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A numerical study is undertaken comparing a fifth-order version of the weighted

essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear,

second-order, version of Godunov’s (PLMDE) method for the compressible Euler

Equations. A series of one-dimensional test problems are examined beginning with

classical linear problems and ending with complex shock interactions. The problems

considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod’s shock

tube problem, (3) the “peak” shock tube problem, (4) a version of the Shu and Osher

shock entropy wave interaction and (5) the Woodward and Colella interacting shock

wave problem. For each problem and method, run times, density error norms and

convergence rates are reported for each method as produced from a common code

test-bed.

The linear problem exhibits the advertised convergence rate for both methods as

well as the expected large disparity in overall error levels; WENO5 has the smaller

errors and an enormous advantage in overall efficiency (in accuracy per unit CPU

time). For the nonlinear problems with discontinuities, however, we generally see

both first-order self-convergence of error as compared to an exact solution, or when

an analytic solution is not available, a converged solution generated on an extremely

fine grid. The overall comparison of error levels shows some variation from problem to
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problem. For Sod’s shock tube, PLMDE has nearly half the error, while on the peak

problem the errors are nearly the same. For the interacting blast wave problem the

two methods again produce a similar level of error with a slight edge for the PLMDE.

On the other hand, for the Shu-Osher problem the errors are similar on the coarser

grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases

holding mesh resolution constant though, PLMDE is less costly in terms of CPU

time by approximately a factor six. If the CPU cost is taken as fixed, that is run

times are equal for both numerical methods, then PLMDE uniformly produces lower

errors than WENO for the fixed computation cost on the test problems considered

here.

I. INTRODUCTION

In recent years, new formally high order finite difference methods have been developed

that are designed to robustly treat discontinuities by dropping order (upwinding) in the

vicinity of a discontinuity while in smooth regions of the flow maintaining high-order formal

order of accuracy. Furthermore, these methods have a rigorous mathematical formulation

that admits precise numerical analysis in special cases. Among the most recent family of

methods are those known as ENO (essentially non-oscillatory) finite difference methods [11].

A generalization and practical improvement of these very successful schemes is the WENO

(weighted ENO) method [13, 16]. In WENO a convex weighted combination of candidate

differencing stencils is used to approximate the flux. In this way, the shortcomings of pure

ENO methods [21] could be avoided while preserving high order of accuracy (for linear

problems and where the flow is fully resolved), robustness and efficiency. It is worth noting

that WENO (and ENO) methods rely on upwinding and, hence, a reduction in order at

flow discontinuities in much the same way as the formally second-order, MUSCL methods

considered here, which reduce to first-order at flow discontinuities. The specific MUSCL

method used for comparison to WENO in this work is a piecewise linear MUSCL method

using a direct Eulerian approach (PLMDE) originally devised by Colella [4][28].

PLMDE and the WENO methods attempt to improve upon first order results by intro-

ducing some higher-order elements to the schemes. From this perspective, these methods

can be termed bottom-up type higher order methods. These methods can be contrasted



3

with truly high order methods, such as spectral methods. Spectral methods, when applied

to problems with discontinuities, include algorithmic elements that stabilize the solution

and mollify the induced Gibbs oscillations. Locally (or globally) there is some reduction

from spectral order of accuracy, so these methods are termed top-down type higher-order

methods. In the present work these schemes are not considered and we focus attention on

the bottom-up methods.

In coupled hyperbolic problems with discontinuities, it was proven by Majda and Os-

her [17] that numerical methods with modest restrictions are subject to a loss of formal

accuracy. The accuracy degenerates to first-order in all, but very special cases between

characteristics emanating from a discontinuity. Since that time, other researchers have re-

visited this issue, but without any evidence to modify Majda and Osher’s result. Examples

are found by Donat and Osher [9], where sub-cell resolution can overcome this problem.

Casper and Carpenter also report similar results [3].

There have been several papers that have included the comparison of different methods.

Most notable among these is Woodward and Colella’s comparison of methods in 1984 [26].

This includes the introduction to the interacting shock wave problem considered here and the

quantitative analysis of results for that problem. Among the methods tested in that paper

are an early version of PLMDE and PPMDE, but WENO methods were developed more than

a decade after the paper’s publication. The comparison includes several multidimensional

problems, but detailed quantitative comparison is not possible due to the presence of shear

and vortical structures in the flows. Zalesak provided a second set of comparisons for

shock capturing methods in 1987 including problems with shocks [27]. Recently, Liska and

Wendroff have compared a broad cross-section of modern methods on a variety of shocked

flows [15]. In one dimension the comparisons are made quantitatively for problems having

analytical solutions. Again, multidimensional problems are not examined quantitatively

only qualitatively.

The present work considers a set of one-dimensional test problems of increasing complex-

ity. The idea is to examine the numerical methods in terms of efficiency and accuracy in the

linear regime to establish a baseline for performance. As most problems of interest in com-

pressible flow are nonlinear, we consider nonlinear problems that are relatively simple yet

still contain interesting structures. The features seen in these one-dimensional problems are

prototypical of many features seen in more complex multi-dimensional flows. The analysis
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methods used in the linear case are applied to the nonlinear problems and the results are

measured and compared. In order of increasing complexity the test problems are: (1) linear

advection of a Gaussian pulse, (2) Sod’s shock tube problem [23], (3) the “peak” shock tube

problem [15], (4) a version of the Shu and Osher shock entropy wave interaction [22] and

(5) the Woodward and Colella interacting shock wave problem [26].

In order to make the comparisons as precise as possible, we calculate normed errors

relative to either an exact solution, in the case of linear advection and shock tube problems,

or to a highly resolved solution in the other nonlinear tests. When comparison is made to an

analytic solution, the errors can be computed and a convergence rate can be derived. This

gives the rate at which the computed solution is approaching the true solution. For problems

where we do not have an analytic solution, we use two ways to judge the computed solutions.

