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Abstract

We have observed that the residual vectors at the end of each restart cycle of restarted
GMRES often alternate direction in a cyclic fashion, thereby slowing convergence. We present
a new technique for accelerating the convergence of restarted GMRES by disrupting this alter-
nating pattern. The new algorithm resembles a full conjugate gradient method with polynomial
preconditioning, and its implementation requires minimal changes to the standard restarted
GMRES algorithm.

1 Introduction

Iterative methods are a common choice for solving the large sparse system of linear equations

Ax = b, (1)

where A ∈ Rn×n is nonsingular and x, b ∈ Rn. A popular class of iterative methods are Krylov
subspace methods. Krylov subspace methods find an approximate solution

xi ∈ x0 +Ki(A, r0), (2)

where Ki(A, r0) ≡ span{r0, Ar0, . . . , A
i−1r0} denotes an i-dimensional Krylov subspace, x0 is the

initial guess, and r0 is the initial residual (r0 ≡ b−Ax0). Krylov subspace methods are also known
as polynomial methods since equation (2) implies that the residual ri can be written in terms of a
polynomial of A: ri = p(A)r0.
At present, a large variety of Krylov subspace methods exist. When A is nonsymmetric, choosing

the most appropriate method can be difficult (e.g., see [22]), though the generalized minimum
residual (GMRES) algorithm [27] is arguably the most popular choice. GMRES is often referred
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to as an “optimal” method because it finds the approximate solution in the Krylov subspace that
minimizes the 2-norm of the residual [27].
At each iteration of GMRES, the amount of storage and computational work required increases.

Therefore, when the required resources make the standard GMRES algorithm impractical, the
restarted version of the algorithm is used as suggested in [27]. In restarted GMRES (GMRES(m)),
the method is “restarted” once the Krylov subspace reaches dimension m, and the current approx-
imate solution becomes the new initial guess for the next m iterations. The restart parameter m
is generally chosen small relative to n to keep storage and computation requirements reasonable.
However, choosing an appropriate restart parameter can be difficult as the choice can significantly
affect the convergence rate (e.g., see [17, 13]).
In general, restarting slows the convergence of GMRES. When an iterative approach is restarted,

the current approximation space is discarded at each restart. Therefore, a well-known drawback of
GMRES(m) is that orthogonality to previously generated subspaces is not preserved at each restart.
In fact, GMRES(m) can stall as a result. Stalling means that there is no decrease in the residual
norm at the end of a restart cycle. Restarting also negates the potential for superlinear convergence
behavior [29].
This paper is organized as follows. In Section 2, we describe some existing modifications to

GMRES(m) aimed at accelerating convergence or overcoming stalling. We introduce our new accel-
eration technique in Section 3. We present numerical results and discuss the convergence behavior
of the new algorithm in Section 4. We close with concluding remarks in Section 5.

2 Background

In this section, we briefly describe some existing modifications to the standard GMRES algorithm.
These modifications all have the common goal of enhancing the robustness of restarted GMRES.
Two primary categories of modification include hybrid iterative methods and acceleration tech-
niques. Hybrid iterative methods combine standard iterative methods in a variety of ways to reduce
the number of required vector operations. Many of these methods are essentially modifications to
GMRES(m) aimed at improving its performance. Nachtigal, et al. provide a general overview of
this class of iterative methods in [21]. Our work falls into the category of acceleration techniques.
These techniques attempt to mimic the convergence of full GMRES more closely or to accelerate the
convergence of GMRES(m) by retaining some of the information that is typically discarded at the
time of restart. In [11], Eiermann, Ernst and Schneider present a thorough overview and analysis of
the most common acceleration techniques.
Augmented methods are a class of acceleration techniques. In particular, these methods seek to

avoid stalling by improving information in GMRES at the time of the restart. Typically a (nearly)
A-invariant subspace is appended to the Krylov approximation space, resulting in an “augmented
Krylov subspace” [5]. The invariant subspace of A associated with the smallest eigenvalues is
commonly used, as those eigenvalues are thought to hinder convergence the most. Algorithms that
include spectral information at the restart to overcome stalling are presented by Morgan in [18], [19]
and [20] (GMRES-E, GMRES-IR, and GMRES-DR, respectively) and are further discussed in [5]
and [26]. These augmentation techniques are more suitable for some types of problems than others.
They can be very effective when convergence is being hampered by a few eigenvalues [18]. However,
they may have little effect on highly non-normal problems [5], or solving the eigenvalue problem
may be too costly for the technique to be beneficial [18]. Of interest to us is the simple framework
provided for appending (non-Krylov) vectors to the approximation space.
Another class of acceleration techniques is based on the fact that ideally the approximation

space should contain the correction c such that x = x0 + c is the exact solution to the problem [11].
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The nested Krylov subspace method GMRESR (GMRES Recursive) [30] is one such technique. In
GMRESR, the outer Generalized Conjugate Residual (GCR) method [12] invokes an inner iterative
method (like GMRES) at each step i to approximate the solution to Ac = ri, where ri is the
current residual at step i. The approximate solution to Ac = ri then becomes the next direction
for the outer approximation space. The goal of this method is to obtain similar convergence to
that of full GMRES with less computational cost under certain conditions. Note that the FGMRES
(Flexible GMRES) method [24] can also be viewed as a method that approximates solutions to
similar residual equations at each step. In fact, both FGMRES and GCR provide a framework for
using a GMRES-like method with any approximation space.
Another related acceleration technique is GCRO (GCR with inner orthogonalization) [7]. The

aim of this method is twofold: to compensate for the information that is lost due to restarting
as well as to overcome some of the stalling problems that GMRESR can experience in the inner
iteration. GCRO is a modification to GMRESR such that the inner iterative method maintains
ATA-orthogonality to the outer approximation space. Thus, the approximation from the inner
iteration at step i takes into account both the inner and outer approximation spaces. See also [9] for
more details on preserving orthogonality in the inner iteration of a nested Krylov subspace method.
In most cases, both GCRO and GMRESR must be truncated to keep storage costs reasonable.
Therefore, a truncated version of GCRO, the GCROT (GCRO Truncated) method, is subsequently
described in [8]. GCROT attempts to determine which subspace of the outer approximation space
should be retained for the best convergence of future iterations as well as if any portion of the inner
Krylov subspace should also be kept.
As Fokkema et al. point out in [15], “the distinction between preconditioning and acceleration

is not a clear one.” These acceleration techniques (GMRESR, GCRO, and FGMRES) can also be
viewed as methods with variable preconditioning (allowing the preconditioner to change with each
iteration step). We show that our new method can also be viewed in this way.

3 A new algorithm: LGMRES

In this section, we describe a new method for accelerating GMRES(m). We begin with observa-
tions about the convergence behavior of GMRES(m) that lead us to the new technique. We then
present the new algorithm LGMRES (“Loose” GMRES), discuss some of its properties, and compare
LGMRES to closely related existing acceleration techniques.

