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                                                          Abstract

A semi-empirical model was used to explain why the measured melting curves of
molybdenum, and the other bcc transition metals, have an unusually low slope
(dT/dP~0). The total binding energy of Mo is written as the sum of the repulsive energy
of the ions and sp-electrons (modeled by an inverse 6th power potential) and the d-band
cohesive energy described by the well known Friedel equation. Using literature values
for the Mo band width energy, the number of d-electrons and their volume dependence,
we find that a small broadening of the liquid d-band width (~1%) leads to an increase in
the stability of the liquid relative to the solid. This is sufficient to depress the melting
temperature and lower the melting slope to a value in agreement with the diamond-
anvil cell measurements. Omission of the d-band physics results in an Al-like melting
curve with a much steeper melt slope. The model, when applied to the f-electrons of the
light actinides (Th-Am), gives agreement with the observed fall and rise in the melting
temperature with increasing atomic number.

I. Introduction 
Recent advances in the application of laser-heated diamond-anvil cells (DAC) to

the study of melting now enable simultaneous pressure-temperature measurements to
be made in the megabar pressure range to 3000 K to 4000[1-4]. In the case of transition
metals the advances have lead to the discovery of unusually low melting slopes
(dT/dP~0) for the bcc metals, particularly in Groups VA and VIA of the Periodic
Table[3-4]. These results are at odds with conventional wisdom that melting
temperatures should rise continuously with increasing pressure [5]. However, new
measurements for Ta made at the Advanced Photon Source (APS)[4], and using x-ray
diffraction to detect melting, have confirmed the earlier results. The original purpose of
this report is to offer a theoretical explanation as to why the transition metal melting
curves have unusually low melting slopes. Mo was chosen as the test case for transition
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metals because it has the smallest measured melting slope of that group, and thus
provides the most severe test. Subsequently, it became apparent that the same physics
applied to the light actinides.

Conceptually, the paper first considers Al as the prototypical nearly free electron
sp metal and is modeled here by employing the inverse-sixth power repulsive potential.
We then determine the consequence of adding d-electrons by building on the earlier
work of Ducastelle [6] and Pettifor [7] that the total binding energy of a transition metal
may be written in the form, 

† 

U = Urep + Ud -band .  Urep is the repulsive contribution of the

ions and sp-electrons and Ud-band is the cohesive energy of the d-band.
The equation of state for Urep is first developed in Section II and applied to Al in

Section III. In Section IV the Ud-band is included in the total energy by using the Friedel
equation[8], and the model is applied to Mo. The results of melting calculations are
discussed in Section V.

II. Inverse-6 equation of state
The equations of state (EOS) for systems interacting via purely repulsive inverse

power potentials,

† 

f(r) = B /rn ,                            (1)
have been studied extensively by computer simulations for the hard sphere (n=∞),
n=12, 9, 6, 4 and the one component plasma (n=1) [9,12]. An important simplifying
feature of this potential is that the excess Helmholtz free energy, and all of the
thermodynamic properties can be expressed as a function of a single parameter, the
scaled inverse temperature;

† 

Gn = bB /(a)n .                           (2)
b=1/NkT, a is the Wigner Seitz radius given by 4πnoa3/3=1 and no is the atom number
density.

The inverse 6th power is of special interest here because previous work has
shown that potentials near this power best represented the ab-initio liquid calculations
of Al [13] and Fe[14] and served as a reference  system for calculating the excess free
energy needed for high pressure melting studies.
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An exact analytic determination of the fcc and bcc free energies, including the
first order anharmonic term, has been reported by Dubin and DeWitt [10] for the cases
n=1 to 12. The expression for the excess solid free energy is,

† 

Fe
s

NkT
= MGn +

3
2

ln{2[ 3
4p

]n / 3Gn}+1- SH -
A1

G n
         (3)

M, SH and A1 are the Madelung term, excess entropy and first-order anharmonic
constants respectively. Values of these parameters for the inverse power potential are
tabulated [10]. 

† 

MGn  is the Madelung energy, or the energy of the static lattice. While the
terms SH and A 1 are small, they determine the relative stability of the two solid
structures near melting. The thermal internal energy, is related to the excess free energy

by 

† 

Uth
NkT = G∂(Fe /NkT

∂G).

