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Abstract
We describe a stochastic inversion method for mapping subsurface regions where the 
electrical resistivity is changing. The technique combines prior information, electrical 
resistance data and forward models to produce subsurface resistivity models that are most 
consistent with all available data. Bayesian inference and a Metropolis simulation 
algorithm form the basis for this approach. Attractive features include its ability to: 1) 
provide quantitative measures of the uncertainty of a generated estimate and, 2) allow 
alternative model estimates to be identified, compared and ranked. Methods that monitor 
convergence and summarize important trends of the posterior distribution are introduced. 
Results from a physical model test and a field experiment were used to assess 
performance. The stochastic inversions presented provide useful estimates of the most 
probable location, shape, and volume of the changing region, and the most likely 
resistivity change. The proposed method is computationally expensive, requiring the use 
of extensive computational resources to make its application practical. 

Introduction
A fundamental earth sciences problem is to determine the properties of an object that we 
cannot directly observe. A variety of geophysical tomography techniques have been 
developed to provide detailed subsurface information. One such technique, electrical 
resistance tomography (ERT), is a relatively recent geophysical imaging scheme that 
provides 2-D and 3-D images of resistivity that are consistent with measurements made 
on an array of electrodes. With the increasing availability of computer controlled multi-
electrode instruments and robust data inversion tools, ERT is becoming widely available. 
The value of ERT for monitoring dynamic subsurface processes has promoted new 
applications in a wide range of environments (e.g. Park and Van, 1991, Daily et al., 1992, 
Ellis and Oldenburg, 1994, Sasaki, 1994, LaBrecque et al, 1996, 1999, Binley et al., 
1996, Morelli and LaBrecque, 1996, Park, 1998, Slater et al., 2000). 

The goal of any ERT inversion method is to calculate the subsurface distribution of 
electrical resistivity from a large number of resistance measurements made from 
electrodes. A deterministic inversion procedure searches for a model (i.e., a spatially 
varying distribution of resistivity) that gives an acceptable fit to the data and satisfies any 
other prescribed constraints. A common solution minimizes an objective function 
consisting of a regularized, weighted least squares formulation. Typically, the search is 
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conducted using iterative, gradient-based methods (e.g., Park and Van, 1991, Ellis and 
Oldenberg, 1994, LaBrecque et al., 1996).

The ERT inversion problem is typically complicated by a non-linear relationship between 
data and the inverted parameters, state-space dimensionality, under/over determined 
systems, noisy and dependent data, etc. Hence, an exact inversion is rarely possible. It is 
common to use unrealistic simplifying assumptions to mitigate the severity of these 
problems when using classical optimization algorithms.

Previous Work— Stochastic Methods:
One alternative to the classical ERT inverse methodologies uses stochastic techniques 
that search for electrical resistivity models that best fit the collected electrical resistance 
measurements. The literature describes a variety of these methods and their application to 
geophysical problems.  Zhang et al. (1995) suggest an inversion method that seeks to 
maximize a specified a posteriori probability density function of model parameters. In 
this case, maximizing the a posteriori density function is equivalent to minimizing the 
objective function in the classical inverse approach. Yang and Labrecque (1999) 
proposed an alternate solution that extends Zhang’s approach by allowing a more 
efficient estimate of the parameter covariance matrix.

Mosegaard and Tarantola (1995) and Mosegaard and Sambridge (2002), describe an 
alternative stochastic inversion approach. The technique utilizes Markov Chain Monte 
Carlo (MCMC) methods, a class of importance sampling techniques that search for 
models that are most consistent with available data. In this approach, the inverse problem 
is formulated as a Bayesian inference problem. An importance sampling search algorithm 
is used to generate an empirical estimate of the a posteriori probability distribution based 
on available observations. Specifically, solutions are sampled at rates proportional to 
their posterior probabilities.  This implies that models consistent with a priori
information as well as observed data are sampled most often, while models that are 
incompatible with either prior information and/or observations are rarely sampled. This is 
the key difference between traditional Monte Carlo and MCMC: the former samples the 
space of possible models completely at random, while the latter moves through the 
models according to their posterior probabilities. This method yields an efficient 
sampling scheme that affords the user the flexibility to employ complex a priori
information, and data with non-gaussian noise.  Mosegaard and Tarantola show that this 
approach can be used to jointly invert disparate data types such as seismic and gravity 
data.

Kaipio et al. (2000) describe the application of the MCMC approach to medical imaging 
problems using electrical impedance tomography (EIT, for the purpose of this paper, 
ERT and EIT are synonymous). They considered a variety of non-differentiable priors 
including a minimum total variation prior, a second order smoothness prior and an 
“impulse” prior that penalizes the L1 norm of the resistivity. Their approach estimates the 
posterior distribution of the unknown impedances conditioned on measurement data.
From the posterior density, various estimates of the resistivity distribution and associated 
uncertainties are calculated.



3

Andersen et al. (2001a) describe an MCMC geophysical approach for the Bayesian 
inversion of electrical resistivity data. They used random, polygonal models to represent 
the layered composition of the earth, and demonstrate the performance of the method 
using field data. They analyze the posterior distribution by looking for the resistivity
model that is most consistent with the data, and comparing it to the estimated posterior 
mean model. They also estimate the variability of the transitions between earth materials 
by comparing the standard deviation for each image pixel to its corresponding mean. 
Andersen et al. (2001b) describe another MCMC application aimed at the detection of 
cracks in electrically conductive media. Their approach assumes that the cracks are 
linear, non-intersecting and perfectly insulating. Using synthetic data, they demonstrate 
an updating scheme that assumes that the number of cracks is known a priori. Their 
approach estimates the posterior distribution of crack configurations and their associated 
variances. 

Yeh et al., 2002, describe a sequential, geostatistical ERT approach that allows inclusion 
of prior knowledge of general geological structures through the use of spatial covariance. 
Their method also uses point electrical resistivity measurements (well logs) to further 
constrain the solution. They use the successive linear estimator approach to find an 
optimal model that consists of the “conditional effective electrical conductivity” (CEEC). 
They define CEEC as the parameter field that agrees with electrical resistivity 
measurements at core sample locations and that honors electrical potential measurements.
They also compute conditional variances to estimate the uncertainty associated with their 
optimal CEEC model.

Our approach:
Here we describe a type of MCMC algorithm that incorporates resistance measurements, 
numerical forward simulators of subsurface electrical resistivity, and a priori knowledge 
to provide distributions of resistivity change that are likely to be present in a subsurface 
environment. This methodology produces resistivity models that show those subsurface 
plume configurations and resistivity values that are most consistent with the available 
data and forward models.

As with all MCMC approaches, Bayesian inference is driven by an importance-sampling 
algorithm that forms the basis for our methodology. There are two major components to 
the approach (refer to the flow diagram in Figure 1):

1) A base representation specifying the rules that the proposed resistivity models (alos 
referred to as states) of the system must obey (step B, Figure 1). These rules are 
based upon a priori knowledge.