3.1 Motivation

Consider restarted GMRES(m) when solving problem (1). In this discussion, we refer to the group of
m iterations between successive restarts as a cycle. The restart number is denoted with a subscript:
ri is the residual after i cycles orm×i iterations. The residual at the end of cycle i+1 is a polynomial
in A times the residual from the previous cycle: ri+1 = pmi+1(A)ri, where pmi+1(A) is the degree m
residual polynomial. During each restart cycle (i), GMRES(m) finds xi+1 ∈ xi + Km(A, ri) such
that ri+1 ⊥ AKm(A, ri) (e.g., see [25]).
As previously mentioned, GMRES(m) does not maintain orthogonality between approximation

spaces generated at successive restarts. As a result, slow convergence or even stalling can occur. In
the case of slow convergence, we have observed a pattern in GMRES(m) where the residual vectors
point in nearly the same direction at the end of every other restart cycle. In other words, the angle
between ri+1 and ri−1 is small and ri+1 ≈ α ri−1. We refer to the angles between every other
residual vector as skip angles, e.g., ∠(ri+1, ri−1), and the angles between consecutive restart cycles
as sequential angles.
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For many problems, we find that skip angles are relatively small even when the sequential an-
gles are a reasonable size (i.e., stalling is not occurring). For example, Table 1 gives results for
GMRES(30) on several problems available from the Matrix Market Collection [23]. The number
of iterations required for convergence (‖ri‖2/‖r0‖2 ≤ 10

−9) as well as the median sequential and
median skip angle values are listed. GMRES(30) is not stalling for these four problems. However,
the low skip angle values appear to indicate that faster convergence should be possible if some de-
gree of orthogonality to previous approximation spaces were maintained, a goal embraced by several
acceleration techniques described in Section 2. In our experience, this type of alternating pattern is
most pronounced (most “exact”) for symmetric matrices, but it is noticeable for many nonsymmetric
matrices as well.

Table 1: Results for GMRES(30). Problem size, iterations required for ‖ri‖2/‖r0‖2 ≤ 10
−9, median

skip angle, and median sequential angle are listed for each problem.

Problem Size (n) Iterations Median Seq. Angle Median Skip Angle
∠(ri, ri−1) ∠(ri+1, ri−1)

add20 2395 1002 51.3 5.4
orsirr 1 1030 6659 23.0 6.9
orsreg 1 2205 888 59.3 8.4
sherman 1 1000 3688 27.5 .2

There no mechanism in GMRES(m) to prevent this alternating phenomenon because it is simply a
symptom of the lack of orthogonality between the approximation space generated during a particular
restart cycle of GMRES(m) and the approximation spaces from previous cycles. However, only for
the special case when the restart parameter is one less than the matrix order can we show that
alternating must occur for both symmetric and skew-symmetric problems. Consider the following
lemma.

Lemma 1 (Equivalent constraints) When A ∈ Rn×n is symmetric or skew-symmetric, and w and
y are arbitrary real vectors of length n, the requirement that w ⊥ AKm(A, y) is equivalent to the
requirement that w ⊥ ATKm(A

T , y).

With this easily proved lemma, the following theorem is straightforward.

Theorem 1 (Alternating residuals) When A ∈ Rn×n is symmetric or skew-symmetric and the
restart parameter is one less than the matrix order (m = n − 1), GMRES(m) produces a sequence
of residual vectors at the end of each restart cycle such that ri+2 = αri, |α| ≤ 1.

Proof. During restart cycle i,

ri ⊥ AKm(A, ri−1)⇒ ri−1 ⊥ ATKm(A
T , ri).

From lemma 1,
ri−1 ⊥ ATKm(A

T , ri)⇒ ri−1 ⊥ AKm(A, ri). (3)

Let Wm ≡ [w1 w2 . . . wm] be an orthonormal basis for AKm(A, ri). There exists a wn such
that Wn = [Wm wn] is an orthonormal basis for Rn. From (3), ri−1 = αwn, where α is some scalar.
During restart cycle i+ 1,

ri+1 ⊥ AKm(A, ri)⇒ ri+1 = βwn,

where β is some scalar. Therefore, ri+1 =
β
α
ri−1, and |

β
α
| ≤ 1 because the GMRES(m) residual

norm is non-increasing.
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3.2 Idea and Implementation

The motivation for the new algorithm, LGMRES, came from a desire to prevent the alternating
behavior observed for GMRES(m) which results in repetitive information in successive restart cycles.
In addition, we wanted a method for which the idea and implementation easily lent themselves
to a block method for solving a single right-hand side system (e.g., see [2]). Therefore, the new
algorithm is a combination of ideas from several existing acceleration techniques described in Section
2: GMRES-E, GMRESR, and GCRO. In short, LGMRES utilizes the simple framework of Morgan’s
GMRES-E method [18] for appending vectors to the standard Krylov space in a manner that allows
for the extension to a block method as in [5], for example. GMRESR [30] and GCRO [7], on
the other hand, provide ideas for choosing appropriate vectors to append to the standard Krylov
approximation space. The algorithmic components from these existing techniques are combined in
a manner that results in a new acceleration technique with both a simple implementation and the
ability to prevent the previously described alternating behavior.
To prevent alternating, LGMRES mimics GMRESR’s technique of including approximations to

the error in the current approximation space. Suppose that x̂ is the true solution to problem (1).
The error after the i-th restart cycle of GMRES(m) is denoted by ei, where

ei ≡ x̂− xi. (4)

As explicitly pointed out in [11] and noted in Section 2, if our approximation space contains the
exact correction ei such that x̂ = xi + ei, then we have solved the problem. We define

zi ≡ xi − xi−1 (5)

as the approximation to the error after the i-th GMRES(m) restart cycle, and zj ≡ 0 for j < 1.
This error approximation vector serves as our choice of vector with which to augment our next
approximation space Km(A, ri). Note that zi ∈ Km(A, ri−1). Therefore, this error approximation
zi in some sense represents the space Km(A, ri−1) generated in the previous cycle and subsequently
discarded and is a natural choice of vector with which to augment our next approximation space
Km(A, ri).
We denote our new restarted augmented GMRES algorithm by LGMRES(m, k). LGMRES(m,

k) augments the standard Krylov approximation space with k previous approximations to the error.
Therefore at the end of restart cycle i+ 1, LGMRES(m, k) finds an approximate solution to (1) in
the following way:

xi+1 = xi + qm−1
i+1 (A)ri +

i
∑

j=i−k+1

αijzj , (6)

where polynomial qm−1
i+1 and αij are chosen such that ‖ri+1‖2 is minimized. Note that k = 0

corresponds to standard GMRES(m).
The implementation of LGMRES(m, k) is quite similar to that of Morgan’s GMRES with

eigenvectors (GMRES-E) method described in [18] and requires minimal changes to the standard
GMRES(m) implementation. At each restart cycle (i) we generate the Krylov subspace Km(A, ri)
and augment it with the k most recent error approximations zj , j = (i− k + 1) : i. The augmented
approximation space M = Km(A, ri) ∪ span{zj}j=(i−k+1):i has dimension s ≡ m + k. We then
find the approximate solution fromM whose corresponding residual is a minimum in the Euclidean
norm.
One restart cycle (i) of the LGMRES(m, k) algorithm is given in Figure 1. Note that Vs+1 is the

n× (s+1) orthonormal matrix whose first m+1 columns are the Arnoldi vectors and last s columns
result from orthogonalizing the k error approximation vectors (zj , j = (i − k + 1) : i) against the



61. ri = b−Axi, β = ‖ri‖2, v1 = ri/β, s = m+ k
2. for j = 1 : s

3. u =

{

Avj if j ≤ m
Azi−(j−m−1) otherwise

4. for l = 1 : j
5. hl,j = 〈u, vl〉
6. u = u− hl,jvl

7. end
8. hj+1,j = ‖u‖2, vj+1 = u/hj+1,j

9. end
10. Vs+1 = [v1, . . . , vm, . . . , vm+k+1], Ws = [v1, . . . , vm, zi, . . . , zi−k+1] ,

