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Dispersion of Waves in Porous Cylinders with Patchy Saturation Part 1.

Formulation and Torsional Waves
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P.0O.Box 808 L-200, Livermore, CA 94551-9900, USA

Steven R. Pridef
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Laboratory experiments on wave propagation through saturated and partially
saturated porous media have often been conducted on porous cylinders that were
initially fully saturated and then allowed to dry while continuing to acquire data
on the wave behavior. Since it is known that drying typically progresses from
outside to inside, a sensible physical model of this process is concentric cylinders
having different saturation levels — the simplest example being a fully dry outer
cylindrical shell together with a fully wet inner cylinder. We use this model to
formulate the equations for wave dispersion in porous cylinders for patchy satu-
ration (i.e., drainage) conditions. In addition to multiple modes of propagation
obtained numerically from these dispersion relations, we find two distinct ana-
lytical expressions for torsional wave modes. We solve the dispersion relation for
torsional waves for two examples: Massillon sandstone and Sierra White granite.
The drainage analysis appears to give improved agreement with the data for both
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these materials.
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I. INTRODUCTION

The classic work of Pochhammer [1] and Chree
[2] gave exact solutions for wave propagation in
elastic rods. When the rod is instead a porous
cylinder with fluid-filled pores, the equations of
linear elasticity do not describe all possible mo-
tions of the fluid/porous-solid mixture. Biot’s
theory of fluid-saturated porous media provides
a continuum theory, permitting the fluid and
solid components to move independently and
accounts approximately for the attenuation of
waves due to viscous friction. Gardner [3] used
Biot’s theory [4, 5] to study long-wavelength
extensional waves in circular cylinders. Gard-
ner considered only the low-frequency regime
where the second bulk compressional mode pre-
dicted by Biot’s theory is diffusive in character.
Gardner also limited consideration to the case
of open-pore surface boundary conditions.

*berryman1@llnl.gov
Tsrpride@lbl .gov

The present work is based in part on another
paper by Berryman [6], in which both open-pore
and closed-pore surface boundary conditions for
the fluid-saturated porous cylinder were stud-
ied. Here we consider only the open-pore sur-
face, but we allow non-uniform or patchy satu-
ration [7-10] inside the cylinder. In particular, it
is quite common to study partial saturation in
the laboratory under drainage or drying condi-
tions wherein an initially fully saturated porous
cylinder is allowed to dry while continuing to
acquire data on the cylinder’s modes of oscilla-
tion. We want to model this behavior explicitly.
The simplest such model is concentric cylinders
with a fully dry outer cylindrical shell enclosing
a fully liquid-saturated inner cylinder.

No doubt a more realistic model would in-
volve many shells with various degrees of par-
tial saturation between the dry outer shell and
the saturated inner cylinder at the core, but
such complications will not be treated here. We
find that studies of the two-layer case have all
the important physical complications expected
in this problem, while still having enough sim-



plicity that some of the analysis can be done
semi-analytically — thereby providing some of
the sought after insight into the problem.

One somewhat unusual aspect of the presen-
tation is that we allow the possibility that the
shear modulus of a liquid-filled porous medium
can be larger than that of the same medium
filled with gas [11-13]. Although this concept
disagrees with Gassmann’s quasi-static result
for isotopic materials, it is now well-understood
that fluid dependence of shear is possible for
heterogeneous, undrained and/or high frequency
experiments. In fact the laboratory data we are
attempting to explain demand that this possi-
bility be considered.

We present the equations of poroelasticity,
and then show the forms of the equations needed
for cylindrical geometry. Appropriate boundary
conditions for our problem are discussed. Equa-
tions are subsequently formulated to determine
both the extensional and torsional modes of con-
centric poroelastic cylinders under conditions of
partial saturation. Solutions of these equations
are computed and discussed here for torsional
waves, while the harder problem of extensional
waves will be treated fully in a second install-
ment to be presented at a later date.

II. EQUATIONS OF POROELASTICITY
For long-wavelength disturbances (A >> h,
where h is a typical pore size) propagating
through a porous medium, we define average
values of the (local) displacements in the solid
and also in the saturating fluid. The average dis-
placement vector for the solid frame is u while
that for the pore fluid is uy. The average dis-
placement of the fluid relative to the frame is
w = ¢(u — uy). For small strains, the frame
dilatation is

e=e,+e,+e,=V-u, (1)

where e,,ey,e, are the Cartesian strain compo-
nents. Similarly, the average fluid dilatation is

ef =V -uy ()

(e also includes flow terms as well as dilatation)
and the increment of fluid content is defined by

(=-V-w=d(e—ej). 3)

With these definitions, Biot [14] obtains the
stress-strain relations in the form

07y = He — Qﬂ(ey + ez) - (¢, (4)

and similarly (with permutations) for the other
compressional components §7y,,07;,, while

Ou, Ou,
6Tzw—ﬂ(g+%)’ (5)

and again for 07,,,07,, for the other shear com-
ponents. And finally, for the fluid pressure,

opy = M¢ — Ce. (6)

The é7;; (for i,j = z,y,2) are deviations from
equilibrium of average Cartesian stresses in the
saturated porous material and dp; is similarly
the isotropic pressure deviation in the pore fluid.