The first is to use the highly resolved solution as the “true” solution and proceed as in the

previous case. In this work, we will use an additional numerical method as an independent

arbiter for determining the “true” solution. When the resolutions of the computed solutions

approach the resolution of the highly resolved one, the errors go to zero and the convergence

rates become large. So, for this way of characterizing errors to make sense, the resolutions

between the highly resolved “true” solution and the computed ones must be sufficiently

different and the errors in the highly resolved solution to be much smaller than those of the

coarser computed solution. This gives enough room so that anomalously high convergence

rates and low errors are not encountered. Another way to judge computed solutions is to

use self-convergence. With this approach, we compare a computed solution to one on a grid

twice as fine. This method says nothing about the quality of the solution as compared to the

“true” one, but does provide information regarding the internal consistency of the numerical

method and its intrinsic convergence properties.

Examining errors and convergence rates is insufficient for a complete comparison of nu-

merical methods. The cost in computational time must also be considered (accuracy per unit

CPU time). A common software test-bed has been developed that contains the numerical

implementations of the schemes used in this study. This should help assure the reader that

neither method has been given an undue advantage due to implementation optimizations.

Similarly, we are assured that both methods are implemented in a comparable way and that

the code has been compiled in exactly the same way. For the problems considered, we report

run times on a single CPU. In real applications, however, single CPU performance is largely



5

ignored in favor of parallel efficiency and scaling, but for the purposes of this study, this is

the appropriate metric. We note that both methods have similar parallel implementations

and data transfer patterns.

Inherently multidimensional problems with shock waves do not readily admit analytical

solutions, thus one is left with using grid converged solutions to estimate error. The grid

converged solutions used in this paper employ meshes that are at least 8 times finer than the

finest grid examined for error. Attempting to meet this sort of criterion in two dimensions

would correspond to at least 512 times the computational effort as the finest grid examined

for error. In three dimensions the effort grows to 4096. Clearly there is a huge additional

amount of effort that must be expended in order to extend one dimensional quantitative

comparisons to multiple spatial dimensions.

One dimensional problems provide a look at a particular method’s performance in an

idealized configuration. That is as all embedded discontinuities are grid-aligned in one

dimension, numerical dissipation and contact smearing is minimized. Hence one dimensional

test problems show a method when at its best. Increasing the inherent dimensionality of

the tests only degrades the schemes performance by increasing the intrinsic dissipation due

to non-grid aligned effects. Furthermore, the computational cost in multiple dimensions can

be determined by simple dimensional scaling from measured one dimensional performance

as most modern multi-dimensional numerical methods are constructed from either one-

dimensional sweeps or a composition of one-dimensional operations.

For multi-dimensional shock driven flows that contain embedded unstable features (e.g.

Richtmyer-Meshkov or Kelvin-Helmholtz instability) there are additional issues not men-

tioned above that make quantitative analysis and comparisons problematic. There is the

real issue of how one measures convergence or even what convergence means for these un-

stable flows. There is also an additional intimately related issue as to what the appropriate

set of equations that should be solved are (Euler versus Navier-Stokes) so that convergence

can even be realized.

The paper begins with a brief description of the numerical methods as implemented in the

test-bed. We provide mainly an overview of the key features of the methods implemented

and refer the reader to appropriate references for the details. Next the methods are compared

for each of the test problems over a range of grid resolutions. Finally, we summarize the

results and state the conclusions.
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II. COMPUTATIONAL PLATFORM AND CODE OPTIMIZATION

All of the test problems were run on a IBM T22 laptop using a 750 MHz PIIIM CPU,

512 MB of RAM. The operating system is RedHat Linux 7.1 and Lahey F95 compiler is

used (lf95 -O -tp). Similar results have been obtained on a Compaq ES45 equipped with

four 1GHz EV6.8 Alpha CPUs and 32GB of main memory running Compaq OSF1 V5.1

operating system and the Compaq f90 compiler (-O3) but are not reported in the interest

of brevity. Tests using different levels of optimization did not change the numbers reported

here appreciably so they should be regarded as representative of the performance of the test

bed code.

All of the numerical methods described in this paper are implemented in the same software

test bed following a similar programming paradigm. The same input and output routines

as well as timing routines are used for both numerical methods. These attributes help to

minimize any unintentional performance biases in this work.

III. NUMERICAL METHODS

Two numerical methods are considered here. The first is the WENO method described

in [13] and the references contained therein. We use the total variation diminishing (TVD)

third-order Runge-Kutta time integration method [10, 20] and the fifth-order spatial dis-

cretization. In the literature this method is given the designator RK3-WENO5. Since this

is the only variant of WENO considered here, we simply refer to it as WENO. The third-

order Runge-Kutta method, while linearly stable up to a CFL number of 1.43, is TVD or

(Strongly Stability Preserving) SSP for much smaller numbers. We will use the commonly

employed value of 0.6 for all of our results presented here. The basic building block for

the present scheme is based on a characteristic projection using the arithmetic mean of the

primitive variables [1] for the positive and negative fluxes used in the flux splitting. This

is equivalent to using the conservative variables [12]. This is only slightly different than

the approach given in [13] where they consider a Lax-Friedrichs (LF) or a Roe flux (RF)

splitting is considered. We note that the present method should be slightly less diffusive

than WENO using LF or RF. Other than the precise form of the characteristic projection,

our method is identical to the standard WENO implementation.
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The second method is a piecewise linear, second-order version of Godunov’s method

(PLMDE). This method is the modern version of the original scheme developed by Colella

[4], which follows the original development of the MUSCL scheme of van Leer [25]. Formally,

the method is second-order in space and time following a predictor-corrector formulation.

Predicted values are obtained by a characteristic tracing of the initial data in space-time.