Hs = {hl,j}1≤l≤j+1;1≤j≤s

11. find ys s.t. ‖βe1 −Hsys‖2 is minimized
12. zi+1 =Wsys (also Azi+1 = Vs+1Hsys)
13. xi+1 = xi + zi+1

Figure 1: LGMRES(m, k) for restart cycle i.

previous columns of Arnoldi vectors. Ws is the n× s matrix whose first m columns are equal to the
first m columns of Vs+1 and last k columns of W are the k error approximation vectors (typically
normalized so that all columns are of unit length). Then the relationship

AWs = Vs+1Hs (7)

holds for LGMRES(m, k), where Hs denotes an (s+ 1)× s Hessenberg matrix whose elements hl,j
are defined in the algorithm in Figure 1. This relationship is analogous to equation (11) in [18] and
(3) in [27].
When implementing LGMRES(m, k), only m matrix-vector multiplies are required per restart

cycle, irrespective of the value of k, provided that we form both zi and Azi at the end of cycle i
as is done in the algorithm given in Figure 1. Note that forming Azi does not require an explicit
multiplication by A and that at most k pairs of zj and Azj need to be stored. Typically the number
of vectors appended, k, is much smaller than the restart parameter m (discussed in Section 4).
The algorithm requires storage for the following vectors of length n: m + k + 1 orthogonal basis
vectors (v1, v2, . . . vm+k+1), k pairs of zj and Azj , the approximate solution, and the right-hand
side. Therefore, this implementation of LGMRES(m, k) requires storage for m + 3k + 3 vectors of
length n and m matrix-vector multiplies per restart cycle. Recall that standard GMRES(m + k)
requires storage for m + k + 3 vectors of length n and m + k matrix-vector multiplies per restart
cycle (e.g., see [25]). One could reduce the storage requirement for LGMRES(m, k) by recomputing
Azi in each cycle. The storage requirement for vectors of length n would then drop to m+ 2k + 3,
but the number of matrix-vector multiplies required per cycle would increase to m + k. We prefer
the former method (as given in Figure 1) because it reduces the number of matrix-vector multiplies
and is therefore generally faster.
Note that only i error approximations are available at the beginning of restart cycles with i < k

because zj = 0 when j < 1. Therefore, we recommend using additional Arnoldi vectors instead of
zj when j < 1 so that the approximation space is of dimension m+k for each cycle. In other words,
the first cycle (i = 0) of LGMRES(m, k) is equivalent to the first cycle of GMRES(m+ k).
LGMRES(m, k) can be preconditioned in a straightforward manner. LetM−1 denote the precon-

ditioner. For left preconditioning, we simply precondition the initial residual in line 1 of the algorithm
in Figure 1 (ri = M−1b−M−1Axi). Then we replace A with M−1A everywhere in lines 3 and 12.
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For right preconditioning, the required modifications are more subtle. To include previous approxi-
mations to the error in the approximation space, we must now append ẑj ≡ M(xj − xj−1) = Mzj
instead of zj to the standard Krylov subspace (no matrix-vector products with M are explicitly
computed). Therefore, we replace A with AM−1 everywhere in lines 3 and 12 and z with ẑ every-
where in lines 3, 10, and 12. While no explicit change is required for line 13 as given in Figure 1,
note that, with right preconditioning, line 13 is equivalent to xi+1 = xi +M−1ẑi+1.

3.3 Properties

In this section, we first address the similarity between LGMRES and a full conjugate gradient (FCG)
method with polynomial preconditioning. We then discuss skip angles and sequential angles for both
GMRES(m) and LGMRES(m, k).
We consider the “full” (i.e., non-truncated) version of LGMRES, denoted by LGMRES(m), in

which all previous error approximations are kept (i.e., k = i):

zi+1 = qm−1
i+1 (A)ri +

i
∑

j=1

αijzj . (8)

In this form, the resemblance of LGMRES(m) to a minimal residual FCG method that minimizes
‖ei‖ATA at each step, such as ORTHOMIN, is readily apparent (e.g., see [25] or [1]). In (8), the
GMRES(m) iteration polynomial (qm−1

i+1 (A)) corresponds to a polynomial preconditioner. Notice,
however, that LGMRES effectively changes the preconditioner with each iteration i, whereas pre-
conditioned FCG typically uses a constant preconditioner (not dependent on i). Vectors zj in
(8) correspond to conjugate gradient direction vectors in that they are also ATA-orthogonal, as is
shown below. Therefore, we can categorize the LGMRES(m, k) method as a truncated polynomial-
preconditioned FCG method.

Theorem 2 (Orthogonality of the error approximations) The error approximation vectors zj ≡ xj−
xj−1 with which we augment the Krylov space in full LGMRES (8) or truncated LGMRES (6) are
ATA-orthogonal.

Proof. First, we define subspacesMi+1 andMi as

Mi+1 ≡ Km(A, ri) ∪ span{zj}j=(i−k+1):i

and

Mi ≡ Km(A, ri−1) ∪ span{zj}j=(i−k):(i−1),

respectively. By construction,

ri ⊥ AMi and ri+1 ⊥ AMi+1.

From (5),

ri − ri+1 = Azi+1.

Therefore,

Azi+1 ⊥ A(Mi ∩Mi+1).



8

Because {zj}j=(i−k+1):i ⊂Mi ∩Mi+1,

zi+1 ⊥ATA {zj}j=(i−k+1):i.

Although full LGMRES is interesting from a theoretical point of view, it is not a practical
algorithm. Storing all past values of zj (j = 1 : i) requires an increasing amount of storage at
each restart. As with GMRESR and GCRO, truncating is necessary. Therefore, in practice, we use
truncated LGMRES(m, k) as given in (6) with some k < i. In Section 4, we show that optimal
values for k are typically very small, k ≤ 3. Furthermore, note that the ATA-orthogonality of the
error approximation vectors shown in Theorem 2 is not exploited in the implementation of LGMRES
described in the previous section. In fact, a total of k vector products and updates per restart cycle
in the algorithm given in Figure 1 are extraneous due to a zero vector product in line 5. However, for
small k, the benefit of modifying the LGMRES(m, k) implementation to exploit this orthogonality
is negligible.
Now we compare the skip and sequential angles for GMRES(m) and LGMRES(m, k). For

standard restarted GMRES, the angle between two residuals from consecutive restart cycles (i.e.,
the sequential angle) can be expressed in terms of a ratio of their residual norms. The following
result is mathematically equivalent to a result first given by Simoncini as Proposition 4.1 in [28],
but here we present it in a simplified form with a more straightforward and concise proof.

Theorem 3 (GMRES(m) sequential angles) Let ri+1 and ri be the residuals from GMRES restart
cycles i+ 1 and i, respectively. Then the angle between these residuals is given by

cos∠(ri+1, ri) =
‖ri+1‖2
‖ri‖2

. (9)

Proof: In restart cycle i+1 of GMRES(m), xi+1 = xi+δi+1, where δi+1 ∈ Km(A, ri). Therefore,
the corresponding residual is

ri+1 = ri −Aδi+1.

