluster isindicated below the spectral type
label.
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(where very different spectra were averaged together because they were produced at the
same laser setting). It is appropriate, therefore, to treat the average cluster spectra as
“gpectral types’. This is important because an automated identification routine that
compares an unknown spectrum to previously determined spectral types would be more
likely to find a close match than another routine that compares an unknown spectrum
with averages like those in Figure 24.

If most spectral variability truly resulted from fluence variations in the laser profile,
the spectra that happened to be generated at a fixed fluence would show little variability
and should cluster together (i.e. each spectral type would represent a specific range of
fluences). Spectra types that represent high fluences would be comprised largely of
spectra collected with high laser pulse energies (since these pulses contain the most area
at high fluence). Clusters that represent low fluences would be comprised largely of
spectra collected with low laser energies. The averages of the laser pulse energies
individually measured for every spectrum in each cluster would, therefore, provide some
indication of the fluence level represented by each spectral type. These average energies
were calculated and the spectral types in Figure 25 are presented in order of this value.
ST1 has the lowest average pulse energy while ST5 has the highest. It is reassuring,
therefore, that the progression of spectral types is consistent with the power dependent
trends identified in Figure 24. ST1 clearly looks like it is generated at the lowest fluence,

ST2 at adlightly higher fluence and so on.
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Figure 26 shows the distribution of spectral types collected at each laser setting. In
general, the trends in the data are consistent with the expected power dependent behavior.
The “low fluence” spectral types are primarily produced with low pulse energies and the
“high fluence” spectral types are primarily produced with high pulse energies. An
important observation is that spectra of all spectral types are produced at all laser energy
settings, just at different ratios. Thisimplies that all of the spectral types can be produced
with fluences below ~2 n¥/rm since the lowest energy pulses contain almost no area at a
greater fluence. Fluences much above 2 nJmm? evidently produce spectra that generally
fall into spectral type 5 (ST5). The fact that ST5 has nearly two and a half times as many
members as any of the other types is consistent therefore with the fact that most of the
area in the profiles is well above 2 n¥nm?. At this point, it is not easy to explain how

most natural variations (or other random sources of variability) would produce this type
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Figure 26. The relationship between spectral type and laser energy. Spectral types believed to represent
low fluence spectra (ST1 O and ST2 @) are produced primarily from low energy pulses. ST3 (1) and ST4
(M) appear to represent higher fluences and are largely produced by higher energy pulses. The highest
energy pulses, however, overwhel mingly produce spectral type ST5 (A). Nonetheless, it isimportant to
note that all of the spectral types are produced at all of the laser energy settings.
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of behavior. It would seem, therefore, that natural variations are not likely to be
significantly larger than profile induced spectral variations. Nonetheless, this possibility
cannot be ruled out completely.

Before concluding, it should be noted that all spectral types, ST1 through ST5, are
characteristic of bacterial spores and are distinct from many other aerosols ***. All of the
spectral types have vaue for identification purposes, but ST1 and ST2 are preferred
because of their more prominent high mass peaks (e.g. those indicative of DPA). Figure
26 could easily be interpreted, therefore, as implying that the lowest laser energy is
optimal since it produces the largest fraction of these two spectral types.

The hit rate, however, is an important and practical factor thet must also be

considered; not every particle that is fired upon by the DI laser produces a spectrum.
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Figure 27. Spectral types ST1 and ST2 contain prominent peaks at m/q =-167 and-173 that are believed to
be particularly useful for identification purposes. Figure 26 shows that the lowest laser energy (0.21 mJ)
produces the greatest fraction of ST1 and ST2 but this does not take into account the rate at which spectra
are produced. When the number of laser shots required to produce the “good spectra’ isfactored in, the
laser setting of 0.33 mJ per pulseisfound to be optimal. This optimal setting produces the greatest number
of good spectrain afixed amount of time and therefore hel ps maximize the sensitivity of the BAMS
system.
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Figure 27 shows the number of type ST1 and ST2 spectra obtained divided by the
number of DI laser shots fired versus laser energy. The rate at which the laser fires is
roughly constant, thus the ratio is approximately equivalent to the rate (in time) at which
“good” spectra are acquired and can be considered a figure of merit. The plot in Figure
27 reveds that the second lowest pulse energy (0.33 mJ) isin fact optimal in this sense.
Of course it is not the pulse energy itself that is of ultimate importance. Rather it is the

fluences produced and the areas over which they are spread.

4.4 Conclusions
It has been shown that a non-uniform DI laser profile causes significant variability in

the spectra generated from single Bacillus spores. This variability is clearly undesirable
in BAMS or any other system that must identify single particle mass spectra with high
confidence. Most single-particle mass spectrometers used today employ lasers with
similar profiles so thisis an important observation. In some applications the identification
of spectral types may help deal with the resulting spectral variability, but it is generally
better to reduce the variability directly. The next chapter will describe how a flattened

profile was produced and how the flattened profile helped reduce the spectral variability.
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Chapter 5. Laser Profile Modifications, Fluence

Thresholds and Improved Spectral Consistency
In the previous chapter, the Gaussian DI laser profile was shown to be an important

source of variability in the mass spectra of individual aerosol particles. The range of
fluences produced by any nortuniform laser pulse causes imperfectly collimated aerosol
particles to absorb varying amounts of energy since successive particles can interact with
different portions of the laser profile. Variations in the energy absorbed cause variations
in the spectra produced. It is clearly desirable, therefore, to produce a more uniform
profile.

Section 5.1 describes how the DI laser system was modified to obtain a nearly
“flattop” profile. Using this profile, fluence dependent changes in mass spectra are more
easily identified. The reason for this is smply that the range of fluences that the aerosol
particles can interact with at a given laser energy is greatly reduced. The new profile also
makes it possible to more easily and accurately determine the fluence thresholds for
desorption and ionization (i.e. the minimum fluences required to successfully desorb and
ionize significant numbers of molecules from specific types of particles). This is a
fundamental property of each particle type and is measured here for bacterial spores
(section 5.2) and severa other materials (section 5.3).

The fluence threshold must be known, in fact, to properly quantify and compare the
variability of data resulting from the origina and modified profiles. In experiments
described below (section 5.4), the standard DI optical system was modified to produce
laser pulses with “Gaussian” and “flattop” profiles such that the cross sectional area in
the profile where the fluence was above the threshold as well as the total amount of

energy contained in the same area were fixed. In this manner it was ensured that the
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pulses produced the same “effective” average fluences. Sets of data collected with the
two profile types are compared to show that the variability of the data is reduced by the
improved laser profile.

The thresholds are clearly relevant for understanding and predicting the performance
of the BAMS system. They are aso relevant to other types of instruments. Several
bioaerosol detectors look at the fluorescence from biological particles #5052 54112 \jore
intense excitation generally |eads to more intense fluorescence'*®, which is beneficial, but
if the excitation is too intense the aerosol particles will be damaged potentially interfering
with more selective types of analysis in subsequent stages of the instruments. In such
instruments, the fluence thresholds calculated here serve as absolute upper limits on the

excitation fluences that should be used (some damage is likely at fluences well below

these levels however).

5.1 Flattopping and Characterizing the DI Laser Profile
As in the lagt chapter, the DI laser used here is a Q-switched, frequency-quadrupled

Nd:YAG laser (Ultra CFR, Big Sky Laser Technologies, Inc.) that produces pulses with a
wavelength of 266 nm, a pulse length of less than 6 ns and a roughly Gaussian beam
profile. The Ultra used in this chapter, however, has a new, more efficient fourth
harmonic crystal that leads to higher pulse energies (>7 mJpulse) with reduced high
gpatial frequency profile variations. Nonetheless, the new laser's unmodified beam

profileis still closer to a Gaussian than an ideal flattop or top hat.
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A number of methods have been used to produce more uniform laser profiles+Y.
Since the Ultra can provide more energy than needed, a relatively simple method was
used to improve the profile here at the cost of a significant fraction of the laser pulse
energy. (Refractive optical devices in particular are much more efficient and may be of
use in future instruments, but they were unnecessary for the experiments here.) Figure 28
shows the optical setup used to obtain and characterize a nearly flattop laser profile. A
half-wave plate followed by a UV thin film polarizer allows the pulse energy to be
continuously adjusted while the Ultraruns at full power. Rotation of the waveplate causes
rotation of the linear laser polarization. The horizontally polarized component of each
laser pulse (controlled by the waveplate) is reflected out of the main beam path by the
polarizer thus enabling a controllable amount of energy to be transmitted through the
polarizer. Running the laser at full power was critical since it produced a profile with a

relatively flat central portion, minimized the pulse-to-pulse energy fluctuations and aso

Aerosol particles —» +

Mirrors

Aperture Beam profiler

Mass spec. with

Laser head 2 windows

Figure 28. The layout of the optical system used to produce and characterize the flattened | aser beam
profileis shown (not to scale). The half-wave plate and thin film UV polarizer allow the laser pulse energy
to be adjusted continuously while running the laser at constant power. The 1 mm diameter aperture clips
the low fluence wings off the laser pulses. Thefirst lens forms an image of the apertured pulse at the center
of the mass spectrometer (reduced in size by afactor of ~3). The second lens, in turn, images the profile at
the middle of the mass spectrometer onto a LaserCam |11D camerawith aUV profiling attachment.
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minimized the timing jitter between the Q-switch trigger and the actua laser pulse. After
the polarizer, the low intensity wings around the central flat portion of each pulse were
removed with a 1Imm circular aperture. At this point, the laser pulses had the desired
profile, but they still had to be properly imaged onto the target plane. (As before, the
target plane is defined as the plane normal to the laser beam that contains the axis of the
particle stream where particles are most likely to interact with the laser.) The clipped
pulses were reflected off two mirrors (used to aign the beam through the chamber),
passed through a ~130 mm focal length lens and window, and finally arrived in the ion
source region of the mass spectrometer.

The distances between the aperture, lens ard target plane were set such that a properly
focused, one-third sized image of the aperture was obtained at the target plane. This
ensured that the uniform profile at the aperture was reproduced as closely as possible at
the target plane. Improper focusing would have caused diffraction rings to be seen on the
profile. To verify that no rings were present, a second lens imaged the laser profile at the
target plane (or nearby parallel planes) onto a Coherent LaserCam I1ID camera with a
BIP-12F UV profiling attachment (located well outside the mass spectrometer). This
imaging system was carefully focused and calibrated using a procedure that will not be
described here.

Figure 29 shows three images of the “flattopped” profile at three different planes
within the ion source region of the mass spectrometer. At the target plane (b), the beam is
approximately 320 nm in diameter and relatively uniform. The absence of diffraction
rings indicates proper focusing. On either side of the target plane (a and c), rings caused

by diffraction at the aperture can easily be seen. (These rings cannot be avoided without
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Figure 29. Three images of the flattop profile near the middle of the mass spectrometer. The left image (a)
is Imm before the target plane (i.e. 1mm toward the laser). The middle image (b) is at the target plane. The
right image (c) is Imm after the target plane. Note the diffraction rings in the images on either side of the
middle and the absence of diffraction rings at the middle, indicating proper focusing at the target plane.
Each image has been scaled to have a maximum value of one (in arbitrary units of fluence) to maximize
contrast.

softening the edges on the profile). Nonetheless, the modified profile, in any of these
planes, remains far more uniform than the unmodified profile (see Figure 43 below).

It is important to point out that even if the profile were perfectly flat, successive
aerosol particles would interact with different fluences if the total laser pulse energy
varied from shot-to-shot. Fortunately, it is very easy to measure the total pulse energy and
in practice the energy used to create every mass spectrum is measured and stored. Figure
30 shows the spread of pulse energies typicaly observed while collecting data at a fixed

laser setting. Since the laser is always run at full power and the pulse energy is selected
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Figure 30. A typical histogram of the laser pulse energies observed while collecting a set of mass spectra.
The time between laser pulses varies greatly since the aerosol particles arrive at random times. Thisis
expected to cause larger pulse energy fluctuations than operation at a uniform rate. Nonethel ess, the
normalized standard deviation is only ~1.4% and it does not change with the average pulse energy since the
laser always operates at full power and is attenuated externally.
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with a waveplate, the standard deviation is relatively low and is fixed at ~1.4%. This
pulse energy variation is insignificant compared to the range of fluences that still exists
within the profiles.

The fluence distributions (i.e. modified fluence histograms) that were introduced in the
last chapter (Figure 21) are a useful tool to quantify the flatness of the “flattop” profiles
produced here. Figure 31 shows fluence distributions for nine different average laser
pulse energies used throughout the rest of this chapter. All of the distributionsin Figure
31 are based on a set of 21 images of single laser pulses (with a single, nearly constant
energy) at the target plane. A set of images based on a single laser pulse energy is
sufficient to calculate the fluence distributions at other pulse energies because the
waveplate and polarizer do not cause significant changes in the profile when adjusted.
This was confirmed experimentaly. It was aso confirmed that data collected from the
target plane alone provides a fair representation of the fluences encountered by particles
scattered in al three spatia dimensions. A small tube limits the incoming particle stream
diameter to a maximum of about 2.5 mm. When profiles taken 1 mm in front of the target
plane, at the target plane and 1 mm behind the target plane are combined and equally
weighted (which represents a worst case scenario), the resulting fluence distributions
have virtualy identical means and only dlightly increased widths. The new profiles are
not perfectly flat (i.e. perfectly uniform in fluence), but their fluence distributions are
reasonably similar to the idea results shown in Figure 22 and vastly superior to the
original distributions shown Figure 21. The new profile will thus be referred to as a

flattop for the remainder of this thesis.



97

o 10000 T T . ' ' E=427.1m)
E 5000 |~ f=5.08 nJmmZ_|
g 0 J..l.ll d n | =l amm

0 1 2 3 4 5 6 7
<C 1000 ' ' ' ' ' E=3578 1m0
% 5000 IIIIII f=4.25 nJ/mm?2-
< 0 Jl-l k . pa—" [Ty |

0 1 2 3 4 5 6 7
< 1000 ! ! ! ! ! E=2013m)
E 5000 IIIII f=3.46 nJmm?_|
g 0 ‘j- " L man I I

0 1 2 3 4 5 6 7
< 10000 ! ! ! ! ! E=2222m)
% 5000 - .I f=2.64 nJmm?2|
< 0 Jl. . - ] ] )

0 1 2 3 4 5 6 7
< 1000 ' ' ' ' ' E=1554
E 5000 f=1.85 nJ/mm?_|
8
< 0 1 1 1 1

0 1 2 3 4 5 6 7
< 1000 ' ' ' ' ' E=1189m)
% 5000 ] |I] f=1.41 nJmm?2
< 0 1 1 1 1 1

0 1 2 3 4 5 6 7
& 10000 T T T T T o640
% 5000 ] ' f=1.15 nJmm?
< 0 1 1 1 1 1

0 1 2 3 4 5 6 7
& 10000 T T T T T Se—
E 5000 || f=0.85 nJmm?24
g 0 L 1 1 1 1 1

0 1 2 3 4 5 6 7
«— 10000 T T T T T Eioomd
E 5000 f=0.50 nJ/nm?_|
g
z 0 . I I I I I I

0 1 2 3 4 5 6 7

Fluence [nJ/nm?]

Figure 31. “Flattop” fluence distributions are shown for nine different average laser pulse energies. Notice
that afinite range of fluences accounts for the vast majority of the area at each energy and that these ranges
arefairly distinct for different energies. Thisissimilar to theideal flattop result inFigure 22. The average
laser pulseenergies (E) are labeled along with the fluences corresponding to the peak of each distribution
(f). The width (FWHM) of each distribution is ~15% of the labeled fluence.

5.2 DI Fluence Thresholds for Bacillus Spores
The flattop laser profile was used to collect sets of data at a series of laser energies

from B.at. spores prepared in ¥z TY, B.at. spores prepared in resuspension media (rs),
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Figure 32. Typical sizedistributionsfor BSA, MS2, B.at. (¥4 TY) and B.t. particles aerosolized from
solution using a Collison nebulizer. These distributions were measured by aerodynamic sizing in the
ATOFMS system and include only particles that were successfully analyzed by the mass spectrometer.

B.t. spores prepared in rs, clumps of MS2 virions, clumps of BSA and clumps of DPA
(al described in chapter 2). All of the samples were aerosolized using a Collison
nebulizer (also described in chapter 2). Particle size distributions are shown in Figure 32.
The details of the spore fluence threshold experiments are discussed in this section and
the remaining threshold experiments are discussed in section 5.3.

The most extensive set of mass spectral data was obtained for B.at. (¥4 TY) spores so
its collection, processing and anaysis are described in detail. The collection and
processing of data from the other samples were virtually identical, so only the results and
a few important differences will be mentioned. For each particle type, the full data set
was collected in one continuous period (~6 hrs) to ensure that the instrument performance
remained as constant as possible except for intentional changes to the pulse energy or
profile. Furthermore, duplicate sets of data were collected at the beginning and end of
each experiment to ensure that there was no significant instrumental drift over the course
of the experiment.

The basic experimenta procedure was to collect spectra at a number of different laser
pulse energies while recording the particle size distribution and hit rate. (As before, the

hit rate is defined as the ratio of the number of particles that produce spectra to the
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number of particles tracked.) The hit rate data and the laser profile data can be combined
to determine the fluence threshold (as is described more fully below). It should be noted
that MALDI experiments indicate that there may be a fluence threshold for the desorption
of neutral material below the threshold for ionization in some experiments™® 1°, Neutral
material cannot be detected in the present instruments, so the thresholds reported here
entail both desorption and ionization. The mass spectra themselves can be examined to
determine the effects of the laser fluence on ion peak sizes and ratios.

In the case of B.at. (V4 TY), the laser energy was initially set to a value (~430 mJ)
where the average fluence (~5 n¥mmr) was well above the expected threshold fluence.
From this starting point, the energy was stepped downward until the hit rate fell nearly to
zero and then stepped back up (retracing the earlier steps) to the starting energy. Each
time the laser energy was changed, 3 300 spectra were collected (except at the very lowest
energy were only a few spectra were collected because of time constraints). The data
points with error bars in Figure 33 shows the hit rates observed. The vertica error bars
result from counting statistics. The small horizontal error bars represent the standard
deviations of the laser pulse energies measured at each setting. The hit rates are expected
to be significantly less than unity because it is possible for imperfectly focused particles
to pass through both tracking lasers but pass well to either side of the ~320 nm DI laser
beam. Inaccuracies in the timing system also cause the DI laser to occasionaly fire at

aerosol particles before (or after) they reach the proper vertical range.
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The hit rate was observed to be relatively constant at the highest laser energies (>0.2
mJ). The smplest explanation for this is to assume that virtually every spore that
interacted with a laser pulse, a one of these energies, produced a mass spectrum. Figure
31 shows that the vast mgjority of the beam area in such laser pulses had a fluence of 2
nJmm? or higher. As a consequence, it is relaively clear that 2 nJmm? is more than
enough fluence to produce a mass spectrum from a B.at. spore. It is more informative, to
examine the lower pulse energies when asking what the minimum fluence required to
desorb and ionize significant numbers of molecules from a spore is. Another relevant
guestion is whether all spores have the same fluence threshold or different thresholds. If
the laser profile were perfectly flat, the pulse energy were perfectly constant (at a given
setting) and all spores had exactly the same fluence threshold, the hit rate would be zero
until the laser fluence exceeded the threshold and then the hit rate would jump amost
instantly to its maximum value and remain there. This is clearly not what was observed.
Although the pulse energy is consistent enough that its shot-to-shot variations can be
safely ignored, the profile is less than idea and the exact properties of the spore
population are unknown so it is not immediately clear which factor is responsible for the

gradual change of hit rate between pulse energies of 0.05 and 0.2 mJ.
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Figure 33. The observed hit rates (solid line with error bars) and the calculated hit rates (O) for B.at.

(< TY) based on asingle fluence threshold of 0.95 nJ/nm?. The calculated “curve’ rises more rapidly from
alow hit ratetoa high hit rate than the observed results. This indicates that different spores have at least
slightly different thresholds.
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It is unlikely that variations in the profile alone are capable of fully accounting for the
gradua change. If the assumption is made, for the moment, that all spores do have the
same fluence threshold and that the spores are equally likely to encounter any portion of
the laser profile, the hit rate at a given laser energy should be proportional to the areain
the profile above the fluence threshold. If for example, a certain fraction of the areain the
profile is initially above the threshold and then the laser energy is increased such that the
area above threshold is doubled, the probability that a spore will interact with that area
must double as well. This means that the observed hit rate will double. (The hit rate
includes only particles that produce spectra; this is usually different than the number of
particles that intercept the laser.) If no part of the profile is above threshold, the hit rate
should clearly be zero. Figure 33 includes calculated hit rates based on a single uniform
threshold of 0.95 n¥mm? (O). It is easily seen that the slope of the calculated hit rate
“curve’ is steeper than the observed results. The most likely explanation is that different
spores have different thresholds. This is a reasonable hypothesis because spores are
known to have a range of sizes (Figure 32) and chemical properties. If the amount of
DPA in the spores varied, for example, it would affect the amount of energy absorbed

(DPA absorbs at 266 nm) and hence the probability to produce ions and a spectrum. The

Observed hit rate and predicted hit rate based on adistribution thresholds (n¥1.019 n¥rmm?2 $=0.233 nYmm?d
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Figure 34. The observed hit ratesfor B.at. spores (V4" TY) (solid line with error bars) and the calculated hit
rates (O) based on adistribution of fluence thresholds with a mean of 1.0 nJ/rm¥ and a standard deviation
of 0.23nJm¥.



102

DPA content of B. subtilis\W23 spores has been observed to vary by 30%'%.

If the assumption is made that the spore population has a normal (i.e. Gaussian)
distribution of thresholds characterized by a specific mean and standard deviation, these
two parameters can be determined by what basically amounts to least squares curve
fitting. The procedure also requires a third parameter, which is a ssmple proportionality
constant to covert from beam area to hit rate, but this parameter is determined primarily
by instrument settings and does not reveal fundamental spore properties. The end result
of the fitting procedure is that B.at. spores grown in ¥z TY media are found to have a
distribution of DI fluence thresholds with a mean of 1.0 n¥rm¥ and a standard deviation
of 0.23 n¥m. As shown in Figure 34, this “model” does a far better job of reproducing
the observed hit rate curve than the previous model which assumed a single uniform
spore threshold fluence.