2) A Markov Chain Monte Carlo (MCMC) simulation algorithm that generates
samples according to the unknown posterior distribution. It uses a randomized 
decision rule to accept or reject the proposed states according to their consistency 
with the observed data. (steps C - F, Figure 1).
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The main advantage of this approach is that it automatically identifies alternative models 
that are consistent with all available data, and ranks them according to their posterior 
probabilities and associated confidences. In geophysical ERT applications, the inverse 
problem is substantially under-constrained and ill-posed. Thus, the search for a solution 
that is unique and possesses a high degree of confidence is generally impossible.  Hence, 
it is wise to consider approaches that are capable of generating alternative models and 
ranking them.

Base Representation - Subsurface Plumes
The base representation algorithm randomly generates neighboring models utilizing rules 
that are based upon available prior information. For example, the range of permissible 
resistivities is estimated using the properties of the injected fluid, and formation 
properties such as porosity and water saturation. We also make use of prior observations 
that these plumes tend to consist of one or more semi-contiguous regions and relatively 
simple shape. 

The representation of a model space X  (i.e., the individual resistivity models and their 
neighboring states) is critical to the overall effectiveness of the MCMC method. In those 
cases where generating samples from the model space is time intensive (e.g., executing 
forward models such as those used for 3D ERT), the model representation must be 
designed so that the number of degrees of freedom in the problem is well constrained. For 
this reason, we have chosen a categorical simulation approach where each category is 
associated with a discrete resistivity value. For example, if the set of categories is 

A,B,C{ }, then A → R1,B → R2 ,C →R3 , where the Ri  represent distinct resistivity 
values.

A detailed outline of the algorithm that generates the resistivity models is presented in 
Appendix 1; this algorithm corresponds to step B in Figure 1. Examples of models 
generated by this method are shown in Figure 2. The samples generated are called 
proposal states and constitute possible solutions to the inverse problem. The search for 
models that are consistent with the data is controlled using a Markov chain Q designed to 
have a “stationary” distribution equal to the prior distribution ρ x( ) . A stationary 
distribution is one in which the samples generated are representative of the true 
distribution because they are unaffected by the starting point of the Markov chain(s) and 
have explored sufficiently the distributional structure. Hence, as the Markov chain is 
executed, samples from ρ x( )are generated. This means that exact knowledge of the 
properties ρ x( )  is not required because the properties are reflected by the samples from 
ρ x( ) .
The base representation we developed is specific to our problem domain.  It only applies 
to resistivity models associated with liquid plumes having relatively simple shapes and 
contained within porous media such as those created by subsurface tank leaks or fluid 
injection (e.g., steam, CO2, or water floods). The algorithm assumes that the system of 
interest consists of a zone of changing electrical resistivity embedded within an otherwise 
homogeneous volume. The changing volume can be described with two or more 
contiguous sub-volumes consisting of rectangular parallelepipeds. Each sub-volume has a 
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single resistivity value, and overlaps or is near to another sub-volume.  These sub-
volumes can have varying size, shape and resistivity properties. This approach limits the
ability of the inversion to place spurious artifacts where the data has no sensitivity, and 
limits the anomalies to simple shapes.

We are interested in mapping temporal changes in resistivity such as those created by a 
liquid penetrating the subsurface. Our approach uses a ratio of two impedance datasets in 
the inversion. In this method, a new data vector, dr , is formed from:

dr =
d t

db

f(σ hom), (1)

where db is the data vector used as the baseline state, dt is the data vector at some time t
and f (σ hom) is the forward solution for an arbitrarily chosen homogenous conductivity.

Inversion of the new dataset dr in the usual manner then results in an image that will 
reveal changes relative to the reference value σhom . This approach works reasonably well 
in situations where the contrast in background resistivity is small. Park (1998) used a 
similar approach except he used f (σ heter ), where σ heter  is the heterogeneous conductivity 
for the baseline case. His approach is more general and well suited for situations where 
the contrast in background resistivity is relatively large.

Markov Chain Monte Carlo  - Theory and Methodology
Our approach is a derivative of the Metropolis algorithm (Metropolis et. al., 1953) as 
described by Mosegaard and Tarantola (1995). It uses a Markov chain process to control 
the sampling of the space X  of possible models.  Within this framework, the solution to 
an inverse problem is an estimate of the posterior probability distribution defined over X . 
Then, for any potential solution x0 ∈ X , the method will provide an estimate of the 
probability and confidence that state x0  is the true state of the underlying system. 

This MCMC approach is similar to classical inversion with the random model generator 
replacing the deterministic updating scheme based on a gradient search. In both cases, an 
initial model is chosen and responses are calculated with a forward solver. The calculated 
responses are compared to observed data. Finally, an updated model is chosen and the 
process repeats.  The two approaches differ in how the updated model is chosen and the 
final result of the process. Specifically, MCMC produces a probability distribution 
defined over X; while, deterministic methods produce a single or a collection of states 
from X that best explain the data.)

The inverse problem under consideration may be described as follows. Let D denote the 
data space, and suppose that there exists a mapping G  such that:

d = G x( ) (2)
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where x ∈ X  is a parameter vector describing the state of the system of interest and 
d ∈D  is a vector of measurements taken on that system. The inverse problem occurs 
when a vector of data values is observed, say d0 , and we want to determine the value of 
the parameter vector x0 that gave rise to d0 . 

The sampling process can be viewed as consisting of two separate components: prior 
knowledge and measurements d. In the previous section we introduced the first 
component, the generation of samples that are consistent with the available a-prior 
knowledge. We now discuss the second component: a decision process that either accepts 
or rejects these a-priori samples according to their consistency with the measurements d
(Figure 1, steps C, D, E, F). Specifically, for each visited state, forward simulators are 
used to predict values of measurable quantities such as electrical resistance. These 
predictions are then compared to corresponding measurements to determine the 
likelihood L (x )  that the given state x ∈ X  produced the observed data. An accept/reject 
decision based upon this likelihood is used to modify the prior sampling process. The 
result is a new Markov chain, R, which samples the posterior distribution, Ρ (x )  These 
samples provide the basis for estimating the posterior distribution and any subsequent 
inference concerning the true unknown state of the system.

Formally, Bayes rule relates the prior and posterior distributions as follows:

Ρ x d( )= k L x( )ρ x( ) (3)

The likelihood L (x )  is a measure of the degree of fit between the data predicted 
assuming the model x and the observed data, and k is a normalizing constant. For this 
study, we assumed a likelihood function of the form:

L x( )= k exp − 1

n

d x( )
pred,i

− d0,i

n

σ i
n

i=1

N∑








 (4)

where N is the number of data points, d (x )pred ,i  is the predicted data for a given model 

x , d0,i  is the vector of observed measurements, σ i  is the estimated data uncertainty, 
and n ≥1. For the results described below, we assumed that n = 2. Eq. 4 assumes that the 
estimated data errors are uncorrelated; ERT surveys typically use the same electrodes for 
multiple measurements thereby increasing the probability that the data errors are 
correlated. 