The results of Monte Carlo simulations for the excess liquid energy (Ue) [8] have
also been fitted [9] to analytic functions of  

† 

Gn :

† 

Ue /NkT = MGn + Uth /NkT                                           (4)

† 

Uth /NkT = bGn
1/ 4 + c  is the thermal energy. The excess Helmholtz free energy is

† 

Fe
l /NkT = MGn + 4bGn

1/ 4 + cLn(Gn ) + d .                         (5)
In the case of the inverse 6th potential, b=0.9267 and c=-0.584. d =is a constant of
integration which must be determined for solid-liquid phase transitions.

The 6th power potential appears to be roughly the border separating the stability
range of bcc and fcc phases at melting. Hoover et al. [15], determined that for n=6, the
fcc lattice is the minimum energy structure, while the looser packing of the bcc solid
makes the entropy higher and favors the stability of this phase at higher temperature
and near the melting. Laird and Haymet [11] have found a smaller region of bcc
stability for n=6 than did Hoover et al.

More recently, Dubin and DeWitt[12]have determined that fcc, and not bcc, is the
stable phase at melting for the n=6 and stiffer potentials. However, despite these
differences there appears to be a general agreement that for values of n ≤ 6, bcc is the
stable crystal structure at melting and occupies an increasingly larger portion of the
phase space with decreasing values of n. In the case of the one-component plasma
(n=1), bcc is the only stable phase below the melting temperature. Dubin and DeWitt
suggest that the apparent discrepancies for n=6 follows from the neglect of higher-order
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anharmonic corrections which become important near melting and allow that the fcc-
bcc-liquid triple point is near n≈6.

 It is now necessary to determine a set constants in the free energy equations (3)
and (5) that are in reasonably agreement with the phase diagrams predicted by L-H and
D-D. Since D-D limited their calculations to the fcc-bcc phase transition, while L-H also
calculated the solid-liquid transition for both  structures, we used the L-H values of

† 

GS and 

† 

GL , the solid and liquid parameters at melting and freezing respectively to adjust
two of the constants .

In the case of fcc melting L-H found 

† 

Gsand 

† 

GL  to be 95.34 and 92.98 respectively.
In order for our model to predict these values we used the liquid constants b and c cited
above in (5) and set  d (=2.8405) to fit the L-H excess liquid free energies. For the fcc free
energy we used the parameters of D-D, SHfcc=-1.6585 and A1fcc = 0.416.

To fit the L-H bcc melting parameters, 94.52 and 92.17, we used the same liquid
model as in fcc melting, but adjusted the value of SHbcc in (3) given by D-D from –1.6585
to –1.586. This step is reasonable since D-D, as noted above, suggest discrepancies may
have followed from the neglect of higher-order anharmonic corrections.

Considering the closeness of the predicted bcc and fcc melting parameters 

† 

GS and

† 

GL , these adjustments in fact played only a negligible role in the present study. But they
provide some measure of satisfaction by allowing us to treat Al as fcc,  and Mo as bcc .
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III. Application to Aluminum
In order to apply the inv-6 equation of state to the melting of Al two

approximations were made.
First, we replaced, the Madelung energy in equations (3-5) with the room

temperature isotherm determined from diamond-anvil-cell measurements and fitted to
the Birch-Murgnahan (BM) equation[16], corrected to their 0 K values. The excess free
energy, total energy and pressure for each phase may be expressed as,

† 

Fe = UBM + Fth- inv6  ,                                       (6)

† 

E = UBM +1.5NkT + Uth- inv6,                         (7)
and

† 

P = PBM +
NkT
V

+
n
3

Uth- inv6

V
.                            (8)

The second approximation involves determining the value of B in the potential
(1). Vocadlo and Alfe calculated the melting curve for fcc aluminum employing density
functional theory molecular dynamics and an inverse-6.7 power potential reference
system with B=247 eV-cm6.7, which best represented their liquid simulations [13]. By
using the value of B=227 eV-cm6 in (1) we are able to calculate a melting curve and
Hugoniot that are in excellent agreement with melting measurements made in a laser-
heated DAC [2].

The melting curves shown in Fig. 1 were calculated by two methods. In the first
we utilized the scaling properties of the inverse-power potentials. By using Eq. 2, a set
of melting temperatures and volumes could be chosen such that 

† 

GS =95.34 for the solid,
and 

† 

GL=92.98 for liquid freezing. The calculated pressures appear as the two parallel
curves, the lower curve being the solid melting curve. In a second method the melting
point was determined at a given temperature by calculating the difference in the solid
and liquid Helmholtz free energies, ∆F, at a series of volumes and then determining the
volume at which ∆F=0. The pressure of the transition can be estimated by averaging the
pressures of the two coexisting phases at the volume where ∆F=0. This method is useful
for those cases, such as metals, where the volume change across the transition is very
small, about 1.3% in the case of Al. The melting obtained using this second method is
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not plotted, but lies, as it should, between the solid melting and liquid freezing curves
determined using the first method.

