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Perfectly matched layers for Maxwell’s equations in

second order formulation∗

Björn Sjögreen† N. Anders Petersson‡

July 26, 2004

Abstract

We consider the two-dimensional Maxwell’s equations in domains external to
perfectly conducting objects of complex shape. The equations are discretized us-
ing a node-centered finite-difference scheme on a Cartesian grid and the boundary
condition are discretized to second order accuracy employing an embedded tech-
nique which does not suffer from a “small-cell” time-step restriction in the explicit
time-integration method. The computational domain is truncated by a perfectly
matched layer (PML). We derive estimates for both the error due to reflections
at the outer boundary of the PML, and due to discretizing the continuous PML
equations. Using these estimates, we show how the parameters of the PML can be
chosen to make the discrete solution of the PML equations converge to the solution
of Maxwell’s equations on the unbounded domain, as the grid size goes to zero.
Several numerical examples are given.

1 Introduction

In this paper, we study grid convergence properties of numerical solutions of the two-
dimensional Maxwell’s equations, when a perfectly matched layer (PML) is used to trun-
cate an unbounded domain. While there are many types of non-reflecting and absorbing
boundary conditions, we here choose to use PML because it is a simple and straightfor-
ward method, easily implemented for both two and three space dimensions using either
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Cartesian or cylindrical/spherical coordinates. The PML technique, which first was pro-
posed by Berenger [5], is based on modifying the partial differential equation (PDE) away
from all physical boundaries such that

a) waves of all frequencies and angles are transmitted from the interior into the layer
without any reflections, and

b) the PML damps waves so that they become insignificant before they reach the outer
boundary of the computational domain.

The PML equations are derived by Fourier transforming in time and modifying the
Fourier-transformed problem to satisfy conditions a) and b). New dependent variables are
introduced to allow the modified equations to be transformed back to the time variable.
Waves at all angles and frequencies are damped by the PML, but the damping depends
on the angle between the impinging wave and the PML interface, and goes to zero for
glancing waves. When the PML is truncated to a finite width, the exponentially small
remainder of the waves is reflected at the outer boundary.

To illustrate the basic ideas, we consider the Cauchy problem for the one-dimensional
version of the TMz equations,

∂H(y)

∂t
=
∂E (z)
∂x

, −∞ < x <∞, (1)

∂2E (z)
∂t2

=
∂2E (z)
∂x2

, −∞ < x <∞. (2)

We are interested in computing the solution in the half-plane x < 0 and introduce a PML
in x > 0. In all practical computations, the thickness of the PML must be limited and
we here truncate the PML at x = d > 0, where a homogeneous Dirichlet condition is
imposed. The one-dimensional PML equations are

∂H(y)

∂t
=
∂E(z)

∂x
− σ(x)H(y),

∂2E(z)

∂t2
=
∂2E(z)

∂x2
− σ(x)

∂E(z)

∂t
− ∂

∂x

(
σ(x)H(y)

)
, −∞ < x < d, (3)

E(z)(d, t) = 0,

where the coefficient of the damping term satisfies

σ(x) =





0, x < 0,

σmaxP (x), 0 ≤ x ≤ d,

for some non-negative function P (x) ≤ 1. Here, σmax > 0 is a constant. Note that we
distinguish between Maxwell’s equations and the PML equations by using calligraphic
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letters for the solution of the former problem. The system (1)-(2) has traveling-wave
solutions propagating to the right (increasing x) given by (for simplicity we only consider
the E (z)-component)

E (z)(x, t) = Aeiω(t−x),

and the corresponding solution of the PML equations is

E(z)(x, t) = A
(
−eiω(t+x−2d)+

∫ x
0 σ(s) ds−2

∫ d
0 σ(s) ds + eiω(t−x)−

∫ x
0 σ(s) ds

)
.

Outside the PML (x < 0), the difference between the solutions is an exponentially small
wave traveling to the left,

e1(x, t) =: E (z)(x, t)− E(z)(x, t) = Aeiω(t+x−2d)−2
∫ d
0 σ(s) ds.

We call e1 the PML modeling error. This expression illustrates the well-known result
that the error due to solving the PML equations on a truncated computational domain
is determined by the integral of σ(x). In two space dimensions, the angle between the
impinging wave and the PML modifies the expression, but the basic conclusion still holds.