The decision to accept or reject a proposed state is made on the basis of likelihood 
comparisons (steps E and F, Figure 1). Suppose that the current state of the Markov chain 
is x

T( )  and that a move to an adjacent state x
T +1( )  is proposed. If these transitions were 

always accepted, then the simulation would be sampling from the prior distribution ρ(x), 
i.e., the observed d0  would not influence the search. Instead, suppose that the decision to 
accept the proposed transition is made as shown by steps D, E and F in Figure 1. Note 
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that when the likelihood of the proposed state L(x
T +1( )) is equal to or larger than that of 

the current state L(x
T( )), the proposed transition is always accepted. If L(x

T +1( )) < L(x
T( ))

but the two values are close to each other, the probability of acceptance is still around 
1.0. Even when L(x

T +1( )) << L(x
T( )) , the acceptance probability is not zero. Thus, this 

randomized rule allows a transition to a less likely state such that the process will move 
out of a local extremum. Theoretically, it will never get trapped in a region of locally 
high likelihood as long as the likelihood of the proposed state is greater than 0.0. Then, 
the randomized acceptance rule (step E, Figure 1) guarantees that the probability of 
accepting this transition will always be greater than 0.0.

This is the Metropolis algorithm, the best known of the importance sampling algorithms. 
Metropolis et al. (1953) proved that the samples generated through this three-step process 
will have a limiting distribution that is proportional to the desired posterior distribution 
Ρ x d( ) -- the probability of model x  being the true state of nature given that d  has been 
measured. As a result of the randomized rule in step E (Figure 1), the search tends to 
hover in regions of space X  containing states that better fit the prior information and 
ERT measurements. Because of this, space X  is traversed more efficiently than with 
traditional Monte Carlo techniques. 

The information contained in the ERT data determines whether the posterior distribution 
is a better representation of reality than the prior. When the data is “informative”, i.e., is 
sufficiently sensitive to the characteristics of the target, the posterior distribution will be a 
better representation of reality. However, when the data is “uninformative” due to lack of 
sensitivity, measurement error, etc., then the prior and posterior distributions will be very 
similar, thereby indicating that the ERT data did not help to discriminate between models 
sampled from the prior distribution.

One desirable quality of the MCMC approach is that knowledge of the posterior 
distribution allows the uncertainty in any generated estimate of the true unknown state to 
be quantified. This provides the basis for: i) the objective assessment of competing 
hypotheses when the available information isn’t sufficient to definitively identify the true 
system state, and ii) the propagation of uncertainty in modeling results through to follow-
on predictions. Sources of uncertainty such as measurement error, contradictory data, 
lack of sensitivity or resolution, incomplete surveys, and non-unique relationship between 
measurements and inverted parameters can be addressed explicitly via this approach. 
Moreover, problems with many secondary extrema, a non-unique inverse, and/or 
contradictory or sparse data are mitigated.  

Deterministic inversion methods are also able to address many of the problems listed 
above. A common approach makes use of different starting models to investigate solution 
uncertainty. For the models that converged, one can observe common features and gain 
confidence of their actual existence. This approach can be tedious to implement, and to 
the best of the authors’ knowledge, not commonly used for ERT inversions. The MCMC 
approach described here performs the analysis automatically thereby sampling solution 
space more completely and reducing the probability of getting trapped on local extrema.
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There are a variety of issues that must be addressed during the implementation of the 
MCMC methodology. The most fundamental concern is that the Markov chain must be 
designed so that it has a limiting stationary distribution. For this to happen, the transition 
probabilities must be specified so that the process is aperiodic (state transitions are not 
cyclical, state sequences do not repeat) and irreducible (it is possible to move from any 
given state to any other).

Convergence Analysis 
As the Markov chain generates samples, it is important to verify that these samples are 
statistically representative of the posterior distribution Ρ x d( ). The chain is designed to 
have a long-run (i.e., stationary) distribution equal to the posterior distribution. Hence, 
after a sufficiently long “warm-up” period the sampling process will have forgotten its 
starting point and visited all of the modes (i.e., locations in space X  at which a relative or 
absolute value occurs in the frequency distribution) of Ρ x d( ). After this point, the 
frequency of visits to a state will constitute a statistically reliable estimate of its posterior 
probability. More precisely, this means is that once the chain has gone a sufficient 
number of steps, T0, the distribution of the generated states, x(T), at any step T ≥ T0 is 
unchanged  and equals  the posterior distribution, Ρ x d( ). We call T0 the “burn-in” period. 

Hence, the MCMC process begins at a particular state that is selected at random and after 
the burn-in period, the chain has essentially forgotten where it started.  At this point, the 
samples x T0( ),x T0 +1( ),...  constitute a representative random sample from Ρ x d( ) and can 

legitimately be used to perform posterior inference (e.g., generate estimates of the true 
state and their corresponding confidence). 

Since the burn-in period must occur before samples can be reliably collected and used, 
metrics have been developed to help identify T0. Several of the most widely used and 
effective metrics were employed during this study (Glaser, 2003).

The general idea is to compare the variability within each individual chain to the 
variability between the separate chains by using covariance matrices. Convergence of 
these metrics implies that the statistical difference between the collections of samples 
produced by the different chains is decreasing and collectively they are beginning to 
exhibit the same statistical behavior. Combining this trend with the observation that their 
individual variations are becoming stable, provides strong evidence that all chains are 
sampling from the same distribution, namely the posterior. In other words, the burn-in 
period has been completed and all subsequent samples are legitimately representative of 
the unknown posterior distribution Ρ x d( ).  

The Gelman- Rubin Diagnostic.
Gelman and Rubin (1992) describe an approach that uses multiple Markov chains to 
estimate the burn-in period length T0. To generate an accurate estimate, the method must 
address the difficulty caused by the properties and structure of Ρ x d( ) being unknown.  
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Specifically, the posterior distribution may contain multiple modes, or likelihood peaks 
that the Markov chain must effectively visit in order to produce a statistically 
representative sample.  But since the number of significant modes is unknown a-priori, 
we can never be certain that a single chain has explored all critical structure of Ρ x d( ). 
This apparent impasse is addressed through the use of multiple independent chains with 
individual, well-dispersed starting points. Although these chains start at different states, 
they share a common, but unknown, limiting distribution, Ρ x d( ). The Gelman-Rubin 
diagnostic effectively detects when the variability between the sample sets produced by 
the individual chains settles down to a value that is expected when the chains are all 
sampling from a common distribution (i.e., the long-run stationary distribution Ρ x d( )). 
When this behavior is detected, it is likely that the burn-in process is complete.

In our ERT problem, we are interested in describing contiguous subregions of specified 
resistivity values. For convergence analysis, each subregion is summarized by the triple z
= (z1, z2, z3), where z1 is the area, z2 is the horizontal coordinate of the centroid, and z3 is 
the vertical coordinate. By considering the largest contiguous subregion for each of say 
nine possible resistivity values, the dimensionality of the parameter of interest Z
becomes p = 9*3 = 27. A multivariate version of the Gelman-Rubin diagnostic was used 
to track the behavior of several functions of the p-dimensional parameter vectors 
associated with the individual parallel chains for a moving and expanding window of 
steps (called iterations).  In this study, a window is taken as a range of steps that can be 
characterized by a single parameter n. For example, n = 50 refers to the window of length 
50 iterations ranging from iteration 51 through iteration 100, and in general, the window 
of size n considers each chain within the iteration sequence n+1, n+2, …, 2n. 