With time dependence of the form exp(—iwt),
the coupled wave equations that incorporate (4)-
(6) are of the form

w?(pu+ pyw) = CV( — (H — p)Ve — uV?u,
w?(psu+qw) = MV( — CVe, (7

where p = ¢ps + (1 — @) pm is the bulk-density
of the material and ¢ = py[a/B + iF(§)n/kw]
is the effective density of the fluid in relative
motion. The kinematic viscosity of the liquid is
7; the permeability of the porous frame is k;
the dynamic viscosity factor is given, for our
choice of sign for the frequency dependence, by

F(§) = {{ET(&)/I1 + 2T(€) /i€]}, where T(€) =

ber’(¢) - ibei’ p 1 :
W and ¢ = (wh?/n)z. The functions

ber(¢) and bei(§) are the real and imaginary
parts of the Kelvin function. The dynamic pa-
rameter h is a characteristic length generally as-
sociated with and comparable in magnitude to
the steady-flow hydraulic radius. The tortuosity
a > 1 is a pure number related to the frame
inertia which has been measured by Johnson et
al. [15] and has also been estimated theoretically
by Berryman [16].

The coefficients H, C, and M are given by
[17-21]

H=K+ §u+ (Km —K)?/(D—K), (8)

C = Kn(Km — K)/(D - K), (9)
and
M=K} /(D - K), (10)
where
D= Ku[l + ¢(Kpn/Ks—1)]. (11)



Equations (8)-(11) are correct as long as the
porous material may be considered homoge-
neous on the microscopic scale as well as the
macroscopic scale, which we assume to hold for
the present application.

To decouple the wave equations (7) into
Helmholtz equations for the three modes of
propagation, we note that the displacements u
and w can be decomposed as

u=VY+VxpB, w=Vy+Vxyx, (12)

where T, 1) are scalar potentials and B, x are
vector potentials. Substituting (12) into (7), we
find (7) is satisfied if two pairs of equations are
satisfied:

(V2 + k)8 =0,

x=-psB/q (13)

and

(V2+E2)AL =0. (14)

The wavenumbers in (13) and (14) are defined
by

ki =w’(p—p}/0)/1 (15)

and

=3 {b+ 5[0 2 +4edt}, (16)

b=w?(pM — p;0)/A, c=w?(py M —qC)/A,
d=w?(psH — pC)/A, f=w?(¢H — psC)/A,
(17)

with A = M H — C?. The linear combination of
scalar potentials has been chosen to be A4y =
LY + 4, where

Ty =d/(ki-b)= (ki - f)]e

With the identification (18) of the coefficients
I'1, the mode decoupling is complete.

Equations (13) and (14) are valid for any
choice of coordinate system. They may there-
fore be applied to boundary value problems with
arbitrary symmetry. Biot’s theory may therefore
be applied to porous elastic cylinders in the next
section.

(18)

ITII. EQUATIONS FOR A POROUS CYLIN-
DER

To work most easily in cylindrical geometry,
we rewrite the stress-strain relations (4)-(6) in
cylindrical coordinates. If z is the coordinate

along the cylinder axis while rand 6 are the ra-
dial and azimuthal coordinates, it is not difficult
to show that

07y = He — 2“(69 + ez) - CC; (19)
_ Oug ug 10u,
R
Oou, Ou,
o = (G2 4 52). (21)

and (6) for dp; remains unchanged. The stress
increments 67, 0799, and &7y, are not of direct
interest in the present application. The dilata-
tions are given by

e=e,+eg+e,, (22)
where
Ou, ur  10ug Ou,
= = — - = —. 23
o= G r+r60’ez 0z (23)

We redefine potential 3 in terms of two scalar
potentials according to

B =12p1+V x (2p2), (24)
where both (; satisfy
(V24+Ek2)B;=0 for i=1,2. (25)

For the problem of interest here, there are two
distinct regions: The first region is a circular
cylinder centered at the origin, within which so-
lutions of (14) and (25) must be finite at the
origin. Results take the form

Ax = arJo(jz) expi(k.z — wt), (26)
B1 = vsJo(Js) expi(k.2 — wt), (27)
182 = (as/ikz)JO(js) expi(kzz - Wt)a (28)

where

j:l: = k:l:r”'a js = ksrra (29)

and

Jo is the zero-order Bessel function of the first
kind. The coefficients a+, as, vs, are constants
to be determined from the boundary conditions.