The width of the fluence threshold distribution cannot be quantitatively predicted on
the basis of currently measured spore properties, but its magnitude does seem compatible

with the scale of inhomogeneities expected in the spore population. For a typical set of
data, the mean aerodynamic diameter of analyzed spores is roughly ~1.0 nm with a
standard deviation of 0.1 mm. This range of sizes will lead to a range of energies

absorbed by successive spores. The complex index of refraction of B. subtilis spores in

water at 265 nm is n=1.550+0.0138i*?!. Based on this value, a fredly available Mie
scattering agorithm'?? indicates that a 0.9 mm (physical) diameter spore would absorb
0.34 nJ of laser energy or 0.89 n¥mmT (assuming a fluence of 1 n¥mmt and a uniform
spherical particle). A 1.1 mm diameter spore would absorb 0.56 nJ or 0.80 nJmm®. It is

almost certain, therefore, that these particles will have different thresholds even though it
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is implicitly assumed that they have identical chemical compositions (i.e. the same bulk
index of refraction was used in both caculations). The fact that the chemical
compositions do vary'?° will cause additional variationsin the fluence threshold.

Before considering the thresholds from other particle types, it is worthwhile to briefly
examine the B.at. spore spectra and their variation with fluence. Figure 35 shows average
mass spectra collected at several laser energies. Each average contains a total of 600
spectra (300 fom each of the two data sets collected at the labeled laser energy). The
general appearance of the spectra is very similar to those shown in the last chapter, but
there are distinct differences. The positive ion spectra now have a prominent peak at 39,
which is presumably potassium. (There is a small peak at m/g=41 consistent with the
expected isotope.) Potassium is the only element likely to be encountered (in any
significant amount) with an ionization potential less than the single 266nm photon energy
(4.34 eV |.P. versus 4.66 eV photon energy). This means that it is likely to be detected
very efficiently. The prominent new peak may thus be related to a very small impurity
left over from the preparation procedure. Although there appear to be significantly fewer
positive ion peaks compared to the data in chapter 4, this is largely explained by the fact
that the newer ATOMFS instrument was used to collect this data. The newer instrument
has a ~12-hit data acquisition system and a larger dynamic range. In the past large peaks
were severely clipped making the smaller peaks appear more prominent. Most if not all
of the peaks previously observed are still present; they are just difficult to see when

compared to the potassium peak.
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The B.at. spores dealt with up to this point were prepared in ¥4 TY media. To explore
the effects of the growth media on the mass spectra and fluence threshold, a new sample
of B.at. spores was prepared in resuspension (rs) media. As before, the data collected was
started at high pulse energy, the energy was stepped downward until the hit rate fell
nearly to zero and then stepped back up to the starting energy. With a better
understanding of the expected behavior, however, it was possible to start at a lower
energy (~290 mJ) and take fewer spectra at each setting (~200). The observed and fit hit
rates are shown in Figure 36. B.at. spores prepared in resuspension media are calculated
to have a distribution of fluence thresholds with a mean of 1.0 n¥m? and a standard
deviation of 0.24 nJmm?. These values agree very well with the results obtained for B.at.
(¥4 TY). Before proceeding, it should be pointed out that there appears to be a slight, but

systematic drift in the observed hit rate with time. The hit rates for the first four sets of
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Figure 35. Average B.at. spore (V4" TY) spectrafrom the six lowest average energy settings where full sets
of datawere acquired. Each average contains 300 spectrafrom the first set of data and 300 spectrafrom the
second set of spectra collected at each laser pulse energy setting. Higher energies produce spectra similar to

the ~290mJ spectrum. Note that the vertical rangeis different for different spectra.
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Predicted and observed hit rates based on a threshold of 0.995+0.236 n¥nm?
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Figure 36 The observed hit rates (solid line error bars) and the calculated hit rates (O) for B.at. spores
prepared in resuspension media. The results indicate a distribution of fluence thresholds with a mean of 1.0
nd/m? and a standard deviation of 0.24 nJ/m.

data (starting at the highest pulse energy) are consistently higher than the rates for the last
four sets of data taken at the same pulse energies. Although it is conceivable that thisis
simply a statistical fluctuation, the drift most likely indicates that the nozzle or skimmers
were slowly becoming clogged. These were not cleaned while the data was being
collected since it was feared that the cleaning procedure might affect the subsequent hit
rate data in an unpredictable way. Fortunately the drift does not appear to have had a
significant effect on the threshold results.

Figure 37 shows several average B.at. (rs) spectra. It is encouraging to see that the
spectra are very similar to those shown in Figure 35 although the spores are grown in
different media. One significant difference is that the 74 peak is consistently smaller in
this media. This pesk is important since it can be used to help differentiate certain
Bacillus species (as shown in a separate publicationt'!). The peak’s origin is still not
known. Since the change in growth media has not produced significant changes in the
gpectra, there is some reason to hope that additional small changes in the preparation
should generaly produce only small changes in the spectra as well. This will of course

have to be confirmed experimentally.
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The results of experiments with B.t. spores are now considered. Sets of B.t. spore data
were collected just as for B.at. (rs). The same procedure described previously was also
used to calculate the threshold distribution’s mean and standard deviation. The observed
and fit hit rate curves are shown in Figure 38. B.t. spores grown in resuspension media
are calculated to have a distribution of fluence thresholds with a mean of 1.1 nymm? and
a standard deviation of 0.3 n¥mm?. Although it may not be an experimentally significant
difference, the B.t. spores have a dightly higher mean threshold than the B.at. spores
analyzed earlier. The higher threshold may be related to the fact that the average
aerodynamic diameter of the B.at. spores was 0.98 nm while the vaue for B.t. was 1.05
mm (averages include only particles that produced spectra). The threshold distribution is
also broader for the B.t. spores. This is not surprising though since microbiologists in the
BAMS group have observed that B.t. does not sporulate as uniformly as B.at. This may

also explain the fact that the distribution of diameters was much broader for the B.t.
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Figure 37. Average B.at. spore (rs) spectra. Each average contains 200 spectrafrom the first set of dataand
200 spectrafrom the second set of spectra collected at each of the |abeled laser pulse energy settings.
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Predicted and observed hit rates based on a threshold of 1.109+0.298 nJ/mm?2
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Figure 38. The observed hit rates (solid line with error bars) and the fit hit rates (O) for B.t. spores (rs)

indicating a distribution of fluence thresholds with a mean of 1.1 nJ/mm? and a standard deviation of 0.3
nd/m.

spores than for B.at. spores.

Average spectra are shown in Figure 39. At the lowest energy in particular, there
appear to be new or at least much larger peaks than seen in the B.at. spectra. There are
significant peaks at m/z = -97, -96, -80, -49, -25 and +91, for example. If the spectra at
the lowest energy are clustered using BART, however, something very interesting
happens. Roughly speaking, there are two prominent and distinct types of clusters that
result. One set of clusters produce average spectra that more closely resemble the B.at.
spectra. These clusters almost certainly represent real B.t. spores. The other set of clusters
looks very different and has large peaks a m/z = -97, -96, -80, -49, -25 and +91. It isvery
unlikely that these clusters represent spores. The particles are most likely impurities from
the growth media or other sources. At any rate, this second set is the source of the
prominent new peaks in the overall average. Although it is probably not clear in these
average spectra, differences in the areas of peaks at m/z=-173 and +74 are sufficient to

differentiate the two species (B.at. and B.t.) quite well in practice**.
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Figure 39. Average spectrafrom B.t.(rs) spores. Each isthe average of 200 spectra.
Since the two species of Bacillus spores considered here have basically the same size

and basically the same chemical composition, it only makes sense that they have similar
thresholds (~1 nJmm7). It is worthwhile to explore the significance of this particular
value in a bit more detail. Based on the complex index of refraction mentioned earlier, a1l
mm spore is expected to absorb 0.47 nJ (at a fluence of 1 ndim). The heat capacity of a
gpore is unknown, but it can be approximated very crudely using the heat capacity of
tryptophan, which is 238.1 Jmol K. The mass of tryptophan is 204.2 Daltons. The mass
of al mm spore is 7.6" 103 (assuming a perfectly spherical particle and a density of
1.45 glent 123). The spore will thus heat by ~530 K upon interaction with the laser pulse.
It is interesting to note, that this is very similar to the temperature of the pyrolysis tube
(550°C) in the BLOCK 11 CBMS®2. It is also of the same order of magnitude as the pesk
predicted surface temperature of a common matrix (DHB) in a UV MALDI

experiment?,
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5.3 DI Fluence Thresholds for BSA, MS2 and DPA

The same data collection process used for the spores was repeated for clumps of MS2
virions and clumps of BSA. The quality of the BSA data was somewhat less than that for
the other particle types because a low hit rate limited the amount of data that could be
collected. Nonetheless, MS2 particles were observed to have a distribution of fluence
thresholds with a mean of 3.2 n¥mm? and a standard deviation of 0.8 nJmm?. BSA
particles were observed to have a distribution of fluence thresholds with a mean of 2.7
ndm? and a standard deviation of 0.4 nJmm?. Both of these values are significantly
higher than the values found for spores. The average size of hit particles was roughly 0.9
mm for both MS2 and BSA, which is smaller than the mean spore diameter observed.

It would be very interesting to measure the UV absorption cross section of the
particles. If a particle absorbs only weakly at 266nm, it would generally be expected to
have a higher fluence threshold than another particle that absorbs strongly at 266nm.
Spores may very well absorb more energy than either of these two types of particles.
Unfortunately, the BAMS group does not have the ability to measure the absorption of
single particles (note that absorption is only one component of the total extinction, which
is more easlly measured). Nonetheless, BSA is a large protein molecule, and MS2 is

composed primarily of protein (and some RNA). The relative fractions of aromatic amino

MS2 BSA Ricin Botox (A)
Phenylalanine | 736 30 18 72
Tryptophan 372 3 10 14
Tyrosine 736 21 23 75
Total AA 23793 607 529 1296
Fraction 0.0775 0.0890 0.0964 0.1242

Table2. Amino acid (AA) composition of simulants and toxins. MS2 is of course not a protein, but each
virion contains 1 copy of the maturation or assembly protein and 180 copies of the coat protein.

Phenylalanine, tryptophan and tyrosine are known to absorb at 266nm.
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Figure 40. Average mass spectrafrom M S2 collected at six different laser energies.
acids (which are known to absorb at 266nm) contained by BSA and MS2 can thus be

used as crude substitutes for the absorption cross-sections. Table 2 shows the number of
phenylalanine, tryptophan and tyrosine amino acids contained by MS2, BSA and the
toxins for which BSA serves as a surrogate. BSA contains a somewhat larger fraction of
the amino acids of interest than MS2 and was observed to have the lower threshold.
Although it is highly speculative, it is tempting to hypothesize that that ricin and
botulinum toxin would have even lower thresholds.

Average spectra are shown in Figure 40 for MS2 and Figure 41 for BSA. A number of
familiar peaks are present. In MS2, peaks at m/q = -97, -79, -42 and —26 are presumably
H,PO4, POs", CNO™ and CN". Pesks at m/q = +23 and +39 are very likely Na" and K.
Some of the same peaks can be seen easily in the BSA spectra. Spectra with expanded
vertical scales have been included in Figure 41 to reveas a number of additional small
peaks. BSA appears to have peaks at m/g=-97 and —79 like those in MS2. Peaks at

m/g=+39, +57, +66 and +82 are also seen and are presumably K, CaOH*, CaCN" and
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Figure41. BSA average spectra (each is the average of ~200 individual spectra). Because of the lack of
featuresin the normally scaled spectra, spectrawith expanded vertical scales have been included to reveal
small peaks (most of these are too small to be useful in single spectra however).

CaCNO". A number of these dements (e.g. Na, K, and Ca) are not usualy found in pure
protein, so it is likely that the impurities in the BSA sample have a significant effect on
the observed spectra. It is not clear what effect the impurities may have on the fluence
threshold.

The desorption and ionization processes that lead to the observed mass spectra are not
fully understood for any of the particle types and are likely to be complex. In some of the
particle types, certain molecules may function as MALDI-like matrices for other
molecules, but even classica MALDI is not well understood. Nonetheless, classical
MALDI probably provides the best experimental analog for the current experiments so
what is known about MALDI will briefly be summarized here. At the same time,
significant differences between typical MALDI experiments and the present experiments

will be pointed out. The production of ionsin UV MALDI is thought to be the result of a
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two step process'?*. In the first step, the laser either directly or indirectly generates
“primary ions’ during or shortly after the laser pulse. Knochenmuss claims that exciton
pooling may be an important mechanism in the formation of the primary ions since
matrix ionization potentials tend to be more than twice a “typical” photon’s energy*?*. At
266 nm, however, the photon energy is substantial and many molecules have ionization
potentials less than 9.3 eV (twice the 266 nm photon energy); examples include virtually
all of the amino acids'®® and several elements such as potassium, sodium and calcium
(which are responsible for significant peaks in the present mass spectra). Direct
photoionization may thus play a larger role here than in typical MALDI experiments. At
any rate, in the classica MALDI model, deposition of energy by the laser causes
desorption of the matrix and the formation of a plume. In the plume, reactions take place
between the primary ions and other molecules producing whatever secondary ions may
be energetically favored. These secondary reactions may include proton transfer, cation
transfer and electron transfer or capture™®®. The importance of these secondary reactions
isless clear in the case of small, isolated particles. The density of the plume from a1 nm
diameter particle aimost certainly drops much faster than the density of the plume in a
typical MALDI experiment where expansion occurs from a large 2-dimensional
substrate. The possibility that this effect may be significant is supported by the fact that
the laser spot size, and thus the effective sample size, is known to be an important
variable in MALDI*®. It is probable that MALDI-like processes have at least some role
in determining the mass spectra produced by the single particles here, but there are
clearly important differences between the current experiments and typical MALDI

experiments.
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An experiment was performed using clumps of DPA in an attempt to directly observe
a particle-size dependent fluence threshold. Particles with a significant range of sizes
were generated, sampled and analyzed by the instrument at a series of laser energies. The
collected data was then sorted into size bins. Figure 42 shows the exact size bins that
were employed and the total number of particles anayzed in each bin (combining all
laser energies). Once the particles were sorted, the fluence threshold for each size bin was
calculated just as was done for the previous particle types. A 0.6 mm DPA particle has
~2.4 times the volume of a 0.45 mm particle, but no significant differences were observed
in the threshold fluences. The mean threshold for all sizes is approximately 0.59 n¥mm¥.
The standard deviation of the threshold distribution varies somewhat from size to size,
but 0.07 n¥rm¥ is the median value.

The constant fluence threshold is consistent with a desorption and ionization process

in which the laser pulse ssimply createsions at the surface of the DPA particles. Measured

Number of particles

0.45 05 055 0.6 0.65
Aerodynamic diameter [um]

[o)=]
~

Figure42. The number of DPA particles analyzed in each of the size bins studied is shown. The smallest size
bin actually contains all diameters observed below 0.45nm and the largest size bin contains all diameters
above 0.6 nm. Differences in the total numbers analyzed primarily reflect the size distribution of particles
produced and the size-dependent instrument sampling and focusing efficiency (the differences do not indicate
different fluence thresholds).
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values for the optical and physical properties of DPA necessary to perform a quantitative
absorption calculation are rot available, but DPA is known to absorb strongly at 266
nm'®! (consistent with the low fluence threshold observed). As a result, it is not
unreasonable to believe that much of the energy incident upon a DPA particle is absorbed
at its surface. If true, ions are likely to be produced at the surface and the DPA fluence
threshold should be largely independent of the particle size, just as observed. In the
contrasting case of spores, only ~60% of the directly incident energy is absorbed. The
energy that is absorbed is thus likely to be spread more uniformly throughout a spore than
a DPA particle (ignoring the heterogeneous spore structure for the moment). In this type
of situation (i.e. semi-uniform energy absorption), a stronger size dependence should be

expected for the fluence threshold.

5.4 Direct Observation of Variability Reduction with Flattop
The purpose of the experiments described in chapter 4 was to determine whether the

“Gaussian” DI laser profile, which had always been used up to that point, was truly a
significant source of mass spectral variability or not. Every method available to produce a
flattened profile has some shortcomings (e.g. inefficiency, size, aignment sensitivity,
codt, etc.), so there was little desire to modify the original profile until it was shown in
chapter 4 that the laser profile’s fluence distribution did indeed contribute to the spectral
variability and that a reduction in the variability would almost certainly result if the laser
profile were flattened. Once this conclusion was reached, the profile was “flattopped” (as

described above). Once the flattop profile was available, it became possible to directly



115

measure and quantify the reduction in spectral variability produced relative to a Gaussian
profile. Thisis the subject of this section.

Data can easily be collected with a Gaussian profile and then compared to data
collected with a flattop profile, but unless the properties of both profiles are carefully
matched, the comparison will have limited value. In the experiment described here, the
properties of the flattop profile were precisely measured at two different average pulse
energies. “Matching” Gaussian (or at least approximately Gaussian) profiles were then
carefully created. The Gaussian profiles contained the same amount of area at or above
the fluence threshold as the matching flattop profiles and also contained the same amount
of energy in this area. To be clear, it is not the total pulse energy that was the same, but
only the energy contained in areas of the beam where the fluence met or exceeded the
chosen threshold value. In this way it was ensured that the “effective’ average fluence
was the same in both profiles. The match actually depends upon the properties of the
particles to be analyzed; B.at. spores were used here because their DI fluence threshold
was known (and because of their general importance as a surrogate for anthrax).

As was shown above, different spores have dightly different thresholds so it was not
entirely clear which exact threshold value to choose for the comparisons. Ultimately, a
value slightly below the mean was chosen (0.95 n¥mmt) since this single value seemed
best at predicting the hit rate behavior in the fixed threshold model (see Figure 33).

Data was collected with flattop profiles using average pulse energies of 106 nJ and
147 m). Twenty-one new images of the flat profile at the target plane (Figure 43a) were
collected and the area in each image that had a fluence greater than or equa to 0.95

nJmm? was calculated. The average of these areas was then found and converted to an
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Figure 43. Sample images show a) the “flat” profile (which looks the same at any energy), b) the low-
fluence “Gaussian” profile and c) the high-fluence “Gaussian” profile. These are single images, but the
calculations used to determine if the profiles “ matched” were based on sets of 21 images each. The
maximum fluence in each image is scaled to one to enhance contrast. The true fluence distributions are
shown in Figure 44.

“effective diameter” for convenience. (The effective diameter of an area or region is
defined as the diameter of a perfect circle with the same area.) The effective diameters of

the flattop profiles were 314 nm and 320 mm, respectively. The average energies

contained within the above threshold regions were 97 mJ and 136 mJ (the remainder of the
energy was spread over lower fluence regions). Other energies could have been used, but
these produced “desirable” fluence distributions as shown in Figure 44. Notice that the
two distributions are aimost entirely above the 0.95 nmm¥ fluence threshold and are aso
fairly distinct from one another.

The optical scheme used to obtain matching “Gaussian” pulses was largely identical to
the one shown in Figure 28, except that the aperture was removed and the original lens
was replaced and repositioned to obtain the desired laser spot sizes at the target plane.
The laser was operated at less than its maximum energy setting to produce a more
Gaussiantlike profile (this was, after al, the norma mode of operation in the past), but
the waveplate and polarizer were till used to fine-tune the average pulse energy. To
match the low-fluence flat profile, alaser spot with a diameter of ~330 rm (FWHM) and

an average total pulse energy of 197 mJ was produced. This resulted in an above
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Figure44. Fluence distributions for the four profiles used to collect data. Each distribution is based on 21
images. Care should be taken when comparing the vertical scales because the histogram bins widths are not
the same. (Thiswas necessary to avoid aliasing effects.) The areas and the energies above the threshold are
egual for the two low-fluence profiles and are also equal for the two high-fluence profiles.

threshold region with an average effective diameter of 312 nm containing an average of
97 mJ of energy (Figure 43b). To match the high-fluence flat profile, a~240 nm (FWHM)
spot was created with a total average energy of 187 mi. This produced an effective
diameter of 318 nm and a contained energy of 138 mJ (Figure 43c). The fact that the total
energy in this high-fluence Gaussian was less than the total energy in the low-fluence
Gaussian is not surprising. Less energy was wasted in large low-fluence wings. The
fluence distributions for the flattop and Gaussian profiles in both the low and high
fluences cases are shown in Figure 44.

Approximately 1200 spectra were collected using the flat profile at each of the two
average pulse energies. Significantly more spectra were collected with the Gaussian
profiles because the pulse-to-pulse energy variations at the reduced laser setting were
larger. Although these energy variations were present in the past, the purpose of this
experiment was not to observe spectral differences caused by shot-to-shot pulse energy
variations, but rather the spectral differences truly caused by the laser profile at constant

pulse energy. Spectra produced by unusually large or small energies were discarded,
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exactly 1000 mass spectra from each of the four sets of data were kept. The standard
deviation of the laser pulse energies recorded for the reduced data sets were ~1.2% for
the flattop profiles and ~5% for the Gaussian profiles. Compared with the range of
fluences present in these pulses, the remaining energy fluctuations should not be
significant. If the full data sets had been retained, the Gaussian profiles would only
appear worse when compared with the flat profiles.

Average spectra from the four reduced sets of data are shown in Figure 45. The fact
that the spectra from the low-fluence Gaussian and flattop profiles look very similar is
encouraging. This is evidence that well matched profiles have been generated, in spite of
the fact that the profiles look very different (Figure 43). The fact that the high-fluence
gpectra look so different must be expected since the high-fluence Gaussian profile
produces a much larger range of fluences than the high-fluence flattop profile (Figure 44
bottom).