That is, cell-centered data, represented by a linear polynomial approximation over the cell,

are traced to cell edges at the half-time level (i.e., t + ∆t/2). This method is stable up to a

CFL number of one but we will take a more conservative limit of 0.9 for all of our results. A

monotonicity-preserving central-difference approximation is required for the tracing. This

so-called slope (first derivative of the reconstruction) is given by the formulation in [4],

where a fourth-order slope is used before limiting rather than simply a second-order one

(also see [12]) A projection operator [2, 5, 18, 19] completes the tracings, filtering out

characteristics that do not contribute to the state at cell edges. This gives left and right

states that are input to the Riemann solver. An approximate Riemann solver [6, 18] is used,

which solves the Riemann problem for gas dynamics in one space dimension according to

the general design given in [2]. The solution to the Riemann problem gives the predicted

values. These are used to construct fluxes, which are required to update the solution to the

next time step (i.e., t + ∆t) in a fully conservative manner. Several additional techniques

that are commonly used such as shock flattening and Lapidus viscosity are not utilized

here. Sensitivity studies show that the results are insensitive to these algorithmic details

and differences in PLMDE solutions are minor.

The algorithm we use to generate highly resolved solutions for the Shu and Osher test

problem and the interacting shock wave problem is the piecewise parabolic MUSCL direct

Eulerian (PPMDE) scheme with the enhanced monotonicity constraints as defined by Suresh

and Huynh [24]. It is formally third-order in space and second-order in time. We choose

to use a third method for generating a highly resolved solution to avoid potentially biasing

of the results in favor WENO or PLMDE. These results are found on meshes sufficient

to produce errors that are at least an order of magnitude lower than PLMDE or WENO

results.
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IV. ERROR ANALYSIS

For the purposes of analyzing the errors quantitatively, we define two error norms used

in this study. The first is the L1 error norm defined as

EL1 =
1

N

N∑
i=1

E(i) (1)

with

E(i) =
|S(i)− Sc(i)|

|Sc(i)|
where S(i) is the computed solution available at grid points i, Sc(i) is the “true” solution to

the problem. If an analytic solution is available, then Sc(i) is that solution evaluated at the

same points as S(i). If an analytic solution is not available, then we regard a highly resolved

calculation as the true solution. Sc(i) is conservatively averaged to the same grid that S(i)

exists on. This operation is only conducted on conserved quantities consistent with a weak

solution.

The other error norm used is the L∞ norm defined as

EL∞ = max(1,...,N)E(i) (2)

for S(i) and Sc(i) as above. As a general comment on these error norms, the L1 gives all

differences over the domain the same weight. It tends to give a more global integrated view

of the errors in a computed solution. The L∞ norm on the other hand emphasizes errors

that occur at peaks or at discontinuities. These are very complementary norms and together

provide a reasonably complete picture of the errors and make precise what can be visualized

by direct comparison of computed solutions.
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V. TEST PROBLEMS

A. Linear Advection

Linear advection of some form is the ubiquitous test for numerical methods. Advection

of different shapes have appeared previously in the literature and we reproduce here results

for a particular Gaussian pulse. It also serves as means of verifying that the methods as

implemented in the test-bed code produce the expected formal order of accuracy. This is

the simplest problem we treat and because of linearity is the best understood from the

point-of-view of analysis.

1. Problem Specification

Consider the linear advection equation ρt + uρx = 0 in one-dimension with u > 0 a

constant. Here we take a uniform velocity profile, with u = 1 and take ρ in the shape of a

Gaussian profile given by

ρ = 1 + exp((−r2)/(2δ2)) (3)

where r is the distance |x−0.5|. Here we set δ = 0.0625 and define the profile on the domain

0 < x < 1. The boundary conditions at x = 0 and x = 1 are periodic. We compute the

solution to t = 2 which is two rotations through the domain. We take special note that this

problem is solved in the context of the full Euler equations so that the accuracy of the full

solver is tested. Our problem specification is completed by specifying the pressure, p = 10

and γ = 1.4.

2. Error Analysis

In this section we compare the errors between the computed solutions and the analytic

solution at the same resolution. Table I shows the error norms and rates of convergence

for PLMDE. We see that the second-order rate is achieved for the L1 norm and first-order

in the L∞ norm. The first-order L∞ norm shows the effect of the slope limiter in PLMDE

that reduces the slope approximation used in the characteristic tracing to first order when

monotonicity is threatened by local extrema. In the table II the L1 and L∞ relative errors

are shown for the WENO method. The expected convergence rate, fifth-order, is essentially
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achieved for CFL = 0.6. We note that only 75% to 80% of that rate is achieved for the

higher CFL = 1, as shown in table III, providing a justification for taking care not to choose

the higher CFL number.

Recall that the L∞ norm emphasizes errors where they are the largest while L1 represents

an integrated measure; all errors are given equal weight and summed over the entire domain.

If we plot the difference, E(i) = |S(i)−Sc(i)|/Sc(i), used to construct the norms as a function

of grid point, then we can visualize where the errors are largest as well as their spatial

structure. In figure 1, we see that for PLMDE the largest errors are near the peak (x = 0.5)

of the Gaussian, and fall off in a way consistent with the WENO errors. At the peak the

errors for both methods are the largest, but those for WENO are nearly two decades smaller

in magnitude at the same resolution. For finer meshes the differences become even more

extreme owing to the fact that WENO is converging at its designed fifth-order accuracy.

TABLE I: L1 and L∞ errors and convergence rates for PLMDE for the advection of a Gaussian

pulse at different grid resolutions.

N EL1 L1 Rate EL∞ L∞ Rate

100 1.97e-03 - 1.17e-02 -

200 5.64e-04 1.80 5.19e-03 1.17

400 1.50e-04 1.91 2.33e-03 1.16

TABLE II: L1 and L∞ errors and convergence rates for the WENO method for the advection of a

Gaussian pulse at different grid resolutions using CFL = 0.6.