By construction,

〈ri+1, Aδi+1〉 = 0 ⇒ 〈ri+1, ri〉 = 〈ri+1, ri+1〉 = ‖ri+1‖
2
2. (10)

The above, combined with the definition of cosine, completes the proof.
The above indicates that, for GMRES(m), the convergence rate correlates to the size of the

angles between consecutive residual vectors. If consecutive residual vectors are nearly orthogonal to
each other, then convergence is fast. (If we find an ri+1 such that ri+1 ⊥ ri, then we have found the
exact solution.) Note that this result also holds for LGMRES. We refer to the related work in [10]
for a more general discussion on how the angles between approximation and residual spaces define
convergence for Krylov methods. Note that Theorem 3 above is also a special case of the more
general result in equation (3.9) in [10]. Now we consider the angle between every other residual (i.e.,
the skip angle).

Theorem 4 (GMRES(m) skip angles) Let ri+1 and ri−1 be the residuals from GMRES restart cy-
cles i+ 1 and i− 1, respectively. Then the angle between these residuals is given by

cos∠(ri+1, ri−1) =
‖ri+1‖2
‖ri−1‖2

−
〈Aδi+1, Aδi〉

‖ri+1‖2‖ri−1‖2
,

where ri+1 = ri −Aδi+1 and ri = ri−1 −Aδi.
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Proof. As in the previous proof, it is easily shown that

〈ri+1, ri−1〉 = 〈ri+1, ri+1〉 − 〈Aδi+1, Aδi〉. (11)

The proof follows directly from (11).
In terms of describing convergence, the above result is not immediately helpful. However, we

will discuss a few of its implications after giving a corresponding result for LGMRES. Recall from
Section 3.2 that LGMRES(m, k) appends k previous approximations to the error to the current
Krylov approximation space. Therefore if k ≥ 1, then ri+1 ⊥ AKm(A, ri) and ri+1 ⊥ Azi at the end
of restart cycle i+ 1. Since Azi = ri−1 − ri,

〈ri+1, ri−1 − ri〉 = 0 (12)

after i+ 1 LGMRES cycles, and we can prove the following theorem.

Theorem 5 (LGMRES: Every other residual vector) Let ri+1 and ri−1 be the residuals from LGM-
RES restart cycles i+ 1 and i− 1, respectively. Then the angle between these residuals is given by

cos∠(ri+1, ri−1) =
‖ri+1‖2
‖ri−1‖2

.

Proof. This theorem directly follows from Theorems 4 and 2 (noting the correlation between δi
in GMRES(m) and zi in LGMRES). Alternatively, from (12) and (10):

〈ri+1, ri−1〉 = 〈ri+1, ri〉 = 〈ri+1, ri+1〉.

The proof follows directly from the above relation.
This result indicates that, for LGMRES, the progress of the iteration also correlates with the

skip angles. Therefore, fast convergence implies large skip angles. More generally, for any 0 ≤ j ≤ k
and i ≥ k, we can show for LGMRES(m, k) that

cos∠(ri+1, ri−j) =
‖ri+1‖2
‖ri−j‖2

.

When a problem exhibits signs of alternating residuals with GMRES(m), then the angle between
ri−1 and ri+1 is small. In this case, since Aδi+1 = ri − ri+1 and Aδi = ri−1 − ri, then the term
〈Aδi+1, Aδi〉 in Theorem 4 is negative. We have observed this result in our experiments, and it
can be seen pictorially in Figure 2. Since LGMRES appends a previous error approximation to the
approximation space during cycle i+ 1, the term 〈Aδi, Aδi−1〉 is equal to zero by construction. We
show in Section 4.1 that this LGMRES augmenting scheme tends to increase the skip angle over
that of GMRES(m) and prevents the alternating behavior often observed in restarted GMRES.
We also investigated adaptive versions of LGMRES that determine whether or not to augment

during each restart cycle. One often effective adaptive version is based on the above observation that
the term 〈Aδi+1, Aδi〉 in Theorem 4 is generally negative when alternating occurs. In particular,
after m standard Arnoldi iterations in restart cycle i+ 1, we form the current residual r̂i+1. In the
k = 1 case, the decision is made to augment during cycle i+ 1 if 〈r̂i+1, Aδi〉 > 0. Referring back to
Theorem 4, note that 〈ri+1, Aδi〉 = −〈Aδi+1, Aδi〉. Results for this adaptive LGMRES are discussed
in Section 4.1.
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Figure 2: Two cases with alternating residual vectors: r1 and r3 point in nearly the same direction.
〈Az3, Az2〉 < 0 in both (A) and (B).

3.4 Comparison to existing methods

As previously stated, LGMRES(m, k) acts as an accelerator for GMRES(m). The algorithm is not
designed to overcome stalling as the error approximation vectors, zj , are zero when the residual
norm does not decrease within a cycle. Thus, while the LGMRES implementation mimics that of
Morgan’s GMRES-E [18], we do not compare the two algorithms as GMRES-E is most effective for
problems that stall due to the effects of a few eigenvalues. However, as noted at the beginning of this
section, the general idea of LGMRES is very similar to that of GCRO [7]; both methods look for a
minimum residual solution in the approximation space consisting of previous approximations to the
error as well as a Krylov space built on the current residual. The algorithms are not mathematically
equivalent, and we briefly explain their similarities and differences in this section. First, we discuss
the GMRESR [30] method, of which GCRO is a modification. Then the theoretical differences
between (non-truncated) GCRO and full LGMRES are briefly described, followed by a comparison
of the two truncated algorithms: GCROT and LGMRES(m, k).
The nested Krylov subspace methods GMRESR and GCRO consist of an outer GCR method

that invokes an inner GMRES method at each iteration to find an approximation to the error.
Generally a fixed number of GMRES steps are taken at each inner iteration, say m. GCR is a
minimum residual method that maintains two bases: Ui and Ci = AUi, where C

T
i Ci = Ii. Typically

Ui is an ATA-orthogonal basis for the Krylov space Ki(A, r0). However, the implementation of GCR
is such that Ui can actually contain any vectors (i.e., range(Ui) 6= Ki(A, r0)) [7]. In particular, in
both the GMRESR and GCRO methods, range(Ui) contains all of the previous approximations to
the error from the inner GMRES method.
GMRESR is essentially performing two separate minimizations: one over the inner GMRES

approximation space to find a new error approximation and one over the outer approximation space
(consisting of the the new error approximation and all previous error approximations) to update the
current global approximate solution. The clever improvement of GCRO over GMRESR is that the
GCRO minimization in the inner iteration takes into account the outer approximation space. In
other words, the two methods are not mathematically equivalent, and GCRO solves the following
minimization problem at each inner iteration:

min‖b−Axi+1‖2 s.t. xi+1 ∈ range(Ui)⊕ range(Wm), (13)

where Wm is an orthogonal basis for Km(AC , ri) generated by the inner GMRES method and
AC ≡ (I − CiC

T
i )A. The Krylov space Km(AC , ri) is a result of GCRO maintaining orthogonality
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against Ci from the beginning of the Arnoldi iteration, and Wm+1 satisfies Wm+1 ⊥ range(Ci).
Thus, when ri is projected onto AWm resulting in new residual ri+1, that new residual is also
orthogonal to range(Ci) as desired. The solution to the global minimization problem of equation
(13) is then found.
Similarly to GCRO, full LGMRES finds a minimum residual solution in an approximation space

consisting of all previous error approximations (zj) together with a Krylov space built off the current
residual:

min‖b−Axi+1‖2 s.t. xi+1 ∈ range(Zi)⊕ range(Vm),

where Vm is an orthogonal basis for Km(A, ri) and Zi ≡ [z1 . . . zi]. In the case of LGMRES,
the Arnoldi iteration does not maintain orthogonality against the previous error approximations.
Instead, the error approximations are simply appended onto the generated Krylov subspace which
leads to a greater number of orthogonalizations than for GCRO if k is large.
The difference in generation of the Krylov subspaces is a subtle difference between GCRO and

