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ABSTRACT 

We investigate the diffraction properties of sectioned multilayers in Laue (transmission) 

geometry, at hard x-ray energies (9.5 and 19.5 keV). Two samples are studied, a 200 

period W/Si multilayer of 29 nm d-spacing, and a 2020 period Mo/Si multilayer of 7 nm 

d-spacing, with cross-section depths ranging from 2 to 17 µm. Rocking curves across 

the Bragg reflections exhibit well-defined interference fringes originating from the 

depth of the sample. Efficiencies as high as 70% were obtained. This exceeds the 

theoretical limit for standard zone plates operating in the multi-beam regime, 

demonstrating that all of the intensity can be directed into a single diffraction order in 

small-period structures. 
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Breakthroughs in efficient, high-resolution diffractive optics for hard x-rays (e.g. to 

focus to nanometer-scale spots [1], or to compress to femtosecond-scale pulses [2]) are 

technically challenging but theoretically very promising. High spatial resolution 

requires correspondingly thin structures transverse to the beam direction, while high 

efficiency requires a relatively large depth along the beam direction. Fabrication of such 

high-aspect-ratio nanostructures challenges the limits of lithographic techniques. An 

alternative approach is to make a cross-section of a multilayer film, as in "sputter/slice" 

zone plates [3-5]. Although very high aspect ratios can be produced, the challenge in 

this case is to deposit a multilayer with hundreds or thousands of accurately placed 

layers, and to maintain the structure during sectioning. The optical properties of 

sectioned multilayers in the Laue (transmission) geometry, also known as volume 

gratings, have been calculated and measured in the soft x-ray region [2,6-8], but are 

relatively unexplored in the hard x-ray region. In theory, the properties are very 

promising: as the layer thickness becomes smaller, the efficiency should approach unity 

because all of the intensity can be directed into a single diffraction order. 

We have been exploring the fabrication and hard x-ray diffraction properties of 

sectioned multilayers in Laue geometry. Results have been obtained for two multilayers 

of differing period and composition that bridge the gap between large and small layer 

thickness behavior. In a preliminary publication [9], we reported x-ray rocking curves 

showing fringes that allow us to determine the depth of the sections. Here we report 

measurements of the peak reflectivity as a function section depth, which demonstrate 

that high efficiency can be obtained at small periods. We find reasonable agreement 

between measurements and dynamical diffraction theory, providing a solid foundation 

for both the design and fabrication of novel hard x-ray optics. 
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Two constant-period multilayers were grown on Si (001) substrates by DC 

magnetron sputter deposition techniques, as described elsewhere [9,10]. Multilayer d-

spacings and layer volume fractions were determined by modeling Bragg-geometry x-

ray reflectivity data. Multilayer A is a 200-period W/Si multilayer with a d-spacing of 

29 nm and W volume fraction of 60%, with a total thickness of 6 µm. Multilayer B is a 

2020-period Mo/Si multilayer with d-spacing of 7 nm and Mo volume fraction of 50%, 

with a total thickness of 14 µm. These may be the thickest x-ray-optical-quality 

multilayer films produced to date. As the outermost zone of a focusing structure, the 7 

nm period of Multilayer B would correspond to a 4.2 nm diffraction-limited focal size 

[1]. 

To study the Laue-geometry diffraction behavior as a function of section depth, we 

produced cross sections by sectioning and polishing with depths intentionally varying 

by ~10 µm across a 2 mm length so that a single sample could be used to study a range 

of depths. The Laue diffraction geometry used is shown in Fig. 1 (inset). Here we define 

z as the layer stacking direction ("thickness"), x perpendicular to a cross-sectioned 

surface ("depth"), and y along the wedge ("length"). The x-ray scattering was mapped 

by scanning the scattering vector in the Qx and Qz directions. The dependence on section 

depth was determined by translating the wedge-shaped sample along the y direction. 

The incident beam illuminated 50 µm of the sample along the y direction. Incident 

beams larger than the sample in the z direction were used for sample angle scans to 

minimize effects of the center of rotation misalignment. Measurements of absolute 

reflectivity at the Bragg peak using carefully-aligned incident beams equal in size to the 

sample thickness were used to correct the intensity scale of the angle scans. 

Measurements were performed at beamline 12BM of the Advanced Photon Source. 
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Using a Si(111) monochromator, an x-ray energy E of either 9.5 or 19.5 keV (λ = 1.31 

or 0.64 Å) was selected.  

Figure 1 shows a typical radial scan along Qz in the specular direction (Qx = 0). 

Bragg reflections from the fundamental multilayer d-spacing and higher harmonics are 

observed. The pattern is symmetric about zero, which illustrates a feature of the unusual 

Laue geometry: diffraction from the "top" or "bottom" of the multilayer is equivalent. 