The second region is a cylindrical shell sur-
rounding the first region. In this region, the fac-
tors k+ and k, take different values from the
those in the central region, indicated by k3 and
k¥ (where x means air-filled, and does not ever



mean complex conjugate in this paper). Further-
more, two linearly independent solutions of the
equations are allowed, i.e., both Jy and Yy (the
Bessel function of the second kind, sometimes
known as the Neumann function). In the outer
shell, we therefore have four coefficients apiece
for Jy and Yp, all of which must also be deter-
mined by the boundary conditions.
Noting that

T = (A4 - AL)/(Ts —T2),
Y = (AT - AT,)/(T--Ty)
from the definitions of Ay, and substituting

(26)-(28) and (31) into (12), and the result into
(6) and (19)-(21), we finally obtain

(31)

519 = mu1ys = —pkl 2(Gs)vs,  (32)
0Tpr = Q1104 + Q120 + a130, (33)
—0pf = G104 + a220_ + az3Q, (34)
0Tr, = ag1ay + az0_ + aszas, (35)

where

(T4 =T-)aun = [(OT- — H)K3 + 2pk2] Jo(j+)
+2pkir Ji(j4) /T, (36)

(T4 —T-)arz = —2uk2, Ji(j-)/j-
+ [(H = CTy)k2 — 2uk2] Jo(5-), (37)

ais = 2pk3, J2(js), (38)

(C+ =T )ag = (MT_ = CO)k3 Jo(j+), (39)

(T4 —T_)ag = (C — MT1)k2 Jo(j-), (40)

(T4 —=T)az1 = —2ipk.kirJ1(j4), (41)

(F+ - F,)agg = 2i,uk'zk,TJ1 (j,), (42)

ik a33 = _H(kf - Zkz)kerl (js): (43)

and as3 = 0. There is an implicit factor of

expi(k,z — wt) on the right-hand side of (32)-
(35).

Reference [6] has shown that a1, a13, asi,
and azz reduce in the limit ¢ — 0 to the cor-
responding results for isotropic elastic cylinders
by Pochhammer [1], Chree [2], [22], Love [23],
and Bancroft [24], as they should.

IV. BOUNDARY CONDITIONS

Appropriate boundary conditions for use with
Biot’s equations have been considered by Dere-
siewicz and Skalak [25], Berryman and Thigpen
[26], and Pride and Haartsen [27], so we make
use of these results here.

At the external surface r = Ry where the
outer porous material contacts the surrounding
air, it is appropriate for drainage experiments to
use free surface conditions

—(Spf =0, O0Try = 0, 0Trg = 0, 0Tr, = 0, (44)

for the deviations from static equilibrium. If the
cylinder is sealed on r = Rj, then the first of
these needs to be replaced by w, = 0.

The internal interface condition at r = R;
needs more precise definition. We assume that
all the meniscii that are separating the inner
fluid from the outer fluid are contained within
a thin layer (shell) of thickness dh (a few grain
sizes in width) straddling the surface r = R;.
All fluid that enters this interface layer goes
into stretching the meniscii since as Pride and
Flekkoy [28] have shown, it is reasonable to as-
sume that the contact lines of the meniscii re-
main pinned under seismic stressing. The locally
incompressible flow conserves fluid volume so
that the rate at which the inner fluid enters the
interface layer is equal to the rate at which the
outer fluid leaves the layer thus requiring

wp(r = Ry + 6h/2) = i (r = Ry — 6h/2).(45)

This and the following conditions are to be un-
derstood in the limit where 6h/R; — 0. It is also
straightforward to obtain the standard results

(46)

— ¥ —_ ¥ —_ ¥
Trr ]rra Trf ;T.QJ Trz = ;7‘2;
and

Up = Ur, Up =Ty, Uy =1u,. (47)
The final condition we need to establish on r =
R, involves the fluid pressure.

The rate at which energy flows radially
through the porous material is given by 7,.;i; —
psw, with implicit summation over the index
i. The difference in the rate at which energy is
entering and leaving the interface layer is due
to work performed in stretching the meniscii.
Each meniscus has an initial mean curvature
H, that is determined by the initial fluid pres-
sures (those that hold before the wave arrives) as
Pfo — Pjo = 0 H, where o is the surface tension.
As the wave passes, the ratio between the actual



mean curvature H and H, is a small quantity on
the order of the capillary number € = n|i,|/o
(see [28]), where |w, | is some estimate of the in-
duced Darcy flow that goes as wave strain times
wave velocity (|u,| < 1073 m/s). Since ¢ > 102
Pa-m for air-water interfaces, we have € < 1074,
which can be considered negligible. By integrat-
ing the energy flux rate over a Gaussian shell
that straddles r = Ry, it is straightforward to
obtain

[Tritt; — (pro + Opy )] — (48)
[rria; — (P}o + 0p})wy] = o Hptrp[1 + O(9)

Thus, since all components here except fluid
pressure are continuous, we find that, when e
is small compared to unity, we have

dps = dp}. (50)

In other words, to the extent that the capil-
lary number can be considered small (always the
case for linear wave problems), the wave-induced
increments in fluid pressure are continuous at
r= Rl.

