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ABSTRACT

An algorithm for determining the position of the KDP back-reflection image was developed. It was compared to a 
centroid-based algorithm. While the algorithm based on centroiding exhibited a radial standard deviation of 9 pixels, the 
newly proposed algorithm based on classical matched filtering (CMF) and a Gaussian fit to correlation peak provided a 
radial standard deviation of less than 1 pixel. The speed of the peak detection was improved from an average of 5.5 
seconds for Gaussian fit to 0.022 seconds by using a polynomial fit. The performance was enhanced even further by 
utilizing a composite amplitude modulated phase only filter; producing a radial standard deviation of 0.27 pixels. The 
proposed technique was evaluated on 900+ images with varying degrees of noise and image amplitude as well as real 
National Ignition Facility (NIF) images. 
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1. INTRODUCTION

The National Ignition Facility, currently under construction at the Lawrence Livermore National Laboratory, is a 
stadium-sized facility containing a 192-beam, 1.8-megajoule, 500-terawatt, ultraviolet laser system for the study of 
inertial confinement fusion and the physics of matter at extreme energy densities and pressures [1]. Automatic alignment 
is one of the most important operations on NIF, which requires high accuracy and fault tolerance. At the heart of this 
technique is the beam position detection algorithm. Before reaching the target chamber the beam must pass through a 
potassium dihydrogen phosphate (KDP) crystal. 

The beam alignment is performed using the reflection from the back surface of the crystal. The determination of the 
position of the KDP back-reflection beam has been a long-standing challenge for the automatic alignment of the KDP 
crystals at NIF. The KDP crystals act as a frequency converter to harmonically convert the infrared laser light to 
ultraviolet. They produce maximum gain for a certain tilt angle. This angular tilt must be determined from the position of 
the back-reflection of the frequency conversion crystals. The KDP crystal angle must be adjusted within ±20 µrad over a 
field of view of ±200 µrad.  Due to gravity and other effects, the KDP crystals exhibit a sag, which introduces a phase 
aberration into the beam. As a result, the beam reflected from the second KDP surface suffers phase distortion, and 
produces a diamond shaped beam pattern. The challenge was to find a stable measurement of the beam position, which 
should remain stable if no mechanical movement of the crystal occurs.

A weighted centroid was used to determine the position of the back-reflection. However, due to local intensity variation 
termed “boiling noise” the weighted centroid position varied significantly from frame to frame. To overcome this 
problem, a binary centroid was used. It was expected that binarization would hide the variation of intensity. However, 
since binarization is a function of the threshold value used to binarize the image, as the image intensity varies the 
centroid position varies by 8 or more pixels in any one direction. Thus an alternate algorithm such as a matched filter is 
sought. 
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One of the characteristics of the KDP back-reflection image is the presence of well-defined, relatively stable fringe 
patterns within the beam. We show in this paper that these fringe patterns facilitate a stable beam position detection 
method based on a composite [2] amplitude modulated phase only matched filter (AMPOF) [3].

2. ALGORITHM DESCRIPTION

VanderLugt was the first to introduce the classical matched filter (CMF) for optical pattern recognition [4]. In this 
method, the complex amplitude and phase of the reference pattern is stored as a hologram. The phase only filter (POF) is 
a variation of the CMF, which uses only the phase of the reference pattern to perform correlation detection [5]. The 
AMPOF was designed to further enhance the performance of the POF [3]. The mathematical foundation of the AMPOF 
filter is derived as shown in the following equations. Let the Fourier transform of the object function f(x,y) be denoted 
by:

)),(exp(),(),( yxyxyx UUjUUFUUF Φ= (1)

Then a CMF corresponding to this function f(x,y) is expected to produce its autocorrelation. From the Fourier transform 
theory of correlation, the CMF is given by the complex conjugate of the input Fourier spectrum as denoted by Equation 
2.

)),(exp(),(),(*),( yxyxyxyxCMF UUjUUFUUFUUH Φ−== (2)

The inverse Fourier transformation of the product of F(Ux, Uy) and HCMF(Ux, Uy) results in the convolution of f(x, y) and 
f(-x, -y), which is the equivalent of the autocorrelation of f(x, y). Moreover, when |F(Ux, Uy)| is set to unity, HCMF

becomes a phase only filter (POF) as shown in Equation 3.