The solid and liquid Hugoniots shown in Figs. 1 and 2 were calculated by
satisfying the equation

† 

E - Eo = 0.5(P + Po)(Vo -V ),                   (9)
where the subscripted variables are initial conditions in the solid at 298 K. The melting
and freezing curves, shown in Fig. 1, cross the calculated Hugoniot at 120 GPa and 150
GPa respectively, in good agreement with the experimentally determined values of 125
GPa and 150 GPa. The shock melting pressures shown were determined experimentally
from breaks in the shock sound velocity, but the temperature, not measured, had been
estimated using the Grüneisen model [17].
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IV Molybdenum
Molybdenum melts from the bcc phase at 2890 K. It is known to be stable in this

structure at room temperature to a pressure of at least 416 GPa [18]. The stability of the
bcc phase relative to close-packed is accounted for by a relative gap in the electron
density of states (DOS) near the Fermi energy [19,20].  The driving force for a transition
to hcp at higher pressure is believed to be a pressure-induced s-p to d electron
transfer[21,22].

There is experimental and theoretical evidence which shows that upon melting
changes occur in the atomic ordering of liquid Mo, and other bcc transition metals,
which influence the valence electronic structure. Since it is well known that the bcc and
fcc structures of transition metals have electron density of states (DOS) which differ
significantly [21,22], then it should be expected that the melting of the 8-fold
coordinated bcc structure to a more closely-packed liquid structure will lead to changes
in the DOS. Time resolved photoelectron spectroscopy measurements for these metals
show changes in the DOS in the solid and liquid which reflect the changes in atomic
ordering from bcc to a close-packed-like ordering[23-25].

Ab-initio molecular dynamics simulations for open-shell transition metals also
predict changes from a bcc structured DOS in the solid, with peaks and valleys, to a
smoothed DOS in the liquid [26,27,28]. In contrast to the open-shell transition metals,
the DOS of Cu, which has a filled d-band changes only slightly upon melting[28,29].

In effect, experiment and theory tell us that upon melting, both the atomic and
the electron system in an open shell transition metal undergo a structural
rearrangement. The significance of these results for melting is that, while the free
energy changes resulting from atomic reordering are treated quite naturally by the
statistical mechanical models, the differing contributions of the solid and liquid d-
electron systems must also be considered.
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A. Friedel model
 We extend our Al model to Mo by writing the excess free energy of the solid and

liquid phases as the sum of contributions from the BM static lattice, the inv-6 potential
thermal free energy, and add the d-band cohesive energy.

† 

Fe
s = UBM + Fth- inv6

s + Ud -band
s  ,                                       (10)

and

† 

Fe
l = UBM + Fth- inv6

l + Ud -band
l .                                        (11)

For the d-band cohesive energy,  Ud-bond , we employ the well known Friedel model [8]

† 

Ud -band = -
W
20

nd (10 - nd ) .                                             (12)

W is the bandwidth and nd is the effective number of d-electrons per ion. Since this term
is temperature independent the thermal properties determined by the inv-6 EOS
remains unaffected.

The Friedel model has proven successful in describing the variation of the
cohesive energy of transition metals and their alloys with the filling of the d-band [30].
The cohesion is a maximum at the middle of a series (near Mo) when all the bonding
states are filled and the anti-bonding states are empty. The contribution of the Friedel
term to the pressure is then

† 

Pd -band =
∂W
∂V

nd (10 - nd ) /20.                                              (13)

 The volume dependence of W has been described by, 

† 

W = Wo(RWS
o /RWS )n , where Wo and

† 

RWS
o  correspond to the equilibrium band width and Wigner Seitz radius. n is a

parameter obtained from electron-band theory calculations. Since the function W
increases with decreasing volume, Pd-band decreases with increasing compression. Values
for Wo and nd and n have been determined metal across the transition series. For bcc Mo,
Pettifor [31 ] has calculated values of Wo=9.5 eV and n=4.3. We assume that the liquid
phase can also be treated using the Friedel model, but with slightly different electronic
properties.
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  Since the DAC solid isotherm, as represented by the BM fit, already includes the
UM and Ud-band terms we avoid double counting and rewrite (10) and (11) as

† 

Fe
s = UBM + Fth- inv6

s  .                                                      (14)

† 

Fe
l = UBM + Fth- inv6

l + dUd -band
l-s  .                                       (15)

 where 

† 

dUd -band
l-s = (Ud -band

l -Ud -band
s )  is the change in d-band cohesive energy going from

the solid to liquid phase.  The 

† 

dUd -band
l-s term, which is small, but essential in the case of

melting, enters as a perturbation.