To apply the boundary conditions (45) and
(50), we need in addition to (34) the result

Wy = G410+ + Q420 + 4305, (51)
where

T+ —=T-)aar = kyrJ1(j4)T -, (52)

T+ =T )ase = =k, 1(j-)I'4, (53)

a43 = ksrjl(JS)pf/q (54)

The remaining stress conditions (46) are deter-
mined by (33) and (35).

To apply the boundary conditions (47), we

need the explicit expressions for the displace-

ment which follow from (12). The results are of
the form

Ur = A5104 + A520 + A53Q4, (55)
where

Ty —T)as1 = —k4rJi1(j4+),  (56)

(F—i- - F—)a52 = k—rjl(j—)a (57)
as3z = ksr']l (js)a (58)

and
U, = a0y + Ae20— + ag3as, (59)

where ag; = ago = 0, and

ae3 = k2, Jo(js) [ik.. (60)

Both (55) and (59) are needed for extensional
waves, while the remaining component,

ug = M21Ys = ksrJ1 (jS)'Ys: (61)

is needed only for torsional waves. As before,
there is an implicit factor of expi(k,z — wt) on
the right-hand side of (52)-(54), (56)-(58), and
(60).

It follows from (32)-(35), (51), and (61) that
vs (for the inner cylinder) and the correspond-
ing coefficients for the cylindrical shell are all
completely independent of the other mode coef-
ficients and, therefore, relevant to the study of
torsional waves, but not for extensional waves.
Pertinent equations for the torsional wave dis-
persion relation are continuity of the angular
displacement, ug, and stress, 7,9, at the inter-
nal interface, and vanishing of the stress, 7,9, at
the external surface.

The final set of equations for the extensional
wave dispersion relation involves nine equations
with nine unknowns. The nine unknowns are:
oy, a_, ag (coefficients of Jp in the central cylin-
der), plus three a*’s (coefficients of Jy) and three
n*’s (coefficients of Yy) for region of the cylin-
drical shell. The nine equations are: the conti-
nuity of radial and one tangential stress as well
as radial and one tangential displacement at the
interfacial boundary (totaling four conditions),
continuity of fluid pressure and normal fluid in-
crements across the same boundary (two condi-
tions), and finally the vanishing of the external
fluid pressure, radial and one tangential stress
at the free surface (three conditions). The ex-
tensional wave dispersion relation is then deter-
mined as in Berryman [6] by those conditions
on the wavenumber k, that result in vanishing
of the determinant of the coeflicients of this 9 x9
complex matrix.

V. ELEMENTARY TORSIONAL MODES

The torsional mode of cylinder oscillation
(which is trivial for a simple cylinder, porous
or not) is determined here by a 3 x 3 system,
of which 8 elements are in general nonzero. This
system is therefore similar in size and difficulty
to the cases studied earlier by Berryman [6] for
extensional waves in a simple fully saturated
poroelastic cylinder. On the other hand, for ex-
tensional waves, the matrix determining the ex-
tensional wave dispersion relation for patchy sat-
uration has 81 elements, of which 69 will in
general be nonzero. This problem requires suf-
ficiently different treatment from that for the
torsional case that we set it aside to be studied



FIG. 1: Cross-section of a circular cylinder, where

R =S %Rz is determined by the liquid saturation
level S.

fully in a separate presentation (Part IT).

We assume that the cylinder has liquid satura-
tion level S = (R;/Ry)?, where Ry is the radius
of the cylinder and r = R; is the location of the
liquid-gas interface (see Fig. 1). The dispersion
relation for torsional waves is then given by

mi (R2) ni;(Ra) 0
—mi;(R1) —nii(R1) mi(Ra) | =0, (62)
—m3; (R1) —n3; (R1) mai(Ry)

where m11 and mo; are given by (32) and (61).
The coefficients mj; and mj, have the same
functional forms as m1; and mas1, but the con-
stants are those for the shell, rather than the in-
ner cylinder. Similarly, n}; and n}, are just the
same as mj; and mj, except that Jy and J; are
replaced everywhere by Yy and Yj, respectively.

