Design Parameters for CVD Shrapnel Tiles

J.R. Hollaway

January 23, 2004
This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
CVD-2B Shrapnel Tiles

• **Purpose**
 – The purpose of the ceramic tiles will be to cover the inside wall of a spherical firing vessel and thus protect the inner liner from shrapnel

• **Design Constraints**
 – Select appropriate geometric shape, material and manufacturing processes for shrapnel mitigating ceramic tiles
 – Tiles must fit thru port openings
 – Tiles must conform to inner spherical or elliptical radius
 – Minimize the number of different tile sizes
 – Minimize total number of tiles
 – Minimize cost
 – Tiles must be assembled from the inside

• **Vessel Dimensions**

<table>
<thead>
<tr>
<th>CVD-2B Vessel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Openings</td>
<td>11.500” Diameter</td>
</tr>
<tr>
<td>Inner Spherical Liner</td>
<td>18.637” Radius</td>
</tr>
<tr>
<td>Liner Material</td>
<td>Alum 2219-T6</td>
</tr>
</tbody>
</table>
CVD-2B Shrapnel Tiles

• **Design Option #1**
 - 5 rows of tiles
 - 3 sizes of tiles
 - 12x 30° apart for each row
 - Total tiles = 60
 - Equatorial tile spans weld joint at vessel waist
 - Tiles ‘stack’ on horizontal edges
 - Tiles inter-lock radially with beveled edges
 - Design #1 assumes friction stir-weld step is machined off
CVD-2B Shrapnel Tiles

• **Design Questions**
 1. Can the tiles be manufactured from these five material choices: B₄C, SiC, Al₂O₃, TiB₂ and Pyrex
 2. Can the tiles be easily manufactured into the shapes shown on the detail drawings
 3. For the ceramic tiles, which Pressing Process would be used: Dry, Cold Isostatic, Hot, Hot Isostatic
 4. What type of mold design would be required, ie, Graphite or Steel molds; design limits on molds
 5. Expected % of shrinkage after Firing process
 6. What is high cost driver in the manufacturing process: Shape of tile, Thickness to Length ratio, Tolerances, Final Machining or Post Surface Finishing
 7. What else…?
CVD-2B Shrapnel Tiles

Design Option #1

Shrapnel tiles bonded inside Firing Vessel

Level 2 Tiles

Level 1 Tiles

Equatorial Tiles

Friction Stir-Weld Joint
CVD-2B Shrapnel Tiles

Design Option #1
Tile assembly without Vessel
CVD-2B Shrapnel Tiles

ISO VIEW
SCALE 1/2

NOTES
UNLESS OTHERWISE SPECIFIED:
1. ALL DIMENSIONS ARE IN INCHES.
CVD-2B Shrapnel Tiles
CVD-2B Shrapnel Tiles
CVD-2B Shrapnel Tiles
CVD-2B Shrapnel Tiles

NOTES
UNLESS OTHERWISE SPECIFIED:
1. ALL DIMENSIONS ARE IN INCHES.
2. DIMENSIONING AND TOLERANCING PER
 SURFACE TOLERANCE SYMBOLS PER ANSI
4. FINISH: 125 MICROINCHES ALL OVER.
5. EDGES ARE GREAT CIRCLES.
6. PART CREATED FROM THE FOLLOWING
 MOLD COMPONENTS:
 MALE MOLD, UPPER
 FEMALE MOLD, LOWER
7. ESTIMATED VOLUME: 32.6 INCH³
8. MANUFACTURE PER THE FOLLOWING PROCEDURE:
 A.
 B.
 C.
 GLASS SHALL BE WRAPPED IN TISSUE,
 OVERWRAPPED WITH CUSHIONING MATERIAL
 AND SECURED WITH TAPE.
9. BAG AND TAG WITH PART NUMBER.

ISO VIEW 1
INNER SURFACE
SCALE 1:1

ISO VIEW 2
OUTER SURFACE
SCALE 1:1

PRELIMINARY
FOR INTERNAL USE ONLY
NOT FOR DISTRIBUTION
SUPPLEMENTARY MATERIAL

UCRL-TR-201986
CVD-2B Shrapnel Tiles
CVD-2B Shrapnel Tiles

NOTES

UNLESS OTHERWISE SPECIFIED:
1. ALL DIMENSIONS ARE IN INCHES.
 Surface Texture Symbols PER ANSI
4. FINISH: 125 MICROINCHES ALL OVER.
5. EDGES ARE GREAT CIRCLES.
6. PART CREATED FROM THE FOLLOWING
 MOLD COMPONENTS:
 MALE MOLD, UPPER AA43-X X X X X
 FEMALE MOLD, LOWER AA43-X X X X X
7. ESTIMATED VOLUME: 9.2 INCHES
8. MANUFACTURE PER THE FOLLOWING PROCEDURE:
 1.
8. GLASS SHALL BE WRAPPED IN TISSUE
 OVERWRAPPED WITH CUSHIONING MATERIAL
 AND SECURED WITH TAPE.
9. BAG AND TAG WITH PART NUMBER.
CVD-2B Shrapnel Tiles