There are many potential ways to quantify the variability of complex mass spectra

with a single parameter, but none of them are perfect. The distance metric that was
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Figure45. Average B.at. (¥4 TY) spore spectrafrom the four reduced sets of data used to compare the
amount variability associated with the modified profiles and with the original “ Gaussian” profiles.
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developed in chapter 3 is used here. Each half spectrum is represented by a vector. The
elements of each vector represent the areas of peaks near integer mass-to-charge ratios.
The vectors at this point are identical to those used to cluster or identify particles. In the
next step, however, the data is “normalized” as described in section 3.5.2. For each set of
data, the mean vector is found and then each individual vector is divided, element-by-
element, by the sguare root of the matching element of the mean vector. Many of the
elements ssimply represent “chemical noise” or mass-to-charge ratios where no true peaks
are present. Only the ten positive and ten negative vector elements with the largest mean
values (based on an average of all the spectrain all data sets) are retained here. Based on
these new reduced 10-element vectors, the distance from each individual vector to the
appropriate mean vector is caculated (this is done separately for the positive and
negative polarities). Histograms of these normalized distances are shown in Figure 46
(distances between negative ion vectors are assigned negative values for the purposes of
plotting). The rms normalized distance from an individual vector to the mean vector is
also calculated and labeled for each polarity of each set (this is the true metric of
variability).

The flattop profiles clearly produce less variability than their matching Gaussian
profiles as is observed by eye and quantified by the rms distance. It is interesting to note,
however, that the variability reduction is less pronounced for the low fluence profiles
than for the high fluence profiles. Figure 44 and Figure 45 provide part of the
explanation. Although potentially interesting changes in peak ratios occur at lower laser

energies (~70-150 mJ) and hence lower fluences, the biggest absolute changes in the peak

heights (or more importantly areas) occur at higher energies (~150-300 mJ) and higher
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fluences. In a certain sensg, it is thus easier to make big reductions in the variability at
high fluence than at low fluence. This glosses over a few subtleties involved in the proper
application and interpretation of the variability metric, but at this point it is far more
interesting to discuss the impact that the variability reduction will have.

The ~20% average reduction of the rms distances is more significant than it may first

seem. Each mean vector defines a point in 10-dimensional space. The individual vectors
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to the means are labeled for each set. In each case, the flattop data shows less variability than the Gaussian
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define points that are spread about the mean point. In the ideal case, for which the
normalization scheme was rigorously developed, the individual points will be spread
across a hypersphere centered at the mean point (ignoring correlations between peaks for
the moment). Clearly if the hyperspheres from different types of particles overlap, it will
be difficult if not impossible to differentiate the represented particle types. The number of
hyperspheres that can be fit within a specific hypervolume of 10-dimensional space
without overlapping is proportional to the hypervolumes of the hyperspheres, not their
diameters or radii. The hypervolume of a hypersphere is proportional to its radius (i.e. the
rms-distances calculated above) raised to the tenth power. A 20% reduction in the radius
corresponds to a 90% reduction in hypervolume and thus may increase the number of
different particles that can be discriminated by up to a factor of 10. Thisis not atrivial
concept to grasp, but the smple conclusion is that the reduction of observed variability
will likely have its greatest impact when large numbers of different types of particles
must be differentiated and identified.

Knowing that a threshold fluence range exists, it is worth briefly reviewing the
clustering results and conclusions about the sources of variability from chapter 4. It was
correctly argued that if the most significant source of variability were truly the laser
profile, then spectra created at similar fluences would tend to cluster together. Average
gpectra from different clusters of data would appear to be generated at different fluences.
In addition, the average laser energy used to create the spectrain a cluster would provide
some indication of the fluence represented by the cluster. The data collected in chapter 4
appeared to behave in precisely this manner. If natural sources of variation caused

random or at least distinct types of spectral features and were dominant, the observed
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behavior would not have been expected. In light of the threshold measurements, it now
seems possible that natural variations could cause spectral changes that mimic the fluence
dependent changes. A spore that interacts with a fluence just dlightly above its threshold
could create a mass spectrum that appears to be created at a lower fluence than the
spectrum from another spore, with a significantly lower threshold, even if the actual
fluences are identical in the two cases. Natural particle variations may be more significant
than initialy realized.
5.5 Conclusions

It has been shown that different types of biological particles have significantly
different fluence thresholds when using a 266nm, 6ns laser. Although this is certainly not
surprising, it is important because it places constraints on a BAMS system. If the laser
energy is adjusted to obtain ideal anthrax spectra, for exanple, the system may be left
unable to efficiently detect toxins and viruses. If the power were increased to obtain ideal
gpectra from toxins and viruses, spectra would still be obtained from spores, but they
might retain few (if any) of the peaks used to differentiate ssimilar Bacillus species. The
ideal solution to this problem would be to use another DI laser system that is less
sensitive to the particle type and which produces ions with higher masses. (Such a system
might utilize new wavelengths, pulse lengths or even multiple lasers) An aternative
solution is to install diagnostics upstream of the mass spectrometer to provide the system
with preliminary information on each particle before the DI laser is fired. The size of
each particle is already known. Separate instruments exist that can detect the fluorescence
from single particles excited at 266nm; they could be integrated into a BAMS system.

Fluorescence data coupled with size data might provide a very good indication of the
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proper laser power to use. Regardless of the approach ultimately used, any controllable
source of variability must aways be minimized. The results presented in this chapter
represent an important step forward in this direction. A flattop laser profile clearly

produces less variability than comparable Gaussian profiles.



124

Chapter 6. Pulse Length and Wavelength Effects on
Mass Spectra

In the last chapter, an improved DI laser profile was shown to reduce the variability of
bacterial spore mass spectra. Similar improvements are expected for other particle types,
but it is clear that an improved profile will never remove al of the variability. Whatever
its source may be, the remaining variability in the data makes it difficult to differentiate
certain types of particles. The generation and observation of higher mass ions could
significantly offset the deleterious effects of this variability. The ability to produce and
detect intact molecules or even large (3 1 kD) fragments of protein, RNA, lipids and other
biological molecules is strongly desired. These molecules are far more likely to be
indicative of particular types of organisms than small ions like sodium, potassium and
calcium, which currently dominate many of the mass spectra. A different laser-based DI
system may be able to meet this chalenge. This chapter describes the initia results from
severa aternatives to the current DI system.

At 266 nm, the single photon energy (~4.7 eV) is insufficient to ionize the vast
majority of molecules that are likely to be encountered. Two or more photons must be
absorbed, and in order for this to occur, the flux of photons must be significant.
Consequently, the pulse duration (and thereby the intensity) is varied in section 6.1. In
section 6.2, the pulse length is held fixed at ~6 ns, but the wavelength is lengthened to
355 nm. There is little theoretical reason to expect that this should be more generaly
effective at producing large ions (since the photon energy is lower), but 355 nm is more
typical of wavelengths used in MALDI and is worth exploring. In section 6.3 a

wavelength of 3.05 nm is used since past LLNL mass spectrometry experiments with
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bulk bacterial spores samples and infrared DI laser pulses showed some promise. lons
with masses of many kilodaltons are not expected™®’, but there is reason to believe that
ions with masses greater than those currently observed may be obtainable.

The current 266 nm Nd:YAG laser is not, however, the only factor limiting
observation of large mass ions. The current mass spectrometer was designed primarily to
study the chemical composition of common environmental aerosols of which biological
particles constitute only a small fraction. Limited effort was expended toward ensuring
that the spectrometer efficiently collected ions with large masses. The performance of the
spectrometer is modeled in section 6.4 and its performance is shown to be less than ideal

for large ions.

6.1 266 nm Wavelength, ~130 fs, ~6 ns and 40ns Pulse Length
Experiments

As aready mentioned, two or more photons must generally be absorbed at 266 nm in
order to produce ionization in common organic molecules. The time scale on which this
absorption occurs is crucial. Consequently the DI laser pulse length is an important
variable to consider. Numerous reports indicate that mtosecond lasers produce less
molecular fragmentation that nanosecond lasers'®®%2, At the intensities produced by
nanosecond lasers, many of the excited electronic states generated by the absorption of a
single photon are able o relax before an additional photon is absorbed. In many cases,
the energy from the excited electronic state is transferred to excited vibrational states.
Molecules that become highly excited vibrationally are likely to dissociate. At the
intensities generated by femtosecond pulses, on the other hand, two photons can be

absorbed in a very short period of time thus preventing relaxation of the intermediate
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excited electronic states. Photoionization and production of a molecular ion are
consequently much more likely with femtosecond pulses. In spite of this, it is till
interesting to see what effect a longer pulse length will have on the spectra for both
scientific and practical reasons. Future versions of the BAMS system will require high
repetition rate DI lasers. Ondemand Q-switching a a high repetition rate is often
achieved with an acoustooptical Q-switch, but this tends to result in longer pulse lengths
than those currently used (~6 ns).

Three separate DI lasers were used to produce 266 nm laser pulses with three different
durations. The first laser, a Quantronix Eagle, produced 40 ns pulses. The second laser,
the “standard” Big Sky Ultra, produced ~6 ns pulses. The third laser, a Positive Light
Spitfire, produced pulse widths on the order of 130 fs. A few of the basic properties of
these laser systems will be described here first before discussing the beam profiles,
fluence distributions and ultimately the mass spectra produced.

The Eagle was used to produce pulses with a duration of 40 ns (FWHM) and a
maximum energy of ~0.5 mJ. This quadrupled Nd:YAG laser is pumped continuously
with an arc lamp, which simplifies the required triggering system dlightly (since there is
no flash lamp to trigger). Unfortunately, the continuous pumping also requires the laser to
be fired at a high average rate (~3 kHz for optimal performance). This high repetition rate
is well suited for future BAMS systems, but it greatly exceeds the ability of the current
ATOFMS system to track particles. The standard triggering system was consequently
modified to include blank shots to ensure an acceptable firing rate. An external pulse
generator produced a train of “artificial” trigger signals at 1440 Hz (a pulse every ~700

ns). This pulse train was then combined with the real trigger signals resulting from



127

tracked particles. Once one of these trigger signals (real or artificial) actually fired the
laser, an electronic gate prevented any of the subsequent signals from triggering the laser
for ~350 ns. The fastest rate a which the laser could fire was thus ~2.9 kHz, which is
close to the optimal rate. Since 350 s of the 700 ns between most laser shots was dead
time, only ~50% of the particles that were tracked were actually fired upon. This cut the
rate of data collection at least in half, but this was not a significant problem for |aboratory
experiments.

The same Ultra and flattopping optics used in chapter 5 were used again here to
produce ~6 ns pulses. The Ultra's general properties were described previously (chapters
2 and 5) and will not be repeated. The same triggering scheme used in chapter 5 was also
employed here.

The third and final “laser” is a mode-locked, frequency-tripled, Ti:sapphire system
used to produce 266 nm, ~130 fs pulses. The Spitfire mentioned earlier is actualy just
one component of this system (specifically, the amplifier). The Spitfire is pumped by a
Positive Light Merlin and seeded by a Spectra-Physics Tsunami, which isin turn pumped
by a Spectra-Physics Millennia. The Tsunami is a mode-locked Ti:sapphire oscillator. It
produces a quasi-CW train of 800 nm, ~100 fs pulses at a repetition rate of 82 MHz. The
pulses are used to seed the chirped-pulse regenerative amplifier contained in the Spitfire.
The Spitfire is capable of producing 800 nm, 1 mJ pulses at 1 kHz. The Spitfire pulses
are converted to 266 nm with a KD* P based frequency tripler from Spectra Physics. This
tripler is noteworthy in that it uses a phase plate to obtain proper phase matching and high

conversion efficiency.
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Figure47. Profiles of 266 nm pulses with durations of (@) 40 ns, (b) ~6 ns, and (c) ~130 fs. It is clear that
profiles are less than ideal for the new lasers. The left and right image actually represent averages of
multiple shots since the profiler was operated as though the lasers were operating in a CW rather than
pulsed mode.

The specifications for the Spitfire claim a pulse length of 130 fs (at 800 nm) and this
was quickly confirmed using a Swamp Optics GRENOUILLE. The 266 nm pulse width
was not measured directly, since the appropriate equipment was not readily available, but
it is expected to be similar to the 800 nm pulse width. In theory, tripling could shorten the
initial 800 nm pulses, but dispersion and other effects tend to offset this in practice. At
any rate, the 266 nm pulse length will be referred to as ~130 fs to distinguish it from
other pulse lengths in the present discussion. The whole system was triggered using the
same scheme described for the Eagle above, with the exception that the various times
were scaled to produce a repetition rate of 500 Hz in the absence of tracked particles.

An image of the Eagle laser profile at the target plane is shown in Figure 47a. It is
elliptical in shape with an intense central regionand extensive wings. Since the primary
purpose of these experiments was to look for gross differences between spectra no effort
was made to improve the profile. The effective diameter of the pulses at the target plane
was 240 mm (FWHM). The mean pulse energy at the target plane was 360 nJ with a
standard deviation of ~10%. The flattened Ultra profile is shown in Figure 47b. As before

the diameter is approximately 320 mm (FWHM) at the target plane. Two separate pulse
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Figure48. Fluence distributions for the a) 40 ns pulses, b) ~6 ns, 123 mJ pulses, ¢) ~6 ns, 199 nJ pul ses,
and d) ~130 fs pul ses.

energies (123 mJ and 199 mJ) were used in the experiments for reference purposes. The
profile of the tripled Spitfire pulses is shown in Figure 47c. The pulses had a reasonably
good profile when they first |eft the Spitfire' s regenerative amplifier, but it was degraded
significantly by the gratings in the Spitfire's pulse compressor. The structure in the
profile was then further accentuated by the nonlinear processes required for frequency
conversion in the frequency tripler. The fina ultrashort pulses at 266 nm had a mean
energy of 38 mJ and a standard deviation of 13 mJ at the target plane.

The distribution of fluences in the Eagle profile is shown in Figure 48a. Fluence

distributions for the two Ultra energies are shown in Figure 48 (b and c). The fluence
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Figure49. Average B.at. spore spectra. a) Average spectrum obtained using 40 ns pulses (lower spectrum
is shows an expanded vertical range). b) Average spectrum obtained using ~6 ns, 123 nJ pulses. ¢) Average
spectrum obtained using ~6 ns, 199 mi pulses. d) Average spectrum obtained using ~130 fs pul ses.

distribution in the Spitfire's profile is shown in Figure 48d. Only a small fraction of the
area in the Spitfire profile is above the spore fluence threshold determined for 6 ns pulses,
but the intensities produced by the ultrashort pulses are orders of magnitude higher than
for the 6 and 40 ns pulses. It is interesting to note that the Spitfire’' s fluence distribution is
gualitatively similar in shape to that produced by the Eagle, even though the profiles have
very different appearances.

Approximately 250 B.at. spore spectra were collected using the Eagle and averaged to
produce the spectrum shown in Figure 49a. Spectra were collected with the Ultra on the

same day using the same preparation of spores. Two sets of data (containing ~250 spectra
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each) were collected using the two different pulse energies mentioned earlier (123 mJ and
199 mJ). Their averages are shown in Figure 49 (b and c¢). One thousand spectra were
collected from B.at. spores using the Spitfire and averaged to produce the spectrum
shown in Figure 49d (other applications, not discussed here, required more spectra to be
collected than usud).

Although peak heights and ratios vary significantly with the pulse length, it is not
difficult to see that most peaks produced using either the 130 fs or 40 ns pulses are aso
produced, to some extent, using the standard 6 ns pulses. This was not entirely expected,
but a potential explanation can be provided. As was mentioned in chapter 5, ion
formation in UV MALDI is thought to result from a two-stage process. Primary ions are
generated more or less directly by the laser and must as a result depend on the particular
properties of the laser (i.e. pulse duration, wavelength, etc.). In the plume, however, the
production of secondary ions is largely governed by thermodynamics. These secondary
reactions can thus conceal differences in the formation of the primary ions. It is aso
important to keep in mind that spores contain only a finite variety of molecules. It should
not be particularly surprising, therefore, that different ionization schemes may produce
many of the same ions, just in different amounts (particularly when the save wavelength
is used). If separate pulses were used for desorption and ionization, it might be possible
to exert much greater influence over the spectra produced™***.

Perhaps the most striking feature of the spectra is that the 40 ns pulses appear to
produce relatively few negative ions in comparison to the number of positive ions. This
cannot yet be quantitatively explained, but it will be investigated more thoroughly in

future experiments. Another interesting property of the 40 ns spectra is that many of the
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peaks observed in the raw time of flight data are narrower than the laser pulse width. It is
not difficult, in fact, to find fairly substantial peaks in individual spectrathat have a width
of 20 ns (FWHM) or less. The static fields employed in the mass spectrometer do not
have the ability to “time focus’ ions thus the laser pulses seemingly must produce free
ions over a briefer window than the pulse duration. This may be consistent with the
tentative hypothesis that ions are produced primarily in the spore core but cannot be
observed until enough energy has been absorbed to rupture the outer spore layers. It
could also be related to some other type of threshold behavior.

No large peaks appear in the mass spectra outside of the mass range shown in Figure
49. A triplet of very small peaks, with spacings of 14 Daltons, can be observed in the 6 ns
data centered at approximately m/g=-710. These nay be consistent with a lipid (the peak
spacings in this case would correspond to the loss of one or two CH. groups). The largest
peak is about 0.6 units tall in the spectrum shown in Figure 49b. If it were not for the fact
that these three peaks are observed in data from other experiments, it might be tempting
to ignore them. There is perhaps an even smaller peak at approximately m/g=-1245 in the
130 fs spectra, but more data is needed to confirm its existence. Whether the peak is real
or not, al of these “high mass’ peaks are far too small (in terms of signal) to be of value
for identification with the current instruments.

The use of 266 nm lasers with different pulse lengths did not result in the observation
of significant new pn peaks at masses greatly in excess of those seen previoudy (with
the standard 266 nm, 6 ns laser). This does not necessarily mean, however, that high mass
ions were not created. As will be shown in section 6.4, such ions must be generated in

large numbers to produce an obvious peak in a spectrum. Whether new high mass ions
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were generated or not, the 130 fs and 40 ns lasers are able to operate at a far higher rate

than the 6 ns laser and may be of some value for this reason.

6.2 355 nm Wavelength, ~6 ns Pulse Length Experiments
Common mass spectrometry wavelengths include 308 nm (XeCl), 337 nm (N3), 351

nm (XeF) and 355 nm (3" Nd:YAG) among others. Gieray et al. used a XeCl excimer
laser for laser ablation mass spectrometry of single B.at. spores™. Severa of the single
particle MALDI experiments utilized N, lasers®™ 8. A tripled Nd:YAG (355 nm) laser
was used here to explore the wavelength dependence of spore mass spectra. The
particular laser utilized is virtually identical to the standard 266nm laser (used in chapter
4). Both are Ultras from Big Sky Laser Technologies; the only difference is the
harmonics package. 355nm photons are not absorbed strongly by DPA or any of the
amino acids, so significant differences are expected between the spectra produced at 355
nm and the earlier spectra produced at 266 nm.

Figure 50 shows average spectra collected at 355 nm from B.at. spores using 4
different average pulse energies. 1.3, 2.7, 3.3 and 3.7 mJ. Compared to the energy
induced spectral changes at 266 nm, these spectra appear much more consistent. At
fluences far above threshold, the 266 nm spectra were observed to become more
consistent, but the fluences produced at the lowest energies here cannot be far above the
355 nm threshold. The hit rate at the lowest energy in the figure is less than 2% and
grows to amost 14% for the highest energy. Unfortunately, equipment was lacking to
take images of the laser profile at the time these spectra were collected so it was not

possible to properly measure the size a shape of the unmodified laser beam (which is
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Figure 50. Average mass spectrafrom B.at. spores collected using a 355 nm laser at four different average
pulse energies. For each pulse energy two spectra are shown: one full vertical scale, and one expanded
scale.

necessary to determine the true fluence distributions produced). Nonetheless, the profile
is known to have been roughly Gaussian in form. The diameter of the pulses at the target
plane was ~500 nm (within a factor of 2).

Given the uncertainties in the true shape of the profile, it is not possible to accurately
determine the 355 nm fluence threshold. Nonetheless, it is possible to determine a lower
limit for its value. Based on the hit rate data, most of the area in the profile of lowest-
energy, 355 nm pulse must have a fluence below the true threshold. Even if the 1.3 mJ of
energy contained in the low energy pulse were spread uniformly over a 1 mm diameter,

the mean fluence would still exceed 1.6 n¥nm?. The true fluence threshold must be
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higher. This increased threshold (relative to the value of ~1 n¥rm? at 266 nm) is at least
gualitatively consistent with absorption data that has been obtained for B. subtilis spores
suspended in water'?!. The absorption coefficients at 265 nm, 300 nm and 400 nm are
6540 cm?, 6200 cmit, and 5560 cmit respectively. No unusual behavior is expected
between 300 nm and 400 nm so the absorption coefficient at 355 nm is expected to be
roughly 5900 cmi. More energy is absorbed at 266 nm (for a given fluence) and so the
fluence threshold at 266 nm is expected to be lower.

Of greater relevance to the BAMS system is the pattern of ions formed. No significant
peaks were observed outside of the mass range shown in Figure 50. Virtualy all of the
peaks produced at 355 nm were also produced at 266 nm, although some of the peaks are
significantly smaller. Figure 51 shows two average spectra collected at 266 nm on either
side of the second 355 nm spectrum from Figure 50. The peaks attributed to DPA,
arginine (173), glutamic acid (-146) and aspartic acid (-134), which are present in the
low energy 266 nm spectrum, are gone at 355 nm. In redlity, thisis not surprising since

DPA and the aromatic amino acids do not absorb at 355 nm. Although the primary amino
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Figure51. The top (@) and bottom (c) average spectrawere collected using 266 nm pulses with relatively
low and high energies respectively. The middle average spectrum (b) was collected using 355 nm pulses. It
appears more similar to the high energy 266 nm spectrum, but the fluences produced could not have been
far above the 355 nm fluence threshold. Virtually every peak produced at 355 nm can be identified in the
266 nm spectra. The spectra have been vertically cropped to make the small peaks more clear.
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acids observed at 266 nm were not actually aromatic (and therefore did not absorb
strongly at 266 nm) other members of the BAMS group have shown that the presence of
aromatic amino acids and DPA can enhance the production of non-aromatic amino acid
ions at 266 nm which probably explains their presence in the 266 nm spore spectrat®. It
is aso interesting to note that two 266 nm photons provide enough energy to ionize the
majority of amino acids'®®, while two 355 nm photons do not.