 B. Melting
  Since there is little in the way of data for Wo and nd available for liquid transition
metals we assume that the liquid is effectively a close-packed fcc-like system. We rely
on Moriarty’s [21] calculation for estimates of nd for bcc and fcc Mo calculated over a
two-fold range in density. Moriarty found that nd increased from about 4.2 electrons at
normal density to about 4.72 at two-fold compression and that fcc had an nd higher by
about 0.1 electrons. To the extent that the liquid coordination number may be fcc-like
we assume that the fcc values approximate those of the liquid. Since the parameter n
increases with increasing nd, then n must increase upon melting. A trial value of n=4.4,
increased from 4.3 in the solid, was set for the liquid. A value for B, of 400 eV-cm6, was
obtained for the inverse-6 potential (1) by requiring that the normal melting point for
Mo approximate the experimental value of 2890 K.

Melting points were obtained at a given temperature by calculating the
difference in the solid and liquid Helmholtz free energies,

† 

DF = Fth- inv6
l - Fth- inv6

s + dUd -band
l-s                                    (16)

  at a series of volumes and then determining the volume at which ∆F=0. Fig. 3 shows
the DAC measurements, the melting curves calculated by including and omitting the

† 

dUd -band
l-s  term,  and the calculated solid and liquid Hugoniots. The melting curve

calculated by omitting the 

† 

dUd -band
l-s  term is in agreement with the predictions made by

Moriarty [21], using pair potentials, and by Burakovsky et al.[32] using a Lindemann-
like scaling model.
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The melting curve calculated by including the 

† 

dUd -band
l-s  term in (16) is in good

agreement with the DAC measurements which show a slow rise in the temperatures up
to 40 GPa with a flattening of the melting slope to dT/dP~0 above that pressure. But
above 90 GPa the model predicts that the temperatures begin to decrease and cross the
solid Hugoniot near 181 GPa and 2639 K. The predicted decrease is possibly due to our
limited knowledge of the Friedel model parameters at high density. The appearance of
negative melting slopes in d-electron systems is well known and reviewed  below in
Section IV. However, by lowering the value of n slightly, from 4.4 to 4.39, the melting
temperature near 220 GPa could be raised from 2205 K to 3011 K.

Plotted in Fig. 4 are 

† 

(Fth- inv6
l - Fth- inv6

s )  and 

† 

dUd -band
l-s  at  a series of temperatures at 75

GPa. Melting occurs at 

† 

DF =0. The contribution of 

† 

dUd -band
l at this pressure is 0.128

eV/atom, which is about 1% of W. This reduction in the liquid free energy, even while
numerically small , leads to a decrease in the melting temperature from 4942 K to 3170
K.  The associated pressure drop is small, -5 GPa, but not negligible.
D. Electron density of states (DOS)

To better understand the solid and liquid structural properties near these
conditions first-principles molecular dynamics simulations were performed for 54-atom
Mo systems in the solid (at 3459K) and liquid (at 4960K) states in a periodic box,
respectively.  Plane-wave pseudo-potential method was used for the electronic
structure calculation while the ionic trajectories were proceeded by the classical
equation of motion. At each time step, the ionic positions were determined using the
Hellman-Feynman forces obtained from electronic structures calculation in which the
Bohn-Oppenheimer approximation is applied.  The initial configurations for the 54-
atom solid and liquid states were generated based on interatomic potentials derived
from the modeled generated pseudo-potential theory (MGPT) [21,26]. The systems were
equilibrated for 15 pico-seconds using MGPT potentials and then passed on to the first-
principles MD calculations where the systems were further equilibrated for 0.5 ps and
then ran for 3-4 pico-seconds to gather statistics.

