Torsional Buckling and Writhing Dynamics of Elastic Cables and DNA

S. Goyal, N. C. Perkins, C. L. Lee

This article was submitted to American Society of Mechanical Engineers 19th Biennial Conference of Mechanical Noise and Vibration, Chicago, IL – September 2 – 6, 2003

February 14, 2003

U.S. Department of Energy
Lawrence Livermore National Laboratory

Approved for public release; further dissemination unlimited
ABSTRACT

Marine cables under low tension and torsion on the sea floor can undergo a dynamic buckling process during which torsional strain energy is converted to bending strain energy. The resulting three-dimensional cable geometries can be highly contorted and include loops and tangles. Similar geometries are known to exist for supercoiled DNA and these also arise from the conversion of torsional strain energy to bending strain energy or, kinematically, a conversion of twist to writhe. A dynamic form of Kirchhoff rod theory is presented herein that captures these nonlinear dynamic processes. The resulting theory is discretized using the generalized-method for finite differencing in both space and time. The important kinematics of cross-section rotation are described using an incremental rotation “vector” as opposed to traditional Euler angles or Euler parameters. Numerical solutions are presented for an example system of a cable subjected to increasing twist at one end. The solutions show the dynamic evolution of the cable from an initially straight element, through a buckled element in the approximate form of a helix, and through the dynamic collapse of this helix through a looped form.

1. INTRODUCTION

Cables laid upon the sea floor may form loops and tangles as illustrated in Fig. 1. The loops (sometimes also referred to as hockles) may cause localized damage and, in the case of fiber optic cables, may also prevent signal transmission. These highly nonlinear deformations are initiated by conditions of low cable tension (or slight compression) and torsion sufficient to induce a torsional “buckling” of the cable. Several prior investigations of cable loop formation have employed nonlinear equilibrium (static) rod theories to analyze the equilibrium forms of cables under torsion and low tension; see, for example, Coyne [1], Rosenthal [2, 3], Liu [4], Tan and Witz [5]. The stability of these equilibrium forms may be assessed using local stability analyses as in Lu and Perkins [6, 7].

The overall buckling process, however, is inherently a dynamic process, and this fact has recently been recognized by Gatti-Bono and Perkins [1] who employ a nonlinear dynamic rod theory to simulate loop formation under cable compression.

It is interesting to observe that the looped and tangled forms of marine cables are topologically similar to the supercoiled states of DNA [9]. For instance, the tangle depicted in Fig. 1 for a marine cable resembles the plectonemic structures (illustrated in Fig. 2) that form in stranded and looped DNA following conversions of twist to writhe. The geometry of DNA has a controlling influence on its biological functions including the processes of transcription and replication [9]. The equilibrium (static) rod theories utilized for cable looping have (with modifications) also been employed to study (the long-length scale) supercoiling of DNA; see, for example, [10-17]. Like the marine cables above, the transitions of DNA between supercoiled states is inherently a dynamical process, yet little is actually known about it.
Figure 2: DNA resembles a helical ladder (far left) that, when viewed over long length-scales, has been modeled as a rod. The entire molecule may supercoil, and the supercoiling may be plectonemic or solenoidal as illustrated. (Illustrations courtesy of [29]).

The objective of this study is to provide a rod theory for cables that can be used to capture dynamic buckling under increasing torsion (twist). The dynamics of this process as well as the model and numerical methods described herein, may also be a useful starting point for understanding the writhing dynamics of DNA and dynamic transitions between supercoiled states.

We open by summarizing a nonlinear dynamic rod model used by Gatti-Bono and Perkins [18] to describe highly contorted states of elastic cables. Next, this model is discretized by finite differencing following Gatti-Bono and Perkins [18] as well as Goosat and Grosenbaugh [19] who employ the generalized- method by Chung and Hulbert [20] for integration with respect to time. The resulting numerical model is exercised on a prototypical example of a cable element subjected to increasing twist. We close with a summary of our conclusions.

2. PHYSICAL MODEL

Consider the infinitesimal element of a cable [18] in Fig. 3. Let the vector triad \(\{e_i\} \) define an inertial reference frame and the vector triad \(\{a_i\} \) define a local reference frame fixed to the cross-section and aligned with the tangent and the "principal torsion-flexure axes" [21]. The quantities \(Q \) and \(B \) denote the external torque and force per unit length, respectively, while \(q \) and \(f \) denote the internal moment and force, respectively, that act on the cross-section (internal stress resultants).