Figure 2 shows typical transverse (rocking) scans along Qx at the first-order Bragg 

reflection in Qz, for E = 9.5 keV and various values of section depth. The scattering 

patterns exhibit interference fringes around the central peak. The section depth w of the 

illuminated region of the wedge can be obtained from the period ∆Qx of the interference 

fringes using w = 2π/∆Qx. The large number of fringes indicates that the sectioning 

process produced smooth truncation of the multilayer with a well-defined depth. The 

central part of the profile displays a complex dependence on w. For small w, the profiles 

have the shape of classical Fraunhofer single-slit diffraction patterns [11]. As w 

increases, the intensity of the central maximum decreases relative to those of the fringe 

maxima. The intensity at Qx = 0 becomes a local minimum at w ≈ 8 or 15 µm for 

multilayer A or B, respectively. At larger values of w, the intensity at Qx = 0 becomes a 

local maximum again. 

Figure 3 shows the reflectivity of the first-order Bragg peak at Qx = 0 and E = 9.5 

keV, as a function of w. Quite high absolute reflectivities are obtained, near 70% for 

multilayer B at the optimum depth. The second-order peak is also shown for multilayer 

A; it is very weak for multilayer B, because of the equal thicknesses of the Mo and Si 

layers. The oscillatory behavior observed with increasing w corresponds to the 

pendellösung phenomenon that occurs in dynamical diffraction from crystals in Laue 
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geometry [12]. Observation of these oscillations verifies the conceptual basis of 

dynamical diffraction theory for multilayers in the hard x-ray region, and indicates that 

the sectioned multilayer samples are of sufficient structural quality to produce 

dynamical effects.  

An analytical solution for the reflectivity of small-period multilayers can be 

developed by extending the 2-beam dynamical theory for crystals. For a 

centrosymmetric crystal in the symmetric Laue geometry, in the limit of small 

diffraction angle, the reflectivity is given by [12,13] 

R = exp 2πw Im(ψ0)
λ

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ sin πwψH

λ
1+ η2⎛ 

⎝ 
⎜ 
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2
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,   (1) 

where η is related to the transverse wavenumber Qx by η = Qx λ / 2 π ψH. For a binary 

multilayer, the normalized structure factors in the forward and diffracted-beam 

directions, ψ0 and ψH, are given by ψH = 2 ∆n sin(πLx) / πL,  ψ0 = 2(〈n〉 - 1). Here n is 

the refractive index, 〈 〉 represents the mean of the two layers in the multilayer, e.g. 〈n〉 = 

xn1 + (1-x)n2, ∆ represents the difference between the two layers, e.g. ∆n = n1 - n2, x is 

the volume fraction of layer 1, and L is the order of the 00L Bragg peak. The refractive 

indices of each the layers are complex numbers given by n = 1 - δ - iβ, where δ and β 

depend on material and photon energy [14]. Note that the reflectivity is independent of 

the d-spacing. At the center of the rocking curve, where η = 0, the specular reflectivity 

as a function of section depth w can be expressed as 
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The sin2 term gives the oscillatory pendellösung component, with a period ∆w = 

πλL 1)sin(2 −∆ Lxπδ , while the sinh2 term gives the anomalous transmission (Borrmann 

effect) for samples with large section depth [12]. The pendellösung period depends on 
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∆δ, and is thus a direct measure of the scattering contrast of the multilayer.  

Dashed curves in Fig. 3 show reflectivities calculated using the 2-beam expression, 

Eq. (2), with standard elemental densities for the W, Mo, and Si layers. For the first-

order peaks, there is qualitative agreement with the observed depth dependence, while 

the predicted oscillation period with depth of the second-order peak for multilayer A is 

significantly larger than observed. It is interesting to consider the predicted dependence 

of the first-order pendellösung period on sample composition and x-ray wavelength 

obtained from the 2-beam expression. For a multilayer with equal thickness layers (x = 

0.5), the period for L = 1 is given by ∆w = πλ/2∆δ. (This is a factor of π/2 larger than 

for a phase zone plate.) Ignoring anomalous scattering effects near absorption edges, the 

real part of the refractive index can be expressed using δ = reρeλ2/2π, where re = 2.82 × 

10-13 cm is the Thomson radius of the electron and ρe is the electron density [15]. This 

gives a first-order pendellösung period of ∆w = π2/re∆ρeλ, which is inversely 

proportional to the density difference between the layers and to photon wavelength. We 

confirmed this wavelength dependence, finding that the depth giving maximum 

reflectivity increased by approximately a factor of two when the wavelength was 

decreased from 1.31 to 0.64 Å. The observed period for multilayer B in Fig. 3(c) is 

~20% larger than predicted, which may indicate that the density difference in the 

sample is lower than that between pure Mo and Si, owing to interdiffusion and/or 

reaction to form MoSix [16]. The relatively shallow minimum in the observed 

reflectivity from multilayer B at larger depths is likely due to the finite transverse 

resolution of the measurement, which can be seen in Fig. 2(b).  