N EL1 L1 Rate EL∞ L∞ Rate

100 3.29e-05 - 1.27e-04 -

200 1.09e-06 4.92 5.31e-06 4.58

400 3.69e-08 4.88 2.11e-07 4.65
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TABLE III: L1 and L∞ errors and convergence rates for the WENO method for the advection of

a Gaussian pulse at different grid resolutions using CFL = 1.0.

N EL1 L1 Rate EL∞ L∞ Rate

200 5.662e-06 - 3.247e-05 -

400 2.343e-07 4.6 1.583e-06 4.36

800 1.744e-08 3.75 1.062e-07 3.9
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WENO5 100

WENO5 400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.0×10−10

1.0×10−9

1.0×10−8

1.0×10−7

1.0×10−6

1.0×10−5

1.0×10−4

1.0×10−3
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FIG. 1: The quantity E(i) is plotted for PLMDE and the WENO method on a vertical log scale

at resolutions indicated in the figure legend.

3. Base Timings

In Table IV we show the run time results for the two methods for two periods through

the grid. According to the above results, WENO’s convergence rate is sensitive to CFL.

Furthermore, results in the literature uniformly use a CFL value less than 0.6, even though

the third-order Runge-Kutta time integration method is stable to a CFL value of 1.43. In

the interests of balancing high accuracy (low errors) and consistency with the existing body

of work, we will use the CFL = 0.6. Note that the timings can be scaled to a different CFL
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using the number of total time steps taken but taking care to note that the relative accuracy

of the resultant solution will possibly be degraded.

TABLE IV: Timings for PLMDE and WENO methods for linear advection of a Gaussian pulse.

The Ratios column shows the WENO result divided by the PLMDE result.

N PLMDE (sec) time steps WENO (sec) time steps Ratio

100 2.11 1083 11.13 1610 5.22

200 7.03 2137 43.40 3191 6.17

400 24.69 4245 164.76 6352 6.67

B. Sod and Peak Shock Tubes

An equally ubiquitous test for these numerical methods are shock tubes. We will examine

two different shock tube problems here, Sod’s [23] and the “peak” problem used by Liska

and Wendroff [14]. Sod’s shock tube is a relatively easy problem, but the peak is quite

difficult because of the large density and small distance between the shock and the contact.

Both of these problems have analytic solutions, as do all shocktube problems for polytropic

gases, providing unambiguous error analysis.

1. Problem Specifications

Both problems are specified using a shock tube initial condition: a discontinuous initial

state that forms a self-similar profile in the x/t coordinate. For both problems we will

provide the left and right initial states in the form of a vector, (ρ, u, p)T . In both cases the

pressure is related to the density and energy through an ideal gas equation of state with

γ = 1.4. In the case of Sod’s shock tube the left state (x < 0.5) is (1, 0, 1)T and the right

state (x > 0.5) is (0.125, 0, 0.1)T . The domain is x ∈ [0, 1] and results are reported at t = 0.2.

We will report results for grids of 100, 200 and 400 cells. The peak problem is defined in the

same manner with the left state (x < 0.5 being (0.1261192, 8.9047029, 782.92899)T and the

right state (x > 0.5) is (6.591492, 2.2654207, 3.1544874)T on the unit interval. The problem
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is run to t = 0.0039. We will report results for grids of 200, 400 and 800 cells. In all cases

we ramp up the time step size from one-tenth the CFL limit, specified previously for each

method, at a rate of 1.05 per time step until the full specified CFL limit is reached.

2. Error Analysis

In this section we compare the errors between the computed solutions and the analytic

solution at the same resolution. For Sod’s shock tube the L1 norm errors for PLMDE are

roughly half the size of those for WENO as seen by comparing the errors in tables VI and

V. The L∞ norms are comparable in size with the PLMDE errors being slightly smaller.

This norm also grows in magnitude in response to the localization of error at the shock.

A plot of the error as a function of x is shown in figure 2. The spatial distribution of the

errors for the two methods are very similar; however, in the rarefaction region, 0.25 ≤ x ≤
0.45, PLMDE has uniformly lower errors. At the shock, x ≈ 0.87, the WENO errors extend

past the shock location while the PLMDE errors drop off sharply. This effect could be the

result of the (relative) phase error in the WENO method.

TABLE V: EL1 and EL∞ errors and convergence rates for PLMDE on Sod’s shock tube at different

grid resolutions.

N EL1 L1 Rate EL∞ L∞ Rate

100 8.22e-03 - 0.22e-00 -

200 4.48e-03 0.88 0.25e-00 -0.20

400 2.62e-03 0.77 0.33e-00 -0.37

The peak shock tube places a high premium on computing a narrow density peak. The

errors for these methods on this problem is quite similar, as is evident from the data shown

in Tables VII and VIII. The convergence rates are poor and irregular, but similar. At the
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TABLE VI: EL1 and EL∞ errors and convergence rates for the WENO method for Sod’s shock

tube at different grid resolutions.

N EL1 L1 Rate EL∞ L∞ Rate

100 1.58e-02 - 0.37e-00 -

200 8.24e-03 0.93 0.40e-00 -0.01

400 4.47e-03 0.88 0.46e-00 -0.18
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0.0001

0.001

0.01

0.1

1
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WENO5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0001

0.001

0.01

0.1

1

FIG. 2: The quantity E(i) for density on Sod’s shock tube plotted for PLMDE (solid line) and the

WENO method (dashed line) on a vertical log scale for N = 100.

finest resolution used the solutions in the vicinity of the peak density are nearly identical

as shown in Figure 3. The differences favor PLMDE with its solution being slightly sharper

although slightly lower in maximum density at the finest (800 cell) resolution. The point

of this problem is to demonstrate the similarity of performance of the two schemes on this

difficult problem.
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TABLE VII: L1 and L∞ errors and convergence rates for PLMDE for the peak shock tube at

different grid resolutions.