Analysis proceeds by noticing immediately
that there could be two elementary solutions of
(62), one with m},;(R2) = ni;(R2) = 0 (ex-
terior condition) and another with mq;(R;) =
ma1(R1) = 0 (interior condition). First, the in-
terior condition is satisfied, for example, when
ks = 0 or, equivalently, when k2 = k2. This
corresponds to a torsional mode of propagation
having wave speed and attenuation determined
exactly by the bulk shear wave in the saturated
interior region, but this interior region is not
moving since k. = 0 also implies that ug = 0
from (61). Thus, the interior condition results in
the drained outer shell twisting back and forth
around a stationary inner liquid-saturated cylin-
der. Second, the exterior condition is similarly
satisfied when k. = 0 or, equivalently, when
k2 = (k?)2. This condition looks at first glance
as if it might be spurious because k}, = 0 sug-
gests that uy at the exterior boundary might
vanish identically, and then this would corre-
spond to a trivial solution of the equations. How-
ever, looking closer, this is not the case, because
at the external boundary

ug = ki, [J1(G5): + Y1(Gi)es],  (63)

so as k. — 0, the first term on the right hand
side of (63) does vanish, both because k%, — 0
and also because Ji(j¥) — 0. But the sec-
ond term does not vanish in this limit because
[Y1(5%)| = 2/mk% Ry — oo as kX, — 0, and the
product gives the finite result: 2/mRy. So this
condition is not spurious, and corresponds to a
torsional wave propagating with the speed and
attenuation of the bulk shear wave speed in the
outer, drained shell material.

Can both of these elementary modes be
excited? If we assume for the moment that
Gassmann’s equations [17] (also see Berryman
[29]) apply to the sample, then p* = p, and
the only changes in shear wave velocity in the
two regions are those induced by the changes in
mass. In this situation, the wave speed in the
air/gas saturated region will be faster than that
in the water/liquid saturated region, since lig-
uid is more dense than gas. Thus, the real part
of k} is smaller than that of k,, and while the
condition (k%.)> = 0 implies that the real part
of k2, is positive, the condition k2. = 0 implies
that the real part of (kZ,.)? is negative. There-
fore, assuming (as we generally do here) that the
attenuation in the system is relatively small, the
condition k. = k} leads to a propagating wave,
while k, = ks leads to a strongly evanescent
wave. Thus, for Gassmann conditions on shear,
only one of these possible modes actually prop-
agates.

Note that, if/when Gassmann’s results do not
apply to the system (say at ultrasonic frequen-
cies [11-13]), then the results of the preceding
paragraph will need to be reconsidered. In par-
ticular, if the shear modulus changes rapidly
with the introduction of liquid saturant, it is
possible that the shear wave speed for a liquid
saturated porous material may be higher than
that for the gas saturated case. In this situa-
tion, all the inequalities of the preceding para-
graph would be reversed, and then the condi-
tion k., = k, leads to a propagating wave, while
k. = k} leads to a strongly evanescent wave.

Our conclusion then is that both modes can
indeed be excited, but probably not simultane-
ously in the same system and/or in the same fre-
quency band. In a highly dispersive porous sys-
tem and with broadband acoustic signal input, it
could happen that both modes are propagating
simultaneously in time, but in distinct/disjoint
frequency bands.

TABLE 1. The zeroes j, ,, of J>(z) as a function
of the order n of appearance along the real axis.



Order n Jo.n

0 0.00000000000000
1 5.13562230184068
2 8.41724414039987
3 11.61984117214906

VI. HIGHER ORDER TORSIONAL MODES

For fully saturated porous cylinders, the factor
that determines the torsional modes of propaga-
tion is mq;(r) in (32). The critical factor here is
the Bessel function J5(j5) and, specifically, the
whereabouts of its zeroes. One source of this in-
formation, to five figure accuracy, is the refer-
ence of Abramowitz and Stegun [30], which pro-
vides not only the location of the zeroes ja n,
but also the values of the corresponding deriva-
tives Jj(jo,n). Having these derivatives is useful
for improving the accuracy of the zeroes with
a Newton-Raphson iterative method, based on
Jon = J8'E — Jo(j8'd)/ J5(48'3). This approach
gives a very rapid improvement to the values of
the ja ,’s within 2 to 3 iterations. The results to
order n = 3 are shown in TABLE 1.

Having already understood the zeroth order
contributions to the dispersion relation (62) due
to zeroes of kg and k., we are now free to con-
sider that neither of these factors vanishes for
the higher order modes. This assumption per-
mits us to factor these wavenumbers in or out
of the determinant whenever it is convenient to
do so. In particular, we note that the first two
columns of (62) would have a common factor of
w*(kZ,.)? (which could then be safely eliminated)
if we first multiply the bottom row by a factor
of p*k},. Having made these simplifications, we
find

JZ(k;rR2) Y2(k:rR2) 0
JQ(k:rRl) Y2(k:7-R1) Mker2(ksrR1) = O,
Ji(k3, Ry) Yi(k3 Ry) p*kG, Jy(KsrRa)

(64)

after also eliminating a common factor of —1
from the top row, and —kg, from the third col-
umn.