 The quantities being tracked are correlated with the variability of Z . They include a p-
dimensional matrix Wn  which estimates the within chain covariances for the window n, a 
p-dimensional matrix Bn n  which estimates the between chain covariances for the 
window n and the corresponding pooled p-dimensional matrix

Vn =
n −1

n





Wn + 1+

1

m







Bn

n
, (6)

 which estimates of the covariance matrix of the posterior distribution of Z . In this last 
expression, m is the number of Markov chains that are running in parallel. As n increases, 
i.e. the window moves and expands, the influence of the starting points on the individual 
chains diminishes, and the following trends begin to emerge:

• The within chain variation, summarized by the scalar detWn , stabilizes. Typically, 
detWn  increases as new modes in space X  are encountered by the chains. detWn

settles to a limiting value once all significant modes are sufficiently sampled.
• The pooled chain variation, summarized by the scalar detV, stabilizes, a result of 

the combined effect of the difference between chains, characterized by B/n, 
becoming negligible and the within chain variation stabilizing.
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• The matrices V and W become “close” to one another. It is the “closeness” of V
and W that generally indicates when the burn-in period has been achieved

The remaining challenge is how to assess the closeness of V and W.  Brooks and Gelman 
address this issue by introducing a scalar measure of the distance between V and W: 

R p =
n−1

n
+

m +1
m





λ1, (7)

where λ1 is the largest eigenvalue of the matrix W-1B/n. Then, as n increases, the distance 
between V and W diminishes, the eigenvalue λ1 decreases to 0, and Rp approaches 1. The 
Gelman-Rubin diagnostic, then, monitors Rp, detV, and detW, as a function of the window 
parameter n. For sufficiently large n, say n ≥ T0, the three conditions, Rp close to 1, detW
approximately constant, and detV approximately constant, are satisfied. The nearness of 
Rp to 1 suggests burn-in has occurred by step T0 ; while, stabilization of the determinants 
provides evidence that samples within the window starting at iteration To+1 are an 
adequate characterization of the stationary posterior distribution.

Suppose there are m chains. If the Gelman-Rubin diagnostics suggest a burn-in period of 
length T0, then a total of mT0 samples are discarded, and m(N – T0) samples are available 
for analysis of properties of the posterior.

In addition to the well-known Gelman-Rubin methodology, a variety of other 
convergence diagnostic methods have been proposed, developed and tested. These 
include a test of normality based upon the Central Limit Theorem (Robert et al.,1999), an 
examination of parameter quartiles (Raftery and Lewis, 1992, a and b), methods based 
upon renewal theory (Robert, 1995), etc. In fact, the literature focused upon the 
assessment of MCMC convergence is quite extensive and rich. Nevertheless, at this point 
in time, no suite of convergence diagnostics is capable of monitoring and identifying 
convergence with absolute certainty. 

Posterior Analysis
After convergence has been verified and pre-burn-in models discarded, the resistivity 
models in the posterior distribution Ρ x d( ) can be analyzed. Our goal is to distill the 

relevant information in these models so that that we can infer the likely properties of the 
“true” resistivity model under study. The topography of Ρ x d( ) contains multiple hills 

whose heights are proportional to the likelihoods for each of its member resistivity 
models (shown schematically in Figure 3); each point in model space represents one 
resistivity model. The model corresponding to the peak of each hill is commonly referred 
to as its mode. Multiple hills indicate that the solution to the inverse problem is non-
unique, the typical case for ERT. The distribution is called multi-modal when multiple 
hills are present and uni-modal when only a single hill is present. The width of each hill 
indicates that there is uncertainty in the model located at the mode; this variability may 
be due to factors such as measurement sensitivity or measurement error.
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This complex, multi-modal structure provides a challenge when characterizing the 
distribution and extracting insight about the resistivity models included in Ρ x d( ). We use 

a clustering approach to extract this insight (Sengupta and Ramirez, 2003). Clustering is a 
standard data-mining technique used to extract structure from a collection of sampled 
data points – in this case sampled resistivity models. It segregates the models sampled 
from Ρ x d( ) into groups of models that exhibit similar properties. In our specific 

example, a cluster is a group of resistivity models that show similar spatial distribution of 
resistivity and similar resistivity values. The likelihood modes in Figure 3 represent these 
model clusters. The clustering process is accomplished by measuring the distance (in 
model space), between a model and a cluster center. A cluster’s center is the model space 
location that best represents the central tendencies of all cluster members.

When deciding whether a resistivity model should be considered a member of a particular
cluster, we measure the distance (in model space) between the candidate resistivity model 
and the cluster center. This distance is a measure of the dissimilarity of the sample 
relative to the central tendencies of all the models that are already members of the cluster. 
A cluster’s central tendencies are represented by voxel-wise distribution of resistivity 
values. That is, for each voxel, we calculate histograms that show how frequently each of 
the possible resistivity values appears in all models included in the cluster; these 
frequencies are normalized to lie between 0 and 1. The following example should help 
clarify this method.

Suppose that each resistivity model contains three voxels and that the set of possible 
resistivities is: {10, 15, 20, 30}. Suppose further that there are 100 models in a cluster 
with the voxel-wise frequency distributions shown in Table 1. The frequencies for these 
are calculated by dividing the number of models showing a particular resistivity value by 
the total number of models in the cluster. Table 1 suggests that, for voxel 1 there are 30 
samples with a resistivity of 10 (frequency is 0.3 =  30/100), 40 with a resistivity of 15, 
20 with a resistivity of 20 and 10 with a resistivity of 30.

Table 1: Cluster frequencies

Voxel
resistivity value 1 2 3

10 0.3 0.3 0.3
15 0.4 0.2 0.2
20 0.2 0.3 0.4
30 0.1 0.2 0.1

Table 2: Resistivity model frequencies

Voxel
resistivity value 1 2 3

10 0.0 0.0 0.0
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15 0.0 1.0 0.0
20 1.0 0.0 0.0
30 0.0 0.0 1.0

We also need to calculate frequency histograms for the resistivity model in question so 
that they can be compared to the cluster’s histograms. Suppose that the resistivity model 
being considered has resistivity values of (20, 15, 30). The resistivity frequencies for this 
model are shown in Table 2; i.e., when one of the possible resistivity values is present in 
a voxel, the frequency for that resistivity value is set to 1.0 and frequencies for all other 
possible values are set to 0.0; this is repeated for all voxels.

We need to compare the frequencies in Tables 1 and 2 in order to calculate the model-
cluster ‘dissimilarity’ MCD. For every Table 2 element where the frequency = 1.0, we 
subtract the corresponding element in Table 1. Thus, MCD = [(1.0 - 0.2) + (1.0 - 0.2) + 
(1.0 - 0.1)]/3 = 0.83. Large MCD values arise when the model anomaly is located in a 
different part of the 3D model, has different resistivity values, or both. When MCD 
approaches 0.0, the resistivity model under evaluation shows a resistivity distribution that 
is very similar to that of most resistivity models in the cluster.

 The equation for MCD can be written as:

MCDm,n =
1

nv
| mrfi, j(mrfi , j

j=1

nr∑ − crfi, j ) |
i =1

nv∑ (8)

where m and n are cluster and model numbers respectively, nv is the number of voxels in 
one resistivity model, nr is the number of possible resistivity values, mrf  is the model’s 
resistivity frequency and crf is the cluster’s resistivity frequency.

The MCD can also be used to locate the “center state” (CS) for a given cluster. The CS is 
that resistivity model showing the minimum MCD; it is also the model that is closest to 
the cluster’s “center of mass” and should be the one that best represents the cluster 
members. The CS and the mode refer to the same model when the cluster members are 
distributed symmetrically about the mode.