LGMRES. Matrices AC and A do not generate equivalent residual spaces (ACKm(AC , ri) and
AKm(A, ri), respectively). See [16] for more on matrices that generate equivalent Krylov resid-
ual spaces. Therefore, the residual projected onto these spaces is not the same unless the unlikely
situation occurs where range(Vm) ⊥ range(Ci). Finally we remark that as with GCRO, LGMRES
is also not equivalent to GMRESR since the error approximation vectors are determined by a single
minimization over the global space consisting of previous approximations to the error as well as a
Krylov space built on the current residual.
GCROT [8] is a more practical truncated version truncated derivative of GCRO. GCROT trun-

cates the outer approximation space by examining angles between subspaces and determining which
subspaces (not vectors) are important for convergence. It is assumed that if a subspace was important
for past convergence, then it will be important for future convergence and should be retained. Simi-
larly, vectors from the inner GMRES iteration may also be kept. The implementation of GCROT(m,
kmax, knew, s, p1, p2) requires specification of six different parameters that affect the truncation.
LGMRES(m, k), on the other hand, is truncated in a more obvious manner, retaining only the

most recent k error approximation vectors. For ORTHOMIN, it has been observed that truncating
the recursion such that only one or two previous direction vectors are retained is quite effective
when A is nearly symmetric [31]. Therefore, we attribute the effectiveness of the LGMRES method’s
naive truncation strategy, particularly when A is nearly symmetric in some sense, to the relation
of LGMRES to the ORTHOMIN algorithm, which was mentioned in Section 3.3. In fact, in our
experiments we find that LGMRES performs best when k is much smaller than m (typically k ≤ 3),
whereas GCROT often prefers k > m. Additionally, as previously mentioned, the LGMRES(m, k)
truncation strategy results in a more straightforward implementation that lends itself to a block
method.

4 Experimental results

We demonstrate the potential of LGMRES by presenting experimental results from a variety of
problems using implementations of LGMRES in both Matlab and a locally modified version of
PETSc (Argonne National Laboratory’s Portable, Extensible Toolkit for Scientific Computation)
[3, 4]. We tested problems from various sources, including the Matrix Market Collection [23] and
the University of Florida Sparse Matrix Collection [6]. In Sections 4.1 and 4.2, we compare Matlab

implementations of LGMRES(m, k), GMRES(m), GCRO [7], and GCROT [8] for problems without
preconditioning. In Section 4.3, we demonstrate the usefulness of LGMRES for larger problems with
preconditioning with a PETSc implementation of LGMRES.
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4.1 Comparison to GMRES(m)

In this section, we demonstrate that LGMRES can significantly accelerate the convergence of
restarted GMRES. To compare the performance of LGMRES(m, k) and GMRES(m), we imple-
mented each in Matlab. Our purpose with these implementations is to gauge the acceleration
potential of LGMRES as well as its range of applicability on a variety of problems. Therefore, in
this section and Section 4.2, we do not use preconditioning for the Matlab tests, allowing iteration
counts to be large. A zero initial guess is used for all problems.
We look at a test set of 18 problems, 15 from the Matrix Market Collection and 3 convection-

diffusion (CD) problems. The Matrix Market problems include the following: add20, orsreg 1,
orsirr 1, cdde1, pde900, sherman1, sherman4, rdbl1250, cavity05, nos3, watt 2, fs 760 1, e05r0000,
steam2, and cavity10. If a right-hand side is not provided, we generate a random right-hand side.
The three CD problems are taken from [18] and are variations of the partial differential equation
(PDE) uxx + uyy + Dux = −(41)

2 with increasing degree of nonsymmetry: D = 1, D = 41, and
D = 412, which we refer to as morgan 1, morgan 41, and morgan 1681, respectively. These PDEs
are discretized by central finite differences on the unit square with zero boundary conditions and
step-size h = 1/41. We stop the iteration when the relative residual norm is less than the convergence
tolerance ζ, i.e., when ‖ri‖2/‖r0‖2 ≤ ζ. We use ζ = 10−5 for all problems. Several restart parameters
are chosen for each problem, resulting in a total of 53 test cases. In particular, for the first 11 Matrix
Market problems (in the preceding list) and the three CD problems, we use m = 10, 20, and 30.
We use m = 10, 20 for problem fs 760 1 , and m = 20, 30, and 40 for the last three Matrix Market
problems.
For each of these 53 test cases, we compare the performances of GMRES(m) and LGMRES with

equal-sized approximation spaces. Figure 3 shows the number of matrix-vector multiplies required
for convergence for GMRES(m) and LGMRES(m−k, k) with k = 1 : 5. In both the top and bottom
plots, the y-axis is the number of matrix-vector multiplies required for convergence by GMRES(m)
divided by the number required by LGMRES(m − k, k). Note that the log of this ratio is plotted
on the y-axis of Figure 3. The x-axis corresponds to the 15 Matrix Market problems followed
by the three CD problems in the order given in the previous paragraph, and results for the same
problem with increasingm are adjacent. For example, test case 1 corresponds to problem add20 with
m = 10, for which GMRES(m) requires approximately 4 times as many matrix-vector multiplies as
does LGMRES(m− k, k).
In the top panel of Figure 3, the result of the “best” LGMRES(m−k, k) for k = 1 : 5 is compared

to GMRES(m). The bars extending above the x-axis favor LGMRES(m− k, k) (51 cases)–in these
cases GMRES(m) requires more matrix-vector multiplies than does LGMRES(m− k, k). The bars
below the x-axis favor GMRES(m) (two cases: pde900 with m = 20 and morgan 41 with m = 10).
Ratios of improvement (as opposed to iteration counts) are given to demonstrate the potential
improvement with LGMRES, though we note the number of iterations required by LGMRES(m−k,
k) is less than n (where n is the matrix order) in 46 of the 53 test cases. In the remaining seven
cases (steam2 with m = 20 and both e05r0000 and orsirr 1 with m = 10, 20, and 30), the number of
iterations is less than 2.25n. The number of iterations required by GMRES(m), on the other hand,
is much greater than n for a number of these test cases, as reflected by several large ratios in the
top panel of Figure 3.
The plot in the bottom panel of Figure 3 shows the variance in results for LGMRES(m− k, k)

with k = 1 : 5. Generally k ≤ 3 is best for LGMRES(m− k, k), and in our experiments, returns are
diminishing for larger k, especially when m is small.
Furthermore, as with the majority of these test problems in Figure 3, we typically observe that

the percentage improvement of LGMRES over GMRES decreases with increasing m. This trend
is likely related to smaller values of m resulting in larger iteration counts and more noticeable



13

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2
lo

g 
( 

G
M

R
E

S
(m

) 
/ L

G
M

R
E

S
(m

−
k op

t, k
op

t )

Test Case

Matrix−Vector Multiplies Required for Convergence (optimal k ≤ 5)

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

lo
g 

( 
G

M
R

E
S

(m
) 

/ L
G

M
R

E
S

(m
−

k,
 k

)

Test Case

Matrix−Vector Multiplies Required for Convergence (k = 1 : 5)

k=1
k=2
k=3
k=4
k=5

Figure 3: A comparison of the number of matrix-vector multiplies required for convergence by
GMRES(m) and LGMRES(m− k, k) for 53 test cases. The top panel compares GMRES(m) to the
“best” LGMRES(m, k). The bottom panel displays results for LGMRES(m−k, k) vs. GMRES(m)
for five different values of k (k = 1 : 5).
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alternating behavior.
Experimentally, we observe that LGMRES nearly always has a larger median skip angle than

does GMRES(m). For example, in Table 2 we list the LGMRES(29, 1) results for the same four
problems for which GMRES(30) results were provided in Table 1 in the Section 3.1. Again, the
number of iterations required for convergence (‖ri‖2/‖r0‖2 ≤ 10

−9) as well as the median sequential
and median skip angle values are listed.