Fig. 5 shows the calculated electron density of states (DOS) for liquid and solid
Mo made at temperatures of 4956 K and 3459 K respectively. While the plots may have
only a semi-quantitative significance they do indicate that the DOS in the liquid is
smoother and broader than in the solid, leading to a larger value of W for the liquid.
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The data in Fig. 5 implies that W is lower in the liquid  by about 0.3 eV/atom. These
results are consistent with those of Moriarty that showed the melting of the solid led to
about a 0.3 eV/atom lowering of the Fermi energy.

D. Comparison with transitions reported in shock experiments.
Returning to Fig. 3, an extrapolation of the experimental melting measurements

shows that it crosses the Hugoniot near 210 GPa and 3200 K. This is in excellent
agreement with the pressure at which a break in the shock sound velocity was observed
by Hixson et al. [33] and had been attributed to a bcc-fcc transition. In addition to the
transition at 210 GPa, Hixson et al.[33] observed a second break in the shock sound
velocity near 390 GPa and a calculated temperature near 10,000 K, which they attributed
to melting of the bcc solid.
 At 210 GPa and 3200 K, the pressure and temperature at which the Friedel model
solid melting curve crosses the Hugoniot has the value of G~200. This high value is a
consequence of the large depression in the melting temperature caused by the d-
electrons and suggests that the melt is highly viscous. If the second break in the
experimental shock data is real, we speculate that it may represent the transition from
the viscous fluid to a normal liquid, but at a temperature much below 9000 K.

Evidence for the presence of a highly viscous state in transition metal melts has
been reported by Brazhkin and Lypkin [34]. They carried out quenching experiments on
transition metal melts for which an inspection of the grain size suggested strongly that
the melts are very viscous and that the viscosity grows considerably along the melting
curve. Brazhkin and Lypkin note that this appears to be the case in Fe providing some
basis to the theory that the liquid in the Earth’s core is viscous.
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V. Melting of the actinide metals.
The chemical bonding in transition metals, and light actinides Th to Pu, are

known to have strong similarities in that transition metal bonding is due to delocalized
d-electrons and the light actinides by delocalized f-electrons. Bonding in the heavy
actinides (Am and beyond) are characterized by more localized f-orbitals. Pu is located
at the border of the light and heavy actinides. The unusual room temperature structures
of the light actinides are believed due to the f-electron character [35  ].
 Two related properties of the light actinides are particularly note worthy. The
ambient melting temperatures of the light actinides and their alloys are anomalously
low and decrease starting from Th, reaching a minimum near Pu, then rise for the
heavier actinides [36 ]. To explain the anomalously low melting points of light actinides
Kmetko and Hill [37] suggested that the angular dependence of f-electron wave-
functions favored bonding in the liquid rather than the bcc phase. In a general sense,
this is consistent with the view of transition metal melting that we have developed in
this report.

The equilibrium room temperature volumes decrease from Th to a mininum at
Pu then rise to Am and Cm [38]. Johannson and Skriver [39], explained this trend as
being directly related to the increase in f-electron bonding with calculations using a
simple model, similar to ours, which included the Friedel expression to calculate the f-
band energy.

Rather than calculate the ambient melting temperatures specifically for each of
the light actinides, we constructed a “hypothetical light actinide” series by simply
adding f-electrons to thorium which, like all of the light actinides, melts from the bcc
structure. Th is often considered as a transition metal with small f-character and a rather
broad band of unoccupied 5f states above the Fermi level. By increasing the f-electron
occupancy systematically we are able to simulate roughly the change in melting
temperature across the light actinide series.

The theoretical model is the same as used in the preceding Section, except the
Friedel term is written for f-bands ,

† 

U f -band = -
W f

28
n f (14 - n f ) ,                                             (17)
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with the remaining expressions for the pressure and free energy unchanged. For 

† 

W f ,

the f-band width, we use the simple formula and parameters employed by Johannson
and Skriver[39], 

† 

W f = W f
o(Vo /V )2  ,where Wo and Vo correspond to the equilibrium band

width and volume respectively. nf,, is f-electron occupation number. Wo = 3.6 eV.
The Birch-Murgnahan fit to the lattice pressure and energy came from the work

of Bellussi et al[40].  We retained the use of the inverse 6th power potential with a value
for B = 1050 eV-cm6 and fit the melting point of thorium by using an nf occupation
number of 0.4. Wills and Eriksson [41] calculated that for Pa and U the fcc lattice has an
f-electron occupancy about 1.5 to 5 % higher than for bcc. In the melting calculations
described we chose an intermediate value, that the nf in a close-packed liquid was
higher by 1.025 than in the bcc solid.

