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Atomic-Based Calculations of Two-Detector Doppler-Broadening Spectra 
 
P.A. Sterne, P. Asoka-Kumar and R.H. Howell 
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 
 
Abstract 
 
We present a simplified approach for calculating Doppler broadening spectra based purely on atomic 
calculations.  This approach avoids the need for detailed atomic positions, and can provide the 
characteristic Doppler broadening momentum spectra for any element.  We demonstrate the power of 
this method by comparing theory and experiment for a number of elemental metals and alkali halides.  In 
the alkali halides, the annihilation appears to be entirely with halide electrons. 
 
Keywords:  “Doppler Broadening”, “alkali halides”, “momentum density”, enhancement 
 
The coincidence Doppler Broadening method [1-4] provides a powerful probe of the chemical 
composition of vacancy-related defects in materials.  By using two germanium detectors in 
coincidence, this approach provides spectra into the high momentum region where the 
momentum density is dominated by atomic-like electrons, thereby providing information 
about the chemical environment of the positron.  This technique has been successfully applied 
to a wide variety of systems [5-9].   
 
A complete analysis of the resulting spectra requires a well-calibrated set of experimental 
reference data, or a set of theoretical curves, or both.  Reference data are not always readily 
available, and theoretical calculations are complicated by the fact that existing procedures 
require full electronic structure calculations on well-defined unit cells [10,11]. Specific atomic 
configurations are not always available for complicated defect structures and full calculations 
are expensive for large defects.  As a result, interpretation of the spectra is often hampered by 
an incomplete knowledge of the spectral features associated with the constituent atoms in the 
sample.  In many cases, interpretation of the experimental data does not require a detailed 
knowledge of the atomic positions; the questions of interest are “Is the positron annihilating 
with A or B electrons in an AB alloy?” or “Does some element make any contribution to the 
spectrum?”  To answer these questions, we only need to know the general shape of the 
spectrum associated with each element. 
 
At higher momentum values, greater than around 1 a.u., the spectrum is dominated by 
contributions from electron states with well-defined orbital character, i.e. atomic-like electrons.  
The spectrum is typically dominated by d-electrons in transition metals, by f-electrons in the 
rare earths, and by s and p core states in the alkali and alkaline-earth metals.  Figure 1 shows 
the orbital contributions to the Doppler broadening spectrum for copper. The spectrum at 
higher momentum values is dominated by the atomic-like d-electrons.  These atomic-like 
orbitals have a momentum distribution that is determined primarily by their attraction to the 
nucleus, and so is little affected by solid-state effects. This suggests atomic calculations alone 
can provide accurate element-specific momentum densities at higher momentum without 

 



 
 

requiring information about the atomic positions or performing complicated calculations for 
specific crystal or defect structures.  
 
We have implemented a fast and reliable atomic-based procedure for calculating element-
specific one-dimensional momentum distributions for comparison with coincidence Doppler-
broadening measurements. A standard self-consistent-field atomic program [12] is used to 
compute the electron orbitals with an electronic configuration appropriate for the atom in the 
solid; for example, bulk copper should be calculated with a (4s13d10) valence electronic 
configuration.  The positron potential is constructed using the self-consistent electron charge 
density from the atomic program and we solve for the unbound positron state around the 
atom at a fixed energy, typically chosen to be the energy zero for the atomic system. The 
electron and positron wavefunctions are then used to compute the electron-positron 
momentum density contribution from each electron orbital.  This approach relies on the fact 
that the positron variation near the nucleus is essentially independent of the atomic 
environment, so the shape of the positron distribution and its relative overlap with the various 
core states for an atom in a solid is well represented in a purely atomic calculation.   
 
The experimental spectrum contains the momentum density along one momentum direction 
corresponding to an integration of the three-dimensional momentum density over the other 
two directions in momentum space. In previous work [10,11], this one-dimensional 
momentum distribution was calculated from the spherically-symmetric three-dimensional 
radial momentum distribution around the atom by performing a two-dimensional integration 
in a cylindrical geometry.  This approach involves an integral over momentum in the form 
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where pr is the radial momentum, pz is the one-dimensional momentum, and ρ3d and ρ are the 
three-dimensional radial atomic momentum density and the1-D momentum density 
respectively.  This has the problem that it requires calculation of the radial momentum density 
to large momentum values. Although the momentum density becomes small at large values, it 
also begins to oscillate rapidly, leading to difficulties in convergence and the need for a finer 
radial grid for the real-space integrals involving the electron and positron wavefunctions.  In 
order to avoid this problem we use an alternative formulation in which the integral over the 
two directions x and y in momentum space is performed analytically using the delta-function 
identity  
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The resulting integrals for the one-dimensional momentum density are well-behaved real-
space integrals, requiring an accuracy in integration comparable to that required for the atomic 
calculations.  Full details will be presented elsewhere. This approach entirely avoids numerical 
p-space integration with the accompanying inaccuracies due to cutoffs in momentum space 
and rapidly-varying functions at high momentum.  This approach is slower, since it requires 
an additional real-space integration for each radial grid point, but the method is still very fast 
and takes only a few seconds on a typical workstation. 
 