N EL1 L1 Rate EL∞ L∞ Rate

100 1.02 - 139. -

200 0.86 0.24 187. -0.43

400 0.29 1.57 120. 0.65

TABLE VIII: L1 and L∞ errors and convergence rates for the WENO method for the peak shock

tube at different grid resolutions.

N EL1 L1 Rate EL∞ L∞ Rate

100 0.93 - 125. -

200 0.86 0.12 185. -0.57

400 0.29 1.55 129. 0.52

3. Base Timings

In Tables IX and X we show the run time results for the two methods. The CFL limits

are as before. The relative cost of the two methods for this simple nonlinear problem is the

essentially the same as that for the linear advection problem. That is, the relative cost of

WENO to PLMDE is approximately six.

C. Shu and Osher Test Problem

This test problem is probably the simplest one-dimensional compressible flow problem

that contains interesting structures. It is also considered to be a good one-dimensional

surrogate for the interaction of a shock wave with a turbulent field.



16

0.54 0.55 0.56 0.57
0

10

20

30

40

x

de
ns

it
y

exact

PLMDE

WENO5

0.54 0.55 0.56 0.57
0

10

20

30

40

FIG. 3: The density around the peak in the peak shock tube problem is plotted for PLMDE (dashed

line) and the WENO method (dot-dashed line) with the exact solution (solid line) for N = 800.

TABLE IX: Timings for PLMDE and WENO methods for Sod’s shock tube. The Ratios column

shows the WENO result divided by the PLMDE result.

N PLMDE (sec) time steps WENO (sec) time steps Ratios

100 0.17 72 0.69 95 4.06

200 0.43 127 2.34 173 5.44

400 1.40 238 8.98 329 6.41

TABLE X: Timings for PLMDE and WENO methods for the peak shock tube. The Ratios column

shows the WENO result divided by the PLMDE result.

N PLMDE (sec) time steps WENO (sec) time steps Ratios

200 2.37 168 0.43 121 5.51

400 8.57 305 1.40 212 6.12

800 35.78 579 5.00 395 7.15
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1. Problem Definition

The problem is a Mach 3 shock wave in a γ = 1.4 perfect gas interacting with upstream

sinusoidal density waves. Specifically at t = 0,

x < −4 : ρ = 3.857143; ρu = 2.629369; p = 10.33333 (4)

x ≥ −4 : ρ = 1− εsin(λx); ρu = 0.; p = 1 (5)

defined on −5 < x < 5. In the present study we take ε = 0.2 and λ = 5π. For a different

set of values see [13]. We choose this set because they give very high frequency oscillations

in the near post-shock region that transitions downstream to a longer wavelength “N-wave”

pattern. We wish to stress the algorithms in their abilities to accurately resolve high fre-

quency modes after shock processing. The boundary conditions are set as inflow/outflow at

x = −5 and x = 5. The final time for analysis is taken to be t = 1.8, at which time, there

is no flow across the x = 5 boundary.

For the “exact” solution we use an extensively refined grid solution using a different

method. We choose PPMDE embellished with relaxed monotonicity requirements as defined

by Suresh and Huynh [24] to produce this solution using 25600 cells. This method combines

elements of both the PLMDE and WENO5 methods without being directly derived from

either. This is to avoid making comparisons that are overly biased for or against either

method. Furthermore, we will now provide evidence that the errors in the highly converged

solution are sufficiently well resolved to be considered as a standard. In Table XI we display

the L1 and L∞ errors for this solution as well as the self-convergence rates. The L1 errors

are a factor of approximately 10 times lower than those estimated for PLMDE and WENO5

below. In the case of the L∞ errors this factor is also approximately 10.

At this point it is worthwhile to discuss two manners of estimating error and determining

convergence rates. One method uses “self-convergence” where a method’s next most refined

grid is used to estimate errors rather than an exact or surrogate of an exact solution. Our

principle tool in this paper is an exact solution as determined by an extremely refined grid.

In this section we will also report self-convergence, which, in a sense, marks a method’s

internal progress toward a solution rather than the absolute measure of such progress.
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TABLE XI: L1 and L∞ Errors for the highly converged PPMDE solution of the Shu-Osher test

problem.

N EL1 L1 Rate EL∞ L∞ Rate

6400:12800 3.00e-04 - 9.65e-02 -

12800:25600 1.24e-04 1.27 2.84e-02 1.76

2. Error Analysis

Examining the errors quantitatively shows the quality of the computed solution for a

given resolution. In Table XII is shown the L1 errors for PLMDE and WENO for the grid

resolutions considered. We use the solution at N = 25600 generated using PPMDE as the

true solution for the error analysis on this test problem. We see in Table XII that the errors

between the two methods are comparable at similar resolution for the coarser resolutions,

N < 1600. Also for these cases, the convergence rate is essentially zeroth order. The poor

convergence rates are a bit puzzling at first glance in light of the convergence rates published

in [26] for the next test problem. They show first-order convergence for nominally second-

order codes and less than first-order convergence for the first-order version of Godunov’s

method. An explanation for this could be the nature of this test problem. There is a

minimum resolution required to represent the high frequency modes present in the post-

shock region. Less than expected convergence rates would indicate that the low resolution

computed solutions are very different (uncorrelated) from the highly resolved solution.

For N ≥ 1600, the magnitude of the errors differs by less than a factor of two in favor of

WENO with both schemes showing better than first order convergence. We are now in the

regime where the computed solutions are correlated with the highly resolved solution.

The L1 self-convergence errors are summarized in table XIII. Below the critical resolution

of N = 1600 we see nominally first order convergence between the two methods. As the

resolution matches the critical resolution in the N = 800 : 1600 case, we observe divergence.