It is encouraging that the differences between the 355 nm spectra and the 266 nm
spectra can be qualitatively explained. As rather expected, however, the 355 nm spectra
do not appear to be as useful as the 266 nm spectra for differentiating particles since
important marker peaks are absent and no significant new peaks have appeared. In
applications where the use of reagents is not a disadvantage, however, the 355 nm laser
may still be of some use. Preliminary experiments by other members of the BAMS group
indicate that adding 2,5-Dihydroxybenzoic acid (DHB), a common MALDI matrix, to a
solution can greatly enhance the sensitivity of the instrument to certain analyte molecules
at 355 nm. Perhaps this may hold some promise for mass spectrometry on single cells as

well.

6.3 3.05 mm Wavelength, ~4 ns Pulse Length Experiments
As an dternative to the ultraviolet wavelengths used hitherto, it is interesting to

consider infrared wavelengths. Whereas UV photons tend to produce excited electronic
states, IR photons produce excited vibrational states. (The energy of a 3050 nm photon is
only ~0.4 eV.) Early work performed at LLNL by some of the founding members of the

BAMS group showed that mass spectra could be obtained from collections of whole
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bacterial spores deposited on a metal substrate without the addition of a chemical
matrix’*®. An N, laser was used to collect some spectra at 337 nm, but superior results
were obtained using infrared wavelengths (3.05 to 3.80 mm) from a custom-built optical
parametric oscillator (OPO). At 3.34 nm it was possible to generate an ion signal near
m/g=19,050, along with numerous smaller peaks, and clear differences between Bacillus
species were observed. Those measurements, however, required many spores; the
sensitivity limit was ~2° 10% spores, but good quality spectra required ~10” spores. Since
the single particle instruments used here demonstrate single spore sensitivity a UV
wavelengths, new experiments were performed with IR wavelengths.

The experiments described here employed an Opotek IR OPO 2732. This is an
infrared optical parametric oscillator pumped by a Q-switched, Nd:YAG laser. It uses a
KTiOAsO, (KTA) crystal to produce ~4 ns pulses of light continuoudly tunable from
1.55t0 1.75 mm (signal) and 2.7 to 3.2 nmm (idler). The signa is discarded and work is
performed with the idler (~5 mJpulse max). The pump is a Brilliant from Quantel.
Unlike the Ultra, the Brilliant’s pulse energy is adjusted by changing the delay between
the flashlamp and Q-switch. This results in a more consistent profile at the fundamental
wavelength of 1064 nm. Unfortunately, the laser requires itself to fire at an average rate
of ~10 Hz (presumably to maintain a stable output). This is not directly compatible with
the ATOFMS triggering system, which simply fires the laser whenever an aerosol
particle is tracked. To remedy this situation, the triggering system was modified to
generate artificial trigger signals when particles arrived at an insufficient rate and gate out
trigger signals that occurred too rapidly after a preceding trigger (the scheme was similar,

but not identical, to that used for the Eagle described in section 6.1). In genera this
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Figure52. An average of 83 individual spectra collected from an aerosolized solution of B.at. spores at
3050 nm. The bottom spectrum is simply an enlarged version of the spectrum at top. The IR laser did not
efficiently produce mass spectra so only asmall set of data was collected.

worked quite well, but the rate of data acquisition was still reduced (~2" ) because of the
necessary dead time following each laser shot.

The profile of the IR pulses was not ideal, but since pulse energy could not be
sacrificed (as explained shortly) no attempt was made to modify it. A Spiricon Pyrocam
beam profiler confirmed that the profile could be made approximately Gaussian, with a
diameter of ~300 mm (FWHM), when properly focused at the target plane. The beam was
highly divergent upon emission from the OPO and at some wavelengths absorption by
the atmosphere, presumably due to water, was noticeable. The maximum pulse energy at
the target plane was about 2.5 mJ a 3050 nm, which is a wavelength close to an
absorption peak in water and presumably other OH mntaining molecules. Figure 52
shows an average spectrum collected under these conditions from an aerosolized solution
of B.at. spores. Far more significant than the actual spectrum is the fact that more than
28,000 particles had o be tracked in order to obtain the 83 spectra represented by the
average. This hit rate of less than 0.3% was the best that could be obtained after
significant care was taken to align the IR laser. In contrast, the hit rate for spores at 266
nm can approach 30% at high pulse energies.

The reason for the low hit rate is not fully understood. It is possible that the fluences

produced by the IR laser pulses were simply below the DI threshold at this wavelength,
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except for a few hot spots in unusual pulses. It also is possible that the true DI threshold
for intact spores at 3050 nm is much higher than any of the fluences produced and that
the resulting spectra are from damaged or atypical particles. The early IR-LDI work at
LLNL shows that spectra from spores on a substrate can be produced using 1.5 mJ, 3050
nm pulses focused to a spot size of 0.9 mnY (area at or above half of maximum
intensity)*3°. This represents an average fluence of ~1.7 nJmm¥. This is of the same order
of magnitude as the fluences typically used in IR MALDI*. In the current IR single
spore experiment, a ~2.5 mJ pulse is focused to ~300 nm producing a fluence of ~35
ndm?. This is obviously much higher than 1.7 nJmm¥, but because an isolated single
spore is significantly smaler than the IR laser wavelength, the absorption may be
affected and care must be taken in comparing the two values.

The energy absorbed by a spore depends on its complex index of refraction. The
approximate complex index of refraction for B.at. spores at a wavelength of ~3 nm is
n=1.45+0.06i 3. A Mie calculation based o this value indicates that the absorption
cross section of a1 mm diameter spore is 0.13 rm (~1/6 of its geometrical cross section)
at awavelength of 3050 nm. At a fluence of 35 nJrm the spore should absorb ~4.6 nJ of
energy (assuming that the index of refraction stays fixed throughout the laser pulse). This
is more than enough energy to desorb molecules. At the 266 nm fluence threshold, a 1
mm spore is only estimated to absorb 0.47 nJ (chapter 5). The relative lack of spectra (i.e.
low hit rate) at 3050 nm does not actually indicate that molecules were not desorbed; it
merely indicates that free ions were not formed. It is possible that large numbers of free

neutral molecules were produced (they ssmply were not and could not be detected). There
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is some evidence to support this from initia experiments performed using two DI laser
pulses (an IR pulse for desorption followed rapidly by a UV pulse for ionization).

In trying to better understand the low observed hit rate, it is useful to briefly consider
current theories of IR MALDI. It is not unreasonable to expect that some of the
molecules in spores may act as a MALDI-like matrix for other molecules. Some of the DI
processes involved here in single spores may thus be similar to processes occurring in
standard IR MALDI. In IR MALDI, the desorption/ablation process is strongly tied to the
properties of the matrix and the laser. Spallation, various forms of photoablation and
thermal processes have al been proposed as possible desorption mechanisms'®. In
spores, thermal desorption process are perhaps the most likely candidate. Even without
precise knowledge of the material properties of spores, it seems doubtful that al of the
other processes can be relevant. Spallation, for example, occurs when the laser deposits
energy in a surface layer faster than thermal conduction allows it to be removed. Since
lower layers remain basicaly unheated, significant stresses may develop. A spore is so
small, however, that energy absorption is likely to be relatively uniform. The small size
also means that even if temperature gradients develop, they will likely diffuse away very
rapidly. Nonetheless, the energy cannot escape from the spore altogether so it seems
probable that some desorption must occur.

The mechanisms that form primary ions in IR MALDI are even less well understood
than the desorption/ablation processes. The photon energy is so low (~0.4 eV at 3050nm)
that direct photoionization is highly unlikely. It has been suggested that spallation,
cavitation, and explosive phase transitions may cause sufficiently energetic events to

produce ions*°. It is possible that these mechanisms do not operate effectively in spores
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(hence explaining the low hit rate). It is beyond the scope of this thesis, however, to
guantitatively evaluate the roles that these processes may play. Once primary ions are
formed in IR MALDI, they interact with other molecules in the plume to produce
secondary ions. Because of the small size of single isolated spores, the plume density is
likely to drop rapidly. Whereas a MALDI plume from a large spot may undergo an
amost one-dimensional expansion, the spore plume is free to expand in al three
dimensions. The production of secondary ions is aimost certainly limited, therefore, in
comparison with experiments that employ bulk samples (e.g. the past IR experiments at
LLNL). This may partially explain the lack of high mass peaks seen in the few mass
spectra successfully collected here (Figure 52) compared to the past LLNL IR results. On
a more practical note, however, it is very important to consider the efficiency of the
current mass spectrometer as a function of ion mass. The mass spectrometer used for the
past experiments is believed to have been more sensitive (at least at high mass) and was

given afar larger sample to analyze.

6.4 ATOFMS Performance for High Mass lons
The instrument used for the experiments described here is basically a commercial

aerosol time-of-flight mass spectrometer originally designed for the chemical analysis of
organic and inorganic aerosol particles. As such, the instrument was designed primarily
to detect relatively small ions and not the larger ions that are of greater interest here.
Since large ions have relatively long flight times, a large ion with a given initial radia
velocity (i.e. a velocity perpendicular to the axis of the spectrometer) will have a larger

radial displacement at the MCP detector than a small ion with the same initia radial
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velocity. The instrument can clearly only detect an ion if that ion actualy hits one of the
detectors. Large ions are more likely to miss the detector and thus remain unobserved.

In chapter 3, a smple (but lengthy) equation for the time of flight of anion in the mass
spectrometer was derived. It is arelatively straightforward extension of this calculation to
predict the radial position (i.e. the transverse displacement) of an ion in any plane
perpendicular to the mass spectrometer axis. This is done here to determine whether an
ion (with a specific mass, charge and initial velocity) will hit the active area of the
detector or even escape the ion source region. The efficiency of the mass spectrometer at
high masses isin turn determined by tracking many ions with arange of initia properties.

For the present calculations, it is assumed that the radial velocities of the ions created
from an aerosol particle result purely from the kinetic energy imparted by the DI event
and the initial downward velocity of the aerosol particle (~300 m/s). Although the
particle is broken apart, the center of mass of the desorbed material (and any remnant
bulk material) must continue traveling downward with the same velocity. The electric
fields inside the mass spectrometer are treated as purely axial and do not change the
initial radial velocities of the ions. Significant work has been done to determine the
velocities of ionized and neutral analyte and matrix molecules in MALDI experiments'*
142 143 1% The velocities depend on the choice of analyte and matrix, but values of 500-
1000 m/s appear typical. The angular distribution of ion velocities caused by the DI event
may not be sphericaly symmetric’*> 1% but since the true distribution cannot be
measured without significant modification of the instrument, a spherically symmetric
distribution (relative to the particle’s center-of-mass) will be used here as a simple

approximation. The x, y, and z components of each ion’s velocities are all described by
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Figure53. An artificial spectrum shows the reduced efficiency of the mass spectrometer at high mass.

Each “peak” results from 100 ionsinitially located at the center of the ion source region. At high mass,
however, the ions of a particular mass-to-charge ratio are dispersed and no longer form asingle peak. When
superimposed with chemical noise and shifted by calibration jitter, the individual peaks may be very hard to
identify and properly associate with one another.
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particular values are chosen by a normal random number generator (the “randn” function
in MATLAB).

To produce an artificial spectrum, the flight times for 100 ions (randomly assigned
initial velocities conforming to the distributions described above) are calculated at every
tenth integer mass-to-charge ratio out to a maximum of 1000 Daltons. A histogram with 2
ns time bins is made from the time of flight data (the MCP response is assumed to be
instant with no temporal width). As discussed in chapter 3, the MCP detectors produce a
broad range of responses to single ions. The distribution is roughly Gaussian with a
standard deviation equal to ~40% of the mean. For plotting purposes, the mean response
of the MCP was simply assumed to be one in arbitrary units. (The specific response to a
given ion or ions is determined using again the “randn” MATLAB function.) A
calibration equation of standard form (Eg. 9) was fit to the mass-to-charge ratio and flight
time data and then used to produce a proper mass scale for the spectrum. An example is

shown in Figure 53.
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If the mass spectrometer were ideal, all of the ions of a particular mass would arrive at
the detector at exactly the same time regardless of their initial velocities or even positions
(this would constitute perfect energy and space focusing, respectively). Each peak in the
artificial mass spectrum would consequently have an average height of 100 units. If the
detectors were perfect, all of the peaks would be exactly 100 units tall. Imperfect
detectors inevitably cause some fluctuations. For masses near 50 Daltons, the model
indicates that the mass spectrometer should perform fairly well Figure 53). At high
masses, however, the few ions of a given mass that actually make it to the detector no
longer form a single peak. When superimposed with random ion signals (i.e. chemical
noise) and shifted randomly by calibration jitter, the individual peaks will be very hard (if
not impossible) to identify and properly associate with one another.

This shortcoming of the mass spectrometer is particularly unfortunate because there is
no guarantee that a single particle will even produce 100 ions at a single high mass-to-
charge ratio. With optimal conditions in a MALDI experiment, less than 1 in 1000 of the
analyte molecules are likely to be ionized™®*. In the present case of single spores, the
ionization efficiency appears to be much worse. A typical spore contains on the order of
4 10° DPA molecules, but the corresponding peak a m/gq=—167 is thought to represent
no more than a few hundred ions at best. For very large molecules, such as DNA, there
may be only one or a few copiesin the entire aerosol particle.

The software that operates the current mass spectrometer imposes an additional
limitation that is not directly related to the design of the mass spectrometer. The system is

configured to collect data for 60 ns after the laser is fired which means that ions with
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masses greater than ~1500 will never be observed (the necessary MCP data simply isn't
collected). This cannot currently be changed.

It is clear that a new mass spectrometer is needed. The new spectrometer must
transport high mass ions to the detectors much more efficiently, focus the ions better (in
time), have reduced calibration jitter and of course acquire data over an adequate range of

flight times. Such a mass spectrometer is currently under construction by the BAMS

group.

6.5 Conclusions
lon peak heights and ratios vary significantly with the wavelength and pulse length of

the laser used for desorption and ionization. It is conceivable that some of the new
spectral features encountered with the “nonstandard” lasers might enable better
differentiation of certain particle types, but no significant new high mass peaks were
observed. The cause for thisis not certain. It is possible that the new lasers ssmply did not
produce such ions. It is also possible that some high mass ions were generated but ssimply
not detected. The current mass spectrometer has been shown to perform poorly at high
mass. Unless large ions are produced in large numbers, the ions are not likely to produce
clear peaks in the mass spectra obtained with the current system. Fortunately, a new mass
spectrometer is being built and even more advanced systems are planned. As soon as one
of these systems becomes available, the experiments described here can be repeated with
the new system. Regardless of the mass spectrometer used, it is important to better
understand the chemical reaction dynamics within the desorption plume. These reactions

are critical to the success of standard MALDI, but their role here is unclear and may vary



146

significantly with the laser parameters. The use of a second laser pulse to probe the plume
is likely to provide very informative data. The use of a second laser pulse may also allow

far greater control over the ions produced.



147

Chapter 7. Performance Predictions

7.1 Introduction
The goa of the ongoing work described in the previous chapters is ultimately to

produce mass spectra that enable accurate differentiation and identification of individual
bioaerosol particles. There can be no question that this is essentia to the BAMS system;
better identification of individual particles will lead to better overall system performance.
Nonetheless, the ability to accurately analyze individual particlesis not a guarantee that a
useful bioaerosol detector can be achieved. Two important system parameters that must
be quantified are the probability of false alarm and the probability of detection. It is easy
to produce a detector that has alow false dlarm rate or a high detection probability, but it
is very difficult to obtain both in a rapid (or even a slow) detector. The particular
requirements for sensitivity, specificity and speed will be determined by the details of
each specific deployment or application scenario encountered. It is thus critical that the
performance of the BAMS system be modeled quantitatively and that the relationships
between these three parameters and their dependence on the performance of the
individual components of the BAMS system be understood fully. Such a model is the
subject of the current chapter.

The comprehensive model described here requires as input a number of aerosol
particle properties, performance parameters for individual BAMS system components
and at least a partial set of user requirements concerning the desired detection probability,
detection time and false darm rate. The aerosol particle properties are first combined

with the instrument component parameters to determine the “efficiency” of the total
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BAMS system for each particle type in the local aerosol. This efficiency links the
concentration of each particle type to the number of such particles measured per minute.
The single particle identification and misidentification rates (which are known or
measurable) are then used to calculate the average number of particles that are correctly
and incorrectly identified as agent. A statistical model finally determines the actual
detection limit and expected false alarm rate. A statistical model is necessary because
there is, for example, always a possibility that no agent particles will be drawn into the
instrument and analyzed in a given sampling period even though agent particles are
present in the aerosol. Similarly, there is always a finite probability that one or more
harmless particles will be misidentified as agent in any given period of time. The
statistical model quantifies these probabilities.

Fortunately, an alarm need not be sounded on the basis of the identification of asingle
particle as agent. In an environment that is very clean, the identification of only “a few”
particles as a specific type of agent in a short period of time might be required to sound
an alarm. In an environment filled with particles that are smilar to an agent of interest,
but harmless (eg. B.t. when searching for anthrax), a greater number of agent
identifications would be required. Setting the “alarm threshold” properly is critical. The
threshold is defined here as the number of particles identified as agent per sampling
period required to sound an alarm. If this threshold is set too high, the instrument looses
sengitivity. If the threshold is set too low, too many false alarms will result. One of the
outputs from the model (the ROC curve discussed later) explicitly shows this tradeoff.

The requirements to sound an alarm will generally be different and largely

independent for each detectable agent type. The fact that a few particles may be identified
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as plague in a hypothetical scenario does not necessarily change the requirement to sound
an alarm for anthrax any more than the identification of a few particles of a harmless
background material. The instrument must ultimately perform many simultaneous but
independent calculations to determine whether there is sufficient reason to sound an
alarm for each of the individual agent particle types. These calculations are identical
mathematically, so only the calculations necessary for one particular “agent of interest”
are derived here. One of the few scenarios in which this simultaneous but independent
approach would be inappropriate is if a synchronized release of multiple agent types was
expected. The model can be expanded to include this type of scenario, but thisis not done
here.

Before embarking on more detailed descriptions, it is worthwhile to briefly summarize
the basic steps in the model. First, the interaction of a specified aerosol with a specified
instrument is modeled to determine the average number of particles of each aerosol
particle type anayzed per sample period. Next, the single particle identification and
misidentification rates are applied to determine the average number of these particles
either correctly or incorrectly identified as agent. A statistical equation is then utilized to
determine the appropriate alarm threshold for a particular agent of interest. Finaly, a
second equation is applied to determine the minimum concentration of that agent
necessary to sound an alarm with a certain desired probability. The ultimate output of the
model can take many forms, but two particular types of graphs are produced here. The
first of these will be referred to as a performance plot. The second is the well-known
Receiver Operating Characteristic (ROC) curve. Both are described in detail further

below.
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The necessary equations for the statistical model are derived in sections 7.2 and 7.3,
before considering details of specific systems, because the equations are generally
applicable to many types of instruments. The required aerosol properties and instrument
parameters are described in section 7.4. Numerical values are assigned and a hypothetical
aerosol and instrument are modeled in section 7.5. Various modifications to the basic
system and the resulting performance improvements are described in section 7.6.
Tradeoffs between detection probability, detection time and fase alarm rate are

illustrated in section 7.7.

7.2 Probability of False Alarm
False alarms result from the misidentification of background particles as agent

particles. Mass spectral fluctuations are unavoidable so there is a small, but non zero
charce that a harmless particle will produce a mass spectrum that is similar enough to the
spectrum from an agent to cause a misidentification. Assume that m background particle
types are present in the air. (One “type’” might be sea salt, another B.t., another a
particular species of pollen, etc.) For each of these types there is a probability, Pa;
(i=1..m), that an individual particle will be misidentified as the agent of interest when it is
analyzed. (The reduction of spectral variability described in chapter 5 reduces this
probability, but a finite chance for misidentification will always remain.) Different
particle types have different densities, sizes, and other properties that cause them to be
transported and analyzed with different efficiencies in the BAMS instrument. All of the
various factors influencing these efficiencies will, for now, be summarized with a single

“efficiency” parameter, h;, for each particle type. If the concentration of particles of type
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i isC;, then h;C; such particles will be analyzed by the system per minute on average. If a
sampling period lasts for T minutes, the average number of particles misidentified as

agent will be Ni=P,ihiCT. Generally, the probability, p, (k ), to observe exactly k

misidentifications of particle type i, given an average of N; can be approximated by a

Poisson distribution

N-k‘
— AN i
pNi(ki)_e ki! :

Eq. 20
It is possible, however, to derive a general equation for the false alarm rate without taking
advantage of the specific functional form of Eq. 20. This general equation, derived in the
following, is actually useful since some situations that involve very small aerosol releases
or instruments that do not sample at a uniform rate may not be described well by Eq. 20.
Based upon the scenario in which the instrument is being used, the probability of false
alarm will be required to be less than or equal to P, (a specific number specified by the
user). If the aerosol contained only a single particle type (particle type 1, for example), it
would be possible to simply sum over Eq. 20 (or whatever the true distribution might be)
to find a vaue of ki such that the probability to obtain k; or more misidentifications

would be less than or equal to Pxa.
ky- 1

¥
o . o) .
P.£a p,()=1- 4 py, ().
i=0

=k

Eq.21
(Note that the second part of Eqg. 21 relies upon the proper normalization of p,, .) The

number, ki, that just satisfies Eg. 21 would define the threshold to sound an aarm. There
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will generally be more than a single background particle type, however, so the calculation
becomes more complicated.

The probability to obtain exactly ki misidentifications of type 1 particles, k»
misidentifications of type 2 particles,... and ky,, misidentifications of type m particles, all

in one sampling period is
Q
O Pn, (ki )
i=1

Eq.22
The particular values of the ki do not actually matter; al that is important is their sum, k.