Dynamic K-Means clustering 
We now describe the clustering algorithm; Figure 4 illustrates the flow diagram for this 
algorithm. A variation of the K-Means (Jain and Dubes, 1988) algorithm is obtained 
when starting from an initial value of K=1 clusters, we allow K to grow dynamically as 
new resistivity models are considered for assignment to an existing cluster (Pao, 1989). A 
new cluster is formed when a sample due for assignment to a cluster is considered as 
being too ‘far’ (i.e., has too large an MCD) from any existing cluster. Clearly a new 
parameter td, the threshold distance has to be introduced at this stage.  Then, when the 
minimum of all distances between the model and existing cluster centers exceeds td, we 
create a new cluster with the sample under consideration as its first member. The process 
is repeated iteratively until a specified stability criterion is satisfied.
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Suppose that K is the number of clusters, u the maximum number of clusters allowed, and 
td  be the threshold distance.

Stage 1 (Cluster growing) Initially, set K = 1 with cluster #1 containing the first model
and the cluster center located at the first model. At any given stage, repeat steps 1 and 2 
where,

1. Get a new model and compute its MCD’s from the existing cluster centers and 
their minimum(MCD) and locate a cluster C say, where this minimum occurs.

2. If minimum(MCD) is greater than td, then create a new cluster with the new 
model as the only cluster member and itself as the new cluster center. 

Otherwise, assign the new model to cluster C and update the cluster center. Continue this 
process until either the maximum number of clusters has been attained or all of the 
models are assigned to one of the generated clusters.

Stage 2 (Re-clustering) At the end of the first stage, let there be K ≤ u  clusters generated. 
Repeat steps 3 and 4 until a stability criterion S (defined below) is satisfied.

3. Replace the existing partition with a new one by assigning a group to each 
member based on the nearest cluster principle (minimum MCD).

4. Re-compute the cluster centers by determining the center-state for the new 
collection of members in each cluster.

Tests of this algorithm show that Stage 2 insures that the clustering results are 
independent of the order in which the models are introduced. The stability criterion S can 
be introduced in various ways. In our algorithm, S is reached when the updated cluster 
centers all remain within a small pre-assigned distance from the respective cluster centers 
computed in the previous step. 

Two clusters may be merged to form one whenever the maximum of the intra-cluster 
distances within each cluster is smaller than the inter-cluster distance between the two
clusters. Depending on the inter- and intra-cluster distance distributions, one may want to 
merge two or more clusters in the final clustering step. Suppose that the ‘diameter’ of a 
cluster is defined as the maximum of the intra-cluster distances between models within a 
cluster. Let us also define the ‘inter-cluster distance’ between two clusters as follows. 
Consider all pairs of models that can be formed by choosing one model from each of the 
two clusters. The largest distance between models within all such pairs is then defined as 
the ‘inter-cluster distance’. In order that two clusters may be merged to form into one, we 
require that the sum of their diameters be less than the inter-cluster distance between the 
two. Depending on the inter- and intra-cluster distance distributions, one may want to 
merge two or more clusters in the final clustering step. This merger condition can be 
extended to accommodate this possibility. Moreover, this final merging step does not 
require any distributional assumptions or the specification of additional parameters to be 
implemented. The new cluster center and the corresponding cluster frequency are 
computed and cluster memberships for the merged clusters re-assigned.
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Once the partitioning of the models is complete, the voxel-wise average resistivity, VARi , 
for all the models in a cluster is used to provide a reasonable estimate of the trends 
exhibited by most models in that cluster. Consider a column vector u with nv
components, the components containing the voxel resistivities in a 3D resistivity model. 
If there are N column vectors corresponding to all the resistivity models in a given 
cluster, then: 

VARi = 10
(

1

N
log10 (ui ,n ))

n=1

N∑
(9)

This is repeated for all components (i = 1, 2, … , nv). For non-ERT applications, one may 
choose to use an arithmetic mean instead of the geometric mean indicated by eq. 9.

Results and Discussion:

Physical Model Results
We have used physical models where we know the exact properties of the target in order 
to evaluate the performance of the MCMC approach. The physical model consisted of 
various targets immersed in a tank filled with water. The model included 4 vertical 
electrode arrays, each having 15 electrodes (refer to Figure 5). The arrays were 
submerged in water and a variety of solid and porous (sand-lead mixture encased in a 
nylon mesh) targets having different electrical resistivities were inserted at various 
locations between the electrodes. The water resistivity was 16 ohm-m. We will present 
results from the sand-lead mixture that had a resistivity of about 40 ohm-m.

Issues such as the accuracy of the inverted location, shape and change magnitude of the 
inversions were evaluated. Uncertainty arises from the inherent errors (measurement and 
modeling) and the non-unique relationship between inverted parameters and 
measurements.

We first needed to determine if the inversion had converged by using the convergence 
diagnostics described earlier. The Gelman-Rubin diagnostic is a metric indicating when 
T0 (burn-in period length, stable value near 1.0) has been reached asymptotically. For the 
physical model results discussed below, the burn-in period ended around iteration T0 = 
700. Also, stable values near 1.0 suggested that samples after T0 had succeeded in visiting 
all the modes in P(x | do ) . This diagnostic suggested that the Markov chains converged to 
the limiting posterior distribution P(x | do ) , and that we could reliably employ these 
posterior samples to estimate the parameter(s) of interest.

Figure 6 shows the stochastic inversion results for the sand-lead physical model. The left 
image is a vertical section of the actual target showing its shape and location. Each image 
consists of 16 x 16 x 33 voxels representing a 6.8E-02 m3; the volume of the model is 
2.5E-05 m3. The model has a relatively low-contrast (resistivity only 2.5 times as high as 
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the surrounding water). For these inversions, we assumed that the target could be 
sufficiently described by two contiguous or overlapping parallelepipeds and that the set 
of possible resistivity ratio values was {0.5, 1.0, 2.0, 4.0, 8.0, 16.0}. A value of 1.0 
indicates that the target’s resistivity equals that of the surrounding water, and values 
above 1.0 indicate that the target’s resistivity is larger than the surrounding water. The 
inverse process searched for the most likely location, size, shape and contrast of the 
changing region.

To calculate the inversion results shown, we used all post-burn-in models (all x(T ) such 
thatT > 700). The Figure 6 top right frame shows the VAR for all the posterior models 
assuming that all models came from a uni-modal distribution (single cluster); i.e., no 
attempt was made to segregate the resistivity models in the posterior distribution into 
groups of models having similar spatial distribution of resistivity and similar resistivity 
values. The vertical slice shown through each model was positioned to show the 
maximum resistivity value present. The voxel-wise average results show similar shape 
and location as the actual target. The resistivity ratio magnitude lies in the range of 2.0 –
2.9, while the actual target value is 2.5. 