For the N = 1600 : 3200 case the solutions appear to converge again at nominally first

order or better. The convergence rates when considering self-convergence indicate the rate

at which a computed solution is approaching a solution on a grid twice as fine. It makes no

statement regarding the accuracy of the computed solution relative to the true solution.

The L∞ errors are shown in Tables XIV and XV. For both methods, the errors are
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essentially oscillatory throughout the resolutions considered and of similar magnitudes for

both methods. When examining the L∞ errors under self-convergence, we observe a similar

behavior with respect to PLMDE. For WENO, the errors are roughly constant for N ≤ 1600.

At higher resolutions, the errors then decrease.

TABLE XII: L1 errors for PLMDE and WENO relative to the N=25,600 PPMDE solution for the

Shu and Osher test problem.

N EL1 PLMDE PLMDE L1 Rate EL1 WENO WENO L1 Rate

200 1.858e-02 - 2.104e-02 -

400 1.837e-02 0.16 1.959e-02 0.10

800 1.669e-02 0.14 1.626e-02 0.27

1600 7.018e-03 1.25 4.001e-03 2.02

3200 2.423e-03 1.53 1.358e-03 1.60

TABLE XIII: L1 errors for PLMDE and WENO using self-convergence for the Shu and Osher test

problem.

N EL1 PLMDE PLMDE L1 Rate EL1 WENO WENO L1 Rate

200:400 7.198e-03 - 6.137e-03 -

400:800 3.348e-03 1.10 4.401e-03 0.48

800:1600 1.077e-02 -0.14 1.275e-02 -1.53

1600:3200 6.125e-03 0.81 2.826-03 2.17

3. Base Timings

Table XVI summarizes the run times in seconds to compute the solution to t = 1.8 for

the two methods on successively finer grids. Our standard CFL is used for both methods.
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TABLE XIV: L∞ errors for PLMDE and WENO relative to the N = 25600 PPMDE solution for

the Shu and Osher test problem.

N EL∞ PLMDE EL∞ WENO

200 0.429 0.902

400 0.188 0.667

800 0.290 0.369

1600 0.185 0.572

3200 0.230 0.399

TABLE XV: L∞ errors for PLMDE and WENO using self-convergence for the Shu and Osher test

problem.

N EL∞ PLMDE EL∞ WENO

200:400 0.143 0.274

400:800 0.081 0.216

800:1600 0.238 0.216

1600:3200 0.077 0.100

The ratio column gives the ratio of WENO runtime to that of PLMDE. We see that at a

given resolution PLMDE is faster by approximately a factor of six.

TABLE XVI: Run times for PLMDE and WENO for the Shu and Osher test problem.

N PLMDE Time (sec) time steps WENO Time (sec) time steps Ratio

200 0.84 250 4.84 334 5.76

400 2.89 468 17.38 634 6.01

800 11.02 903 73.07 1235 6.63

1600 46.09 1774 280.62 2443 6.09

3200 226.74 3514 1278.31 4857 5.63
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4. Density Field Visualizations

In this section we examine plots of the computed density fields for WENO and PLMDE.

We will divide the flow into four distinct regions for presentation of results: near the shock

x ∈ [2, 2.5]; the near field (NF), entropy wave (EW) x ∈ [1, 2]; the transition to the N-waves

x ∈ [0, 1]; and the far field (FF), N-wave region x ∈ [−2, 0]. We display the extremely

fine grid solution (taken as being nearly “exact”) in Figure 4. We then show a series of

plots displaying the grid convergence behavior of both schemes and a comparison of errors

on the medium size grid (1600 cells). Figures 5 through 16 show these comparisons. In

the near shock region we see that the WENO method commits greater errors at the shock,

but the errors are smaller once the fluid is processed by the shock. This trend continues

in the NF region where the advantage of WENO is the greatest. As the flow transitions

to a series of N-waves the errors become nearly equal in magnitude. Finally, the errors in

WENO become larger than those committed by PLMDE in the FF region in keeping with

our general observation from this data that WENO produces larger errors near a shock wave

as compared to PLMDE.

The errors are shown in figure 5 for the NF region. We see that WENO has larger errors in

the neighborhood of the shock wave. Behind the shock in the beginning of the entropy wave

oscillations, we see that WENO and PLMDE have similar errors with a slight advantage to

WENO. The corresponding density plots for N = 800, 1600 and 3200 with the exact solution

for reference for PLMDE and WENO are shown in figures 9 and 10, respectively.

In the EW region of the flow, the errors plotted in figure 6 are uniformly lower for WENO

compared to PLMDE. Typical differences are roughly a factor of two in this region and these

errors dominate the overall error for the problem. If we compare the distribution of errors

with the density plot for PLMDE, figure 11, and for WENO, 12, we see that the minimum

errors typically occur at local minima in the density while the maximum errors typically

occur at local maxima. We also see the dramatic effect that occurs for both methods when

the resolution is increased above N = 800; the wavelength of the high frequency oscillations

are beginning to be resolved.

At the end of the EW region, the flow undergoes a transition to N-Waves (TN). The

errors in this region for PLMDE and WENO are plotted in figure 7. Similar errors are

observed throughout this region for both methods. Figures 13 and 14 show the density field
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FIG. 4: The “exact” solution to the Shu-Osher problem from PPMDE using 25600 cells. The

domain is divided into four distinct regions for presentation of the results: near the shock or near-

field (NF) x ∈ [2, 2.5], the entropy wave (EW) x ∈ [1, 2], the transition to the N-waves (TN)

x ∈ [0, 1], and the far-field (FF), N-wave region x ∈ [−2, 0].

for PLMDE and WENO, respectively, for N = 800, 1600 and 3200 resolutions. The density

fields produced by both methods are also similar in this region which is consistent with the

similarity of the error plots.