A vaue of k (not ki) must be found such that the probability to obtain k or more total
misidentifications (of background particles as a particular type of agent particle) is less
than or equal to the desired Ps. This requires a summation over all the different
combinations of the k; that add up to k or more. The smallest value of k that satisfies the

following inequality must be found. This value defines the proper alarm threshold.

P2 & Onpylk)=1- & Onylk).

Ko+ +ky? k=1 b+ k< =1

Eq. 23
Eq. 23 is valid independent of the details of the probabilities p, (k;) (so long asthey are

independent), but may be rather difficult to use in practice. Fortunately, this equation
smplifies greatly if a Poisson distribution accurately predicts the number of
misidentifications for each of the individual particle types (as assumed in Eq. 20). In this

case, Eq. 23 reduces (as shown in appendix A.8) to
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-1 i m
P, 3 1- 59“'\# where N=Q N,.

j=0 ! i=1

Eq. 24
It is possible, in theory, to obtain an arbitrarily low false alarm rate; the instrument can

simply require that larger and larger numbers of particles be identified as agent before
sounding an alarm. As the alarm threshold (i.e. the required k value) is increased,
however, it becomes less and less likely that a given concentration of agent (once added
to the background) will actually produce enough agent identifications to trigger the
aarm. It is thus important to also determine the minimum concentration of agent that is

likely to produce k or more agent identifications in one sampling period.

7.3 Probability of Detection
Assume that the agent concentration is C,, the efficiency parameter is h,, and the

probability that an agent particle is properly identified is P,a. (Reduction of spectral
variability causes P, 4 to become larger, approaching 100% in the ideal case) The
average number of agent particles properly identified per sampling period T is thus

Na=PaahaCaT. Once again, the probability, p, (k,), to obtain a specific number, Ka, of

correct agent identifications given an average of N, is generally described by a Poisson

distribution.

Eq.25
The probability to properly identify ka or more agent particles (whether the exact

distribution is Poissonian or not) is just the sum
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Eq. 26
If this equation was set equal to the desired probability of detection, Py, and solved for

the agent concentration, the senstivity of the instrument would actualy be
underestimated. The alarm is triggered whenever k or more total particles (whether truly
agent or not) are identified as agents. Eq. 26 does not include the contribution from
misidentified background particles. This contribution can be relevant, as the following
example demonstrates. Consider a hypothetical situation in which the background aerosol
contains sufficient concentrations of easily misidentified particles to produce an average
of 25 “agent” identifications (even though no agent is present). Application of Eq. 24
indicates that the alarm threshold must be set to k=50 to ensure that P=10". If the
misidentification of background particles was ignored, it would appear that ~50 agent
particles would have to be identified as agent on average to sound the alarm reliably. In
reality, only ~25 agent particles must be identified as agent, on average, because the
background supplies the other ~25 agent identifications necessary to reach the alarm
threshold. In this hypothetical case, the true senditivity of the instrument would be
roughly twice that predicted ignoring the background.

To find the true sensitivity of an instrument in general, the minimum value of N, (or

realy C,) that satisfies the following inequality must be found.

& ki . ('j k-180 o 80
P £§1 apy(i)z+racse, (i a On,k)zZ
j=0 g =0 ky+eo+k<k- | =L 2%

Eq. 27
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The first term on the right is identical to Eg. 26. It is the probability that k or more agent
particles are properly identified. The second term is the sum (over j) of the probability
that | agents are properly identified (j<k) multiplied by the probability that more than k-j
background particles are misidentified (so that the total number of particles identified as
agent is always 3 k). This can be rewritten to closely resemble Eq. 23, but thisis not done
here. As in the case of EQ. 23, Eq. 27 simplifies greatly when the various distributions

involved are all Poissonian. The result is

%1 - N Nl ]
P,E1-g e — whee N=N_,+ gN,.
j=0 ] i=1.m

Eq. 28
Given a certain background of various types of particles and a certain desired probability

of false darm, Eq. 24 can be used to determine the necessary alarm threshold. Once the
alarm threshold is determined, EQ. 28 can be used to find the concentration of agent
needed to meet or exceed that threshold with a probability equal to the desired probability

of detection.

7.4 Aerosol Properties and Instrument Parameters
The basic theoretical framework now exists to predict how an instrument will perform

in virtually any aerosol environment. Numerical values are needed for the various aerosol
properties and instrument parameters to determine if a hypothetical BAMS system, with
reasonably obtainable characteristics, can perform well enough to be a practical detector
or not. The exact performance of areal BAMS system is sensitive information and cannot
be revealed here. Order of magnitude approximations and estimates for the various

required parameters are used here to predict the performance of a hypothetical system. A
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few aerosol properties occur explicitly in the above equations and these will be discussed
first. All of the instrument parameters and a number of additional aerosol properties must
be combined to obtain values for the efficiency parameters, h, and h;. This will be
discussed subsequently.

The concentration of each aerosol particle type must be specified as well as the single
particle identification and misidentification probabilities. For modeling purposes, the
concentrations can simply be chosen at will. In the field, the actual particle
concentrations of each type should be measured. (With proper calibration, the BAMS
system will be able to perform these measurements directly and no additional hardware
will be required.) The precise probability that particles of a given type are misidentified
as a particular agent (P,;) and the precise probability that agent particles are properly
identified as agent (Pa,a) can only be obtained from laboratory experiments with those
particle types. (Estimates of these probabilities may be obtained by extrapolation of
|aboratory measurements on similar or related particle types however.) The BAMS group
has already demonstrated the ability to analyze severa thousand spectra from certain
particle types without misidentifying any of them as agents (or more precisely as agent
surrogates). This is encouraging, but it does not prove that particles will never be
misidentified (i.e., P,i=0). A reasonable upper limit for a value of P,; in this type of
statistics-limited experiment can be determined as follows. The probability, Py, to obtain
no misidentifications of a certain particle type in N trialsis smply Po=(1-P4,;)". This can

be rearranged to obtain
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Eq. 29
The approximation is valid in the limit of large N. If Pg is set to 5%, an upper limit for
Pai issmply 3/N. This makes a convenient rule of thumb. If 3000 B.t. spore spectra, for
example, were analyzed without a single misidentification (as a particular agent or agent
surrogate, e.g. B.at.) a reasonable estimate for P,; would simply be 3/3000=1073. If the
true value of P,; were any higher, it would be extremely likely (3 95%) to observe at least
one particle identified as agent (or agent surrogate).

Specific values for the efficiency parameters could be determined relatively easily for
well-defined aerosols in carefully controlled laboratory experiments, but the values will
change whenever the aerosol or instrument is modified. It is simply not practical to
reproduce every aerosol and instrument combination in the lab that might be encountered
in actual field use or deployment. Specific properties of single aerosol particles and
gpecific instrument parameters must be measured or estimated and then combined
mathematically to produce values for the efficiency parameters. As aready mentioned,
the efficiency parameters ultimately relate the concentration of each type of particle in
the local aerosol surrounding the BAMS system to the average number of particles of
each type analyzed by the system per minute. For the purpose of organization, the
efficiency parameters will be determined by factoring in the properties of each
component of the BAMS system sequentially, more or less as encountered by the aerosol
particles entering the system.

To begin, particle types with different aerodynamic diameters will be focused

differently by the inlet nozzle. Particles with diameters that are poorly focused are not
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likely to be fully analyzed. At least one parameter (and in practice several) are needed to
properly quantify the size dependent focusing. In the present case, the probability that a
particle is tracked given that it has been sampled and the probability that a particle can be
hit by the DI laser given that it has been tracked are needed to assess the particle focusing
efficiency (rate limitations are intentionally excluded at this point). Fortunately, relatively
simple experiments can be devised to measure these parameters directly. After the inlet,
the next major component that must be considered is the tracking system. In the current
calculations, the tracking system is treated as having a certain maximum operating rate
just like the DI laser and the data acquisition system. The probability that a given particle
can be tracked (assuming that it has been focused well enough to cross the necessary
tracking laser beams) can be derived easily. Since a similar equation for the rate
limitation also applies to the DI laser (which is the next mgor instrument component
after the tracking system) and the DI laser system is easier to understand, the equation for
the rate limitation is developed considering the DI laser explicitly in the next paragraph.
Consider a DI laser with a maximum firing rate of R pulses per minute that is given N
randomly incoming particles per minute to fire at. If the laser has just fired at a particle,
the laser must wait 1/R minutes until it is able to fire again. Once it is able to fire, the
system must wait /N minutes (on average) for the next particle to arrive. The total time
between laser shots is thus 1/N+ 1/R minutes and the laser is expected to fire at NR/(N+R)
particles per minute on average. The probability that an individual particle is fired at is
consequently R/(N+R). If the DI laser has a maximum operating rate of 1 kHz, for
example, and particles arrive randomly at an average rate of 1 kHz, only 50% of the

particles can be fired upon. Note also that not every particle that is fired upon is hit
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because of imperfect focusing. As was mentioned earlier, the basic rate equation is
applied to the tracking system, the DI laser system and the DAQ and data analysis
system. Each system has a different maximum rate (in units of tracks per minute, shots
per minute and spectra analyzed per minute, respectively), but these are easily determined
from manufacturer specifications or experiments.

Additional aerosol particle properties must still be factored in to the performances of
the system components just mentioned to determine the overall efficiency parameters.
Very small particles, or particles with low indices of refraction may not scatter sufficient
light to be detected by the tracking system. If so, the particles will not be analyzed.
Similarly, it was shown in chapter 5 that different particle types have different fluence
thresholds. For a given laser fluence distribution, not all particles that interact with the
laser beam may produce spectra. At low laser energy, for example, it is very unlikely that
BSA or MS2 spectrawill be produced, given the results from chapter 5, regardless of the
concentration of BSA and MS2 particles. Fortunately, all of these properties can be
quantified.

In the next section, numerical values are assigned to the parameters described in order
to obtain predictions for the performance of the basic hypothetical system described
hitherto. Modifications and additions to this hypothetical BAMS system are discussed

later (in 7.6) together with the additional parameters introduced by those modifications.

7.5 Performance Predictions
In the following, a generic background aerosol is considered that consists of 100 parts

non-biological particles and 1 part biological particles. For the particular output that is
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shown shortly, the model itself determines and varies the total concentration keeping the
ratio constant. The non-biological particles (which constitute most of the aerosol) are
assumed to produce mass spectra that are very distinct from agent particle mass spectra
and are wnlikely to be confused as agent. The biological particles (a small fraction of the
total aerosol) are assumed to produce spectra that are more similar to the agent spectra
and are thus more likely to be misidentified as agent. It is assumed that the
misidentification rate for non-biological particles, Pa,;, is 10° and the misidentification
rate for biological particles is 10°3. The probability that an agent particle is correctly
identified, Pa 4, is assumed to be 90%.

The rate at which air and entrained particles are sampled into the hypotheticadl BAMS
system is ~1 I/min. It is assumed that 10% of the particles drawn into the instrument can
be tracked and that 10% of the particles that are tracked can be hit by the DI laser
producing spectra. These rates account for imperfect particle focusing and will be treated
here as independent of particle size and composition for simplicity. It is assumed that all
particles scatter enough light to be tracked and that all particles that are hit by the DI laser
produce ions. The hypothetical tracking system has an effective repetition rate of 100
kHz (i.e. can track a maximum of 10° particles per second) while the DI laser has a
maximum firing rate of 1 kHz. The DAQ and data analysis system can acquire, process
and identify spectra at 100 Hz. For the present calculations, it is assumed that some type
of detector is used near the ion source region to determine if a particle has produced ions
so that the DAQ system is only triggered if it is certain that a spectrum will be acquired.

A 90% or greater probability of detection is desired with afalse alarm rate less than or

equal to 10° and a sampling period of 1 minute. Although it may not be required
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mathematically, the BAMS system will be forced to aways require at least three agent

identifications before sounding an alarm. Thisis simply an extra safeguard to help ensure

that the false alarm rate remains low in practice.

A computer program was written to perform al of the necessary model calculations

and produce various types of output (the code is included in A.7). Upon inserting all of

the numerical values just listed into the program, the “performance plot” shown in Figure

54 is produced. The horizontal axis shows the concentration of agent, while the vertical

axis shows the total background concentration (not including the agent). In this example,
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Figure54. The predicted performance of the hypothetical BAMS system. The system can operate

anywhere under the curved line with the desired Ps,, and P4 given a 1 minute sampling time. Outside of the
curve, it is generally possible to meet some but not all of the requirements. Anideal detector should be able
to operate in the upper left hand region of the plot (one particular goal has been indicated).
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the ratio of the concentrations of the two background particle types remains fixed (non
biological:biological=100:1) as the total background concentration is scaled. The curved
line on the plot shows the boundary between the region where the BAMS instrument can
meet or exceed the required probability of detection and false alarm rate, and the region
where it cannot (which are labeled in the figure). If one picks a point on the boundary and
then moves right (further into the region where the system can operate), the probability of
detection will increase since a greater and greater amount of agent is present in a given
concentration of background particles. Similarly, if one picks a point on the boundary and
then moves downward, the probability of false alarm could be decreased without
affecting the probability of detection because the number of background particles is
reduced while the amount of agent is held fixed.

Clearly, it is desirable to push the region where the instrument meets the false alarm
rate and detection probability goas towards the upper left corner of Figure 54. The
BAMS system should ultimately be able to detect small agent concentrations in large
concentrations of background materials. (Relevant concentrations of agent and
background particles are described below.) There are several ways to advance the system
towards this goal (in addition to smply sampling for a longer period of time). Generaly
separate techniques are needed to push the curve upward (towards higher background)
and to push the curve leftward (towards lower agent concentration). Examples of such

improvements are described in the next section.
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7.6 Preconcentrators and Prescreeners

A rea BAMS system with the configuration described hitherto would rarely be used in
practice because its sensitivity would be relatively low. The ultimate sensitivity of the
instrument is limited by the amount of air that can be sampled and by the fraction of the
particles drawn into the system hat are successfully tracked and analyzed. If three
particles must be identified as agent in one minute to sound an alarm, at least 300 agent
particles must be drawn into the system (given the assumed tracking and hitting
efficiencies of 10% each). Since the system draws in 1 liter of air per minute, there must
be at least 300 agent particles per liter of air in the environment to have a significant
chance of triggering the alarm. To meet the 90% required probability of detection (with a
90% correct identification rate for single agent particles) there must be a concentration of
amost 600 agent particles per liter of air, even if no background particles are present.
Consequently, this is the agent concentration at which the curve in Fig. 54 intercepts the
X-axis.

The performance of such a system can be improved significantly by adding a
preconcentrator to concentrate the aerosol before it is drawn into the instrument and a
prescreener to screen out particles that are obviously not agents before they are fully
analyzed by the mass spectrometer. A hypothetical virtual impactor can be added to the
modeled instrument that draws in 100 |/min of air and concentrates the entrained aerosol
particlesinto a 1 I/min flow sampled directly by the BAMS system. (The virtual impactor
concentrates the particles by exploiting their inertia.)) The addition of the virtual impactor

produces the results shown in Figure 55.
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Figure55. Performance of the BAM S instrument with the addition of avirtual impactor. The sensitivity of
the resulting detector is greatly improved compared to the instrument without a VI (see Figure 54).

The minimum detectable concentration of agent is clearly improved. It is also
apparent, however, that as the concentration of background particles increases, the
minimum detectable concentration of agent increases as well (i.e. the sensitivity
decreases with increasing background). This is because of the finite speeds of the DI laser
and DAQ systems. Even if enough particles are sampled to fire the DI laser at 1 kHz (its
maximum rate), the hit rate is assumed to be 10% so only 100 particles per second will
produce ions on average (al particles that are hit produce ions n the current example).
Since the times at which the ions are produced is basically random, the DAQ and data

analysis system (with a maximum rate of 100 Hz) will only be able to acquire data from
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and analyze 50% of these events on average. This means that no more than 3,000
particles can be fully analyzed per minute on average. Since at least 3 agent particles
must be identified in one sampling period to sound an alarm, the aerosol cannot contain
more than 3000/3=10° times as many background particles as agent particles if even a
relatively low probability of detection is required. For a 90% detection probability the
ratio between background and agent (with the properties described above) cannot exceed
~400. This limit for the ratio is equally valid for the instrument without the virtual
impactor, but in that instrument much of the performance curve (Figure 54) was
dominated by the limited number of agent particles that could be sampled.

With or without a virtual impactor, it is important to notice that a great deal of timeis
wasted analyzing particles that are very distinct from the agent whenever a significant
concentration of background particles is present. The performance would improve
significantly if an additional prescreening technique could be integrated to identify
clearly distinct (non-agent like) particles before they reached the mass spectrometer so
that the instrument could smply let them pass through the ion source region without
firing the DI laser or trying to analyze them further. Laser shots and processing time
could be reserved for those particles that are at least somewhat similar to the agent
particles being sought. Several existing biodetectors already use UV laser induced
fluorescence (UV-LIF) to identify biological particles (chapter 1). It is easy to imagine
placing a fluorescence prescreener between the tracking system and the mass
spectrometer system Eigure 56). The prescreener would attempt to probe each of the
tracked particles with a low energy, pulsed UV laser. If sufficient fluorescence was

detected (or perhaps, if the proper spectral pattern of fluorescence was recognized), the
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Figure56. A hypothetical BAMS system with avirtual impactor (concentrator) and a UV-LIF prescreener.

prescreener would inform the DI laser that the particle was “interesting” and should be
fully analyzed.

For the calculations that are performed shortly, it is assumed that 10% of non
biological particles and 90% of biological and agent particles fluoresce sufficiently to be
identified as interesting and that the ratio of nontbiological to biological particles is
100:1, as before. The imperfect particle focusing must also be taken into account. Since
the UV-LIF prescreener’s laser is closer to the tracking system than the DI laser, and of
comparable diameter, the probability that a tracked particle will interact with a given
pulse from the fluorescence laser should be higher. Assume that the fluorescence laser
hits 40% of the tracked particles that it fires at. If a particle is hit by the fluorescence
laser, assume that the DI laser has a 25% chance of hitting it (25% of 40% is 10%, which
was the origina hit rate of the DI laser). Clearly the DI laser should not be fired at

particles that were missed by the fluorescence laser. The performance of the BAMS
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system with a virtual impactor and a UV-LIF prescreener (assumed to have a maximum
rate of 10 kHz) is shown in Figure 57.

The performance curve in Figure 57 has effectively shifted upward (relative to the
curve in Figure 54 or Figure 55). A given concentration of agent can now be reliably
detected in a higher concentration of background aerosols. The minimum detectable
concentration of agent, however, has remained basically unchanged compared to the

system with only a prescreener (Figure 55). A few examples help to clarify the
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Figure57. Performance of aBAMS system utilizing a virtual impactor and a fluorescence based
prescreening system. A few relevant agent concentrations are included. Typical background concentrations
are also shown for afew different environments (abroad range of concentrationsis possible in each
environment however). For the simple model here, the particle size has largely been ignored, but the
background concentrations represent particlesin the “respirable” size range (roughly 1-10 mm)
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significance of the horizontal and vertical ranges shown in Figure 57. Very small
amounts of certain agents can be lethal. The LDsg for anthrax is on the order of 10,000
spores?®. A normal person inhales approximately 10 liters of air per minute. A one-
minute exposure to 1000 anthrax spores per liter thus results in a potentially lethal dose.
An infectious dose of plague may only contain 100 cells*. It is important, as a result, to
be able to detect 10 plague cells per liter in aminute or less. The vertical scale on the plot
is determined by the background aerosol. In arural environment, the total concentration
of particles between 1 and 10 mm is on the order of a few thousand per liter. This
concentration is also comparable to that found in a typica building. In an urban
environment, the concentration is on the order of a few tens of thousands per liter. In a
dust storm, the concentration could reach 10° particles per liter or more.

In just one minute, the hypothetical BAMS system can detect an agent concentration
of less than 10 particles/liter in a background of more than 10° particles/liter (some of
which are relatively similar to the agent) with a probability of 90% and a false alarm rate
of 10°. This is a powerful ability. Particular note should be taken of the false alarm rate;
it represents less than one false alarm every two months if the machine made a separate
measurement every minute, 24 hours aday, 7 days a week. The exact false alarm rates of
existing detectors with similar detection times are not publicly available (and are in fact
unknown by the author), but there seems to be a genera consensus that they are
significantly worse that 10°. Similarly, the sensitivities of existing detectors are not
publicly available, but are believed to be comparable or inferior to the sensitivity of the

BAMS system.
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The level of performance expected for the BAMS system with a virtual impactor and a
UV-LIF prescreener is clearly useful, but various improvements could still be made. If
more sengitivity was desired, more particles could be sampled and the particles that were
sampled could be analyzed more efficiently. Based on published literature?®, there is good
reason to believe that the efficiency of the nozzle could be improved so that the incoming
particle beam would be focused more tightly and that significantly more than 1% of the
sampled particles would be tracked and hit by the DI laser. If operation in more polluted
environments was needed, better prescreeners and faster lasers and electronics could be
used. The detection of 1 agent particle per liter in a background of 10° particles per liter

may be achievable with such improvements.

7.7 Tradeoffs between Py, P;,and T
The curve in Figure 57 separates the region on the right where the modeled BAMS

system can meet al of the current performance requirements P£10°, Py 90%, T=1
min) from the region on the left in which it cannot. That does not mean, however, that the
system is useless to the left of the curve. Consider a point on the plot a an agent
concentration of 5 particles per liter and a background concentration of 1000 particles per
liter, which is dlightly to the left of the blue curve. Figure 58 shows a Receiver Operating
Characteristic (ROC) curve for this scenario. ROC curves are another form of output that
can be produced by the performance model using the same equations derived above.
(ROC curves were originally used in the 1940s to quantify the discrimination of radio
signals in the presence of noise as a function of detection threshold. Recently, ROC

curves have been used more generally to show the tradeoff between detection probability
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Figure58. ROC curve for 1 minute detection of 5 agent particles/liter in a background of 1000
particled/liter. If the alarm threshold is set tok=2, the probability of detection meets the requirement, but
the probability of false alarm is abit too high (although it' s still less than 10). If the threshold is set to
k=3, the probability of false alarm islessthan 10, but the probability of detection is abit too low. Both
aternatives may be perfectly acceptablein certain scenarios. A concentration of 20 agent particles/liter is
easily detected while meeting all performance requirements.

and false darm.) The horizontal axis shows the probability of false alarm (log scale in
this case). The vertical axis shows the probability of detection (linear scale). Clearly a
good detector should be able to operate in the upper left hand corner of the plot. For some
instruments, the ROC curve may truly be a continuous curve. The BAMS system
analyzes individual discrete particles, however, so the ROC curve consists of discrete
points corresponding to different alarm thresholds.

