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SIMULATIONS OF UNDERGROUND STRUCTURES SUBJECTED TO 
DYNAMIC LOADING USING THE DISTINCT ELEMENT METHOD 

J. P. Morris', L. A. Glenn', F. E. Heuze', M. P. Bonner' 

'Energy and Environment, Lawrence Livermore National Luboratoly, Livermore CA 94551 

Abstract. We present preliminary results from a parameter study investigating the stability of 
underground structures in response to explosion-induced strong ground motions. In practice, even the 
most sophisticated site characterization may lack key details regarding precise joint properties and 
orientations within the rock mass. Thus, in order to place bounds upon the predicted behavior of a 
given facility, an extensive series of simulations representing different realizations may be required. 
The influence of both construction parameters (reinforcement, rock bolts,liners) and geological 
parameters (joint stiffness, joint spacing and orientation, and tunnel diameter to block size ratio) must 
be considered. We will discuss the distinct element method (DEM) with particular emphasis on 
techniques for achieving improved computational efficiency, including the handling of contact 
detection and approaches to parallelization. We also outline the continuum approaches we employ to 
obtain boundary conditions for the distinct element simulations. Finally, our DEM code is used to 
simulate dynamic loading of a generic subterranean facility in hardrock, demonstrating the suitability 
of the DEM for this application. 

b INTRODUCTION 

This paper summarizes a /  methodology for 
prediction of damage to an underground structure 
due to explosive loading. To predict damage 
sustained by underground structures, several 
coupled regions must be modeled (set Figure 1). In 
the immediate vicinity of an explosion, the ground 
shock is sufficient to rubblize the rock, material 
strength is irrelevant, and the material behavior is 
hydrodynamic. Further 2 from the explosion, 
material strength becomes important. Finally, in 
the vicinity of the facility, the detailed structure of 
the rock mass and the excavation itself are 
important. 

Traditionally a rock mass is deemed to fail when 
the strength of the material is exceeded. Failed rock 
is no longer able to withstand load without 
undergoing inelastic strains. However, hard rock 

strength increases markedly with increased 
pressure and yet it has been observed that 
functional damage or even complete tunnel 
collapse can occur at stress levels far below those 
previously thought to be required. For example, 
Figure 2 shows the collapse of an excavation in tuff 
subjected to loads significantly lower than the 
compressive strength of the rock. In this example, 
the discrete nature of the rock mass is evident and 
failure has occurred through block displacement. 

Clearly, the orientation, spacing, and shear 
strength of geologic discontinuities such as joints 
and fractures can control the behavior of a tunnel. 
Moreover, under shear loading, hard rock joints 
may dilate strongly before reaching peak strength, 
after which the strength can drop rapidly with 
increased loading (Goodman 1980). As a result of 
the controlling effects of the joints it is not possible 
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Figure 1. To predict damage inflicted upon hard and deeply buried targets, several coupled regions must be modeled. 
to estimate tunnel response via continuum based 
analysis alone. 

By nature, the Distinct Element Method (DEM) 
can readily handle large deformation on joints and 
fractures and the Lagrangian nature of the DEM 
simplifies tracking. of material DroDerties as blocks 
of mati 
exact 
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erial move. It is also possible to guarantee 
conservation of linear and angular 
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and can incorporate experimentally observed 
effects such as, cohesion, joint dilation, friction 
angle, and hysteresis (Heuze et al. 1993). 

,The DEM has been applied to a wide range of 
problems in geomechanics. For example, 
Antonellini and Pollard (1995) simulated the 
formation of shear bands in sandstone using the 
DEM. Morgan (1999a,1999b) applied the DEM to 
the mechanics of granular shear zones. Heuze et al. 
(1993) used the DEM to analyze explosions in hard 
rock. Cundall (2001) reviews the application of the 
DEM to simulation of granulai material and rock. 