At each spatial point on the cable centerline is defined by the Lagrangian variable \(s \). Four vectors are required to define the dynamic state of the cable cross-section and the internal stress resultants. These include: the linear velocity \(v \) of the cross-section at the centerline, the angular velocity \(\omega \) of the cross-section, the curvature (or Darboux vector) \(\kappa \) of the centerline at the cross-section, and the internal force \(f \). We express all quantities and derivatives in the local frame, unless otherwise stated.

\[
\frac{\partial \omega}{\partial s} + \kappa \times \omega = \frac{\partial \kappa}{\partial t}
\]

We assume that the centerline is inextensible, which leads to the requirement that

\[
\frac{\partial v}{\partial s} + \kappa \times v = 0
\]

The balance law for linear momentum of the element in Fig. 3 is

\[
\frac{\partial f}{\partial s} + \kappa \times f = I \frac{\partial \omega}{\partial t} + \omega \times (f \omega) + f \times a_3 - Q
\]

Here, \(B \) and \(Q \) represent any distributed force and moment, respectively, produced by the surrounding environment including gravity, buoyancy, hydrodynamic drag and added mass, contact, etc.. In general, these quantities are nonlinear functions of the state vectors. \(I \) is the moment of inertia tensor for the cable cross-section about the triad \(\{a_i\} \).

The internal moment is related to the curvature and angular velocity through an assumed (linear) constitutive law that includes the influence of intrinsic curvature/torsion, \(x_0 \), and structural damping, \(C \):

\[
a = \begin{bmatrix} EJ_1 & 0 & 0 \\ 0 & EJ_2 & (x - x_0) + C_1 \omega \\ 0 & 0 & GI_3 \end{bmatrix} \begin{bmatrix} \kappa_1 \\ 0 \\ 0 \end{bmatrix}
\]

A derivation of this result is found in Section 4 following Eq. (25).
The material and geometric parameters used in Eq. (5) are defined in Tables 1 and 2. Though internal structural damping might also be modeled as being proportional to \(\omega \), relating it to \(w \) here offers simplicity at the expense of additional damping for rigid-body rotations. Alternative formulations of damping could be incorporated at this stage.

The constitutive law Eq. (5) is substituted into the angular momentum balance law, Eq. (4). The resulting four field equations (Eq. (4) substituted with Eq. (5), and Eqs. (1)-(3)) constitute a set of four (vector) equations in the four unknowns represented by the state vector:

\[
Y(s,t) = \{v, \omega, K, f\}
\]

We consolidate the field equations in the form

\[
M(Y,s,t) \frac{\partial Y}{\partial t} + K(Y,s,t) \frac{\partial Y}{\partial s} + F(Y,s,t) = 0
\]

Observe that \(M \) is always a singular matrix (no time derivative appears in the constraint equation Eq. (2)). K is always non-singular (but for a very flexible cable, it may become ill-conditioned).

For a three-dimensional configuration, the dimension of \(Y \) is 12. In order to solve the set of first-order partial differential equations Eq. (7), we must also specify

1. \(Y(s,0) \) as the initial conditions (initial configuration of the cable and its initial velocity and angular velocity), and
2. six components of \(Y(0,t) \) with six of \(Y(L,t) \) as the boundary conditions. In general, the boundary conditions may be implicit and nonlinear, e.g. \(\Phi(Y, s, t) = 0 \), which would then require numerical solution together with the partial differential equations, Eq. (7).

3. NUMERICAL SOLUTION ALGORITHM

Following the work of Gobat and Geosenbaugh [19], we discretize by finite differencing and make reference to the space-time discretization grid shown in Fig. 4. We denote spatial derivatives by a superscript prime and temporal derivatives by a superscript dot.

Starting with initial conditions, and for each successive time step, we integrate along \(s \) and use the shooting method to satisfy all boundary conditions at the two ends. Thus, to solve for \(Y \) at the open node \((i, j)\) in Fig. 4, we use the known solution \(Y \) at the two shaded nodes \((i-1, j) \) and \((i-1, j-1)\) known from the prior time step, as well as to the solution \(Y \) at the partially shaded-circle node (current time step, prior spatial step, \((i, j-1) \) as described next. All (spatial and temporal) derivatives are formed using the Generalized-a method described below.