For the 5 agent particle/liter scenario under consideration, none of the points on the

appropriate ROC curve (O) fall in the box in the upper left hand corner of the plot. This
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indicates that the performance requirements cannot al be met simultaneoudly (as
expected, since the chosen scenario corresponds to a point left of the curve in Figure 57).
If the dlarm threshold is set at k=2, the probability of detection is satisfactory, but the
probability of false alarm is not. It is, however, still quite low and may be perfectly
acceptable in some situations (e.g. the protection of a military base). If the “high” false
alarm rate cannot be tolerated, the alarm threshold can simply be increased to k=3. The
false alarm rate is now less than 10°° and the probability of detection is still greater than

70%. Again, this constitutes a very useful state of operation.
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Figure59. ROC curve for detection of 5 agent particles/liter in a background of 1000 particles/liter in 2

minutes. Since the concentration of agent is so low, thereislittle need to detect it in 1 minute or less. If the

sampling period isincreased from 1 minute to 2 minutes, the agent can easily be detected with the required

probability of false alarm and probability of detection.
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If both the probability of detection and probability of false alarm requirements have to
be met simultaneousdly, the sampling time can simply be lengthened. Figure 59 shows a
ROC curve for the same scenario shown in Figure 58, except that the sampling time has
been increased to 2 minutes. An alarm threshold of k=3 now meets both of the probability
requirements. In the case of anthrax, it would take far longer than 2 minutes to inhale an
LDsp at 5 spored/liter so the increased sampling time should not be cause for great
concern.

These ROC curves apply only for one particular scenario; nonetheless they illustrate
the importance and value of the BAMS performance model. Given a particular
background aerosol, the tradeoffs between sensitivity, specificity and speed can easily be
determined using the model. With the aid of a computer, these calculations take only
seconds to perform. In addition to simply changing the alarm threshold, the model could
be used to dynamicaly modify the operation of a rea system in the field. In some
circumstances, for example, it might be beneficia to turn off the virtual impactor or to
turn off the UV-LIF prescreener. Variations of the mathematical model developed here
will be used to tailor the performance of the BAMS system to end user preferences and to

optimize the system for deployment in virtually any environment.
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Outlook
The current “proof-of-concept” BAMS instruments can aready analyze individual

biological aerosol particles and differentiate at least some closely related species (e.g.
B.at. vs. B.t). The flattop 266 nm DI laser profile, implemented and quantified here,
reduces the variability of the raw data produced by the systems. This is aready
beneficial, but it is likely to become more and more important as the library of spectral
types (for particle identification) continues to grow. The flattened profile has also
facilitated the measurement of scientifically interesting particle properties, such as the DI
fluence threshold, and will be used for future experiments.

Even without further improvements in the DI system (and subsequent additional
improvements in particle identification rates), the potential value of the BAMS system
for many applications should not be underestimated. Even if it proves difficult, for
example, to consistently differentiate a B. anthracis spore from a close relative like B.
cereus, neither of these types of particles should suddenly appear in the middle of a city,
or in the air conditioning system of a building. A BAMS system would know if they did.
In many, if not most, scenarios the differentiation of very similar particle types may not
be particularly important. For every real bioterrorist event there will be hundreds if not
thousands of hoaxes and most of these will be very crude. Even the current BAMS
systems have no problems differentiating common white powders (e.g. baking powder,
Equal, Gold Bond, etc.) from bacterial spores and other worrisome biological particles.
There is no question that a BAMS system will be far more selective than current trigger

systems already in use like BAWS.
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Once a better mass spectrometer becomes available for experiments, some of the
alternative DI laser systems introduced in chapter 6 will be reevaluated. The short pulse
laser system and the IR OPO may both prove useful. The absorption of DPA, amino acids
and many other molecules are known to be much stronger at wavelengths below 266 rm
so these wavelengths will be explored as well. VUV wavelengths may be investigated
since single photon ionization has been shown elsewhere to produce less fragmentation of
large mass ions.

Another aternative is to employ more that a single DI laser pulse. Some interesting
results have aready been obtained from the combination of an IR pulse for desorption
followed by a weak 266 nm pulse for ionization. In applications where the use of a
reagent is not problematic, “onthe-fly” MALDI is another DI method that is quite likely
to produce significant improvements.

Other components of the BAMS instrumentation are also rapidly improving. The
BAMS group is designing and building a whole new generation of BAMS instruments. A
new particle inlet will be built to better focus particles. New tracking stages and
prescreeners have been built and are being implemented. A new mass spectrometer with
improved high mass efficiency has been built and is in testing. Even the data analysis will
be made faster and more efficient. The end result of all these efforts will be a far more
efficient and sengitive instrument. Using a model like that described in chapter 7, the
performance of the system can be quantitatively predicted and even tailored for specific
scenarios. In fact, portions of the model itself will likely be integrated with the instrument

software to dynamically define the conditions necessary to sound an alarm.
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In the not too distant future, a fieldable version of the BAMS instrument may be used
to detect aerosols released from airplanes or from envelopes. The system could be
deployed outdoors, in the middle of a city, or indoors, monitoring the air conditioning
system of alarge building. One day, aBAMS system may even be able to analyze human
effluents directly and screen them for the presence of pathogens or disease markers. A
person without any outward symptoms of a respiratory infection might cough into an
instrument and instantly obtain a diagnosis. BAMS detectors built for this application
could be placed at borders, airports and hospitals. In the more distant future, the ability to
rapidly analyze single cells by bioaerosol mass spectrometry may even enable ultra

sensitive screening for cancer.



Appendix:

All of the code shown in this appendix was written for use with MATLAB (version
6.5 from The Mathworks, Inc.). With the exception of the material in section A.7, the
following fragments of code do not constitute independently useful programs. They are
merely excerpts from a much larger volume of code that have been included to clarify the
comments and descriptions given in the body of the thesis (primarily chapters 3 and 7).
All text following a “%” character represents author comments. In some @ses the
comments continue to the next line even though the next line is not marked with a
Separate “%” character. Thisis aresult of the limited column width available on a printed
page. (Many of the original single lines of code in fact have been wrapped and now
occupy multiple lines.) This is unfortunate but the wrapping is easily spotted.

The fina section of the appendix (A.8) contains a ssmple mathematical derivation

relevant to the material in chapter 7 and the performance model in section A.7.
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A.1 Smoothing Function

This agorithm convolves the raw spectra data from a single polarity with a narrow

Gaussian function to reduce random point-to-point fluctuations. “Polarity” is a structured

array with multiple fields. The “Data’ field (i.e. Polarity.Data) holds the raw mass

spectral data for one polarity.

function Polarity = BoxcarAverage(Polarity);

if Polarity.BoxcarAverage == 0; 9%IHEN DO GAUSSI AN SMOOTHI NG
GausWeS; %aHE GAUSSI AN ARRAY W DTH - NEEDS TO BE ODD NUMBER
GausH=cei | (GausW 2) ; 9FHE LARGE HALF (3)
Gaush=GausW GausH, 9%9HE SMALL HALF (2)
GausCar =exp( - ((1: GausW - GausH) . 22/ 12) " ; 9HE GAUSSI AN SMOOTH NG FUNCTI ON
GausCar =GausCar/ sun{ GausCar) ; YNORMAL| ZE

TenpDat a=[ ones( Gaush, 1)*Pol arity. Data(1l); Polarity. Data;

ones(Gush, 1)*Pol arity. Data(end)];

end

GausDat a=zeros(| engt h(Pol arity. Data), | engt h(GausW) ;
for 1=1: GausW
GausData(:, |)=TenpData(l: (end- GausWH ), 1) ;
end
Pol ari ty. Dat a=GausDat a* GausCar ; %aTHE FI NAL SMOOTHED DATA

return
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A.2 Baseline Subtraction Function

This smple agorithm subtracts the nearly constant baseline from the raw mass
gpectra data. AMSData is an array holding the raw data from one haf spectrum

(AMSData is equivaent to Polarity.Datain A.1).

function AvBData = Subtract Basel i ne( AvBDat a) ;

Y1=sort (AVBDat a( 1001: 5000) ) ;

Yl=rmean( Y1(1001: 2000)); % he average val ue of the | owest 25% 50% of the data between 1001
and 5000

X1=3000; % he “tinme” associated with the new baseline val ue

Y2=sort ( AvVSDat a( (end- 4000) : end) ) ;
Y2=rrean( Y2(1001: 2000) ); % he average val ue of the | owest 25% 50% of the |ast 4000 pts
X2=| engt h( AvSDat a) - 2000; % he “tine” associated with the new baseline val ue

AlvBDat a=AVBDat a- ( (Y2-Y1)/(X2- X1) *((1: 1 engt h(AvBDat a) )- X1) +Y1 )'; Y%subtract interpolated
basel i ne fromdata
AvBDat a( 1: 1000) =zer 0s( 1000, 1); % he first data points don't hold data

return




A.3 Autocalibration Function

The following functions refine an average starting calibration for individua mass
spectra. MassFit is basically the “calibration quality function” referred to in chapter 3. By
minimizing the value of MassFit, improved calibration parameters are generally obtained
for the data held in Polarity.

Polarity is the same structured variable as in A.l. HafCalibration is a structured
variable that contains the initial caibration information for the mass spectral data held in

Polarity.

function Hal fCalibration = AutocalibratePol arity(Polarity, HalfCalibration);

if Polarity. AutoCal == -1,
return
end

A dEgn=Hal f Cal i brati on. Equati on; % a, b] where ml/2=at+b
A dRevEqgn=Hal f Cal i br ati on. Rever seEquati on; %c, d] where t=cnt1/2+d c=1l/a d=-b/a

Cnst Mass=170; 9% he upper mass at which to place a constraint on the notion
Cnst Li m =0. 4; % he maxi mum anmount by which the nass can be noved in one direction

Mass15Ti ne=r ound( pol yval (A dRevEqgn, sqrt(15))); %M n. time passed to fit thing (al so
serves as the | ower constraint point)

MassCnst Ti me=r ound( pol yval (A dRevEqgn, sqrt (Cnst Mass))); % onstraint at high nass

MaxTi me=r ound( pol yval (A dRevEgn, sqrt(250))); %bax tine passed to the fit thing (~m z=250)

Fi t Ti me=(Mass15Ti me: MaxTime)'; %\ | the tines we nmight want to consider
FitData=Pol arity. Data(FitTinme); %A | the data we night want to consider
GoodPt s=find( FitData>=Pol arity. Threshold ); %gnore small pts

i f | ength(GoodPts)==0;
disp('Signal level too small to auto calibrate - calibration unchanged');
return;

end

Fi t Ti me=Fi t Ti ne( GoodPt s) ;
Fi t Dat a=Fi t Dat a( GoodPts).~0.5; % ake the square root to “nornalize” peak heights

% he problemwith fmnsearch is that it just finds the local nmininum Unfortunately the
correct

%al i bration nmay not be the closest local mnimum therefore I'll run the thing three
times with

%lightly different initial conditions to try to find the true m nimumwe're | ooking for
[ NewEgn1l, Val 1] =f mi nsear ch( @assFi t, d dEgn, [], Fi t Ti ne, Fi t Dat a, Mass15Ti nme, MassCnst Ti e, Onst
Mass, OnstLin); %a, b] where nf*l/2=at +b

[ NewEgn2, Val 2] =f m nsearch( @assFit,[ (sqgrt(CnstMass+CnstLin -d dEqn(2))/ MassCnst Ti ne
,ddEgn(2)],[],FitTime, FitData, Mass15Ti e, MassCnst Ti ne, Onst Mass, CnstLin); % a, b] where
mt 1/ 2=at +b

[ NewEgn3, Val 3] =f mi nsearch(@assFit,[ (sqgrt(CnstMass-CnstLinm -d dEgn(2))/ MassCnst Ti ne
,AdEgn(2)],[], FitTine, FitData, Mass15Ti me, MassCnst Ti me, Onst Mass, CnstLin); %a, b] where
1/ 2=at +b
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[m nVal, mi nl nd] =m n([ Val 1, Val 2, Val 3]);
NewEgn=[ NewEgnl; NewEqn2; NewkEqn3];
NewEgn=NewEgn(mi nind, :); %o this should be the correct calibration

Hal f Cal i brati on. Equati on = NewEqgn;

Hal f Cal i brati on. Rever seEquati on = [ 1/ NewEgn(1), -NeweEgn(2)/NeweEgn(1)];
Hal f Cal i bration. Mass = [50, 100];

Hal f Cal i brati on. Channel Nunber = pol yval (Hal f Cal i brati on. Rever seEquat i on,
sqrt (Hal f Cali bration. Mass));

Hal f Cal i brati on. Zer oPoi nt = pol yval (Hal f Cal i brati on. Rever seEquati on, 0);

return

function MassM ssMatch =

MassFi t (Param Fi t Ti ne, Fi t Dat a, Mass15Ti nme, MassCnst Ti me, Cnst Mass, Cnst Li n) ;
Mass=(Paran( 1) *Fit Ti me+Paran(2)).”"2; % he nmasses for each data el ement
Wi ght =exp( - (Mass-round(Mass)).”2/(0.15)"2); %aussians with 0.3 1/e full w dths
Si gl nRange=Fi t Data' *Wei ght; %tuff falling within +/-0.15 of integer mass

Mass15Shi ft =(((Paran( 1) * Mass15Ti ne+Paran(2))"2-15)/0. 4)~10+1; %l ows up if snmall nass
peaks nmove too nuch

MassCnst Shi ft =(((Paran(1)*MassCnst Ti ne+Par an{2) ) *2- Cnst Mass)/ (1. 2*Cnst Li m) ) ~10+1;
%l ows up if the big mass peaks nove too much

MassM ssMat ch=MassCnst Shi ft *Mass15Shi ft/ Si gl nRange;
return




181

A.4 Peak Finding and Vector Formation Function

The following function identifies all of the peaks in a half spectrum and then produces
a vector representation of that spectrum based on those peaks. The actual peak finder was
written by David Fergenson. Polarity.AreaBar and Polarity.HeightBar are the “vector”
representations of the spectra referred to frequently in the text and were implemented in

their current form by the author. Only Polarity.AreaBar is typically used.

function Polarity = Fi ndAMSPeaks(Pol arity, HalfCalibration);

% --find where each peak starts and stops
H ghPoi nt I ndex = find(Pol arity.Data>=Pol arity. Threshol d);
if isenpty(H ghPointlndex); %f none of the points are above threshold then stop
Pol arity. Mass = [];
Poarity. Area = [];
Pol arity. Height = [];
Pol arity. AreaBar = zeros(1, Polarity.MaxMass);
Pol arity. Hei ght Bar = zeros(1, Polarity.MaxMass);
else %f there is at |east one peak
if length(H ghPointlndex) == 1; %f there is only one peak
Start = 1;
Stop = 1,
else %f there are multiple peaks
Edges = fi nd((H ghPoi nt | ndex(2: | engt h( H ghPoi nt | ndex))
H ghPoi nt | ndex( 1: | engt h( H ghPoi nt I ndex) -1)) > 1);
if isenpty(Edges);
Start = 1,
Stop = | engt h( H ghPoi nt | ndex) ;
el se
Start = [1; Edges+1];
Stop = [ Edges; | ength(H ghPointlndex)];
end
end

%--figure out peak areas, heights, |ocations
for J = 1l:length(Start);
Pol arity. Area(J) =
sum( Pol ari ty. Dat a( H ghPoi nt I ndex(Start (J)): H ghPoi nt I ndex(Stop(J))));
Pol arity. Height (J) =
max(Pol arity. Dat a( H ghPoi nt I ndex(Start (J)): H ghPoi nt | ndex(Stop(J))));
TenpMass = Channel Nunber 2Mass( H ghPoi nt | ndex(Start (J)): H ghPoi nt I ndex(Stop(J)),
Hal f Cal i bration);
Pol arity. Mass(J) =
mean( TenpMass(find(Pol arity. Dat a(H ghPoi nt I ndex(Start (J)): H ghPoi ntlndex(Stop(J))) ==
Pol arity. Height(J))));
en

%--Basically treat each peak like a vector and rotates it as necessary. Don't rotate
the vector at all unless the peak is nore

% han 0.3 units froman integer mass. If a peak has a half integer nass exactly, the
two bins on

%i ther side get equal contributions fromthe peak

Pol arity. AreaBar = zeros(1, Polarity. MaxMass);

Pol arity. Hei ght Bar = zeros(1, Polarity. MaxMass);
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PkMass=Pol arity. Mass; % he nass of the peaks

LoMass=f | oor ( PkMass) ;

H Mass=LoMass+1;

Rot Angl e=pi / 2* ( PkMass-LoMass-0.3)./0.4; %angle to rotate the peak vector

Rot Angl e( fi nd( Rot Angl e<0) ) =0; %rake negative rotations equal to zero
Rot Angl e(fi nd( Rot Angl e>pi / 2)) =pi/ 2; %reke big rotations=pi/2

LoWei ght =cos( Rot Angl €) ;

H Wi ght =si n( Rot Angl €) ;

for J=1:1ength(PkMass); %tep through all the peaks identified
if LoMass(J) >=1 & LoMass(J) <= Pol arity. MaxMass;
Pol arity. AreaBar (LoMass(J)) =Polarity.AreaBar(LoMass(J)) +Polarity.Area(J)
*LoWei ght (J);

Pol arity. Hei ght Bar (LoMass(J))=Pol arity. Hei ght Bar (LoMass(J)) +Pol ari ty. Hei ght (J) * LoWei ght (J
)
end
if H Mass(J) >=1 & H Mass(J) <= Pol arity. MaxMass;
Pol arity. AreaBar (H Mass(J)) =Polarity. AreaBar(H Mass(J)) +Polarity.Area(J)
*H Wi ght (J);

Pol arity. Hei ght Bar (H Mass(J))=Pol arity. Hei ght Bar (H Mass(J)) +Pol arity. Hei ght (J)*H Wi ght (J
)
end
end

end
return;
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A.5 New Baseline and Vector Formation Function

This function subtracts the baseline offset from the data more accurately and then
calculates new vectors (based effectively on the peak area) without actually identifying

the peaks. It assumes that all the relevant datais aready loaded in the BLOCK variable.

function MakeNewBasel i neAndVect or s;

gl obal BLOCK
[BN,ok] = listdlg('ListString',{BLOCK Nane},' Sel ecti onMdde', " 'single',' Nanme','Sel ect bl ock
to fix','ListSize',b[250,300]); BN is the block number
if ~ok
return
end

NunHunks=10; % wunber of hunks to divide each polarity into

MaxMass=400; % he nmax mass-to-charge ratio included in the area bar

w=0.1; %alf width of rising/falling edge of data weight array thing

Cent Mass=1: MaxMass; %ote that the minimumnass is al ways one

Lt Bot Mass=( Cent Mass-0. 5-w)."0.5; % he square root of the mass of the bottomleft edge of
the wei ght array

Lt TopMass=( Cent Mass- 0. 5+w) . 0. 5;

Rt TopMass=( Cent Mass+0. 5-w) . 0. 5;

Rt Bot Mass=( Cent Mass+0. 5+w) . 0. 5;

Wi tHandle = waitbar(0,['Fixing ',BLOCK(BN). Nane,"'..."]);
NunSpec=|l engt h( BLOCK(BN) . Spect runj;
for j = 1: NunSpec

% ----Positive ions-----

Lt Bot Ti ne=r ound( BLOCK( BN) . Spectrun{j).Cal i bration. Positive. ReverseEquati on(1).*LtBot Mass+
BLOCK(BN) . Spectrun(j). Calibration. Positive. ReverseEquati on(2));

Lt TopTi ne=r ound( BLOCK(BN) . Spectrun{j ). Cal i bration. Positive. ReverseEquati on(1).*Lt TopMass+
BLOCK(BN) . Spectrun{j). Calibration. Positive. ReverseEquation(2));

Rt TopTi ne=r ound( BLOCK( BN) . Spectrun{j).Cal i bration. Positive. ReverseEquation(1).*R TopMass+
BLOCK(BN) . Spectrun(j). Calibration. Positive. ReverseEquation(2));

Rt Bot Ti ne=r ound( BLOCK( BN) . Spectrun{j).Cal i bration. Positive. ReverseEquation(1).*R Bot Mass+
BLOCK(BN) . Spectrun{j). Calibration. Positive. ReverseEquation(2));

M nTi ne=Lt Bot Ti ne(1);

MaxTi ne=M nTi ne+NunHunks*cei | ( (Rt Bot Ti me( end) - M nTi ne+1)/ NunHunks ) -1; % his nakes
sure the nunmber of channels is evenly divisible by NunHunks. ..