Expanding the determinant along the third
column, we have

J2 (k;‘kr RZ) Y'Q (k:r R2)
Jo (k3. R1) Ya(ky, Ri)

Ja2 (k5 R2) Ya(ky, Ro)
J1 (k:rRl) )/l(k:TRl)

0= N*k:rJl (ksrRl)

—pikgpJo (ksr Ri) . (65)

Some elementary consequences of this equation
are: (a) As Ry — 0 so there is no liquid left
in the system, Ji(ks-R1) and Ja(ksrRi1) — O
like Rl, while le(k:TRl) and H(k:TRl) — 00
like 1/R;y. So the dispersion relation is always
satisfied in the limit when Jy(kX.R2) = 0,
which is exactly the condition for the fully dry
cylinder as expected. (b) If Ry — R, then
the first determinant vanishes identically. The
second determinant does not vanish in gen-
eral since it approaches the Wronskian JoY; —
J1Ya = 2/7k}. Rz, so the condition becomes
ksrJa(ksr R1) = 0, again as expected. (c) The
special case of ks — 0 does not affect these con-
clusions, as both Ji(ks-R1) and Ja(kspR1) — 0
in this limit, as they should. (d) The only case
that is missing from (65) is the one for £}, — 0.
But this multiple zero of the original dispersion
relation (62) was eliminated when we removed
two factors of (kZ,.)? from the first and second
column in the first step of our simplification of
the dispersion relation — a step which is always
legitimate except when k}. = 0.

We conclude that, with the one trivial excep-
tion just noted, these simplifications have kept
the basic nature of the dispersion relation intact.

A. Lower frequency results

At lower frequencies in the range f <
1kHz, we may typically expect [12, 31, 32]
that Gassmann’s results hold for the poroelastic
medium, where p* = u. Also, to a very good
approximation k} ~ ks, where the only devi-
ations from equality are those due to the dif-
ferences in the densities of liquid and gas con-
stituents. So deviations from this approximation
are most substantial when the porosity is high.
From (64), we see that if the the products uks,
and p*k;,. are equal, then these factors can be
removed from the third column of the determi-
nant. Then, the resulting third column can be
subtracted from the first column, and the result
can be expanded along the first column to give:

2J>2(ksr R2)

ho B ~0, (66)

having again used the fact that Ja(2)Y1(z) —
J1(2)Y2(2) = 2/mz. So the important zeroes in
this case are again those of Jy, some of which
are already displayed in TABLE 1.

Ignoring the imaginary part of &k, which is usu-
ally quite small in this limit, we have the ana-
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Thus, at the higher frequencies, this velocity ap-
proaches that of the shear wave as expected.
When the lower frequencies are approached,
there is an obvious cutoff frequency, fI' =
J2,nVs/2m R, below which these torsional modes
do not propagate for n > 1. Since this low fre-
quency cutoff may often be inconsistent with the
assumption under consideration here (i.e., that
frequencies are low enough so Gassmann’s equa-
tion is satisfied), we expect generally that very
few of the higher order modes can be excited
in this limit. The main result is therefore that
v, = v? = v, is the velocity that will be observed
in laboratory experiments in this frequency do-
main, with only very rare exceptions. Recent ex-
perimental findings of Wisse et al. [33], although
for a somewhat different physical problem, nev-
ertheless seem to be consistent with these re-
sults.

We will not consider this rather special case
any further in this paper.

B. Higher frequency results

The more interesting case is that for higher
frequencies, in which case it is now understood
[12, 31, 32] that the simple Biot-Gassmann the-
ory is actually inadequate because there can
be dependence of p on liquid saturant prop-
erties at higher frequencies, in the range f >
1kHz. The precise frequency at which this be-
comes important is material dependent, but it is
generally observed that for ultrasonic frequen-
cies f > 20kHz some deviations from Biot-
Gassmann predictions are normally found. So
it is in this regime that the distinctions between
air-filled and water-filled pores become impor-
tant for the torsional motion of a cylinder.

1 Case:p*=p

Even if there is no difference between p* and
1, there can still be significant differences be-
tween k) and ks due to the differences in the
fluid viscosities and densities of liquid and gas
constituents. So we will treat this case next.

For Massillon sandstone, Murphy [34, 35]
measured extensional and shear wave velocities
at f = 560 Hz over a range of partial saturations

produced using the drainage method. Relevant
properties of this sandstone are listed in TABLE
2.

2 Case:p* <p

The presence of liquid in the pores may alter
the mechanical behavior of rocks under shear
deformations in at least two quite distinct ways:
(a) It is often observed that a very small amount
of some liquids can cause chemical interactions
that tend to soften the binding material present
among the grains of such a system. When this
happens, the shear modulus is usually observed
to decrease. (See for example FIG. 3 for Sierra
White granite.) So this situation implies that
uw* > p, contrary to Gassmann’s results. Al-
though this situation is well-known in practice,
we will ignore it in our modeling efforts. Our
justification for this will be that the medium
we are calling “dry” should in fact be termed
“drained” in the sense that it has been wetted
previously and therefore has these chemical soft-
ening effects already factored into the modulus
p*. In any case, our goal here is not so much
to fit data for specific rocks, but rather to un-
derstand general trends. (b) The other situation
that can also occur in practice — particularly at
higher frequencies — is that the liquid saturat-
ing the porous material can have a nonnegligi-
ble mechanical effect [11, 13, 32] that tends to
strengthen the medium under shear loading so
that g > p*. If this strengthening effect is great
enough (and there are experimental results (see
FIG. 4) that confirm this does happen in prac-
tice [12]), then it is possible the density effect
is more than counterbalanced by the enhanced
shear modulus effect with the result that the
speed of shear wave propagation in the liquid
saturated medium is greater than that in the
air saturated case. Depending on details of the
liquid distribution in the pores, either of these
cases can be included in the analysis.