Finally in the FF region, the errors for PLMDE and WENO are shown in figure 8. At

the discontinuities of the N-waves, both methods produce similar errors. In the regions in

between, PLMDE has an advantage in error magnitude. The errors can be compared with

the density fields which are shown in figures 15 and 16 for PLMDE and WENO, respectively.

A slight advantage is observed near the peaks for PLMDE that is consistent with the error

plot in this region.
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FIG. 5: A comparison of the errors in the near shock (NF) region for the Shu and Osher test

problem. PLMDE is shown as a solid line and WENO is shown with a dashed line.

5. Break-even Analysis

It is an essential exercise to take the time used by WENO as a fixed resource that we

want to fully utilize for a PLMDE calculation. Table XVII shows the PLMDE resolution

necessary to approximately equate run times. Overall, we can use a grid more than twice

as fine for PLMDE and have the run times equal. This uniformly lowers the errors for each

equal-WENO-time PLMDE calculation by approximately a factor of 2.5, assuming first order

convergence. Looking back to tables XII and XIV for the L1 and L∞ errors, respectively,

we see that a doubling of the number of grid points produces a PLMDE solution with lower

errors by at least a factor of two for the norms considered here. For this test problem and a

fixed amount of computational time, PLMDE can produce a quantitatively more accurate

solution independent of the chosen error norm.
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FIG. 6: A comparison of the errors in the entropy wave (EW) region for the Shu and Osher test

problem. PLMDE errors are shown as a solid line and WENO errors are shown with a dashed line.

TABLE XVII: Comparison of WENO to PLMDE resolution for equal run times for the Shu and

Osher test problem.

WENO N PLMDE N PLMDE Time (sec) Ratio

200 500 4.72 0.98

400 1020 17.68 1.02

800 2020 74.14 1.01

1600 3940 289.10 1.03

D. Woodward-Colella Interacting Shock Wave Problem

The interacting shock wave problem was first featured as part of test suite in [26]. It is a

very challenging problem for Eulerian methods as the compressions are exceptionally high

in very small volumes. This repeats some of the features of the “peak” shock tube. Also, it

features strong nonlinear effects through the interaction of shock, rarefactions and contact
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FIG. 7: A comparison of the errors in the transition to N-waves (TN) region for the Shu and Osher

test problem. PLMDE errors are shown as a solid line and WENO errors are shown with a dashed

line.

discontinuities.

1. Problem Description

The one-dimensional interacting shock wave problem is two separate shock tube problems

featuring a region of low pressure in between. The fluid is a γ = 1.4 perfect gas. At t = 0,

we have the following configuration:

0 < x < 0.1 : ρ = 1; ρu = 0; p = 1000 (6)

0.1 < x < 0.9 : ρ = 1; ρu = 0.; p = 0.01 (7)

0.9 < x < 1 : ρ = 1; ρu = 0.; p = 100 (8)
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FIG. 8: A comparison of the errors in the far field (FF) region for the Shu and Osher test problem.

PLMDE errors are shown as a solid line and WENO errors are shown with a dashed line.

The boundary conditions at x = 0 and x = 1 are set to solid reflecting walls. For a

more detailed description of this problem and its evolution see [26]. Instead of following the

evolution over time, we focus on the final time solution at t = 0.38.

2. Error Analysis

For a solution as complex as this one, quantitative error measures are a necessity. The

solution computed with PPMDE and N = 6400 is used as the true solution for this problem.

As with the previous shock-entropy problem, our first task is to provide the evidence nec-

essary to provide confidence in this solution as an appropriate standard for comparison. In

Table XVIII we display the L1 and L∞ errors for this solution as well as the self-convergence

rates. The L1 errors are a factor of nearly 40 times lower than those estimated for PLMDE

and WENO5 below. In the case of the L∞ errors this factor is nearly 30.
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FIG. 9: The 800, 1600 and 3200 zone PLMDE solutions are shown in the near shock (NS) region

for the Shu and Osher test problem.

TABLE XVIII: L1 and L∞ Errors for the highly converged PPMDE solution to the interacting

shock wave problem.

N EL1 L1 Rate EL∞ L∞ Rate

1600:3200 1.93e-03 - 1.92e-01 -

3200:6400 1.06e-03 0.86 1.29e-01 0.56

In Table XIX, the L1 errors are reported as well as the convergence rates. The overall

magnitude of the errors for both methods are within 10−15% and the convergence rates are

nearly first order. PLMDE is more accurate at all grid resolutions tested here. If instead

we look at the L∞ norm errors shown in Table XX, we see that the overall error levels

are high for both methods due to the presence of multiple flow discontinuities. The spatial

distribution of error is displayed in Figure 17. The largest contribution to the error occurs

at the contact discontinuity located near x ≈ 0.60, that is embedded in a strongly rarefying

flow.
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FIG. 10: The 800, 1600 and 3200 zone WENO solutions are shown in the near shock (NS) region

for the Shu and Osher test problem.

TABLE XIX: L1 error for PLMDE and WENO relative to the N = 6400 PPMDE solution for the

interacting shock wave problem.

N EL1 PLMDE PLMDE Rate EL1 WENO WENO Rate

200 1.133e-01 - 1.256e-01 -

400 6.298e-02 0.85 7.071e-02 0.83

800 3.777e-02 0.74 4.240e-02 0.74

3. Break-even Analysis

Reference to table XXI, it is clear that for the cost of the WENO solution, PLMDE can

use a grid that is approximately 2.5 times as fine. That is, the N = 800 PLMDE solution
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FIG. 11: The 800, 1600 and 3200 zone PLMDE solutions are shown in the entropy wave (EW)

region for the Shu and Osher test problem.

TABLE XX: L∞ error for PLMDE and WENO for the interacting shock wave problem.