Melting points were determined, as in earlier Sections, by calculating the
difference in the solid and liquid Helmholtz free energies, at a series of volumes, at a
given temperature by and then determining the volume at which ∆F=0. Fig. 7 shows the
calculated ambient melting temperatures and the experimentally determined points
plotted as a function of the f-electron occupancy. The f-electron occupancy of the
experimental data was taken from the theoretical values reported by Soderlind et al.
[42].
 The predicted melting temperatures of our “hypothetical light actinide” are in
good qualitative agreement with experiment. The model predicts a decrease in the
melting temperature with increasing f-electron character, with a minimum near 3-4 f-
electrons compared to the experimental 4-5 f-electrons.

VI. Discussion
In addition to transition metals and actinides, the association of low melting

slopes with d-electron character is widespread. It is well known that in the case of the
alkali and alkaline-earth metals the pressure induced increase of the d-electron
occupation number causes a flattening of the potassium melting curve above 4 GPa and
the appearance of complex structures in Ba, Sr and Ca[43]. In the case of Rb and Cs,
negative melting slopes (dT/dP<0) lead to a temperature minima and maxima below 10
GPa[44]. In effect, pressure transforms the heavy alkali and alkaline metals to early
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transition metals. The low melting slopes of the bcc transition metals, with  high
binding energies, represent the limiting cases of this trend.

The influence of d-electrons on melting at high pressure is nicely provided in Fig.
6 by a comparison of Al[2] and Mo[3] with Mg[43]. All three melting curves were
measured at the same laboratory. The melting curve of Mg which, like Al, is a nearly
free electron polyvalent metal, follows that of Al up to the transition pressure of 50 GPa.
Above that pressure the melting slope of Mg decreases and bends parallel to the
melting curve of Mo while the Al melting curve continues to rise. At room temperature,
Mg transforms from hcp to bcc at 50 GPa [45] while Al remains fcc up to 220 GPa, the
highest pressure for which measurements were made [16]. Theoretical calculations have
shown that the increase in d-character is responsible for these transitions [46]. This
suggests that the Al melting slope will also show a decrease near its fcc-bcc transition
pressure.

In summary, the melting of transition and actinide metals differs profoundly
from the case of rare gases and simple nearly free electron metals, such as Ar and Al,
where the electronic structure and effective inter-atomic forces remain unchanged upon
melting. Improvements in the theory will require a more detailed understanding of the
liquid electronic properties.
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Figure captions

Figure 1. Aluminum melting curve and Hugoniot. DAC measurements [2] (filled
circles). Calculated melting curves(solid curves). Calculated solid and liquid Hugoniots
(dashed curves), below and above 4700 K repectively. Shock melting points (filled
boxes) at melting and freezing pressures determined from breaks in the shock sound
velocity. Temperatures at the shock melting points were calculated using the Grüneisen
model [17a].

Figure 2. Aluminum Hugoniot. Experimental data (filled circles) [17b]. Hugoniot
calculations for solid (solid curve) and liquid (dashed curve).

Figure 3. Molybdenum melting curve and Hugoniot. DAC melting measurements [3]
(filled circles).  Calculated melting curves; described in text (solid curves). Earlier
calculations of Moriarty[21](dashed curve) and Burakovsky[32] (small dashed curve).
Calculated Hugoniots: solid (solid curve) and liquid (dashed curves).

Figure 4. Contributions to the excess free energy at  a series of temperatures near 75
GPa.

† 

(Fth- inv6
l - Fth- inv6

s )  and 

† 

dUd -band
l-s  are shown as the solid and small dashed curves.

† 

DF total  is the dashed-dotted curve. Melting occurs at 

† 

DF total=0.

Figure 5. Calculated DOS for liquid (solid curve) and solid Mo (dashed curve) made at
temperatures of 4956 K and 3459 K respectively.

Figure 6. Melting curves of Al [2], Mg[43 ] and Mo [3]. Near 50 GPa Mg transforms from
hcp to bcc [45,46].

Figure 7.Calculated ambient melting temperatures of the “hypothetical light actinides
series” (solid curve) and the experimentally determined points plotted as a function of
the f-electron occupancy (filled circles and dashed curve). The f-electron occupancy of
the experimental data was taken from the theoretical values reported by Soderlind et al.
[42].
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