We begin with \(Y \) and \(Y' \) known from the initial conditions \((t = 0)\), and then compute the initial value of \(Y \) from the governing equations, Eq. (7). Though \(M \) is singular, to evaluate \(p \), we simplify by choosing \(p = 0 \) to start with, as there is no dependence on \(p \) in Eq. (7). Also, any initial condition must satisfy

\[
\Phi(Y, s, t) = 0
\]

which is the time-derivative of the inextensibility constraint, Eq. (2).

Finite differencing of Eq. (7) in time is achieved using the Generalized-a method, whose advantages in this application are discussed in Gobat et al. [22],

\[
M^{1-\alpha_t} p^{1-\alpha_t} + K^{1-\alpha_t} y^{1-\alpha_t} \beta_g + F^{1-\alpha_t} = 0
\]

\[
(1-x)_{t} = (1-x)_{t-1}
\]

Here \(\alpha_t \) is introduced as a "mass-averaging" numerical parameter while \(\beta_g \) is a "stiffness-averaging" numerical parameter. The subscript \(t \) indicates that the averaging is done with respect to time as explained in Eq. (10) for \(x = \alpha_t \) or \(\beta_g \). Note however, that for many applications, \(M \) and \(K \) are constant and hence they do not require averaging in the difference equation. We assume this is the case for simplicity.

The solution is known at the previous time step \((t-1)\) (see shaded nodes in Fig. 4) and we move these terms to the right-hand side of Eq. (9) in creating the known nonhomogeneous term \(H \). Subsequent finite differencing in space yields

\[
(1-\alpha_t)M^{1-\alpha_t} p_t + (1-\alpha_t)K^{1-\alpha_t} y^{1-\alpha_t} \beta_g + F^{1-\alpha_t} t = H
\]

where the right-hand side

\[
H = \alpha_t M^{1-\alpha_t} p_t + \beta_g (K^{1-\alpha_t} y^{1-\alpha_t} + F^{1-\alpha_t})
\]

is known, and where

\[
(1-x)_{t} = (1-x)_{t-1}
\]

Note that structural damping when modeled as a function of \(\omega \) would not allow this simplification.
For the temporal and spatial derivatives, we employ the Newmark-like formulations,
\[\dot{\gamma_i} = \frac{\gamma_i - \gamma_{i-1} - \frac{1}{\gamma_i} \dot{\gamma}_{i-1}}{\gamma_i} \]
\[\ddot{\gamma_i} = \frac{\gamma_i - \gamma_{i-1} - \frac{1}{\gamma_i} \ddot{\gamma}_{i-1}}{\gamma_i} \]
(14) (15)

The Newmark constants \(\gamma_i \) and \(\gamma_r \) are numerical parameters that control the averaging of time and space derivatives. A Newmark-like method for time integration was used by Sun [23] for cable dynamics simulations. In the Generalized- method, the numerical parameters \(\{a_r, p_r, \gamma_r\} \) or \(\{a_j, p_j, \gamma_j\} \) are selected to satisfy optimal numerical accuracy and stability as described briefly below.

Upon substituting Eq. (14) and Eq. (15) into Eq. (11), and consolidating all nonhomogeneous terms into \(H \), we arrive at the algebraic equations
\[\dddot{\gamma}_{i+1} + A(Y_i, j) \ddot{\gamma}_i + B(Y_i, j) \dot{\gamma}_i + H = 0 \]
(16)

that are linear in \(\dot{\gamma} \) and nonlinear in \(\ddot{\gamma} \). From here forward, we drop the subscript \(i \) for notational simplicity. Starting from a guessed solution \(\dot{\gamma}_* \), we form \(\ddot{\gamma}_* \) from the Newmark algorithm Eq. (14) and then form \(\dddot{\gamma}_* \) using the governing equations Eq. (7). Here, the superscript \(* \) will indicate a quantity that depends on the guessed solution and that is also updated as the algorithm proceeds.