For Massillon sandstone, Murphy [34, 35] also
measured extensional and shear wave velocities
at f = 200 kHz over a range of partial satura-
tions produced using the drainage method. Rel-
evant properties of this sandstone were listed be-
fore in TABLE 2.

TABLE 2. Properties of Massillon sandstone
used in Murphy’s experiments [34, 35] and
Spirit River sandstone in Knight and
Nolen-Hoeksema’s experiments [8].
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FIG. 2: Shear wave velocities as a function of water
saturation for drainage experiments of Murphy [34,
35].

Sierra White Granite at ~200 kHz
3000 T T

2950+ ©=0.008

N N

® ©

a o

o (=]
T

Shear Velocity (m/s)

N

@®

=]

(=]
T

27505

2700 . . . .
0 0.2 0.4 0.6 0.8 1
Water Saturation

FIG. 3: Shear wave velocities as a function of water
saturation for drainage experiments of Murphy [34]
in Sierra White granite.

Property Massillon |Spirit River
Porosity (%) 23.0 5.2
Permeability (mD)|7.37 x 10%| 1.0 x 1073
Grain size (pm) 150-200 | 125-150
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We will now show results for two cases: first the
Massillon sandstone (at 560 Hz) and then the
Sierra White granite (at about 200 kHz). We
might expect based just on the experimental fre-
quencies that the sandstone behavior would be
close to that predicted by Gassmann, while that
of the granite may differ from Gassmann.

SOLVING THE DISPERSION RELA-
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FIG. 4: Shear wave velocities as a function of water
saturation for drainage experiments of Knight and
Nolen-Hoeksema [8] in Spirit River sandstone.

An important observation concerning how to
proceed with the analysis follows from the fact
that we are seeking a curve in the complex plane,
points along the curve depending on the level
of saturation S. We know (at least in princi-
ple) the locations of the end points of this curve
since they are exactly the points for full lig-
uid saturation and full gas saturation. If we as-
sume that the attenuation is relatively small so
the wavenumbers k; and k} have small imagi-
nary parts, then to a reasonable approximation
it must be the case that the curve of interest lies
close to the real axis in the complex k2-plane. If
the imaginary parts exactly vanish, the curve re-
duces to a straight line on the real axis in this
plane. These observations suggest that it might
be helpful to trace rays in the complex plane
radiating out from the origin, and in particular
a ray (i.e., a straight line) passing through the
origin and also through the point correspond-
ing to whichever point, kZ or (k})?, happens to
lie closest to the origin should provide a good
starting point for the analysis. Another alterna-
tive is to consider the straight line that connects
these two points directly, even though it would
not in general also be a ray through the origin
(unless there is no attenuation). Both of these
alternatives have been tried.

The first alternative, considering a complex
ray through the origin and then passing through
the closest point k2 or (k*)?, has the very im-
portant characteristic that the values of the dis-
persion function become purely imaginary in the
shadow of the starting point of the curve. This
fact provides a great simplification because we
need the dispersion function to vanish identi-
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FIG. 5: Showing how the imaginary parts of the dis-
persion relation for Massillon sandstone change in
the complex k2 plane as k. varies from ksq t0 Koo .
The real part of the dispersion relation is either zero
or very close to zero along this line and therefore the
desired points are those where the imaginary part
crosses the zero line.

cally — both in real and imaginary parts, and this
shadow region has the nice characteristic that
the real part is automatically zero. So the only
remaining issue is to check where the imaginary
part vanishes. This procedure is much easier to
implement and to understand intuitively than
trying to find the complex zeroes using some-
thing like a Newton method, which could also
be implemented for this problem.

The second alternative is not as rigorous as
the first, but for the case of small attenuation
gives very similar results and is especially easy
to implement. In this case we need only con-
sider the line connecting the two points k2 and
(k*)? in the complex plane. It turns out that
in the two cases considered here, the real part
of the dispersion function is again either zero
or very small, so that it makes sense to treat
this approach as an approximation to the first
one in that we need only seek the points where
the imaginary part vanishes. This procedure is
very intuitive and examples are shown in FIGS.
5 through 8.