We next considered the possibility that posterior models came from a multi-modal 
distribution. Using the dynamic K-means technique described earlier, u = 10, and td  =
0.04 we obtained the results shown by the lower row of Figure 6. The analysis produced 
10 clusters of models; the three most probable ones (showing the highest frequency) are 
displayed in the bottom row of Figure 6. The results shown are cluster centroids (VAR of 
all the models in a given cluster). The frequency values have been normalized relative to 
the number of posterior distribution samples (4302) to obtain relative frequency values 
for each cluster. The bottom left image is the centroid for the most frequent cluster: four 
out of every five samples come from this part of the state space. Note that the location, 
and size of the cluster centroid are similar to the target. The maximum value resistivity 
ratio magnitude is about 2.48 while the target value is 2.51. The middle and right bottom 
row images represent centroids for low frequency clusters. The middle image shows two 
closely spaced anomalies that straddle the target’s elevation and a resistivity ratio value 
(16.0) that is substantially larger than the target. The bottom right image also shows an 
anomaly shape that is significantly different from the target and has a maximum 
resistivity ratio value (16.0) that is substantially larger than the target. 

We propose that the results shown in Figure 6 illustrate the value of clustering analysis. 
When the cluster analysis accounts for several likelihood hills in the posterior, the 
resistivity ratio for the most frequent cluster is about 2.48, close to the target value of 
2.51. When a uni-modal distribution is assumed, a poorer match to the target is observed 
because all samples have lumped into a single cluster. The clustering analysis segregates 
posterior samples with lower and higher values into separate clusters, thereby improving 
the accuracy of the resistivity value corresponding to the most frequent cluster. Similar 
comments apply to the size, location and shape of the cluster anomalies. 
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Field results - Tank Leak Detection
Electrical resistance data was collected during a field experiment that simulated leakage 
from a large metallic tank. For testing, an electrical tracer (saline solution) was used 
instead of the real contaminant to preserve the environmental quality of the test site. The 
test site used for this work is part of the 200 East Area in the Hanford Site, located near 
Richland, Washington (additional details about the test site and testing are provided by 
Barnett et al., 2003). The near surface sediments at the test site consist primarily of fine 
to coarse-grained sand with an average porosity of 0.25 to 0.30. The field experiments 
were performed under a 15.2 m diameter steel tank mockup. Figure 7 shows the layout at 
the experimental site.  This empty steel tank contained several built-in spill points (only 
the one used is shown). The bottom of the tank is located 1.5 m below ground surface.  
Sixteen boreholes with eight electrodes in each surrounded the tank.  The electrodes were 
spaced every 1.52 m between the surface and 10.7 m depth. The water table was located 
well below the deepest electrode location. The diametrical distance between boreholes 
was 20.7 m.

Hypersaline solution was released from a point near the tank's center over a 52 hour 
period. The liquid consisted of a sodium-thiosulfate solution (36 wt%) with a 
conductivity of about 5 S/m (about 1.5 times that of seawater). This hypersaline fluid has 
similar electrical conductivity and density to the real Hanford tank liquids. ERT surveys 
were made before, during and after the brine release using a dipole-dipole approach. 

Tank leak results are shown in Figure 8 for the case where 2160 liters had been released.
Dimensions of the 3D image block are 28 m (along each horizontal axis), and 13 m 
(height). Each model consists of 22 x 22 x 17 voxels. For these inversions we assumed 
that the target could be sufficiently described by six contiguous or overlapping 
parallelepipeds. Their shape, location and resistivity contrast were allowed to vary. The 
set of possible resistivity ratio values was {1.0, 0.95, 0.90, … , 0.01}, for a total of 20 
possible values. The posterior samples were analyzed using the “dynamic k-means” 
algorithm described earlier with td = 0.04 and u = 20. The clustering was done using all 
post-burn-in models (all x(T ) withT > T0 , a total of 3802 models; T0 ≈ 810). The left 
column of graphs displays the three most likely cluster centroids with frequencies ranging 
from 0.12 to 0.38. These three clusters encompass 68 % of all posterior distribution 
samples. All of them suggest a roughly vertical anomaly directly below the release point 
to depths ranging from 8 – 10 m. 

The left column of frames in Figure 8 shows the voxel-wise mean resistivity ratio for the
three most probable clusters. The frequency values shown have been normalized relative 
to the number of posterior distribution samples in each cluster. Clusters A and B suggest 
that a strong vertical anomaly exists just East of the release point. Cluster A suggests the 
possibility of liquid ponding to the West of the release point at a depth of about 8m. 
Likewise, cluster C suggests a wider but somewhat weaker anomaly. An analyst could 
consider cluster A as the most likely thereby inferring a pillar-shaped vertical invasion 
zone with possible liquid ponding to the West of the release point at 8m depth. 
Considering clusters A and B, the analyst may also consider the possibility that the bulk 
of the contamination is located below and to the East of the release point. These 
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alternative models offer the analyst alternative models with model A being the most 
likely, and model C the least likely. 

This analysis can be used to evaluate the propagation of uncertainty due to measurement 
error, or due to lack of sensitivity or resolution. For example, the mean resistivity ratios 
(left column of images in Figure 8) for all three clusters show significant variability 
directly below the release point. The highly conducting metal tank walls create a region 
of diminished sensitivity below the tank that is most severe just below the release point. 
We suggest that this diminished sensitivity explain is responsible for the variability 
observed.  

Figure 8 also shows the center states for the clusters shown. Within a given cluster, the 
differences between the voxel-wise means (left column of images) and the center states 
(right column of images), provide the analyst some measure of variability (uncertainty) 
within the cluster.  These center states are those posterior samples having the smallest 
MCD. We can use the center state as a way to evaluate a cluster’s central tendencies. 
These center states are unaffected by the variability of such properties within a cluster; 
clearly, this variability affects the mean values shown in the left column of frames in 
Figure 8. The center states for clusters A and B show similar location and shape as the 
cluster mean image. However, the mean for cluster A suggests the possibility of liquid 
ponding to the West of the release point at a depth of about 8 m whereas the cluster 
center state does not show such features. This means that the possible ponding of liquid is 
not part of the central tendency for cluster A, but is a part of some of the states around the 
cluster center. The center state for cluster B suggests a stronger resistivity change (0.03) 
than the values near 0.2 indicated by the cluster’s mean. This approach allows an analyst 
to consider alternative models that are consistent with the data to varying degrees. The 
frequency information determines how well each of the alternative models represents the
available data.

A drill-back program that would have independently mapped the plume’s characteristics 
was not carried out due to lack of funds. Instead, we are forced to use circumstantial 
evidence to evaluate the results. First, we visually compare the stochastic inversion to a 
deterministic tomograph calculated by the inversion algorithm described by LaBrecque et 
al (1999). We have confidence that this algorithm produces reasonable results because it 
has been used successfully in field applications (e.g., LaBrecque et al, 1999, Morelli and 
LaBrecque, 1996, Daily and Ramirez, 2000) as well as in controlled physical model 
experiments where the target characteristics are known exactly (Ramirez et al, 2003). 
Figure 9 shows the comparison of the two results. The stochastic result (left column of 
frames) shows the voxel-wise mean for the most likely cluster (cluster A, Figure 8 upper 
left hand image)The bottom row of images shows iso-surface views, where the white bar 
over the color bar indicates the range of transparent values used to render the iso-
surfaces. 

Figure 9 shows similarities between the classical inversion and MCMC results thereby 
suggesting that the stochastic results are reasonable. The location of the changing region 
is approximately the same. Also, both methods show that the zone of change extends 
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more to the East of the release point than to the West. There are also differences between 
the images. The stochastic image shows stronger resistivity changes reaching values of 
0.1 (i.e., the invaded soil has 1/10 the resistivity of the pre-release value) and a smaller 
volume. The stochastic image also suggests that brine may be pooling on the western side 
of the image. In the absence of independent ground-truth data we cannot establish which 
of the two images is closer to reality.