)),(exp(),( yxyxPOF UUjUUH Φ−= (3)

Since the convolution operator in the space domain is equivalent to the product operator in the frequency domain, one 
can think of the POF as an edge enhancer by way of division by | F(Ux, Uy) |. To get an even sharper peak, it is useful to 
divide the HPOF by a magnitude function, which will lead to an impulse type of correlation. An AMPOF attempts to 
achieve exactly this. The generalized AMPOF filter is expressed as [6]:
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When, a = b = m = 1, c = d = 0, this results in the classical matched filter; when b = d = 0, a = c, m = 1 it results in a 
phase only filter expressed by Equation 3. When b is a small constant for nonzero values of a, c, and d it is an AMPOF. 
The AMPOF described in [3] has a = constant, d = constant, c = 0, m = 1 and b = ε (a small constant number). It was 
found, after some experimentation, that when b = ε, d = 0 and c = a = 1, better stability of position detection results in the 
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current KDP beam. More detailed optimization of these parameters is possible [7,8]. The AMPOF correlation of the 
input image and the target is simply:

{ }),(),(),( 1
yxAMPOFyxyxAMPOF UUHUUFFC −=∆∆ (5)

Samples of KDP beam reflections for four separate beam-lines are shown in Figure 1.

           Figure 1.  Example of real KDP back-reflection pattern

From Figure 1, it can be observed that the beams have significant variation among one another. Initially, we employed 
CMF to detect the KDP pattern. One of the images was selected as the template image. The position of this single image 
was determined off-line, by careful filtering and determining its weighted centroid. From the physics-based simulation of 
the KDP back-reflection, it is known that the position of the beam should be its weighted centroid if the camera has an 
infinite dynamic range [9]. In other words, in the absence of the phase distortion caused by the KDP crystal, the beam 
will converge to the weighted centroid of the back-reflection caused by the KDP crystals. Thus, if we know the original 
position of the KDP template, then by knowing the displacement from the current position we can calculate its new 
absolute position. By knowing the position of the correlation peak, we can also determine the relative displacement of 
the KDP beam with respect to its current position by subtracting the position of the autocorrelation peak for the template. 
Let the position of the original reference KDP beam be (xc, yc). Then the position of the KDP after matched filtering is 
given by:

cautocrosspos xxxx +−= (6)

cautocrosspos yyyy +−= (7)

Where (xpos, ypos) is the position of the KDP, (xauto, yauto) is the position of the template autocorrelation peaks, and (xcross, 
ycross) is the position of the cross-correlation peak. The position of the cross-correlation peak was determined using a 
Gaussian fit to the correlation peak. The center of the template, (xc, yc), is calculated off-line by a weighted centroid 
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approach. The position of the autocorrelation peak is also determined off-line. Both of these parameters are constants for 
the algorithm. They will only change if the templates are modified. 

3. ALGORITHM TESTING AND MODIFICATIONS

In this section, we describe a series of experiments demonstrating the development of the AMPOF-based position 
detection scheme as well as gradual improvements to the algorithm. It is also compared to the existing centroid-based 
algorithm. The first experiment was performed using the classical matched filter over a set of 5 images (where the image 
was recorded in one position with consecutive frames). The centroid position obtained from previous binary centroid 
algorithms and the correlation peak obtained using matched filtering for comparison is shown in Table 1. Note that only 
the cross-correlation peak is recorded here since we are mainly interested in the stability of the measurement. The other 
parameters in Equations 6 and 7 remain constant. Note that the peak detection in this case was performed by a Gaussian 
fit to the correlation peak. From these tabular values the radial standard deviation is estimated for both cases. For the 
centroid-based case, the image in the same location but taken at different times shows wide variations of the position 
data, while the CMF case demonstrates a more stable measurement. 

The radial standard deviation for CMF based detection is 0.99 pixels. This precision was a significant improvement over 
the previous binary centroid-based beam locator, which yielded a radial standard deviation of 9.1 pixels.