Table 2: Results for LGMRES(29, 1). Problem size, iterations required for ‖ri‖2/‖r0‖2 ≤ 10
−9,

median skip angle, and median sequential angle are listed for each problem.

Problem Size (n) Iterations Median Seq. Angle Median Skip Angle
(Matrix-Vector Multiplies) ∠(ri, ri−1) ∠(ri+1, ri−1)

add20 2395 606 (587) 63.0 79.0
orsirr 1 1030 2190 (2118) 41.0 55.4
orsreg 1 2205 515 (499) 72.2 84.6
sherman 1 1000 757 (733) 61.7 76.4

Consider two consecutive approximation spaces Si and Si+1. As compared to standard GMRES(m),
LGMRES(m, k) does not necessarily affect how much of Si+1 can be found in Si. However, it does
typically “improve orthogonality” quite significantly between the current approximation space and
the space generated two restart cycles ago: Si+1 and Si−1. This action accelerates the convergence
over that of GMRES(m) in many cases. Recall from Theorem 3 that the size of the sequential angles
is directly related to the reduction in residual at each cycle. Therefore, if increasing the skip angles
occurs at the expense of reducing the average sequential angle, then LGMRES augmenting slows
convergence. Intuitively, the method that “wins” generally has large skip angles and large sequential
angles.
Our experiments seem to indicate that the LGMRES augmenting scheme significantly improves

GMRES(m) convergence under the following conditions: GMRES(m) skip angles are small and
continue to decrease as the iteration progresses; GMRES(m) sequential angles are relatively small
and converging to the same angle as the iteration progresses; or the average skip angle increases
significantly after LGMRES augmenting. All of these conditions are typically met for problems that
display alternating behavior, although some or all are evident in other problems as well. On the
other hand, LGMRES is not as helpful when: GMRES(m) skip angles are not small; GMRES(m)
sequential angles vary greatly from cycle to cycle; GMRES(m) converges in a small number of
iterations; or GMRES(m) skip angles and sequential angles are near zero, indicating stalling. We
believe that the LGMRES augmenting scheme most benefits problems that are close to symmetric
in some sense as these are the problems for which alternating is most easily explained, but we have
seen the algorithm perform well for a variety of problems.
Though we have found that scalar measurements of symmetry generally do not correlate with

LGMRES performance, a close look at the three aforementioned CD problems with increasing degree
of nonsymmetry does provide some insight into LGMRES convergence behavior. In Table 3, results
similar to those presented in Figure 3 are listed. However, now we compare GMRES(m) with
LGMRES(m, 1) to better examine the effect of appending one error approximation to the Krylov
subspace. Whereas previously presented results compared methods with equal-sized approximation
spaces or equal storage requirements, here the methods have equal-sized Krylov subspaces at each
cycle.
For morgan 1, the coefficient matrix A is nearly symmetric. LGMRES(m, 1) is effective for this

problem, particularly for the m = 10 case where the GMRES(m) residual vectors alternate notice-
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Table 3: Comparison of matrix-vector multiplies required for convergence (‖ri‖2/‖r0‖2 ≤ 10

−9 ) for
uxx + uyy + Dux = −(41)

2, discretized by centered finite differences on the unit square with zero
boundary conditions and step-size h = 1/41.

Matrix D
‖A−AT ‖2
‖A‖2

m GMRES(m) LGMRES(m,1) Adaptive

morgan 1 1 .005 10 735 245 245
20 415 260 260
30 272 199 199

morgan 41 41 .22 10 168 252 169
20 200 301 301
30 236 296 236

morgan 1681 412 .99 10 496 475 464
20 486 453 469
30 488 482 477

ably. (The median skip angles in degrees for GMRES(m) are .6, 2.4, and 23.4 for m = 10, 20, and
30, respectively.) On the other hand, morgan 41 with D = 41 is an excellent example of the type
of problem for which LGMRES performs very poorly. Because this problem converges fairly quickly
with GMRES(m) and is far from symmetric, we did not expect LGMRES(m, 1) to be very helpful.
But the fact that LGMRES(m, 1) actually slows convergence considerably was unanticipated. How-
ever, we have since observed that LGMRES generally performs poorly on problems for which the
GMRES(m) iteration count increases with increasing m, such as morgan 41. Finally, morgan 1681
is nearly skew-symmetric and benefits only slightly from the augmenting scheme of LGMRES(m,
1). In general, we find in our experiments that nearly skew-symmetric problems do not benefit as
much from LGMRES as do nearly symmetric problems.
The morgan 41 problem highlights the need for a potential improvement to the LGMRES al-

gorithm; in particular, an adaptive version that determines whether or not to augment would be
beneficial. Designing a simple adaptive LGMRES algorithm effective for all test cases and for all
values of m has proved difficult. Our most promising effort to date is described at the end of Section
3.3. Results for this algorithm are given in the right column of Table 3 and are decidedly mixed.
While this adaptive method usually mitigates the extent to which LGMRES fails on tricky prob-
lems, it can be less effective than standard LGMRES on others. Deciding whether or not to augment
within a given restart cycle is difficult. We find that analysis within a single restart cycle is not
sufficient as augmenting has a cumulative effect. An analysis of convergence across cycles (for both
GMRES and LGMRES) would provide a better understanding of the behavior of LGMRES and
enable us to design a more effective adaptive strategy.
The effectiveness of LGMRES depends upon the matrix problem and the restart parameter m,

but the savings in matrix-vector multiplies are quite substantial in many cases. Though many of
the test problems presented in this section would benefit from preconditioning, results for problems
such as cavity10 that are difficult to precondition [23] are encouraging. And, in our experience, we
find that LGMRES typically does not require more iterations than does restarted GMRES.