We can compare the two results on the basis of how well either fits the resistivity
measurements. We calculated the forward solution for the deterministic and stochastic 
inversions shown in Figure 9. Then, we calculated the root mean squared differences
(RMS) between the forward solutions and the measurements. The RMS for the 
deterministic result is 1.6*10-7, substantially better than the MCMC result (1.7*10-5). We 
speculate that the deterministic result fits the data better because the deterministic 
inversion allows a much wider range of resistivity values and anomaly shapes.
We can also compare the volume and average resistivities of the inversion anomalies to 
invaded zone estimates based on Archie’s equation and independent observations of 
released brine resistivity (0.11ohm-m) and volume (2160 liters). We assume that average
porosity is about 0.25, the resistivity of the pre-release pore water is about 5 ohm-m, and 
that the brine release increases the saturation from 0.4 to 0.8. We also assume that the 
brine displaces part of the original pore water so that pore water resistivity after release 
has decreased to 2.5 ohm-m. Given these assumptions, brine would change the bulk 
resistivity would from 316 ohm-m to about 40 ohm (resistivity ratio of 0.13) within a 
10.8 m3 volume of soil. For the deterministic inversion anomaly, the geometric-mean 
resistivity-ratio is 0.96 within an anomaly volume of 5511 m3. For the MCMC inversion, 
the geometric-mean resistivity-ratio is 0.21 within an anomaly volume of 1387 m3. If 
instead of the cluster mean, we choose the center state for cluster 4 (upper right image in 
Figure 8), then the geometric-mean resistivity-ratio is 0.19 within an anomaly volume of 
391 m3, the closest to the estimate

Clearly, both methods produce anomaly volumes that are grossly exaggerated probably 
due to the intrinsically low resolution of the ERT measurements and to decreased 
measurement sensitivity caused by shunting of electrical current through the tank’s metal 
walls. The comparison suggests that the MCMC inversion produced an anomaly that is 
more compact and exhibits a larger resistivity change than the deterministic result. These 
differences are at least partly due to the regularization used by the deterministic algorithm 
that penalizes models with large “roughness” (the inverse of smoothness) (Park and Van, 
1991, Shima, 1992, Ellis and Oldenburg, 1994, Sasaki, 1994, LaBrecque et al, 1996, 
Morelli and LaBrecque, 1996). It is well known that this approach tends to produce 
models that have reduced contrast and exaggerated extent.

In this work we have compared an MCMC method that is constrained by size, location, 
and resistivity limits with a deterministic method that is constrained by model roughness.
The ideal comparison between the deterministic and stochastic methods would compare 
the results using the same set of constraints. We suggest that such a comparison be 
conducted as part of future research.
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Figure 10 shows further evidence that the stochastic results are reasonable. The figure 
shows a sequence of MCMC inversions as the volume of released fluid increases from 
340 to 2160 liters. Along a given column, released volume increases from the top row to 
the bottom row of images. The right column of images shows an iso-surface view where 
resistivity ratios from 0.9 to 1.0 are transparent. As expected, the voxel-wise average 
ratio decreases (i.e., the soil becomes more electrically conducting) from about 0.95 (top 
middle row, released volume = 0.34 m3) to about 0.2 and below (bottom middle row, 
released volume = 2.16 m3). Also, the vertical and horizontal extent of the anomaly grows 
with increasing released volume. The sequence shown suggests that the plume 
represented by these inversions is behaving as expected: anomaly volume grows and the 
resistivity ratio decreases as released brine volume increases. 

Lastly, we suggest that the stochastic results in Figures 8 to 10 are consistent with plume 
characteristics determined independently by Ward and Gee (2001), and Gee and Ward 
(2001). Their field tests were conducted at a site located a few hundred yards from the 
Mock Tank leak test facility where our results were obtained; both sites are known to 
have similar geology. Their field tests, laboratory tests, and numerical simulations of the 
movement of hypersaline solutions through the vadose zone suggest that these plumes 
move along finger-like, vertical preferential flow paths due to the much higher density of 
the hypersaline solution. Their results also show that the plumes tend to be more 
compact, move deeper and show less lateral spreading than low ionic strength solutions.  
The anomalies shown in Figures 8 to 10 show similar characteristics to those observed by 
Ward and Gee, and Gee and Ward.

In summary, the similarity between the stochastic and deterministic results, the increasing 
stochastic anomaly volume as the released brine volume increases, and the consistency 
between stochastic anomaly characteristics and independent a priori expectations of the 
plume characteristics, leads us to believe that the MCMC results provide reasonable 
representations of reality. 

Computational expense – parallel computing
The MCMC method we have used is computationally expensive. For example, a tank 
leak problem involving 28800 voxels and 128 transmitting electrodes and a typical work 
station with one CPU, will require about 45 days to accumulate a sufficient number of 
posterior samples (about 4000). Almost all of that time is used to solve the forward 
problem. In comparison, a deterministic inversion of the same problem using the same 
workstation may take 8 – 12 hours.

Clearly, parallel computation of the forward problem is required to make the MCMC 
approach practical. We have parallelized the problem in two ways: 1) Individual Markov 
chains are run on a separate processors. 2) The computational load for each chain is 
further distributed amongst multiple processors by computing the potential field due to 
each transmitter electrode on separate processors. The potential fields are then post-
processed to compute the transfer resistances associated with individual readings. When 
128 processors are used, this approach reduces the processing time to about 12 hours. 
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Processing times of 12 hours are acceptable for many real-life applications of the MCMC 
approach. Clearly, approach 2 could also be used to accelerate a deterministic run.

Step size (i.e. distance between neighboring models in space X ) controls the 
characteristic changes one allows in model space. Step size has a large impact on 
computational expense; if the resolution is too fine or involves a high dimensional state 
vector, the convergence may be slowed beyond practical limits. If too small, movement 
through the state space will be slow, and it will take longer to move past local extrema. 
When the step size is too large, increased rejection ratios (number of states rejected/total 
number of states evaluated) are likely thereby slowing the convergence rate. By trial and 
error, we discovered that a randomized step size that sometimes took smaller or larger 
steps provided a reasonable solution to this dilemma. 

Closely related to the step size is the topography of the likelihood surface under analysis. 
When the surface is exceptionally steep, the process will be slowed due to high rejection 
rates because the process attempts to move off a steep peak in likelihood space and ends 
up proposing states having much smaller relative likelihoods that are almost always 
rejected. This slow mixing process (i.e., how efficiently the process moves through space 
X ) can be mitigated in several ways but that discussion is beyond the scope of this 
manuscript. Finally, the choice of the prior distribution may also significantly impact 
convergence because it controls the proposal of candidate states. In general, the closer the 
prior is to the posterior, the faster the process converges to Ρ x d0( ).