 Table 1. The Output of the Centroiding and CMF Algorithm
Image x-centroid y-centroid Correlation

x-peak
Correlation 
y-peak

Comment

B315_KDP1_060903.tif 335.66 161.31 320.00 240.000 Auto- correlation
B315_KDP2_060903.tif 328.085 152.554 320.435 238.022 Cross-peak
B315_KDP3_060903.tif 344.669 168.435 321.037 238.232 Cross-peak
B315_KDP4_060903.tif 336.907 161.298 319.963 239.129  Cross-peak
B315_KDP5_060903.tif 342.090 167.964 320.680 239.709  Cross-peak

One of the problems of the Gaussian fit algorithm is that it is computationally slow, consuming close to 3 seconds to 
execute. For real-time operation a faster method is preferred. A second order curve fit to the peak results in the following 
expression for the correlation peak positions:
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Where the (xi, fi) pair represents the x position versus the intensity pairs. When the pair is replaced by the (yi, fi) pairs, it 
results in the corresponding y-locations.
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The pair (x1, y1) is the position of the peak intensity.  A polynomial curve fit could be done in 0.02 seconds, which is 
approximately 240 times faster than a Gaussian curve fit. Surprisingly, the radial standard deviation improves to 0.60 
pixels. Note that the first frame was used as the template for the consecutive frame images. Next, a composite filter was 
constructed from a weighted addition of three images. This filter further improved the deviation to 0.51 pixels. 
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An AMPOF correlation peak matches the texture of the image more closely, which results in a sharper correlation peak 
than any other filter, including the phase-only filter, and hopefully less radial standard deviation. A CMF correlation 
peak usually has a broad peak, but the correlation peak is smoother. Moving to an AMPOF performed further 
optimization on the composite CMF. Optimization was improved even further by developing a composite AMPOF filter 
[2,3] producing a radial standard deviation of only 0.27 pixels. 

One reason why CMF shows a higher variance can be better understood by analyzing the correlation operation in the 
Fourier domain. For CMF, the correlation operation requires a squaring of the image magnitude and cancellation of the 
phase. Therefore, the correlation spot is the DC level of the cross product. The squaring introduces higher frequencies, 
thus taking energy away from the zero frequency. This also results in a smoother (opposite of a sharp peak) correlation 
peak that shows high variability. Figure 2 illustrates the sharpness of the AMPOF correlation peak as compared to that of 
a CMF. Thus a sharper correlation peak reduces the uncertainty number (0.9 pixels for CMF) by using an AMPOF filter.

Figure 2(a). An AMPOF correlation peak                                       (b). A CMF peak has a broad base

 Table 2. The Output of the Composite AMPOF Algorithm
Correlation

Plane
Image
Plane

Image

x-peak y-peak x-centroid y-centroid

Comments

B315_KDP1_060903.tif 319.968 240.081 344.25 205.674 Auto- correlation
B315_KDP2_060903.tif 319.948 239.986 344.518 205.583 Cross-peak
B315_KDP3_060903.tif 320.112 239.945 344.394 205.542 Cross-peak
B315_KDP4_060903.tif 319.505 239.796 343.787 205.393  Cross-peak
B315_KDP5_060903.tif 319.742 240.114 344.024 205.711  Cross-peak
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4. STATISTICAL RESULTS WITH SIMULATED NOISE IMAGE SETS

In this section, we describe a method of calculating the uncertainty of this newly developed algorithm. An image of the 
real KDP back-reflection is recorded by manually segmenting its bright region. Now the amplitude of this image is 
scaled to 200, 100, and 50 to create examples of bright and dim images. Thereafter, white Gaussian noise is added with 
an rms count of 10, 20, and 50. We create a set of 100 images for each amplitude and rms noise. Then the algorithm is 
used to evaluate these images for each noise level and the standard deviation (one-sigma) of the position data is 
calculated. The three-sigma is taken as a measure of uncertainty. (It should be cautioned, however, this three-sigma does 
not guarantee a 99.875% probability of being correct. To calculate uncertainty using a probability approach one needs to 
fit the distribution and then to evaluate the range.)