Dat a=r eshape( doubl e( BLOCK(BN) . Spect run(j ). Pos. Dat a(M nTi me: MaxTi me)) ,[], NumHunks);
% eshape the data into an array with Numbunks col ums

HunkSi ze=si ze(Dat a, 1) ;

Center=sort(Data); %ort the data in each hunk

Cent er =mean( Center( round(0.3*HunkSi ze): round(0. 5*HunkSi ze),:) ); % he value of the
baseline at the center of each hunk of data (the range 0.3-0.5 can be changed)

Lt Edge=([ Center (1), Center(1l: (end-1))] +Center)/2; % he val ue of the baseline at the
left edge of each hunk of data

Rt Edge=(Cent er +[ Center (2: end), Center(end)])/2; % he val ue of the baseline at the
ri ght edge of each hunk of data
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% inear interpolation fromcenter to center

Cent Lt =r ound( HunkSi ze/ 2) ; % he index of the | ast point on the left half of the hunk
(the one cl osest to center)

Rt Si ze=HunkSi ze-Cent Lt ; % he size of the right half of the hunk

BaseLi ne=0*Data; %n enpty array the same size as Data

BaseLi ne(1: CentLt,:)=((1:CentLt)'./CentLt)*(Center-LtEdge)+ones(CentLt, 1)*LtEdge;

BaseLi ne((CentLt+1):end,:)=((1: R Size)'./R Si ze)* (R Edge-
Cent er) +ones(Rt Si ze, 1) *Cent er;

Dat a=r eshape( Dat a- BaseLine ,[],1); Y%hape the data back into a colum array
% BLOCK(BN) . Spectrun{j). Pos. Dat a(M nTi me: MaxTi ne) =Data; % don't really like this
much. .. seens |ike we should fix the whole baseline or else | eave the data al one

bi n_sums=zer os(si ze(Cent Mass) ) ;
for i = 1:1ength(bin_suns)
TrpDat a=Data( (LtBotTime(i):RtBotTine(i)) -MnTine+l)'; %his is all the data we
need for nass i

LtPts=( LtBotTime(i) : LtTopTime(i)) - LtBotTime(i)+1;
Qt Pt s=( (Lt TopTi me(i ) +1): (R TopTi me(i) - 1) )- Lt Bot Ti me(i ) +1;
RPts=( RTopTime(i) : RiBotTime(i)) -LtBotTime(i)+1;

Lt Sumrsun({ TnpDat a(LtPts).*((1:1ength(LtPts))-1)./(length(LtPts)-1) ); %ei ght
fromoO-1

C Sumesun( TrnpData(CtPts) ); %weights are all 1

Rt Sumesun( TnpData(RtPts). *(1-((1:1ength(RtPts))-1)./(length(RPts)-1)) );
%wei ght from 1-0

bi n_sums(i) = Lt Sum+tCt Sum+-Rt Sum
end;
BLOCK(BN) . Spectrun{j ). Pos. AreaBar = bi n_suns. *(bi n_suns>0); %he ".*(bin_suns>0)"
sets negative values to zero...
BLOCK( BN) . Spect run(j ). Pos. MaxMass=MaxMass;

% ---- Negative ions-----

Lt Bot Ti ne=r ound( BLOCK( BN) . Spectrun{j). Cal i brati on. Negati ve. Rever seEquati on(1). *Lt Bot Mass+
BLOCK(BN) . Spectrun(j). Cali bration. Negative. Rever seEquation(2));

Lt TopTi nme=r ound( BLOCK( BN) . Spect run(j). Cal i brati on. Negati ve. Rever seEquati on(1).*Lt TopMass+
BLOCK(BN) . Spectrun{j). Cali bration. Negative. Rever seEquation(2));

Rt TopTi ne=r ound( BLOCK( BN) . Spectrun{j). Cal i brati on. Negati ve. Rever seEquati on(1).*R TopMass+
BLOCK(BN) . Spectrun(j). Calibration. Negative. Rever seEquation(2));

Rt Bot Ti ne=r ound( BLOCK(BN) . Spectrumn(j). Cal i brati on. Negati ve. Rever seEquati on(1).*R Bot Mass+
BLOCK(BN) . Spectrun(j). Calibration. Negati ve. Rever seEquati on(2));

M nTi nme=Lt Bot Ti ne(1);

MaxTi me=M nTi ne+NunHunks*cei | ( (Rt Bot Ti me(end) -M nTi me+1)/ NunHunks ) -1; % his makes
sure the nunber of channels is evenly divisible by NunHunks. ..

Dat a=r eshape( doubl e( BLOCK(BN) . Spect run(j ). Neg. Dat a(M nTi me: MaxTi me)) ,[], NunmHunks);
% eshape the data into an array with NumHunks col unms

HunkSi ze=si ze(Dat a, 1) ;

Center=sort(Data); %ort the data in each hunk

Cent er=mean( Center( round(0.3*HunkSi ze): round(0. 5*HunkSi ze),:) ); % he value of the
baseline at the center of each hunk of data (the range 0.3-0.5 can be changed)

Lt Edge=([Center (1), Center(1l: (end-1))] +Center)/2; % he value of the baseline at the
| eft edge of each hunk of data

Rt Edge=(Cent er +[ Center (2: end), Center(end)])/2; % he val ue of the baseline at the
right edge of each hunk of data

% inear interpolation fromcenter to center

Cent Lt =r ound( HunkSi ze/ 2) ; % he index of the last point on the left half of the hunk
(the one closest to center)

Rt Si ze=HunkSi ze-Cent Lt ; % he size of the right half of the hunk

Baseli ne=0*Data; %an enpty array the same size as Data

BaseLi ne(1l: CentLt,:)=((1: CentLt)"'./CentLt)*( Center-LtEdge)+ones(CentLt, 1)*Lt Edge;

BaseLi ne((CentLt+1):end,:)=((1: Rt Size)'./R Si ze)* (Rt Edge-
Cent er) +ones(Rt Si ze, 1) *Cent er;

Dat a=r eshape( Dat a- BaseLine ,[],1); %hape the data back into a colum array
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% BLOCK(BN) . Spectrun(j). Neg. Data(M nTi me: MaxTi ne) =Data; % don't really like this
much. .. seens |like we should fix the whol e baseline or else | eave the data al one

bi n_sums=zer os(si ze(Cent Mass) ) ;
for i = 1:1ength(bin_suns)
TrpDat a=Data( (LtBotTime(i): RtBotTime(i)) -MnTinme+l)'; %his is all the data we
need for nass i

LtPts=( LtBotTime(i) : LtTopTime(i)) - LtBotTine(i)+1;
Qt Pt s=( (Lt TopTi me(i ) +1): (R TopTi me(i ) -1))- Lt Bot Ti me(i ) +1;
RPts=( RTopTime(i) : RBotTime(i)) - LtBotTine(i)+1;

Lt SunmFsun{ TnpData(LtPts).*((1:length(LtPts))-1)./(length(LtPts)-1) ); 9%eight
fromO-1

Ct Sumesun( TnpData(CtPts) );

Rt Sunrsun{ TnpData(RtPts).*(1-((1:length(RtPts))-1)./(length(RtPts)-1)) );
%nei ght from 1-0

bi n_suns(i) = Lt SumtCt Sum+-Rt Sum
end;
BLOCK(BN) . Spectrun{j ). Neg. AreaBar = bi n_suns. *(bi n_suns>0); %he ".*(bin_suns>0)"
sets negative values to zero...
BLOCK( BN) . Spect run(j ). Neg. MaxMass=MaxMass;

wai t bar (j / NunSpec, Wai t Handl e) ;
end
cl ose( Vi t Handl e)

BLOCK( BN) . Nane=[ BLOCK( BN) . Nane, ' - NewAr eaBase' | ;
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A.6 The BART Clustering Function

The following code clusters similar spectra together based on the angle between the
vectors (which were defined by A.4 or A.5). ART2aWorkData holds the vectors from
each particle to be clustered. The WeightMatrix variable holds the neurons that represent

each cluster.

function [ ART2ad usterData, WightMatrix, lteration] = Bart Core( ART2aWr kDat a,
Vi gi | anceFactor, LearningRate, Maxlterations);

Vi gAng=acos( Vi gi | anceFact or) *180/ pi ;

| oad c:\ matl| abprograns\ & her s\ randonmstate. mat; %ells the rand function where to start
rand('state', RandonBtate); %his starts in the same place every tine

Wi t Handl e = wai tbar (0, 'BART Calculation In Progress... (2/3)');

for Iteration = 1:Maxlterations;
clear ART2ad usterData; %unp details of the |last round (keep wei ght vectors)

Sort Order = randpern(si ze( ART2aWr kDat a. Spect rumNunber, 2)); % = randperm(n) returns
a random pernutation of the integers 1:n.

ART2aWr kDat a. PosDat a = ART2aWr kDat a. PosDat a( Sort Order, :); %eorder all the
positive spectra

ART2aWr kDat a. NegDat a = ART2aWr kDat a. NegDat a( Sort Order, :); %ut the negative in the
sane order

ART2aWr kDat a. Spect rumN\unber = ART2aWr kDat a. Spect rumN\unber (Sort Order); %eep the
spectrum nunbers associated with the right spectra

for | = 1:size( ART2aWr kDat a. PosData, 1); %tep through each spectrum
if ~exist('WightMatrix'); %or the first spectrumof the first iteration, the
wei ghtmatrix isn't defined
Wi ght Matri x. Pos = ART2aWr kDat a. PosData(l, :); %o the very first cluster is
just the first spectra
Wi ght Matri x. Neg = ART2aWr kDat a. NegDat a(l, :);
ART2ad uster Dat a{1} = ART2aWr kDat a. Spect r umNunber (1);
el se
PosAng=acos( ART2aWr kDat a. PosDat a(l, :) * Wi ghtMatrix. Pos')*180/pi; %angle
beween current spectrumand current weights (=>a rowwith a col for each weight)
NegAng=acos( ART2aWr kDat a. NegDat a(l, :) * Wi ghtMatrix. Neg')*180/ pi ;

Si nScor e=max ([ PosAng; NegAng] ); %inply find which angle is bigger and use
that as the simlarity score

Si nScore(find(PosAng > VigAng | NegAng > Vi gAng))=-1; %S nScore nust be >=0
so the negative values will be used to exclude the bad points (with Ang>Vi gAng)

Si nScore=1./(Si nBcore+0. 01); %% can now find the max of this, if it's
negative that nmeans no match. (0.01 just prevents div by zero in case of perfect match)

[ Max, Maxl ndex] = max(SinScore); % ind the max SinScore and where that val ue
isin the row
if Max > 0; %o if there is a match do the following (if either angle is
>VigAng then Max will be <0)
if exist('ART2ad usterData');
if Maxlndex > | ength(ART2aC usterData); %his condition is possible
because ART2ad usterData is erased every iteration while WightMatrix renains
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ART2ad ust er Dat a{ Max| ndex} = ART2aWr kDat a. Spect r umNunber (1);
%ny intermediate cell elenments that must be created are just filled with []
el se
ART2ad ust er Dat a{ Max| ndex} = [ ART2ad ust er Dat a{ Max| ndex},
ART2aWr kDat a. Spect rumNunber (1)]; % ach row (cell) is a cluster, the columms are the
Spect rumN\unbers for each cluster
end
el se
ART2ad ust er Dat a{ Max| ndex} = ART2aWbr kDat a. Spect r unNunber (1) ;
end
Wei ght Mat ri x. Pos( Maxl ndex, :) = (Wi ghtMatrix. Pos(Maxl ndex, :) * (1-
Learni ngRate)) + (ART2aWr kDat a. PosData(l, :) * LearningRate); %o pull the cluster avg.
thing a tiny bit towards the new data that was just added
Wi ght Mat ri x. Pos(Maxl ndex, :) = Wi ght Matri x. Pos( Max| ndex,
:) ./ norn({ Wi ght Mat ri x. Pos( Maxl ndex, :)); % enomalize the thing
Wi ght Mat ri x. Neg( MaxI ndex, :) = (Weight Matrix. Neg(Maxl ndex, :) * (1-
Learni ngRate)) + (ART2aWrkData. NegData(l, :) * LearningRate); %o pull the cluster avg.
thing a tiny bit towards the new data that was just added
Wi ght Mat ri x. Neg( MaxI ndex, :) = Wi ght Matri x. Neg( Max| ndex,
1) ./ nor m{ Wi ght Mat ri x. Neg(Maxl ndex, :)); % enonalize the thing
else %f there wasn't a natch
Vi ght Matri x. Pos = [ Wi ght Mat ri x. Pos; ART2aWr kDat a. PosData(l, :)];
%tick it in a newcluster weight vector thing - in a newrow
Wi ght Matri x. Neg = [ Wei ght Matri x. Neg; ART2aWr kDat a. NegData(l, :)];
ART2ad ust er Dat af si ze(Wei ght Matri x. Pos, 1)} =
ART2aWor kDat a. Spect r umN\unber (1) ;
end
end
end

%t's possible (I've seen it happen) that a weight vector doesn't have any spectra
associ at ed
ith it. If that happens, we want to get rid of it
for I = length(ART2ad usterData): -1:1; %=t rid of any enpty junk
if isenpty(ART2ad usterDataf{l});
ART2ad usterData(l) = [];
Wi ght Mat ri x. Pos(1, 1) [
Wi ght Mat ri x. Neg( 1, :) [

I;
1;
t

di sp(' Del eted enpty weight vector');
end
end
%Now join simlar clusters together... to conpare themwe'll first find the angle

bet ween the

%nei ght vectors. Only if this angle is small enough will we be forced to | ook at the
i ndi vi dual

Y%spectra. W'll take the weight vector fromthe |arge cluster and conpare the
i ndi vi dual spectra

% romthe other cluster. If all spectra are within the VigAng fromthe wei ght vector

(of the
%ig cluster) then we'll conbine the clusters. The new wei ght vector will be the
wei ght ed

%average of the big weight vector and the average spectrumfor the snall cluster

Bi gVi gAng=Vi gAng+5; 9%his is for conparing the weight vectors

Bi gVi gFac=cos( Bi gVi gAng*pi / 180); % osine isn't linear so we can't just add to or
multiply the VigFactor directly

if length(ART2ad usterData) >= 2 & Iteration < Maxlterations; %lon't try to cluster
clusters unless there's at least two of them don't cluster if it's the last iteration
I =1; %tart a counter variable that selects the first cluster
whi | e | <l engt h( ART2ad ust er Dat a) ;
for J=l engt h(ART2aC usterData): -1: | +1; %ow step through the rest of the
clusters conparing each one to the first one
if WeightMatrix.Pos(l,:)*WightMatrix.Pos(J,:)' >=BigVigFac &
Wi ght Matri x. Neg(l,:)*Wei ght Matrix. Neg(J,:)' >=BigVigFac; %f the + and - Wi ght vectors
are cl oser than BigVigAng then conpare further
% he idea nowis to conpare the individual spectra fromthe snaller
cluster with
% he weight vector fromthe larger cluster
Nuri =I engt h( ART2aCl ust erDat a{l });
Numl=Il engt h( ART2ad ust er Dat a{J});
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if Num >= Num)
NunPPosPt s=si ze( ART2aWr kDat a. PosDat a, 2) ;
NumNegPt s=si ze( ART2aWor kDat a. NegDat a, 2) ;
PosSpec=zer os( NumJ, NunPosPt s) ;
NegSpec=zer os( NumJ, NumNegPt s) ;
for K=1:NumJ

Specl ndex=f i nd( ART2aWr kDat a. Spectr umNunber ==ART2ad ust er Dat a{ J} (K) ) ;
PosSpec(K, : ) =ART2aWr kDat a. PosDat a( Specl ndex, :); %oad the
specs from WrkData i nto PosSpec and NegSpec
NegSpec(K, : ) =ART2aWr kDat a. NegDat a( Specl ndex, :);
end
PosSim larities = PosSpec * WightMatrix.Pos(l,:)"'; %=> colum
vector with simlarity scores
NegSim larities = NegSpec * Wi ght Matrix. Neg(l,:)";
if mn(PosSimlarities) >= VigilanceFactor & mn(NegSimlarities)
>= VigilanceFactor; %f all the spectra are close enough to the Wi ghtVector
%ine to joinJ tol and delete J
Wi ght Matrix. Pos(l, :) = ( WightMatrix.Pos(l, :)*Num +
sum(PosSpec, 1) )/ (Num +Num)); % he wei ghted average of the big cluster weight vector and
the average spectrumfromthe little cluster
Wi ght Matrix. Pos(l, :) = \WightMatrix. Pos(lI,
2) ./ norn(Wei ght Matri x. Pos(l, :)); %enonalize the thing
Vi ght Matrix. Neg(l, :) = ( WeightMatrix.Neg(l, :)*Num +
sum( NegSpec, 1) )/ (Num +Numd); 9%he wei ghted average of the big cluster weight vector and
the average spectrumfromthe little cluster
Wi ghtMatrix. Neg(l, :) = WeightMatrix. Neg(l,
:) ./ norn{ Wi ght Matri x. Neg(l, :)); %enonalize the thing

ART2ad ust er Dat a{ | } =[ ART2ad ust er Dat a{ | } , ART2ad ust er Dat a{ J} ] ;

Wi ght Matri x. Pos(J, :)
Wi ght Matri x. Neg(J, :)
ART2ad ust erData(J)=[];
disp('Joined simlar clusters');
end
else %f NumI>Numl
NunPosPt s=si ze( ART2aWr kDat a. PosDat a, 2) ;
NunmNegPt s=si ze( ART2aWor kDat a. NegDat a, 2) ;
PosSpec=zer os( Num , NunPosPt s) ;
NegSpec=zer os( Num , NunNegPt s) ;
for K=1:Num

Specl ndex=f i nd( ART2aWr kDat a. Spect r unNunber ==ART2ad ust er Dat a{ |} (K) ) ;
PosSpec(K, : ) =ART2aWr kDat a. PosDat a( Specl ndex, :); %Add each
new spectrumto a new row
NegSpec(K, : ) =ART2aWr kDat a. NegDat a( Specl ndex, :);
end
PosSim larities = PosSpec * WightMatrix.Pos(J,:)"'; %et colum
vector with simlarity scores
NegSim larities = NegSpec * WeightMatrix.Neg(J,:)";
if mn(PosSimlarities) >= VigilanceFactor & mn(NegSimlarities)
>= VigilanceFactor; %f all the spectra are close enough to the Wi ghtVector
%ine to joinJ to |l and delete J
Wi ght Matri x. Pos(l, :) = ( WeightMtrix.Pos(J, :)*Num) +
sum(PosSpec, 1) )/ (Num +Numl); % he wei ghted average of the big cluster weight vector and
the average spectrumfromthe little cluster
Wi ght Matrix. Pos(l, :) = \WightMatrix. Pos(lI,
:)./norn( Wi ght Matri x. Pos(l, :)); %enonalize the thing
Vi ght Matrix. Neg(l, :) = ( WeightMatrix.Neg(J, :)*Num) +
sunm( NegSpec, 1) )/ (Num +Numd); % he wei ghted average of the big cluster weight vector and
the average spectrumfromthe little cluster
Wi ght Matrix. Neg(l, :) = WightMtrix. Neg(l,
:) ./ norn{ Wi ght Matri x. Neg(l, :)); %enomalize the thing

ART2ad ust er Dat a{ | } =[ ART2ad ust er Dat a{ | } , ART2ad ust er Dat a{J}] ;

Viei ght Mat ri x. Pos(J, :)=[]
Wi ght Matri x. Neg(J, :)=[]



ART2ad usterData(J)=[];
disp('Joined simlar clusters');
end
end
end %f matching weight vector if statenent
end %f J for |oop
I =l +1,;
end %f while |oop
end %f |length>=2 if statenent

for 1=1:1ength(ART2ad ust erDat a) ; %Sort the spectrum nunbers so that they're
consistent fromiteration to iteration before we conpare bel ow
ART2aCd ust erDat a{ | } =sort (ART2ad uster Data{l});
end

if exist('BackupOfClusterData'); %A | of this just asks if ART2acl usterData and
BackupCOf d usterData are identical

if length(BackupOf G usterData) == | engt h(ART2ad usterData); %f you got the sare
nunber of clusters you did last tine
for I = 1:1engt h(BackupO O ust erDat a) ;
if I ength(BackupOFrd usterData{l}) == length(ART2aC usterData{l}); %f the

number of spectra in the clusters are the sane

i f BackupOXQusterData{l} ~= ART2aClusterData{l};
cl ear BackupOrd ust er Dat a;

br eak
end
el se
cl ear BackupO d usterDat a;
br eak
end
end
el se
cl ear BackupOF d ust er Dat a;
end
end
%t this point, if the Backup wasn't identical, it was cleared

if exist('BackupOQ'QusterData'); %o if it was identical
break; 9%top iterating
end
BackupOf C ust er Dat a = ART2ad ust er Dat a;
Wi tBar ((lteration/Maxlterations), WitHandle);
end

di sp([' Reached Iteration ', num2str(lteration),' out of a maxi mum of
", nunstr(Maxlterations)]); %t seens pretty rare that this is ever less than the max

cl ose(Wai t Handl e) ;

return;
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A.7 Performance Model

The following is a fully functional model of a hypothetical BAMS instrument
(described in chapter 7). By design, the version presented here does not contain or utilize
actual performance parameters of areal BAMS system (or its components) and thus does

not accurately predict the sensitivity of areal system to an actual agent aerosol.

functi on BAMSThesi shWbdel

%his is basically just a wapper where the aerosol and instrument paraneters are
defined. It calls other

% unctions to do all the real work and then plots the results.