N EL∞ PLMDE EL∞ WENO

200 3.126 3.298

400 3.258 3.605

800 3.274 3.740

takes 16.91s to compute the solution at t = 0.038 while WENO using N = 300 method takes

17.01s to integrate to the final time. With the L1 errors converging at a first order rate, this

implies that 2.5 times the number of grid points for PLMDE will produce L1 errors lower

by a factor of two smaller than the WENO method. For just a factor of two increase in grid

points, we see that this is true (cf. Table XIX).
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FIG. 12: The 800, 1600 and 3200 zone WENO solutions are shown in the entropy wave (EW)

region for the Shu and Osher test problem.

4. Density Plot Comparison

In this section, we depict graphically the facts established for this test problem. We

compare the density field computed by the WENO method at a particular resolution against

the same resolution PLMDE solution and a PLMDE solution at twice the number of grid

points. Figure 18 shows the comparison between with the WENO result at N = 200 and

a N = 200 and N = 400 Godunov solution. Comparing the results at the peaks (x ≈ 0.78

and x ≈ 0.65) between the N = 200 solutions shows that WENO is better at reproducing

the peaks. The overall similarity between the L1 and L∞, though, show that away from

the peaks PLMDE must be generating smaller errors than WENO so that upon integration

of the pointwise errors over the entire domain yields results that are similar. Even at this

coarse resolution, we see that PLMDE with both N = 200 and N = 400 produces a less

diffuse left-most contact region (0.55 < x < 0.65) compared to WENO.

In figure 19, the N = 800 WENO result is compared with the N = 800 and N = 1600

PLMDE result. Again when we compare the N = 800 solutions, WENO is better at the
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FIG. 13: The 800, 1600 and 3200 zone PLMDE solutions are shown in the transition region (TN)

for the Shu and Osher test problem.

peaks, but this difference is much smaller than at coarser zoning. Still, the similarity of

error norms at N = 800 show that on average (after integration) PLMDE is producing an

overall more accurate solution for this problem.

5. Base Timings

Timings in seconds for running the problem to t = 0.038 on different grids are given in

Table XXI. We use the same CFL numbers as before. The following table contains the

grid resolution used for both methods and the CPU time in seconds for PLMDE and for

WENO in order to run the problem to t = 0.038. We also list the ratio of the WENO time

to PLMDE. Values greater than unity indicate that PLMDE is faster. These results are

consistent with our earlier experience with these methods.
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FIG. 14: The 800, 1600 and 3200 zone WENO solutions are shown in the transition region (TN)

for the Shu and Osher test problem.

TABLE XXI: Timings for PLMDE and WENO on the interacting shock wave problem.

N PLMDE time steps WENO time steps Ratio

200 1.20 369 7.19 540 5.99

400 4.29 723 27.80 1072 6.48

800 16.91 1435 120.49 2141 7.13

We note that it was found that a CFL = 1 produced reasonable results for this test

problem with WENO. In [13] the present problem was run at a CFL = 0.6, so our timing

results are set to be consistent with that practice.

VI. CONCLUSIONS

This study has several important results.

• The most important of these is given the baseline performance of the WENO method
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FIG. 15: The 800, 1600 and 3200 zone PLMDE solution in the far field (FF) region for the Shu

and Osher test problem.

on linear problems where its fifth order convergence rate is manifest, for the nonlin-

ear problems considered here, the accuracy advantage of the fifth-order method has

essentially vanished and the convergence rate has been reduced to first order.

• At a fixed resolution the overall level of errors (accuracy per unit grid cell), for the

norms used here, are typically similar for the problems considered. The one notable

exception is the Shu-Osher problem in the EW regime, for which the WENO method

produces L1 errors lower by nearly a factor of two.

• Also, we have shown nominally first order convergence for the methods to a highly

resolved third independent method.

• Our next important result concerns the difference in run times for the two methods.

At a typical CFL used for each method, PLMDE is six times faster than WENO5

for a given mesh and simulation end time. For the nonlinear problems considered,

when the computational expense between PLMDE and WENO5 is equated, PLMDE
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FIG. 16: The 800, 1600 and 3200 zone WENO solution in the far field (FF) region for the Shu and

Osher test problem.

produces solutions with uniformly lower errors with respect to the norms considered

(accuracy per unit CPU second).

This work has made clear progress in providing quantitative measures and comparisons

between a formally high order accurate method and a formally second order one. It has

demonstrated the importance of making detailed measurements of actual errors rather than

simply relying upon qualitative comparisons between schemes. This allows both the relative

strengths and weaknesses of these methods to be quantified unambiguously, so that sound

conclusions can be drawn as to the efficacy of these methods on various classes of problems.

In light of these conclusions, an obvious question is raised: what has happened to the

higher-order method’s advantage observed in the linear regime when nonlinearity is in-

troduced? While high-order convergence is not to be expected when intrinsic dissipation

techniques are activated (e.g. when under-resolved gradients are present) as theoretical work

predicts, it is generally hoped that the higher order method may offer lower overall errors.

This was generally found to not be the case as the errors differed typically by only a factor
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FIG. 17: A comparison of the spatial distribution of error for the interacting shock wave problem.

of two. The nonlinear problems considered here or other relevant ones should serve as tests

to try to understand this issue more fully.

Two areas are ripe for further attention: (1) determining why the high order methods

have lost the advantage so clear in the linear regime when nonlinearity comes into play,

or equivalently, what parts of PLMDE make it particularly good for nonlinear problems;

and (2) how does this picture change when multi-dimensional problems are considered?

Some work in this area [8] indicates that the multi-dimensional results will be similar to

those reported here; that is formally high order methods are comparable to the second-

order Godunov method for nonlinear problems in multiple spatial dimensions. Both of these

areas are important and have potentially far reaching implications for the compressible flow

simulation community.
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