A. Massillon sandstone

For Massillon, we have the Gassmann-like sit-
uation in which the shear wave speed for the
drained case is smaller than that for the fully
saturated case and therefore Re(kX) < Re(ks).
FIG. 5 shows how the imaginary parts of the dis-
persion function change in this case as the real
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FIG. 6: Comparison between the points that solve
the dispersion relation for the patchy cylinder, plot-
ted as p/p = 1/v? versus water saturation S, for
Massillon sandstone at 560 Hz. Data are from Mur-
phy. The Gassmann curve is computed assuming
that the shear modulus p is constant and that the
only quantity changing is therefore the density p.

part of k2 varies from Re((k})?) to Re(k?) (i.e.,
from air saturated to water saturated). FIG. 5
shows four of these curves (S = 0.2 to 0.8).
FIG. 6 was generated by completing the proce-
dure for 19 equally spaced points in saturation
S. FIG. 6 shows furthermore that the curve ob-
tained actually fits the data for Massillon bet-
ter than Gassmann does (the straight line be-
tween the end points). This is a bit of a surprise
as virtually everyone (including the present au-
thors) have often considered these data to be the
best known proof of the accuracy of Gassmann’s
equations for partial saturation problems.

B. Sierra White granite

For Sierra White, we have the non-Gassmann-
like situation in which the shear wave speed for
the drained case is larger than that for the fully
saturated case and therefore Re(k}) > Re(ks).
FIG. 7 shows how the imaginary parts of the dis-
persion function change in this case as the real
part of k2 varies from Re(k?) to Re((k%)?) (i.e.,
from water saturated to air saturated). FIG. 7
shows four of these curves (S = 0.2 to 0.8). FIG.
8 was generated by completing the procedure for
19 equally spaced points in saturation S. FIG. 8
shows furthermore that both data and the curve
obtained here differ substantially from the sim-
ple straightline average that might have been
anticipated, Furthermore, the dispersion curve
does in fact move in the right direction to agree



Sierra White Granite at ~200 kHz

— Zero

—<—S5=0.2
250[ —— S=0.4
—— S$=06
—+— S=08

Imaginary Parts of Dispersion Relation

e

1.75 1.8 1.85 _3)5 2 2.05 21

19 , 1
Re(kz) (m

FIG. 7: Showing how the imaginary parts of the dis-
persion relation for Sierra white granite change in
the complex k2 plane as k, varies from ksq t0 Ksew.
The real part of the dispersion relation is either zero
or very close to zero along this line and therefore the
desired points are those where the imaginary part
crosses the zero line.

with the data. It was certainly not known by us
what to expect in this situation since the com-
mon understanding of poroelasticity does not
extend to this rather difficult set of partial satu-
ration problems. But, it is gratifying to see this
simple theory clearly picks the right trends and
agrees reasonably well with these data.
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FIG. 8: Comparison between the points that solve
the dispersion relation for the patchy cylinder, plot-
ted as p/p = 1/v? versus water saturation S, for
Sierra White granite at 200 kHz. Data are from
Murphy. For Sierra White, Gassmann’s equation
clearly does not apply since the shear modulus p
must have increased with water saturation. Data
and patchy calculation results are therefore com-
pared to the saturation weighted average of 1/v?
in analogy to the Gassmann result.
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FIG. 9: Comparison between the points that solve
the dispersion relation in the complex k2-plane, and
a simple quadratic fit in water saturation S, for the
Massillon sandstone measured by Murphy. The fit is
nearly perfect for this case.

C. General behavior of the curves

Since the curves obtained in FIGS. 6 and 8 are
very well-behaved, it seems appropriate to check
for simple dependencies on the saturation pa-
rameter S. Both curves look like they might be
linear in S with a small amplitude quadratic cor-
rection. This hypothesis is tested in FIGS. 9 and
10. We find that the quadratic dependence is es-
sentially exact to graphical accuracy for Massil-
lon sandstone, and it is close but not exact for
the Sierra White granite. We have not yet tried
to analyze this behavior and will therefore not

5 Sierra White Granite at ~200 kHz
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FIG. 10: Comparison between the points that solve
the dispersion relation in the complex k2-plane, and
a simple quadratic fit in water saturation S, for the
Sierra White granite measured by Murphy. The fit
is also good for this case, but not as good as it was
for Massillon sandstone.



attempt an explanation of it at this time.

VIII. SUMMARY

Biot fast- and slow-wave effects in layered ma-
terials have been studied previously by Pride
et al. [36] and by many others found in their
references. The present work is motivated by
the desire to understand how fluids interacting
with common poroelastic systems may result in
observed wave speeds and viscous attenuation
in partially saturated (and especially in patchy
saturated) cylinders. These effects can then be
observed in the speeds and attenuations of ex-
tensional and torsional waves. There are large
quantities of such data already available, and
one thrust of our future work will be to rean-
alyze these data in light of the methods devel-
oped here. We have concentrated on analysis of
the shear and torsional wave speeds here, as this
is clearly the first essential step in the overall
analysis of these problems. The next step will
be the more complicated solution of the exten-
sional wave problem for these same systems.
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