 



 
 

This atomic-based method provides a fast and convenient way to calculate spectra without 
knowing the atomic positions, so it can be used for both amorphous and crystalline systems, 
and for defects with unknown defect geometries.  The approach also has a number of 
limitations.  First, the results are sensitive to the choice of electronic configuration for the atom, 
so the user is required to introduce assumptions about the electronic configuration.  
Fortunately this is not a severe approximation, since different reasonable choices result in 
spectra with similar features at the same positions in momentum.  Second, the model does not 
account explicitly for environmental effects such as the changes in the shape of electron 
orbitals around a defect. These effects become less important at higher momentum, so it is 
reasonable to ignore them when we are most interested in the atom-specific high-momentum 
part of the spectrum.  Third, this method does not give relative annihilation rates between 
different atomic species in multi-component systems.  However, if this information is available 
from a solid-state-based positron calculation [13-16], the individual atomic spectra can be 
weighted by the relative annihilation rates to give a momentum density for a multi-component 
system.  Finally, the results are sensitive to the treatment of the electron-positron enhancement 
factor [17], and a careful treatment of this enhancement is essential to produce physical results. 
 
The electron-positron enhancement is treated using a generalized-gradient approximation 
[18,19]. In the atomic calculations, the charge density becomes vanishingly small at large 
distances from the nucleus.  The density-functional-based electron-positron enhancement 
grows rapidly as the charge density becomes very small [17], resulting in a large enhancement 
of the more spatially-extended valence electrons and a corresponding increase in the low-
momentum component of the spectrum.  In the solid, the charge density never becomes as 
small as it does in atomic calculations, so the enhancement obtained from the atomic 
calculation will result in an unphysical enhancement for the more extended atomic orbitals in 
the solid.  Two simple approaches are used to ensure that the treatment of enhancement in the 
atomic-based calculations is appropriate for solid-state systems.  First, we truncate the radial 
integral at some cutoff radius.  By imposing a cutoff of 3-4 a.u., the positron momentum 
density calculation is limited to the region where the atomic charge density is large enough to 
avoid unphysical enhancement. However the integral may miss a sizable fraction of the 
electron charge density with such a small cutoff, so in practice we choose a larger cutoff of 
around 10 a.u.  With this cutoff, the charge density at large r is still small enough to result in an 
unphysically large enhancement on the valence electrons, so we impose a second correction by 
introducing a minimum charge density for the enhancement function.  When the actual charge 
density is smaller than this minimum, the smaller enhancement factor associated with this 
minimum charge density is used.  The choice of minimum charge density is determined by the 
system at hand.  For example, in elemental metals it can be chosen to correspond to a 
physically meaningful density such as the interstitial charge density or the average conduction 
electron charge density.  The resulting momentum densities are quantitatively affected by the 
choice of minimum charge density, but the resulting spectra are qualitatively very similar, as 
was the case for changes in the electronic configuration.  In general the choice of a physically 
reasonable minimum charge density is straightforward and the resulting spectra are relatively 
insensitive to reasonable changes in its value.  
 

 



 
 

We demonstrate the effectiveness of this method by comparing theoretical calculations with 
experiment for a number of systems.  Figure 2 shows such a comparison for a number of 
elemental metals.  In order to enhance the features in the otherwise rather featureless spectra, 
we have plotted the ratios of the momentum curves to a reference spectrum, in this case 
germanium. Note that neighboring elements such as Ni and Cu have rather similar spectra, 
while there are much clearer differences between these elements and Al.  Figure 3 shows 
similar ratio spectra for a number of potassium halides.  The observed experimental lineshapes 
correspond closely to the theoretical shapes of the associated halide.  It is noteworthy that 
there is essentially no evidence for annihilation with the alkali metal atom in these spectra, and 
this has also been shown to be the case for a large number of alkali and alkaline-earth halides 
[20]. 
 
In the calculations presented here, we have made no attempt to improve agreement with 
experiment by varying the electronic configuration of the atom, the minimum charge density 
for the enhancement, or the energy of the positron.  The general shapes of the ratio curves are 
relatively insensitive to changes in these parameters, and the calculations presented here are 
already accurate enough to allow discrimination between the various elements without 
requiring any further adjustment.  We have investigated the changes in the calculated 
momentum densities with these parameters.  The primary effect is to change to relative 
sensitivity to core and valence electrons; for example, increasing the positron energy leads to 
an increased positron overlap with the more tightly-bound core electrons, generally resulting 
in an increase in the momentum density at higher momentum values.   These effects will be 
discussed in detail elsewhere. 
 
In conclusion, we have demonstrated that an atomic-based program can produce theoretical 
one-dimensional momentum densities to aid in the interpretation of coincidence Doppler 
broadening spectra.  The element-specific nature of the spectra at higher momentum values 
can be used to identify the nature of the electrons with which the positron is annihilating, and 
hence determine the atomic character of the region surrounding the positron in the solid.  This 
atomic-based approach provides a fast and convenient way of identifying the “fingerprint” 
associated with a particular element in the Doppler-broadening spectrum.  
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Figure Captions 
 

1. Calculated electron-orbital decomposition of the 1-D electron-positron momentum 
density for Cu.  

 
2. Experimental (a) and theoretical (b) coincidence Doppler ratio curves for a number of 

elemental metals.  Experimental ratios are taken with respect to an experimental 
germanium spectrum. Theoretical ratios are taken with respect to a theoretical 
germanium spectrum, providing a more challenging test of the theory.  The theoretical 
curves have been convoluted with a 0.38 a.u. gaussian to account for experimental 
resolution. 

 
3. Experimental (a) and theoretical (b) coincidence Doppler spectra for a number of 

potassium halides.  The correspondence of theory for the halides with experiment 
suggests that essentially all the annihilation is associated with the halide electrons. 

 

 



 
 

 
Fig.1 
 

 



 
 

 

 
Fig. 2 
 

 



 
 

 

 
Fig. 3 
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