Linearizing \(A \) and \(B \) about the guessed solution \(\dot{\gamma}_* \) leads to the approximation to Eq. (16).
\[\dddot{\gamma}_{i+1} + A(Y_i, j) \ddot{\gamma}_* + B(Y_i, j) \dot{\gamma}_* + H = 0 \]
(17)

which further reduces to
\[\dddot{\gamma}_{i+1} = B(Y_i, j) \ddot{\gamma}_* + H \]
(18)

after consolidating all nonhomogeneous terms in \(H \).

This linear nonhomogeneous algebraic equation is now employed to integrate over space. Starting from \(s = 0 \), we apply the shooting method as discussed in Gatti-Bono and Perkins [18]. In short, we assume that \(\gamma \) at any \(s \) belongs to an affine solution space. With the known boundary conditions at \(s = 0 \), we find a basis of the solution space at \(s = 0 \). Then, we determine how the solution space (the chosen basis) transforms through to other end according to Eq. (18). Finally, we fix the linear combination of the basis vectors to satisfy the terminal boundary conditions in arriving at an updated solution at all \(s \) as our next guess. We then update the coefficient matrices in Eq. (18) with the next guess and iterate this cycle until convergence is achieved.

To select the numerical parameters, we draw an analogy to the scalar problem studied in Gobat and Grosenbaugh [19]. We can choose \(\{a_r, p_r, \gamma_r\} = \{a_j, p_j, \gamma_j\} = \{a, p, \gamma\} \) to achieve the same accuracy and stability in space and time. Second-order accuracy on truncation error requires that the numerical parameters satisfy
\[\psi + \sigma - \beta = \frac{1}{2} \]
(19)

Stability requires that the amplification matrix in recursion have a spectral radius (magnitude of the largest eigenvalue) less than unity. Unconditional stability requires
\[\sigma \leq \frac{1}{2}, \beta \leq \frac{1}{2}, \gamma \geq \frac{1}{2} \]
(20)

The spectral radius is a measure of numerical dissipation. We want to preferentially dissipate high frequency components of the response, low frequency components are important and should have minimal dissipation. Chung and Hulbert [20] achieved such controllable dissipation by imposing smoothness requirements on the spectral radius. Their requirement when combined with Eq. (19) and Eq. (20) enables one [19] to relate all three numerical parameters to a single parameter, \(\lambda_* \), where \(\lambda_* \) is the minimum spectral radius (or, equivalently, the maximum numerical dissipation).
\[\alpha = \frac{3 \lambda_* + 1}{2 \lambda_* - 2}, \beta = \frac{\lambda_*}{\lambda_* - 1} \]
(21)

4. KINEMATICS OF CROSS-SECTION ROTATION

The solution algorithm reviewed above provides the solution \(\gamma(s, t) = [v, w, \kappa, f] \) as time marches forward. If any external forces and/or moments (\(B \) and \(Q \)) are specified in the inertial frame (e.g., weight and buoyancy), then these quantities need to resolved into components along the local frame as the solution proceeds. Doing so requires knowledge of the transformation \(\mathbf{L} \) from the inertial frame to the local frame.

\[[\mathbf{L}] = [\mathbf{L}] \mathbf{L} \]
(22)

Likewise, specific boundary conditions may require use of this transformation during solution. In addition, we need this transformation in post-processing the solutions for the curvature vector \(\kappa \) in arriving at the three-dimensional space curve that describes the cable centerline.

Differentiating Eq. (22) with respect to time leads to
\[\frac{\partial \mathbf{L}}{\partial t} = -\dot{\mathbf{L}} \]
(23)

In deriving Eq. (23) above, we used the cross-product formula
\[\dot{\omega} = \omega \times \ddot{\omega} \], where \(\omega \) is the skew-symmetric form of the vector \(\dot{\omega} \) ,
\[\dot{\omega} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \]
(24)

We can now solve Eq. (23) for \(\mathbf{L} \) at each time step from known solutions of \(\dot{\omega} \).