Effects of scattering into multiple directions are not included in the 2-beam solution. 

One such effect can be seen in the rocking curves in Fig. 2. For multilayer B, the 
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features at Qx = ±0.0017 Å-1 occur when either the incident or exit beam makes the 

Bragg angle with the fundamental L = ±1 reflection. For multilayer A, this condition 

occurs at Qx = ±0.0001 Å-1, so that the features are part of the complex shape of the 

central peak. Multi-beam effects contribute to the specular reflectivity whenever the 

section depth is small enough to broaden the specular peak by an amount comparable to 

the spacing between adjacent Bragg peaks. Conversely, the 2-beam expression (2) is 

valid and multi-beam effects are negligible for the L = 1 peak when the sample depth w 

is large enough so that the rocking width of the L = 1 peak, |∆θ| ≅ d/2w, is smaller than 

its distance from the L = 2 peak, ∆θB ≅ λ/2d, where d is the multilayer period. This 

condition can be written as  

d 2  <  λw,   (3) 

which is satisfied for multilayer B, but not always for multilayer A, in this study. For 

thicknesses above this limit, multiple diffraction orders are simultaneously excited, so 

that the efficiency into any one order is limited. For example, the maximum theoretical 

efficiency is ~40% for an ideal binary zone plate in the multi-beam regime [17]. For 

thicknesses satisfying relation (3), all of the intensity can be directed into one diffraction 

order by choice of incidence angle, giving a peak reflectivity near unity for hard x-rays 

with low absorption. Substituting the x = 0.5 expression for optimum sample depth w = 

∆w/2 into condition (3) cancels the wavelength dependence, giving d < π/(2re∆ρe)1/2. 

Thus the condition depends only on the multilayer materials. For Mo/Si and W/Si, the 

limit occurs at d = 30 and 21 nm, respectively. Multi-beam effects occur only away 

from the center of the rocking curve for 7 nm Mo/Si multilayer B, but at the center of 

the rocking curve for 29 nm W/Si multilayer A. 

 To model multi-beam scattering, we have carried out calculations using a version of 
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coupled-wave (CW) theory [18,19]. The relationship between the complex dielectric 

constants used in CW theory and the optical constants used in the 2-beam theory is 

derived from the relation n = ε1/2, and can be expressed as ∆ε ≈ 2∆δ - 2i∆β. We have 

numerically solved the CW theory for the reflectivity of sectioned multilayers using a 

2nd order Runge Kutta algorithm [20]. A total of 60 eigenmodes was used to describe the 

wavefield inside the sections. This provides convergence of the solutions in both the 2-

beam and multi-beam regimes. Reflectivity results from n-beam CW theory are 

displayed as solid curves in Fig. 3. For multilayer B, the multi-beam solution differs 

little from the 2-beam solution. For multilayer A, the difference is large. The lower peak 

reflectivity and more complex functional form of the multi-beam solution for the first-

order peak agree better with the experimental results, as do the positions of the maxima 

and minima for the second-order peak. The differences between the experimental data 

and the multi-beam theory could be due to interfacial roughness and experimental 

resolution not included in the calculation. 

In summary, using deposition and sectioning of multilayer films, we have 

successfully fabricated volume gratings that give high reflectivities for hard x-rays in 

the Laue geometry. These structures have the high ratio of section depth to layer 

thickness (e.g. 2000 at the reflectivity maximum for multilayer B) needed to produce 

efficient hard x-ray optics with sub-10-nm spatial resolution. We observe oscillatory 

reflectivity as a function of section depth, with high diffraction efficiency at small 

periods in agreement with dynamical diffraction theory. This provides a promising 

demonstration of the techniques and principles for the design of novel hard x-ray optics 

using sectioned multilayers.  
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FIGURE CAPTIONS 

 

Fig. 1. Typical radial scan for multilayer B, showing positive and negative orders of 

Bragg peaks (E = 19.5 keV, w = 10 µm). Inset: Schematic of Laue geometry used in this 

study.  

 

Fig. 2.  Measured transverse profiles (rocking curves) through the 001 reflection for 

various section depths (E = 9.5 keV). Profiles are offset by factors of 10 for clarity.  

 

Fig. 3. Points: measured reflectivity of the 001 and 002 reflections as a function of 

section depth (E = 9.5 keV). Curves: calculations using 2-beam (dashed) and multi-

beam (solid) dynamical diffraction theory for the Laue geometry.  
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