Summary and conclusions:
We have discussed a stochastic methodology for the inversion of changing subsurface 
electrical resistivity data. This method is based upon Bayesian inference and is 
implemented via an MCMC algorithm. The inversion of electrical resistivity data is an 
ill-posed problem requiring regularization.  Our approach makes use of prior information 
to sufficiently reduce the size of the space of feasible solutions in order to mitigate ill-
posedness. The resistivity models consist of multiple blocky regions of resistivity change 
embedded within an unchanging volume. Additional information can include the sense of 
the change (increasing or decreasing resistivity), upper/lower bounds for the volume of 
the changing region, resistivity change magnitude and spatial relationships of the regions 
(e.g., requiring partially overlapping or contiguous blocks). 

A key strength of MCMC is that solutions are sampled at a rate proportional to their 
consistency with available data. Hence, models that are most consistent with available 
data observations are sampled most often, while models that are incompatible with either 
prior information and/or observations are rarely sampled. As a result, the frequency of 
models in the posterior distribution can be used to determine the probability that a given 
model is the best explanation for the available data. The approach can be used to identify 
competing models when the available information isn’t sufficient to definitively identify 
a single optimal model. Another strength is that it can be used to jointly invert disparate 
data types such as seismic and gravity as shown by Moosegard and Tarantola (1995).
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We view the MCMC and the deterministic inversion methodologies as complementary 
approaches. The MCMC approach is similar to classical inversion with the random model 
generator replacing the deterministic updating scheme based on a gradient search. In both 
cases, an initial model is chosen and responses are calculated with forward solver. The 
calculated responses are compared to observed data. Finally, an updated model is chosen 
and the process repeats. The two approaches differ in how the updated model is chosen.
The deterministic method is likely to be the preferred method when fast inversion times 
are required, and when then the regularization scheme produces sufficiently accurate 
models. The MCMC method may be most useful when inverting problems with many 
secondary extrema, when explicit estimates of solution uncertainty are required, and 
when alternative models are desired, ranked according to their consistency with available 
data. 
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Figure 1. Schematic diagram of the MCMC inversion process. The key differences 
between this approach and deterministic inversion are steps B (randomly propose 
inversion models) and E, F (control how the model is updated). 
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Figure 2. Examples of models generated by the base representation algorithm. A model 
consists of sub-volumes that can have varying size, shape and resistivity values. The top 
row models show that some of the sub-volumes can be separate from other subvolumes. 
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Figure 3 schematically shows the sector of model space included in the posterior 
distribution. Each grid node represents one resistivity model. Each hill represents a 
cluster of resistivity models having similar properties. Multiple peaks indicate that the 
MCMC inversion has produced non-unique results. The taller peaks identify regions 
containing models that are most consistent (i.e., most probable) with the observed data.
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Figure 4. Flow diagram for the “ dynamic k means” clustering algorithm used for this 
work.
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Figure 5 shows a schematic representation of the physical model set up. Four vertical 
electrode arrays were immersed in a fiberglass water tank. Various objects were inserted 
between the arrays at a variety of locations and ERT data collected.
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Figure  6 presents clustering analysis results for the case of the sand-lead target. The 3D 
block shown corresponds to the volume enclosed by the dashed lines in Figure 5. The top 
left frame shows a vertical slice through the target. The vertical slices were placed where 
the maximum resistivity ratio is observed. The right frame shows the voxel-wise average 
resistivity obtained when a uni-modal posterior distribution is assumed. The bottom 
frames shows the average resistivity ratio obtained when a multi-modal distribution is 
assumed. The three most probable clusters and their corresponding frequencies are 
shown.
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Figure 7 shows a schematic layout of the leaking tank site. Hypersaline brine solution 
was released from a point near the center of the tank’s bottom. Sixteen vertical arrays of 
electrodes were used to monitor the infiltration process.
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Figure 8 displays clustering analysis results corresponding to the brine release 
experiment. The 3D block shown here corresponds to the 3D block located beneath the 
tank in Figure 7. The left column of frames show the voxel-wise average resistivity ratio 
for the top three most probable clusters. The right column of frames shows the center 
state for the three most probable clusters.
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Figure 9 compares stochastic (left frames) and deterministic inversions (right frames). 
The top row of images consists of a series of vertical slices oriented parallel to North-
South line. The bottom row shows iso-surfaces. For the iso-surfaces, all values > 0.9 are 
transparent.
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Figure 10 displays a series of stochastic inversions corresponding to the brine release 
sequence; released brine volume increases from top to bottom. The left column shows 
the voxel-wise average resistivity ratio, and the right column shows the same results as 
iso-surfaces. For the iso-surfaces, all values > 0.9 are transparent.
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Appendix 1: Base representation algorithm: generate proposal 
models

Here we describe the algorithm used to generate the resistivity models. The algorithm 
assumes that the resistivity model consists of a mass of changing electrical resistivity 
embedded within an otherwise homogeneous volume. The changing volume is composed 
of two or more sub-volumes consisting of rectangular parallelepipeds. Each sub-volume 
has a single resistivity value selected from a user-specified set of values; other sub-
volumes can have different resistivity values. A sub-volume has to overlap, be contiguous 
to or be near another sub-volume. These sub-volumes can have varying size, shape and 
resistivity properties. 

Let xT  and xT +1  be two adjacent resistivity models in space X ; xT  is the current model in 
the Markov chain and xT +1  will be the new model. Let nvmax – maximum number of sub-
volumes that is allowed.

Algorithm:

For each sub-volume making up the mass of resistivity, propose new size, new location, 
and new resistivity values for xT +1

by perturbing the xT
values.

1) For each sub-volume sv (1 ≤ sv ≤ nvmax) in xT +1
:

1a) Propose the size in elements along the X, Y, Z directions by randomly 
perturbing the size of model xT

.

If proposed size is outside acceptable range, flag the proposed size.

1b) Propose a new location for the each sub-volume by randomly 
perturbing the location for xT

; do this for the X, Y, Z directions.

Flag the proposed change if part or all of the sub-volume is outside 
the allowable region.

1c) Randomly move through the set of allowable resistivity values to 
select a new resistivity values for each sub-volume. Suppose that the set of 
possible resistivity values = {1.0, 2.0, 8.0, 16.0, 32.0} and let the 
resistivity value for xT

= 8.0 (position 3 on the set). 

Choose add a random integer in the range –2 to 2 (or some other 
user-specified range) and add it to the position number corresponding to 
xT

. The resistivity value for xT +1
will be the value associated with this new 

position. Thus, if the random integer = 1, the resistivity value for xT +1
is 

the value associated with position 4, 16.0.
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Check that proposed set element is one of the positions within the 
set; flag it if it is not.

1d) Check whether the proposed new size, location or resistivity value are 
outside the range of permissible values; if so, go back to step 1a and try 
again.

2) Check that each sub-volume is contiguous, overlaps or is acceptably close to at 
least one other sub-volume, do this check along the X, Y, Z directions.

If each sub-volume is NOT contiguous ( or acceptably close) to at least 
one other sub volume along all three principal directions go back to step 1.

Save_previous_function:
Save the values of the xT

 model (size, location, resistivity model). This function is called 
before proposing the values for the xT +1

 model. Do this for all sub-volumes. 

reset_function:
This function is used to reset the Markov chain back to the xT

 model whenever the 
proposed xT +1

 model is rejected by the Metropolis algorithm. This function sets all the 
values for proposed model xT +1

 equal to those of xT
 by using the values saved by 

“Save_previous_function”.