Equivalently, for specific boundary conditions, we might know \(\mathbf{L} \) at one end for all time and then use the computed curvature \(\kappa \) to determine the transformation along the remainder of the cable per
We use Eqs. (23) and (25) to deduce the constraint Eq. (2). We update the transformation \(L \) using the decomposition

\[
L = \exp(-\hat{\theta}) L_{i-1}
\]

(26)

where we use the fact that any orthogonal transformation can be represented by exponentiation of a skew-symmetric matrix. The quantity \(\theta \) has a simple physical interpretation. The transformation of the local frame \(\{a_i\} \) in one time step (say from \(i-1 \) to \(i \)), can be accomplished by a single rotation \(\|\theta\|_2 \) about a unit vector \(u \), where \(\|\theta\|_2 \) denotes the \(L_2 \) norm of \(\theta \). If we decompose \(u \) in the local frame \(\{a_i\} \), then the resulting vector \(\|\theta\|_2 u \) is exactly the incremental rotation vector \(\hat{\theta} \) whose skew-symmetric form \(\hat{\theta} \) satisfy Eq. (26). We note that \(\theta = \int \omega dt \) with the approximation becoming exact for infinitesimal rotations (i.e., smaller time steps). After estimating \(\hat{\theta} \) from \(\omega \), we can use the rotation formula for the exponential of a skew-symmetric matrix:

\[
\exp(\hat{\theta}) = I + \hat{\theta} \sin(\|\theta\|_2) + \frac{\|\theta\|^2}{2} (1 - \cos(\|\theta\|_2))
\]

(27)

This result employs only a scalar power series and therefore it avoids the numerical difficulties of matrix exponentiation [24].

5. RESULTS AND DISCUSSION

The model and solution algorithm described above is now used to explore several possible dynamic motions that are generated by buckling an example cable by twisting one end. The model parameters that define the example are listed in Table 1 and Table 2 and a schematic of the model is illustrated in Fig. 5.

Figure 5: A low tension cable under increasing twist created by rotating the right end. Left end may be free to slide or have prescribed sliding velocity and/or reaction (tension).

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Units (SI)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s Modulus, (E)</td>
<td>Pa</td>
<td>2.0x10^7</td>
</tr>
<tr>
<td>Shear Modulus, (G)</td>
<td>Pa</td>
<td>3.5x10^6</td>
</tr>
<tr>
<td>Cable Diameter, (D)</td>
<td>m</td>
<td>1.7x10^{-2}</td>
</tr>
<tr>
<td>Cable Length, (L)</td>
<td>m</td>
<td>1.5x10^1</td>
</tr>
<tr>
<td>Cable Density, (\rho)</td>
<td>Kg/m^3</td>
<td>4.0x10^2</td>
</tr>
<tr>
<td>Fluid Density, (\rho_f)</td>
<td>Kg/m^3</td>
<td>1.0x10^3</td>
</tr>
<tr>
<td>Drag Coefficient, (C_d)</td>
<td>-</td>
<td>2.0x10^1</td>
</tr>
<tr>
<td>Temporal Step, (\Delta t)</td>
<td>s</td>
<td>2.0x10^{-3}</td>
</tr>
<tr>
<td>Spatial Step, (\Delta \xi)</td>
<td>m</td>
<td>1.0x10^{-3}</td>
</tr>
</tbody>
</table>

From Fig. 5, we infer that the right end (referred to as the “Start point”, \(s = 0 \)) of the cable is subjected to a slowly increasing rotation about the \(a_2 \) axis. This end cannot move and is otherwise constrained in rotation (no rotation about the \(a_1 \) and \(a_3 \) axes). The left end (referred to as the “End point”, \(s = L \)) of the cable is fully restrained in rotation (about all three axes) and also cannot rotate in the transverse \((a_1, a_2) \) plane. This end, however, may slide horizontally along the inertial \(a_2 \) axis and this translation may also be partially restrained by added damping (damping parameter \(c \)). This added damping will be later used to control the time scale of the dynamic response including any eventual collapse of the cable.

The integration begins with the cable initially horizontal and stress-free. It is in a fluid (with no flow) that provides both drag and added mass (as modeled by a Morison formulation). We also assume no intrinsic curvature, structural damping, or gravity. However, we do add a minute initial distributed force in the upward \((a_1) \) direction to initiate a subsequent buckling.

A first problem is considered in which the right end of the cable is subjected to increasing rotation about the loading \((a_2) \) axis. This is achieved by prescribing the angular velocity component \(\omega_2 \) as illustrated in Fig. 6. In this example, the angular velocity is increased 2-fold during the dynamic collapse (from the cable state in Fig. 8 to the state in Fig. 9). This helped slow down the otherwise drastic dynamics that accompany the sudden collapse.