The new algorithm was evaluated using 900 simulated noisy images as described above. Four samples from this set are 
shown in Figures 3-6. Its performance was compared to that of the existing algorithm currently operating at the NIF 
facility. The three-sigma uncertainty curves of these two runs are shown in Figures 7(a) and (b). The centroid based 
algorithm produces an uncertainty of 17 pixels, with maximum image amplitude 100 and noise rms of 50; the new 
algorithm produces uncertainty below 0.5 pixels for the same imaging condition as shown in the Figures 7(a) and (b). 
For these tests, the template was chosen from the undistorted image. From the curve for the standard case of amplitude 
200 and noise count of 20, the three-sigma noise is less than 0.1 pixels. It should be noted that we used a single image to 
derive our template image and it does not incorporate any variations due to boiling noise. It is possible to use multiple 
images to incorporate image variability and improve the three-sigma range to an even lower value. 

            Figure 3. Amplitude max 200, noise 20 rms                                Figure 4. Amplitude max 200, noise 50 rms                    
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 Figure 5. Amplitude 200, interference 20, period λλλλ                Figure 6. Amplitude 200, interference 20, period ½λλλλ

Old KDP algorithm: uncertainty vs. noise
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    Figure 7(a).  Noise versus uncertainty of centroid-based         
algorithm; noise in rms count and uncertainty in pixels

New KDP algorithm: uncertainty vs. noise
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           (b). Noise vs. uncertainty of the AMPOF algorithm

One problem with a real KDP image is that the absolute position is not really known. In order to evaluate the algorithm 
performance in terms of absolute location versus measured location, another set of 900 images was created from the 
original shown in Figure 8(a). Note that this image is artificially created, where the center location is either known or can 
be measured very accurately. Both Gaussian noise and diffraction noise were added to this image. Examples of 
diffraction pattern added images are shown in Figures 8(b) and 9. 
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Figure 8(a). The original image      (b). Amplitude 100, interference amp. 50, 2 wave

      Figure 9(a). Amplitude 50, interference amplitude 50, (b). Amplitude 50, interference amplitude 50, half-wave

The AMPOF filter was designed from the original image as shown in Figure 8(a). Interestingly, the interference noise 
images shown in Figures 9(a–b) illustrate that in some cases 50% of the image is missing. The results with these 
simulated KDP images are presented in Figures 10 and 11.  
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Noise uncertainty with simulated KDP 
images
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  Figure 10(a). Noise versus uncertainty with new algorithm        (b). Noise uncertainty for various wave distortions for
  for various amplitude signal and rms noise                                   various amplitudes of wave   

From Figure 10(a) the amplitude 200 and 100 images with less than or equal to 20 count rms noise show an uncertainty 
less than the tolerance limit of 0.5 pixels. The results from images corrupted by interference type noise are shown in 
Figures 10(b) and 14. 
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Figure 11(a).  Noise versus uncertainty with new        (b). Noise uncertainty for various wave distortions for
algorithm for various amplitude signal and rms noise               various amplitudes of wave   

Since in this experiment the true centroid position is known with a high degree of accuracy (no noise image), this 
position was used to calculate the difference between the average of position readings for each set and the true position.  
They were found to be bounded by the theoretical maximum of 3σ/√n, where σ is the standard deviation of each set [10]. 
Even for the worst case where the signal amplitude was low and noise amplitude high, the actual deviation was found to 
be close to 0.1 as shown in Figure 12(a). The result can also be visualized in the accompanying scatter plot of a specific 
set in Figure 12(b).
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Displacement between the average and true 
centroid
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Figure 12(a). Displacement between the average and true     (b). Scatter plot for amplitude 200 with rms noise 20 count
centroids for various signal amplitude signal and rms noise 

One application of the uncertainty curves is to approximate the uncertainty from the real image. Estimating the noise rms 
of the image and then using the curves in Figure 10(a) as a lookup table and estimating the uncertainty from the closest 
interval containing the rms noise count accomplishes this. This allows us to ascertain that the error allowed for the 
alignment loop is within the error tolerance assigned in the total NIF error budget.

