Plasma-assisted CVD of fluorinated, hydrogenated amorphous silicon. Final technical report, September 15, 1979-September 15, 1980

PDF Version Also Available for Download.

Description

During the past year, approximately 300 large-area (400 cm/sup 2/) PIN hydrogenated amorphous silicon (a-Si:H) solar cells were fabricated and tested. a-Si:H PIN cells which were plasma deposited at 200/sup 0/ to 350/sup 0/ were found to have high internal currents (13mA/cm/sup 2/), whereas those which were deposited by CVD at 500/sup 0/ to 650/sup 0/C had low internal currents. When corrected for optical losses in the top electrode, the internal quantum efficiency vs wavelength for the PIN cells indicated a peak value above 80% at about 525nm, which decreased monotonically to zero at about 725 nm. When the published ... continued below

Physical Description

Pages: 30

Creation Information

Coleman, J. H.; Hammes, J. P. & Wiesmann, H. J. January 1, 1980.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

During the past year, approximately 300 large-area (400 cm/sup 2/) PIN hydrogenated amorphous silicon (a-Si:H) solar cells were fabricated and tested. a-Si:H PIN cells which were plasma deposited at 200/sup 0/ to 350/sup 0/ were found to have high internal currents (13mA/cm/sup 2/), whereas those which were deposited by CVD at 500/sup 0/ to 650/sup 0/C had low internal currents. When corrected for optical losses in the top electrode, the internal quantum efficiency vs wavelength for the PIN cells indicated a peak value above 80% at about 525nm, which decreased monotonically to zero at about 725 nm. When the published values of RCA and EXXON were corrected similarly for optical loss, nearly identical values of internal quantum efficiencies were found. Calculations based on a model proposed by Cody et al of EXXON indicated that the depletion width was less than 0.4 microns for all PIN cells, thereby limiting junction efficiency in the red portion of the solar spectrum since the 1/e photon range exceeds this value. A novel inverted NIP cell was tested and found to have its maximum quantum response shifted to 625 nm. Also, an amorphous boron (a-B) layer deposited on a-Si:H to form a PIN heterojunction improved blue response and Voc. A combination of the red-responsive cells and the a-B heterojunction cells could raise efficiency to 8%.

Physical Description

Pages: 30

Notes

NTIS, PC A03/MF A01.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SERI/TR-8041-2-T1
  • Grant Number: AC02-77CH00178
  • DOI: 10.2172/7084762 | External Link
  • Office of Scientific & Technical Information Report Number: 7084762
  • Archival Resource Key: ark:/67531/metadc1408133

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1980

Added to The UNT Digital Library

  • Jan. 23, 2019, 12:54 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Coleman, J. H.; Hammes, J. P. & Wiesmann, H. J. Plasma-assisted CVD of fluorinated, hydrogenated amorphous silicon. Final technical report, September 15, 1979-September 15, 1980, report, January 1, 1980; United States. (https://digital.library.unt.edu/ark:/67531/metadc1408133/: accessed March 18, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.