Note that Eq. (2) follows from taking the time-derivative of Eq. (25) and equating it to the spatial derivative of Eq. (23). Use the fact that \(\theta \hat{\theta} \) is the skew-symmetric form of \(\mathbf{K} \times \mathbf{a}_0 \).

Substitute \(g^T = -\mathbf{a}_0 \) in Taylor expansion to verify this formula.

6 Distributed Drag = \(\frac{1}{2} C_D \rho_f S \times (\text{relative flow velocity})^2 \), where \(S = D \) for normal drag and \(S = \pi D^2 \) for tangential drag (skin friction) [18]. We increased \(C_D \), 2-fold during the dynamic collapse (from the cable state in Figs. (8) to the state in Fig. (9)). This helped slow down the otherwise drastic dynamics that accompany the sudden collapse.
The starting point (right end) is subjected to a prescribed angular speed about the tangent. The end point (left end) is free to slide under linear viscous damping.

The resulting twist that is induced in the cable is sufficient to generate torsional buckling and subsequent dynamic response. The dynamic response is influenced by the motion of the left end as illustrated in Fig. 6. In particular, the left end is held fixed during the period when the cable is being twisted (first 135 sec). After this period, the left end is allowed to slide towards the right end under the influence of a viscous reaction force (creating end tension, \(f_3(L,t) \) proportional to the sliding velocity). The dynamic deformation that results from these boundary conditions is discussed next.

As the right end is first twisted by a modest amount, the cable remains straight. There is an abrupt change however when the twist reaches a critical value (at approximately 145 sec) when the Greenhill buckling condition is achieved and the straight (trivial) configuration becomes unstable. The model employed here captures this initial instability as well as the subsequent nonlinear deformations that generate the post-buckled geometry of the cable. The geometry just after initial buckling is approximately helical as can be observed in Fig. 7, which provides a snapshot at 200 seconds. Shown are projections of the three-dimensional cable geometry in the three principal planes of the inertial frame. An isometric view is also included. Notice that the cable appears to make a single helical turn that also lies wholly above the horizontal (\(e_2 - e_3 \)) plane as expected from the first buckling mode of the (simpler) linearized theory.

As the left end is allowed to slide towards the right end, the helical cable undergoes a secondary buckling in which it suddenly collapses in forming a nearly planar loop with self-contact. This collapse occurs at approximately 280 sec. in this example. The dynamic collapse is predicted from investigations of the stability of the equilibrium forms of a cable under similar loading conditions; refer to Lu and Perkins [6] and studies cited therein.

These results here extend to the dynamic regime of these studies that previously focused on equilibrium alone. Figure 8 shows a snap-shot of the three-dimensional shape of the cable just before dynamic collapse (at 255 sec). Note that the center of the cable has rotated a total of 90° about the vertical (\(e_1 \)) axis so that the tangent at this (mid-span) point is now orthogonal to the loading (\(e_2 \)) axis. This was a noted bifurcation condition in Lu and Perkins [6] at which the equilibrium form loses stability. The dynamic collapse thereafter is depicted in Fig. 9, which now illustrates the cable a short time later (281 sec). This cable now is nearly planar and forms a closed-loop.

The present formulation, however, ignores cable self-contact and therefore the loop shown in Fig. 9 is only temporary. Contact forces would be required to stabilize this loop. Instead, our model allows the cable to pass through itself as the momentum of the collapse carries the cable through this looped configuration and towards a stable configuration in the shape of straight but twisted cable. During this final process, the twist is reduced and is finally insufficient to initiate further torsional buckling (i.e., below the Greenhill condition).

The entire dynamic collapse depicted by the sequence shown in Figs. 7-9 involves a conversion of torsional strain energy to bending strain energy. The analogous process exhibited by DNA strands involves the dynamic conversion of twist to writhe and it accompanies the transition of DNA from one supercoiled state to another [9]. Prior analyses of these conversions have relied on equilibrium (static) models of DNA [10-17] and truly dynamic transitions, such as those in Fig. 7, Fig. 8 and Fig. 9 are poorly understood [9]. We endeavor to provide some understanding of this dynamic process by referring to Fig. 10.
Time = 255 sec

Figure 8: Just prior to collapse, the tangent at the mid-point becomes perpendicular to the loading axis e_z.