5. TEMPLATE FORMATION AND POST-PROCESSING

Since the KDP back-reflection images vary with time, the templates should be designed from a series of images, so that 
the variability is accommodated in the template. The filters were designed by averaging the real KDP images that 
remained within a two-sigma bound [11]. 

The purpose of post-processing is to decide once an 
image has been processed if there is a certain probability 
that the image may be a wrong or different class of 
image. Thus, post-processing will eliminate any 
unreasonable results. The preprocessing usually 
eliminates simple cases of all dark, dim, or all white 
images. However, if these images are not rejected by the 
preprocessing stage then the post-processing will 
attempt to eliminate those cases. It is possible to derive 
post-processing based on different criteria such as 
correlation amplitude, normalized correlation peak, 
average energy correlation peak, average amplitude 
correlation peak, pedestal of the correlation peak (under 
half power points, 90% power points, etc.). We 
experimented with all of these possible parameters. The 
most promising was based on determining the pedestal 
under half power point. 

Figure 13.  Scatter plot of 49 images taken over six months
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Since we are using an AMPOF filter it produces a very sharp correlation peak. When the image contains high noise 
counts, multiple targets, and a background or white image; the number of peaks (which are mostly false) increases; as a 
result the pedestal count increases. The difficulty in normalizing images with saturated pixels prohibits us from using 
correlation peak magnitude. Table 3 illustrates the pedestal results:

Table 3. Width of Correlation Peak for Post-Processing
Beam number Autocorrelation 

pedestal-in class
(70.7% of maximum)

Cross-correlation
Pedestal-out of class
(70.7% of maximum)

Comments

B315 53 Low pedestal for noise free image
B315_2 194 Different beam-line image
B315_3 524 Different beam-line image
B315_4 193 Different beam-line image
a100_i20_hw 115 B315 interference noise 20
a100_n50 62 B315 amplitude 100 noise 50
a200_i10_hw 113 B315 interference noise 10
a50_i10_hw 155 B315 interference noise amplitude 10
a50_n50 143 B315 amplitude 50 and noise 50

It should be noted from Table 3 that for the autocorrelation case the pedestal of the auto-correlation peak is very low, 
signifying a very narrow peak. However, for the images that are significantly different than the template, the pedestal is 
high. The noisy images produce a correlation with a wider peak or many false peaks, which is less than the absolute 
maximum, but greater than the noise-free case. Analyzing Table 3, a post-processor could be designed to reject a 
correlation peak with a pedestal above 160. This ensures that it will accept all similar class images but reject all of the 
out-of-class images. But noticing that the real images are not as noisy, we lowered the threshold to 100 so that most of 
the noisy images were rejected. This ensures that when the beam pattern starts to change the correlation peak width will 
also change and be detected. This allows us to change the templates to accommodate the new reflection pattern. 
It is possible to incorporate the peak pedestal measurement into the uncertainty. As the peak broadens the uncertainty 
increases. For example, if peak width is less than 100, scale by 100; above 100, scale by 50; between 120 to 160, scale 
by 30; etc. This scaled factor can be multiplied with the calculated uncertainty. Thus as the peak width increases the 
more likely it is that the image will differ from the template.  Another application of this post-processing approach is to 
switch between multiple algorithms in case the image is correct but significantly distorted for some other reason.

6. CONCLUSIONS

To make the algorithm more accurate with a constantly updated template, it is possible to switch to a tracking algorithm 
[12] where it uses the current image as the template. It used the first template to find the position of the current image 
template. Then this is used in the subsequent iterations to find the next image positions. The optimization of this new 
AMPOF filter [7] is a multivariable design optimization problem. In the design of this particular AMPOF we had four 
different variables to optimize. We used the radial standard deviation as the function to be optimized. Other objective 
functions to optimize include the correlation peak, variation in the correlation peaks [7], etc. It is possible to extend the 
post-processing concepts and design a neural network, which takes multiple parameters as inputs and optimizes the 
weights on the different parameters. If the search space to be detected becomes highly nonlinear then the complex-valued 
neural network may be used, which can have highly nonlinear boundaries [15].
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