% ----Probability of detection and false alarm

ReqPf a=le-4; % he required probability of false
al arm

ReqPd=0. 90; % he required probability of
detection

% ---- Aerosol paraneters

Aer osol . Nane=' Generi c Aerosol';

Aerosol . Type ={' Agent' 'Bio' 'Non-Bio'}; %dypes of background particles
Aerosol . AD =1; %,er odynami c di aneter represented by
each row of each array (the values chosen are independent of the aerosol to be studied)
Aerosol . ADdst =[ 1 1 1]; %Si ze Distributions for each particle
type (sum=l) [fraction of particles at size]

Aerosol . Conc =[1el 1lel 1e3]; %otal concentration of each particle
type [particles/liter]

Aerosol . SctM=[1.0 1.0 1.0]; %vkan scattered signal from lum
particle [arb units]

Aerosol .Pps =[.90 .90 .10]; %rob that particle passes

pr escr eener

Aerosol .Pion =[1.0 1.0 1.0]; %rob that enough ions are produced
when hit by DI laser to generate a spectrum

Aerosol . Pagnt=[0.9 1le-3 1le-5]; %rob that each type is identified
(or misidentified) as agent (independent of size)

% ----1lnstrunent paraneters

I nst runent .. Nane=' BAVS' ; UYBAVB system described in thesis

I nstrument . Vl on=1; %f =1 then virtual inpactor used, if
=0 then not used

I nst runent . VI ef f =100; %Si ze dependent virtual inpactor
efficiency [concentration factor]

I nst rument . Sct Thr esh=0; % hreshol d to be detected by tracking
stage [arb units]

I nst runent . PSon=1; %f =1 then prescreening used, if =0
then not used

I nst rument . PSRep=1e4* 60; %ep rate of prescreener

(shots/ mnute)

I nst runent . Dl Rep=1e3*60; %ep rate of DI laser (shots/mnute)
I nst rument . DAQRep=1e2* 60; %ep rate of DAQ system

(spectra/ m nute)

I nst runent . Pf ocus=0. 25; %i ze dependent probability that
particle is focused well enough to hit first tracking |aser

I nstrument. Pt rack=0. 40; %Si ze dependent probability that
particle is tracked (assunming that it hit first |aser)

I nst runent . Ppresc=0. 40; %5 ze dependent probability that

particle is hit by prescreening | aser(s)
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I nst runent . Phi t DIl =0. 25; %si ze dependent probability that
particle is hit by D |aser(s)

I nstrument . SanpRat e=1; YSanpling Rate [liters/m nute]

I nst runment . SanpTi me=1,; Ysanpl ing Ti me [ m nutes]

I nstrunent. M nMaxAD=[ 0. 7 10] ; %M n and Max Aero Diam of particles
allowed to be identified as agent

Tr ackRep=1e5* 60; %ep rate of tracking system
[tracks/ m n]

I nstrunent . NunPart s=0: 5e5: 1e8; % unber of particles arriving per

m nut e

I nst runent . QudTr ack=Tr ackRep. / (I nst runment . NunPar t s+Tr ackRep) ; % racti on properly tracked
(will trig and theoretically intercept |aser)

I nstrunment . BadTr ack=I nst runent . NunPar t s*0; % raction tracked inproperly (will
trig, but not intercept |aser)

% ----Cal cul ate ROC data
di sp(' Cal cul ating ROC data');
[ ROCPf a, ROCPd] =Cal cROCDat a( Aer osol , I nstrunent) ;

% ---- Make a RCC pl ot

figure('Nane',[' ROC CQurve - ', Aerosol . Nane,' ',Instrunent. Nane],' Position',[100 100 700
700])

axes(' Font Si ze', 16)

sem | ogx([ ROCPf a, 1], [ ROCPd, 1],' o', ' LineWdth', 2); % (1,1) always present
ylin([0,1]);

axi s square

x| abel (' Pfa')

yl abel (' Pd")

title(['Predicted BAMS ROC curve']);

text(mn(ROCPfa),0.9,{[Instrunent. Nane,', ', Aerosol.Nane]; [' Non-bi o:

", nunstr (Aerosol.Conc(3)),' Particles/Liter']; ['Bio: ',nunmstr(Aerosol.Conc(2)),"’
Particles/Liter']; ['Agent: ', nun2str(Aerosol.Conc(1)),' Particles/Liter']; ['Time:

", nun2str(lnstrument. SanpTine),' Mnutes'] }); %' FontNane','FixedWdth');

% ----Cal cul ate ACPLA data
di sp(' Cal cul ati ng ACPLA data');
[ ACPLA, Tot PLA] =Cal cACPLADat a( Aer osol , | nstrument, ReqPd, ReqPf a) ;

% ---- Make an ACPLA pl ot
ZeroLi ne=10.7(0:0.5:7);

figure(' Name',[' ACPLA Plot - ', Aerosol.Name,' ', Instrument. Nane],' Position',[200 200 700
700])

axes(' Font Si ze', 16)

| ogl og( ACPLA, Tot PLA, Zer oLi ne, ZeroLi ne, ' Li neWdth', 2);

xlim([ ZeroLine(1), ZeroLine(end)]);

yli n([ Zer oLi ne(1), ZeroLi ne(end)]);

set (gca, 'ytick',10.7(0:7), " xtick',10.7(0:7))

axi s square

grid on

grid mnor

x| abel (' Agent Concentration [#/liter]"')

yl abel (' Total Concentration [#/liter]")

title([' Predicted BAVS Performance']);

t ext (m n(ZeroLi ne)*2, max(ZeroLine)/ 4, {[I nstrunent. Nane,', ', Aerosol . Nane];

[' Tsamp=", nun2str (I nstrunment. SanpTine),' Mnutes']; ['Pfa<=', nunRstr(RegPfa)];
['"Pd>=", nunm2str(ReqPd)]});

function [ Pfa, Pd] =Cal cROCDat a( Aer osol , | nst runent)
% hi s produces the data for a ROC curve based on a specific aerosol scenario.

%A er osol contains all the aerosol paraneters
% nst r ument contains all the instrument paraneters
%f a Pfa(i) is the probability that the background will produce i or nore

agent identifications



%°d Pd(i) is the probability that the agent and background conbi ned will
produce i or nore agent identifications

M nPf a=10”"- 6; % his roughly sets the range of the ROC curve (one point on ROC curve
must have this Pfa or |ess)

% ----Based just on the background, figure out how likely a false alarmis for different
al arm t hreshol ds

BQCol s=2: | engt h( Aer osol . Conc) ; % he col ums representing background particle types
(colum 1 shoul d al ways be the agent)

[ Nbg, NbgSt at us] =Fi ndAvgNurmAnal yzed( Aer osol , | nst runment , B&Col s) ; %\vg # of each type of
background particle anal yzed per sanple period.

i f NbgStatus==0; disp('Warning: ROC curve nay be inaccurate! Exceeded range of tracking
data. (CalcROCData 1)'); end;

[Al arnk, Pfa] = Fi ndNuniToAl ar m( M nPf a, Aer osol . Pagnt (BGCol s), Nbg); %fa holds the prob

that >=1, >=2, =>3... background particles are msidentified (Prob >=0 m sID =1)

% ----1ncluding both the agent and background, figure out how likely a detection is for
different alarmthreshol ds

Al'l Col s=1: 1 engt h( Aer osol . Conc) ; % he columms for every particle type (agent and
backgr ound)

[ Nal I, Nal I St at us] =Fi ndAvgNumAnal yzed( Aer osol , I nstrunent, Al | Col s); 9% he average nunber of
each type of particle analyzed per sanple period.

if NallStatus==0; disp('Wrning: ROC curve may be inaccurate! Exceeded range of tracking
data. (CalcROCData 2)'); end;

k=l engt h(Pf a) ; %he max k val ue represented by an el enent of Pfa

Pd = Fi ndProbDet ect (Nal I, Aerosol . Pagnt, k); 9%rob to detect vector (i.e. prob identify
>=1..k agent and background particles as agent)

function Pd = Fi ndProbDet ect (N, Pai, k)
%his is closely related to the stuff in FindM nAvgNumAgent. m and Fi ndNunTToAl arm m

%>d probability of detection (i.e. sounding alarm
0\ avg nunber of each type of particle anal yzed (includes agent)
%ai probability that each type is ID d as agent (includes agent)
%K detection thresholds (i.e. sound alarmif >=k particles ID d as agent)
N=sun( Pai . *Ni ) ; %\wg # of particles (agent and background)
identified as agent
Poi sProb=exp(-N); %0i s prob that exactly O particles IDd as
agent
Pgr eat er k( 1) =1- Poi sPr ob; %rob that 1 or nore particles |D d as agent
for i=1:(k-1)
Poi sProb=Poi sProb*N/i ; %rob that exactly i particles IDd as agents
Pgreat er k(i +1) =Pgr eat er k(i ) - Poi sProb; %rob that i+1 or nore particles IDd as
agent
end
Pd=Pgr eat erk; %°rob of detection is equivalent to prob >=k

particles ID d as agent
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function varargout = Fi ndAvgNumAnal yzed( Aerosol , | nstrument, Col s)

%ar ar gout {1} =N the average nunber of each type of particle anal yzed by the
BAMS systemin one sanpl e period

%var ar gout { 2} =st at us everything okay => status=1, something bad happened =>

st at us=0

%A er osol structured variable that holds all the aerosol paraneters

% nst runment structured variable that holds all the instrunent paraneters

%ol s vector of data colums to include in calculations (all particles or just

background particl es)

% ---- Make a few vectors for convenience

OneRow=ones(si ze(Col s)); % ow of
ones

OneCol =ones(si ze( Aerosol . AD) ) ; %ol um
of ones

i f nargout>1; varargout{2}=1; end, %f two

outputs are desired, the second arguenent is the status and at this point it's okay (=1)

% ---- Now figure out how many of each particle type get anal yzed
N=( OneCol * Aer osol . Conc(Col s)) . *Aerosol . ADdst (:, Col s); %Avg.
#/liter of each type and size of background particle [#/liter]

if Instrunent.Vlion

N=N. * (I nstrument . VI ef f *OneRow) ; % f
virtual inpactor is used, concentrate the aerosol...
end
N=N*I nst rument . SanpRat e; %Avg. #
of each type sucked into BAMVS instrunent in one mnute [#/ mn]
N=N. * (I nst runent . Pf ocus* OneRow) ; %Avg. #
that make it to first tracking | aser [#/ min]
PassSct =( (Aer osol . AD. 6) * Aer osol . Sct Ma( Col s) ) >=I nst rument . Sct Thr esh; %1 if
that size and type is detectable by tracking, =0 otherw se (need to add std dev stuff)
N=N. * PassSct ; %Avg. #

that will scatter sufficiently to be detected by tracking system [#/ mn]

Tot N=sun(sun(N)); %dotal #
of detectable particles delivered to first tracking |aser [#/mn]
i f Tot N>=max(| nstrument. NunParts)

di sp(' Warning: Rate of tracking exceeds tested limts!');

if nargout>1; varargout{2}=0; end, %end
alarmthat we're extrapolating past the end of the data... if the user wants to know
end
Frac@udTrack=i nter pl(lnstrunent. NunParts, | nstrunment. QudTrack, TotN, ' cubic'); % raction
of the particles tracked properly
FracBadTr ack=i nter p1(I nstrunent. NunParts, | nstrunent. BadTrack, TotN, ' cubic'); % raction

of the particles tracked inproperly

N=N* (Frac@udTr ack+Fr acBadTr ack) ; Y%Avg. #
tracked (both GQud and Bad will trigger |asers) based just on rate [#/ mn]

N=N. * (I nstrument . Pt rack* OneRow) ; Y%hvg. #
tracked (both Gud and Bad) after geonetrical divergence is accounted for [#/ m n]

if Instrument. PSon
Pfi rePS=I nst runment . PSRep/ (sun{sunm(N) ) +l nst runment . PSRep) ; %°r ob
that prescreening laser will fire at a given particle (rate constraint)

NN * (I nst rument . Ppresc* OneRow) *Pf i r ePS* FracQudTr ack/ ( FracQudTr ack+Fr acBadTr ack) ;
%\Wvg. # hit by prescreener (includes rate and geom constraints) [#/ mn]

N=N. * (OneCol * Aer osol . Pps(Col s)); Y%vg. #
that pass prescreener [#/ min]

193



end
PfireD =l nstrunent. D Rep/ (sun{sun(N) )+l nstrunent. Dl Rep); %pr ob
that DI laser will fire at a given particle
if Instrument.PSon % f
prescreener was used, we don't have to worry about "BadTrack" particles

NEN. * (I nst runent . Phit DI *OneRow) . *( OneCol *Aerosol . Pi on(Col s))*PfireD ; Y%Avg. #
hit by D |laser that produce spectrum [#/ m n]
el se

NN * (I nstrument . Ppresc*OneRow). * (| nstrumnent . Phi t DI * OneRow) . *( OneCol * Aer osol . Pi on(Col s))*
PfireD *FracQudTrack/ (FracQudTr ack+FracBadTrack); %vg. # hit by D |aser that produce
spectra [#/ mn]

end

Pf i r eDAQ=l nst runent . DAQRep/ (sunm(sun(N) ) +l nst r ument . DAQRep) ; %°r ob
that DAQ systemis ready to acquire spectrum

N=N. * Pf i reDAQ %\vg. #
fully anal yzed by the system [#/ m n]

N=N. * ((Aer osol . AD>=I nst runent . M nMaxAD( 1) & Aerosol . AD<=l nst runent.. M nMaxAD( 2) ) *OneRow) ;
%\Wvg. # in the proper size range [#/ mn]

NENF | nst runent . SanpTi ne; Y%Avg #
per sanple period [#]

Nesunm(N, 1) ; %sum
along the colums to get rid of size info which no longer natters

var ar gout { 1} =N, %=et urn
t he average nunber of each type of particle that gets anal yzed per sanple tine

function [k, Pgreaterk] = Fi ndNunToAl arn(Pfa, Pai, Ni)
% k nunber of required agent IDs to ensure false alarmrate <=Pfa
% Pgreaterk(k) prob that >=k particles ID d as agent

% Pf a nmax desired probability of false alarm
% Pai prob that particle type is mdliDd as an agent. (1 x nj
% N avg nunber of particles IDd by mass spec per time period. (1 x m
N=sun( Pai . *Ni ) ; % \wvg # of background particles msidentified
Poi sProb=exp(-N); %0i s prob that exactly 0 particles I1Dd as
agent
Pgr eat er k(1) =1- Poi sProb; %rob that 1 or nore particles 1D d as agent
i=1;
whi | e Pgreaterk(end)>Pfa

Poi sProb=Poi sProb*N/i ; %rob that exactly i particles IDd as agents

Pgreat er k(i +1) =Pgr eat er k(i )- Poi sProb; %’rob that i+1 or nore particles IDd as
agent

i=i+1;
end

k=max( 3, | engt h( Pgreaterk)); %80 this defines our alarmthreshold (i.e.
prob to obtain >=k agent IDs is <=Pfa) (nust be at |east 3)

function [ ACPLA, Tot PLA] =Cal cACPLADat a( Aer osol , I nstrunent, Pd, Pf a)
%his things calculates the data for ACPLA plots

YACPLA hori zontal position of each point in ACPLA plot
%ot PLA vertical position of each point in ACPLA pl ot
%A er osol al | aerosol paraneters

% nstrunent all instrument paraneters

%>d m ni mum request ed probability of detection

%f a maxi mum requested probability of false alarm
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% ----Figure out how nany agent |ID s needed and how nuch agent required to get it...
BGCol s=2: | engt h( Aer osol . Conc) ; %ol utms representing
background particle types (colum 1 is always agent)

G =Aer osol . Conc(BGCol s); % he total concentration of
each background particle type [#/liter]

CirmeQ . /sum( G ); %\nor mal i zed concentrations
(sun¥l/liter)

Cmag=10. *(- 1: 0. 05: 7); %oncentration nmagnitude
(multiplied by Onrmto determ ne actual concetrations)

NunConc=l engt h( Cmag) ; %\unber of concentrations to
try out

ACPLA=zer os( 1, NunConc) ; 9W Il hold agent
concentration [#/liter]

Tot PLA=zer os( 1, NunConc) ; 9WII hold total

concentration [#/liter]

Wi t Handl e = wai tbar (0, 'Cal cul ati ng perfornance data');
for i=1: NunConc

Aer osol . Conc(BGCol s) =Cnrm *Cmag(i ) ; %otal concentration of each
particle type

[N, Ni Status]=Fi ndAvgNunmAnal yzed( Aer osol , I nst runent, B&ol s); %Avg # of each
background particle type anal yzed per sanple period

if N Status==0 % f something has gone wrong
wi th Fi ndAvgNumAnal yzed, then stop
di sp(' Warning: Exceeded range of tracking data! (Cal cACPLAData)')
ACPLA(i :end)=[1];
Tot PLA(i: end) =[];
cl ose( Wi t Handl e) ;
return;
end

[k, Pgreaterk] = Fi ndNumToAl ar n( Pf a, Aer osol . Pagnt (BGCol s), Ni ); % is the nunber
of agent IDs required to sound an al arm

% di sp([num2str(k),' agent IDs required for alarmwhen avg of ', nunstr(sunm(N)),"
bkgnd parts anal yzed/ mn. Tot BkGhd Conc= ', nunRstr (sun(Aerosol.Conc(2:end)))]);

[ M nAvgNumAgent | Ds, ProbError] = fzero( @i ndM nAvgNumAgent I Ds, [0 4*k],[],k, Pd); % n
avg num of particles (both agent and background) ID d as agent to exceed k with prob of
Pd

ACPLA(i ) =Fi ndM nConcAgent ( Aer osol , | nstrunent, M nAvgNumAgent | Ds) ; %he concentration
of agent required to obtain M nAvgNumAgent!| Ds (w th hel p from background)

if ACPLA(i)==1 %f sonmething has gone wong w th FindM ndConcAgent, then stop
ACPLA(i :end)=[1];
Tot PLA(i : end) =[1];
cl ose( Wi t Handl e) ;
return;
end

Tot PLA(i ) =ACPLA(i ) +sunf Aer osol . Conc(BCCol s) ) ; %otal concentration of
stuff in the air

% di sp([nunstr(ACPLA(i))," agents/liter required for alarmin tot. particle conc of
", nun2str(Tot PLA(i))," particles/liter."']);

Wi t Bar ((i/NunConc), WaitHandle);
end
cl ose( Wi t Handl e) ;

function ProbD f=Fi ndM nAvgNurmAgent | Ds(N, k, Pd) ;
9N aver age nunber of agent |Ds
%K nunber of agent IDs to sound alarm
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%°d required prob that the actual nunmber of agent I|Ds >=k
%°r obDi f di fference between actual Pd and required Pd (we want this to be zero)
Poi sProb(1)=exp(-N); %0i s prob that exactly O particles 1D d
as agent
for i=1:k-1
Poi sProb(i +1) =Poi sProb(i)*Ni; %rob that exactly i particles 1D d as
agent s
end
Pgr eat er k=1- sun{ Poi sPr ob) ; %rob that >=k ID d as agents
Pr obDi f =Pd- Pgr eat er k; % he difference between the desired

probability of detection and the probability of detection for the given N and k

function ACPLA=Fi ndM nConcAgent ( Aerosol , | nstrument, N)

%Aer osol aerosol paraneters

% nst rument i nstrument paraneters

9N avg nunmber of agent ID s required (fromboth agent and background)
YACPLA concentration of agent required to produce N (wth hel p from background)

gi ven aerosol and instrunent

% ----make an estimate of the overall instrument efficiency and guess at required agent
concentration

Al'l Col s=1: | engt h( Aer osol . Conc) ; % he colums for every particle
type (agent and background)

Aer osol . Conc( 1) =1000; %et the agent concentration to
1000 [#/1iter]

Nal | =Fi ndAvgNurmAnal yzed( Aer osol , I nstrunent, Al | Col s); %ver age nunber of each type
anal yzed per mnute

Nal [ =Nal I . * Aer osol . Pagnt ; %verage nunber 1D d as agent for
each type

Ef f =Aerosol . Conc(1)/Nal | (1); %rude overal | instrument

efficiency for agent

Nbg=sun{ Nal | (2: end)); %rude nunber of ID s expected
from background (bg)

ACPLAest =Ef f*( N-Nbg ); %ur guess at the required
concentration of agent

% ----now refine the estinate to get the real result
if D fNumAnal (0O, Aerosol, I nstrument, N)*D f NumAnal (4* ACPLAest, Aerosol , I nstrunent, N)>1
ACPLA=- 1,
di sp(' Warning: The systemis so saturated that it cant suck in enough agent... or
sormething |ike that! (Fi ndM nConcAgent)');
return
end

[ACPLA, NDi f] = fzero(@ f NumAnal , [0 4* ACPLAest],[], Aerosol ,lnstrument, N);

Aer osol . Conc( 1) =ACPLA;
[Nal I, Nal | St at us] =Fi ndAvgNumAnal yzed( Aer osol , | nstrunent, 1);
if NallStatus==0

ACPLA=- 1,
di sp(' Warni ng: Exceeded range of tracking data! (FindM nConcAgent)');
return

end

%di sp([' Estimated ACPLA: ', nunRstr(ACPLAest),' Actual ACPLA: ', nunstr(ACPLA)])
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if abs(NDi f/N)>0.05
di sp(' Warning: The derived ACPLA may be inaccurate! (Fi ndM nConcAgent)')
end

function ND f=D f NumAnal ( ACPLAguess, Aerosol , I nstrunent, N)

Y%ACPLAguess estimate for the agent concentration

%hAer osol aerosol paraneters

% nst rument i nstrument paraneters

9N avg nunber of agent ID s required

9YNDI f di fference between actual and desired avg # of agent particles anal yzed

Aer osol . Conc( 1) =ACPLAguess;

Al | Col s=1:1 engt h( Aer osol . Conc) ; %he colums for every particle
type (agent and background)

N_al | =Fi ndAvgNumAnal yzed( Aer osol , I nstrunent, Al | Col s) ; %vg # of each type anal yzed per
rﬁarrtzilal | . *Aerosol . Pagnt; %vg # |D d as agent

NDi f =sum(Nal | )-N; %li ff erence between the nunber

actually ID d and the nunber that should be anal yzed ID d
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A.8 Poisson Simplification of Eq. 23 for Two Particles Types

Eq. 23 describes the probability of false alarm based on an arbitrary number of particle
types. In particular

o Jy]
P21 & Opylk).

Ko+ K<k i=1

Consider the case for two particle types (i=1,2).

Pfa 31- é le (kl)pN2 (kz)-

ky+ko<k

Write out the summation more explicitly.

[ay

k-1 ]
Pfa 31- a le(j - kz)pN2 (kz)-

=0 kp=0

o
3

Insert the definition of the Poisson distribution for both py terms.

s1d o, NSRONE
P, 3 1- Ja:os}oe (j - k2)!e R
Rearrange.

k-1 ' A
P 3 1- éoe-(NﬁNz) éo—(j - klz)! kZ!Nl"“ZNSZ.
Multiply by 1 (i.e. j!/j!).

51 g (NrN2) j! e
P.2l-a——a N/ 2N, .

ST R T

Evaluate the summation over k.

-1 '(N1+N2) .
Pfasl'ge - N1+N2)]-
=0 )

Rearrange dightly.
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Thisis the desired result (Eq. 24). It can easily be expanded to more than two particle
types (although the initial summation will become more complex). This simplification
ultimately works because the sum of two Poisson distributions is another Poisson
distribution with a mean equal to the sum of the means.
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