We start with the result of Calugaret et al. [26] and White [27] for closed loops (for example, DNA plasmid) that states that the linking number \(L_k \) is conserved as is equal to the sum of total twist \(T_w \) and writhe \(W_r \).

\[
L_k = T_w + W_r
\]
(28)

The linking number \(L_k \) represents the number of turns included in the closed cable loop as shown in Fig. 12. These turns are considered positive or negative based on whether they are right-handed or left-handed. It is intuitive that we can't alter the linking number without cutting through a section of the cable. If the centerline curve of the loop cable is planar (and non-intersecting, i.e. the cable has non-zero thickness), all the turns are in the form of pure twist and thus the number of turns equals to the total twist \(T_w \). In Fig. 11, this number can be counted as the number of black regions in the circular loop. The twist can be released and doing so creates writhe as observed in the succession of loops shown in Fig. 11. The writhe \(W_r \) is purely a function of the space curve and quantifies the number of cross-overs one can see averaged over all possible views. For a detailed discussion, refer to Calladine and Drew [9] and for computation of the writhe \(W_r \) refer to Fuller [28].

In open structures such as ours (length of cable or DNA strand), this theorem still applies provided no further rotations are allowed at the boundaries (as in the boundary conditions for this example) and the structure is not "cut". This is illustrated in Fig. 12. We compute the total twist \(T_w \) from

\[
T_w = \frac{1}{2\pi} \int_0^L \kappa ds
\]
(29)

Time = 255 sec

Figure 9: Loop formation. The cable of Fig. 8 collapses into a planar loop shortly thereafter.

Figure 10: Loss of twist during buckling due to released torsional strain energy.

and refer to the reviews by Tobias et al. [10] and Coleman et al. [11] for computing the writhe \(W_r \) in open structures.

In our example, the initial twisting phase (up to 135 sec) introduces approximately 4.8 \(L_k \), all in the form of twist, prior to the initial buckling (see Fig. 13). This link is conserved just prior to the would-be self-contact during the collapse, as the ends of the cable are prevented from further rotation. During the initial buckling and secondary collapse, the cable exchanges \(T_w \) for \(W_r \) by transferring torsional strain energy into bending strain energy. For instance, just
Figure 11: The linking number in the left-most cable loop is 0 and in the next loop it is -3. The twist is converted to successively greater writhe in the remaining loops. (Illustrations courtesy of [9]).

Figure 12: The end blocks do not rotate and only translate towards each other. These end conditions conserve the linking number. Twist in the top strand converts to writhe. (Illustrations courtesy of [9]).

Figure 13: Variation of twist and writhe. The discontinuous fall in the linking number and correspondingly in the writhe occurs when the cable passes through itself.

6. SUMMARY AND CONCLUSIONS

This paper reviews a rod theory and a numerical algorithm that can be used to study the nonlinear dynamics of highly contorted cables. While the primary objective is to model the dynamics of marine cables leading to the formation of loops and tangles on the sea floor, it is also recognized that the same technique may apply to modeling the supercoiled states of DNA and the dynamic transitions between these states. These techniques are used herein to study the response of a prototypical system, composed of an elastic cable subjected to increasing twist. Numerical simulations reveal that the originally straight cable undergoes two bifurcations in succession as twist is added. The first of occurs at the Greenhill buckling condition where the trivial (straight) equilibrium becomes unstable and the cable buckles into the approximate shape of a helix. This helix grows in amplitude with increasing twist. One measure of this growth is the continued rotation of the tangent at the mid-span point. When this tangent becomes orthogonal to the loading axis (axis of the original straight cable), the helix experiences a second bifurcation and collapses dynamically towards a loop. The current model, which does not model self-contact, cannot capture the stable loop that is expected to form when self-contact is included. The addition of self-contact is a current topic of research.

ACKNOWLEDGMENTS: The authors gratefully acknowledge the research support provided by the U.S. Office of Naval Research and the Lawrence Livermore National Laboratories. The work of Christopher L. Lee was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

REFERENCES