OUR DEM IMPLEMENTATION 

We have developed a DEM capability called the 
Livermore Distinct Element Code (LDEC) (Morris 
et al, 2003). We employ the DEM as defined by 
Cundall and Hart (1992). In particular, the 
"Common-Plane'' approach (Cundall, 1988) is used 
to reduce the complexity of the contact detection 
algorithm. The iterative procedure of the common- 

because the common-plane orientation from 
given time-step typically provides a good ir 
guess of the orientation for the following time-r 
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plane approach is easy to implement and is very 
efficient for many classes of problem. This is 

any 
iitial 
step. 

much between time steps, the iterative procedure 
converges rapidly. In addition, the method detects 
all new contacts between blocks resulting from 
relative block motion. 
The number of distinct elements used in a single 
simulation is limited by the available 
computational power (both processor speed and 
available memory). For large problems involving 
hundreds of thousands or millions of blocks, 
parallelization can be used to increase 
computational speed and efficiency. We chose to 
use an approach similar to Cleary and Sawley 
(1999) and parallelized the DEM through matial 
domain decomposition. TI 
is divided into nearest I 

used to identify neighbc 
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To reduce the amount of time used for 
communication, each processor performs 
calculations on blocks that do not directly interact 
with neighboring processors while communication 
occurs. Duplicate calculations are performed on 
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Communication occurs via message passing (M 
at the start of each time step. All blocks wit1 
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each processor in the region of overlap where 
blocks are copied back and forth. Consequently, 
speedup is best for larger problems where the 
region of overlap between processors is a smaller 
fraction of the total work performed. 
Most commonly, deformation within the 
individual blocks is introduced into DEM 
formulations by using additional standard 
continuum discretization within the blocks. For 
example, finite elements or finite differences can 
be used to allow the blocks to deform (Cundall, 
1980). With LDEC, the blocks are modeled using 
the theory of a Cosserat point (Morris et al., 2003). 
Using this approach the kinematics of the present 
deformed configuration of the block are 
characterized by the position vector of the blocks 
center of mass and a triad of three deformable 
director vectors. 

Figure 2. An excavation, reinforced with rockbolts 
within tuff, collapsed at low stress. 

SIMULATIONS OF UNDERGROUND 
STRUCTURES 

applying each in different regions of the probler 
as discussed above and illustrated in Figure 1 
Typically, the depth of the tunnel is large compare 
x r t i t h  thn &.m nf thn hlnrl-c rnqlrinn n n n  the rnrk ~ n ,  

Our approach to simulation of excavation 
damage due to ground shock is to combine 
continuum and discrete numerical methods by 
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continuum approaches can be used to provide 
boundary conditions for the DEM simulations. 

h m o v  et al. (2001) present an approach for 
accurately modeling projectile penetration and 
explosions in rock media. Using an Eulerian code 
(GEODYN) Lomov et al. (2001) fit a constitutive 
model (Rubin et al. 2000) to peak velocity and 
displacement attenuation data from tamped 
(buried) nuclear explosions in hard rock. This 
continuum treatment was able to reproduce the 
observed data to within a factor of two over ten 
orders of magnitude in yield. 

The velocity or stress history predicted by 
GEODYN at a given point can be used to provide 
boundary conditions for a DEM simulation of the 
response of an underground facility. For our 
simulation the generic underground structure 
illustrated in Figure 3 was embedded within a 
jointed rock mass under 7.5 MPa confining stress. 
The inint structure includ I 
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calculation. A pulse of approximately 0.2 kbar wa$ 
applied to the top of the rock island containing thc 
structure. Figure 4 presents results from thf 
simulation from two different viewpoints. Figure L 

shows a view into the basement rooms of thc 
facility at times of 0 and 0.6s after the arrival of thc 
loading pulse. This figure shows that thc 
simulation predicts extensive roof collapse in thc 
basement. 

RGURE 3. A generic underground facility with 
viewpoints in basement and entrance tunnel indicated. 

1 
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Figure 4. Simulation results indicate extensive damage to the “basement” room within the facility when subjected to a stress of 
a&roxirnatelv 0.2 kbar. 

Figure 5. Simulation resul 

Figure 5 shows 
0.0 and 1.5 s after the amval of tne pulse, ana 
indicates that the entrance tunnel remains intact 
with some blocks scattered along the floor. This is 
consistent with a narrower, arched, tunnel being 
more stable than a larger, flat roofed opening. 

DISCUSSION 

These results indicate that the DEM can 
provide estimates of excavation damage due to 
explosive loading that closely resemble damage 
observed in field tests. In practice, however, only 
limited knowledge of local fault zones may be 
available. To provide bounds on the response, one 
must study a range of probable fault geometries. 
That is, a stochastic analysis with many 
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parameter studies to investigate the range of tunnel 
responses for given variability of joint properties. 
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