4.2 Comparison to GCRO and GCROT

In section 3.4, we discuss the similarities (and differences) between LGMRES(m, k) and GCROT.
Here we compare the performance of the two truncated methods, first briefly examining their less
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Figure 4: A comparison of the numbers of matrix-vector multiplies required for convergence by
non-truncated GCRO and full LGMRES. Test cases 1–20 correspond to results for m = 5 followed
by m = 10 for morgan 1, morgan 41, morgan 1681, sherman1, sherman4, add20, cavity05, orsirr 1,
orsreg 1, and pores 3.

practical non-truncated counterparts, full GCRO and full LGMRES (LGMRES(m)).
We evaluate Matlab implementations of LGMRES(m) and GCRO in the same manner as in

Section 4.1. That is, we compare the number of matrix-vector multiplies required for the relative
residual norm to be less than the convergence tolerance ζ. For these non-truncated methods, we use
small values of m, m = 5 and m = 10, since storage increases with each iteration. We again test
the three related CD problems (morgan 1, morgan 41, and morgan 1681) with ζ = 10−9, as these
problems were also used in [8]. In addition, we compare results for a subset of the Matrix Market
problems from the previous section with ζ = 10−5 as well as one new Matrix Market problem,
pores 3, that stalls for both GMRES(10) and GMRES(5).
Figure 4 compares the two methods and indicates that the performance of the two methods,

in terms of matrix-vector multiplies, is often similar. In terms of convergence, our experiments
seem to indicate that appending vectors to the end of the standard Krylov subspace (as LGMRES
does) is not necessarily inferior to orthogonalizing against them at the start of the cycle, and our
experience does not clearly indicate which approach is to be preferred in a given situation. Even
in the case where GMRES(m) stalls (and intuitively LGMRES(m) would not be helpful), one can
find counterexamples such as pores 3 (cases 19 and 20) where slow initial convergence is eventually
overcome.
As mentioned in Section 3.3, though interesting from a theoretical point of view, non-truncated

methods are often impractical due to increasing storage requirements. For example, Figure 4
indicates that both orsirr 1 and pores 3 require storing more than n vectors. Additionally, for
LGMRES(m), an increasing number of orthogonalizations are required in each cycle. Therefore,
we do not further investigate the convergence behavior of LGMRES(m), but instead focus on a
comparison of the more practical versions of the two algorithms: LGMRES(m, k) and GCROT(m,
k, k, s, p1, p2).
For each of these truncated algorithms, the size of the approximation space is m+ k. We use a

Matlab implementation of GCROT supplied by Oliver Ernst. The test problems are the same as
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Figure 5: A comparison of the minimum to maximum number of matrix-vector multiplies required
for convergence by LGMRES(m, k) and GCROT(m, k, k, s, p1, p2) for constant-sized approximation
spaces. GMRES(m+k) is also indicated. Test cases 1–27 correspond to m+k = 10, m+k = 20,and
m + k = 30, respectively, for morgan 1, morgan 41, morgan 1681, sherman1, sherman4, add20,
cavity05, orsirr 1, and orsreg 1.

in Figure 4) with approximation spaces of size 10, 20, and 30, although the pores 3 test cases have
been dropped since neither truncated algorithm converges for that problem.
For each of the 20 test cases, we ran LGMRES(m, k) with k = 1 : 3, as this range was rec-

ommended in the previous section. Additionally, ten permutations of GCROT(m, k, k, s, p1, p2)
where m + k is constant, were chosen to reflect the choices in [8] (e.g., m ≤ k, s ≤ dm2 e). Figure 5
compares the two methods for all 27 test cases. The bars indicate the range (minimum to maximum)
of matrix-vector multiplies required. The circles represent restarted GMRES for each problem with
the corresponding approximation space size. Vertical dotted lines separate test cases corresponding
to the same matrix problem. The missing circle for test case 19 indicates that GMRES(m + k)
required more than 10,000 iterations. Some of these iteration counts are unrealistically large, but
recall that we are not considering preconditioning and are simply evaluating the relative performance
of the two algorithms.
Results for the two algorithms are relatively similar in most of the test cases. We again notice that

LGMRES(m, k) has particular difficulty with morgan 41 (GCROT has difficulty only form+k = 10).
Problem morgan 1681 is somewhat resistant to improvement by both methods, and problem orsirr 1
is highly sensitive to the choice of input parameters with GCROT. It is not clear in our experience
or from results presented in [8] how to choose the optimal parameters for GCROT. For the ten of the
many possible permutations we chose for GCROT for each fixedm+k, there was no observable trend
as to which of the ten permutations were most (or least) effective across this set of test problems.
In addition, we have found that occasionally m > k can be more effective than the recommended
k > m for GCROT (in test cases for problems add20 and orsirr 1, for example). Ernst also found
that choosing the parameters for GCROT can be problematic [14]. However, for LGMRES, k ≤ 3
is nearly always the best choice and the variation in results for k = 1 : 3 is generally reasonable.
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4.3 Effectiveness for larger preconditioned problems

In this section, we demonstrate that LGMRES can be a helpful addition to preconditioning. We
implemented LGMRES in C using a locally modified version of PETSc 2.1.5 [3, 4] in order to easily
access preconditioners, test larger problems, and obtain reliable timing results (instead of counting
matrix-vector multiplies). Our PETSc implementation is available in PETSc 2.1.6. First, we look
at cumulative results for 15 different matrix problems. Then we more closely examine a few of those
problems.
We chose a variety of test problems from the Matrix Market Collection [23], the University of

Florida (UF) Sparse Matrix Collection [6], and the PETSc [3, 4] collection of test matrices. We use
the ILU(p) preconditioner, where p indicates the level of fill (e.g., see [25]). If a right-hand side is
not provided, we generate a random right-hand side. For reference, the test problems are listed in
Table 4.

Table 4: List of test problems together with the matrix order (n), number of nonzeros (nnz),
preconditioner, source, and description of the application area (if known). Source indicates Matrix
Market Collection (MM), UF Sparse Matrix Collection (UF), or PETSc test collection (PC), along
with a set or directory name if applicable.

Problem n nnz ILU(p) Source Application Area

1 fidapm11 22294 623554 ILU(0) MM: Sparskit fluid flow
2 memplus 17758 126150 ILU(0) MM: Hamm digital circuit simulation
3 arco3 38194 241066 ILU(0) PC multiphase flow: oil reservoir
4 arco5 35388 154166 ILU(0) PC multiphase flow: oil reservoir
5 arco6 108009 2204937 ILU(0) PC multiphase flow: oil reservoir
6 ex40 7740 458012 ILU(0) UF: FIDAP fluid flow
7 garon2 13535 390607 ILU(1) UF: Garon fluid flow
8 bcircuit 68902 375558 ILU(1) UF: Hamm digital circuit simulation
9 xenon1 48600 1181120 ILU(2) UF: Ronis crystalline compound analysis
10 pesa 11738 79566 ILU(0) UF: Gaertner
11 aft01 8202 125567 ILU(0) UF: Okunbor acoustic radiation
12 venkat50 62424 1717792 ILU(0) UF: Simon fluid dynamics
13 epb3 84617 463625 ILU(0) UF: Averous heat exchanger simulation
14 big 13209 91465 ILU(1) UF: Gaertner
15 zhao2 33861 166453 ILU(0) UF: Zhao electromagnetic systems

We compare the performance of restarted GMRES to that of LGMRES(m, k) with the same
approximation space size and then the same storage requirements. For LGMRES, we report results
for k = 1 : 3, as we find that choosing k in this range typically results in the most improvement with
the least risk of increasing execution time. All tests are run until the relative residual norm is less
than the convergence tolerance ζ = 10−9. Recall that GMRES with left preconditioning minimizes
the preconditioned residual norm (‖M−1r‖2), and, therefore, the determination of convergence is
based on this preconditioned residual norm as usual. The initial guess is a zero vector in all cases.
Unless otherwise noted, results provided were run on a Sun UltraSPARC 10 with 256M RAM, a
clock-rate of 360 MHz, a 16KB L1 cache, and a 2MB L2 cache. For each problem we report wall
clock time for the linear solve. All timings are averages from five runs and have standard deviations
of at most two percent, although most are less than one percent. If a method does not converge in
30000 iterations, the execution time reported reflects the time to 30000 iterations, and we say that
the method does not converge. Note that iteration counts for problems that converge are well below
30000. We did not compare LGMRES(m, k) to GCROT for these problems because no PETSc
implementation of GCROT is available.
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Figure 6: A comparison of the time required for convergence for 15 different problems with
GMRES(30) and LGMRES(30 − k, k), k = 1 : 3. All methods use an approximation space of
dimension 30.

In Figure 6, we compare GMRES(30) to LGMRES(29, 1), LGMRES(28, 2), and LGMRES(27,
3). All four of these methods generate an approximation space of dimension 30 during each restart
cycle. Similar to the plots seen previously, the y-axis indicates the log of the ratio of the time to
converge for GMRES(30) to the time to converge for both the best and worst performing cases of
LGMRES(30 − k, k) for k = 1 : 3, and the x-axis corresponds to the 15 test problems in in Table
4. Points above the x-axis favor LGMRES and points below favor GMRES. Note that GMRES(30)
does not converge (in 30000 iterations) for problems 10, 14, and 15, and LGMRES(27, 3) does not
converge for problem 15.
For larger problems in particular, comparing restarted GMRES to an LGMRES method that

requires an equal amount of storage is also of interest. Both GMRES(30) and LGMRES(30 − 3k,
k) have the same 33 vector storage requirement (see Section 3.2). Similar to the previous figure,
Figure 7 compares GMRES(30) to LGMRES(27, 1), LGMRES(24, 2), and LGMRES(21, 3). In this
comparison, one augmentation vector must be more helpful than three standard Krylov vectors for
LGMRES to win. This requirement is fairly stringent for some of the larger problems given that we
allow only 33 vectors of storage. Nevertheless, the majority of the problems still show improvement
with LGMRES.
Now we examine problems bcircuit, fidapm11, and big from our test set (in Table 4) in more de-

tail, additionally providing timing results for full GMRES. The results in Tables 5 – 7 for these three
problems demonstrate different possible relations in convergence behavior between LGMRES(m, k),
GMRES(m) and full GMRES.
First consider the timing results from problem bcircuit in Table 5. For this problem, full GMRES

requires memory resources beyond the physical memory limit of our machine. For this reason, we
had to re-run the bcircuit problem on a similar machine with four times as much memory (a Sun
UltraSPARC 10 with 1024M RAM, a clock-rate of 440 MHz, a 16KB L1 cache, and a 2MB L2
cache) to obtain timing results for full GMRES. Therefore, for Table 5 only, all results presented
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Figure 7: A comparison of the time required for convergence for 15 different problems with
GMRES(30) and LGMRES(30 − 3k, k) with k = 1 : 3. All methods require storage for 33 vec-
tors of length n.

for bcircuit were obtained on this second machine. Even with the extra memory provided by the
second machine, we see that restarted GMRES(30) is more than twice as fast as full GMRES, and
LGMRES is even faster. Conversely, for problem fidapm11 given in Table 6, full GMRES is faster
than GMRES(30) on our machine, although LGMRES still has the faster execution time of the three
methods on this problem. Finally, results for problem big are given in Table 7. This third problem
is interesting because GMRES(30) converges very slowly. In fact, the relative residual norm is still
≈ .002 after 30000 iterations. Both LGMRES(30 − 3k, k) and LGMRES(30 − k, k), on the other
hand, improve convergence dramatically over that of GMRES(30). However, for this moderately
sized problem, full GMRES requires only 188 iterations and wins by a landslide.
Most of the problems presented here require a restarted method given the resources of the machine

Table 5: Matrix bcircuit and its corresponding right-hand side, with n = 68902 and nnz = 375558.
Preconditioned with ILU(1). Times are in seconds and include mean and standard deviations of
times for five runs.

Method Approx. space # vectors Matrix-vector Time
dimension stored multiplies

Full GMRES 1013 1016 1013 2880.364 ± 9.24
GMRES(30) 30 33 5602 1135.38 ± 12.58
LGMRES(29,1) 30 35 2959 615.28 ± 5.61
LGMRES(28,2) 30 37 1730 365.16 ± 2.47
LGMRES(27,3) 30 39 1707 369.70 ± 2.48
LGMRES(27,1) 28 33 2631 533.42 ± 4.54
LGMRES(24,2) 26 33 2467 503.71 ± 3.54
LGMRES(21,3) 24 33 1672 339.42 ± 2.21
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Table 6: Matrix fidapm11 and its corresponding right-hand side, with n = 22294, nnz = 623554,
and ILU(0) preconditioning. Times are in seconds and include mean and standard deviations of
times for five runs.

Method Approx. space # vectors Matrix-vector Execution
dimension stored multiplies time

Full GMRES 952 955 952 854.02 ± 6.27
GMRES(30) 30 33 16482 2100.23 ± 8.40
LGMRES(29,1) 30 35 5511 704.65 ± 0.18
LGMRES(28,2) 30 37 2915 376.64 ± 0.10
LGMRES(27,3) 30 39 2733 357.19 ± 0.78
LGMRES(27,1) 28 33 5239 664.84 ± 1.89
LGMRES(24,2) 26 33 3399 431.39 ± 1.00
LGMRES(21,3) 24 33 2941 373.96 ± 0.41

Table 7: Matrix big with a random right-hand side, n = 13209 and nnz = 91465. Preconditioned
with ILU(1). Times are in seconds and include mean and standard deviations of times for five runs.

Method Approx. space # vectors Matrix-vector Execution
dimension stored multiplies time

Full GMRES 188 191 188 21.70 ± 0.03
GMRES(30) 30 33 > 30000 1231.54 ± 1.08
LGMRES(29,1) 30 35 8500 358.07 ± 0.15
LGMRES(28,2) 30 37 6997 300.18 ± 0.32
LGMRES(27,3) 30 39 6546 281.79 ± 0.70
LGMRES(27,1) 28 33 7654 315.7 ± 0.37
LGMRES(24,2) 26 33 7971 327.96 ± 0.20
LGMRES(21,3) 24 33 8259 332.56 ± 0.09

chosen for the experiments. On a more powerful machine (more memory and faster processor), full
GMRES might be faster for many of these problems. At the same time, because every machine has
a limit as to the size problems it can reasonably solve with a full method, restarted methods and
acceleration methods provide a great advantage.
Finally, we note that because LGMRES is an accelerator, it is not, in general, a substitute for an

effective preconditioner. Although we did encounter a number of test problems for which the ILU
preconditioner is not a viable option and LGMRES is a dramatic improvement over GMRES(m), we
expect that in those cases an appropriate preconditioner would be even more effective. Nevertheless,
LGMRES can be an effective addition to preconditioning for a range of problems. Although LGM-
RES improvements with preconditioning tend not to be as spectacular as the improvements seen for
the non-preconditioned problems of Section 4.1, even moderate acceleration for large problems can
translate into significant time savings.

5 Concluding Remarks

In this paper, we have described a method that accelerates the convergence of GMRES(m). We have
also discussed some interesting observed properties of the convergence of GMRES(m) that motivated
the algorithm’s development. Experimental results demonstrate that the LGMRES augmentation
scheme is an effective accelerator for GMRES(m) with or without preconditioning. Furthermore, the
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algorithm is straightforward and easy to implement. However, LGMRES is not typically a substitute
for preconditioning and does not help when a problem stalls for a given restart parameter. Possible
improvements to the algorithm include a robust adaptive variant. In future work, we will describe
a more memory-efficient block implementation of the LGMRES algorithm.
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