To solve the continuous PML equations numerically, we discretize the problem and
this process introduces a discretization error. In the present paper we want to study how
to choose σ(x) so that both the PML modeling error and the discretization error converge
to zero as the grid size h → 0. The PML modeling error is the same for all functions
σ(x) with the same value of

∫ d
0
σ(s) ds, but the discretization error is more sensitive to

the particular choice of σ(x). For a second order accurate staggered discretization of the
one-dimensional model problem, we show that the discretization error satisfies

e2 ≤ Ch2(1 + σ3max)e
c2t,

when the function P (x) and its two first derivatives are bounded independently of h. To
make the PML modeling error go to zero as O(h2) when h → 0, σmax must increase as
| log h|, if the thickness of the PML is constant. Thus, the total error e1 + e2 will go to
zero as O(h2| log h|).

In two space dimensions, we consider the scattering problem where incoming waves
are deflected by perfectly conducting objects of complex shape, see Figure 1. Maxwell’s
equations are discretized as a second order PDE instead of first rewriting it as a first order
system, and then applying the commonly used staggered discretization. Discretizing the
second order PDE allows us to use a node-centered finite-difference scheme on a Cartesian
grid. The boundaries of the perfectly conducting objects are allowed to cut through the
grid in an arbitrary fashion and we use the technique developed by Kreiss, Petersson
and Yström [13, 14, 15] to discretize the boundary conditions to second order accuracy
without imposing any “small-cell” time-step restrictions in the explicit time integration
method. Inside the PML, we keep the second order formulation of the primary dependent
variable, but use a first order formulation for the auxiliary PML variables.
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Figure 1: Sample domain outside three objects.

Thanks to the large number of publications triggered by Berenger’s [5] original work
on PML for Maxwell’s equations, the properties of the continuous PML equations are
by now well understood. However, there are significantly fewer investigations of the
properties of numerical approximations of the PML equations. Most research is related
to the Yee scheme of FDTD. Wu and Fang [19] considers a discontinuous σ(x) which jumps
between zero outside the PML and a positive value inside the PML. That paper suggests
a modification of the σ-value right at the interface to minimize numerical reflection.
Juntunen, Kantartzis and Tsiboukis [11] minimize numerical reflections with respect to
the values of σ at the grid points inside the PML, but the PML has a fixed number of grid
points. Asvadurov et al. [3] determines the discrete values of σ at the grid points from
an optimization problem, making the values as close as possible to the pseudo-differential
operator representation in Engquist and Majda [8]. The grid is non-uniform, but grid
convergence is not considered. Some analysis of numerical reflection properties is also
performed in Petropoulos [17].

In most previous work, σ is selected to be optimal on a given grid. One exception
is the paper by Driscoll and Fornberg [7], where a scheme for Maxwell’s equations with
discontinuous coefficients is developed and some grid convergence studies are presented.
However, they do not consider solving the equations on an unbounded domain, so they
do not attempt to minimize the PML modeling error.

The original equations proposed by Berenger turned out to only be weakly hyper-
bolic which means that lower order terms can make the problem ill-posed and allow
solutions that grow exponentially in time. But with the modifications introduced in the
so called UPML equations, a strongly hyperbolic system was obtained that retained the
non-reflective properties of the original PML equations [18]. A remaining minor difficulty
with the UPML equations is that the zeroth order term can lead to algebraic growth in
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time, due to a Jordan block in the matrix operating on that term. However, this growth
can be avoided if the initial data are chosen to not excite that component of the solution,
see Abarbanel, Gottlieb and Hesthaven [1] for a discussion. We will henceforth refer to
the UPML equations as the PML equations.

There are many other types of non-reflecting boundary conditions for the wave equa-
tion and for Maxwell’s equations. The most common approach is to use an exact formula
for the far-field solution. In order to obtain a local (in time and space) boundary condi-
tion, some kind of approximation of the exact solution operator is introduced. Examples
include the Padé technique by Engquist and Majda [8] as well as approximations of an
integral kernel, see Alpert, Greengard and Hagstrom [2]. In the approach developed by
Higdon [10], perfect transmission of outgoing waves can be guaranteed for a finite number
of specified angles, and the accuracy of the approximation improves as more and more
angles are taken into account. A variation of this technique is also used by Givoli and
Neta [9].

The remainder of the paper is organized as follows. In Section 2 we derive the PML
equations for the TMz mode of Maxwell’s equations, both for Cartesian and cylindrical
coordinates. The PML equations are discretized in Section 3, where also the embedded
treatment of complex boundaries is described. Modeling and discretization errors in the
PML approach are discussed in Section 4, and numerical experiments are presented in
Section 5. Some conclusions and an outline of future work is given in Section 6.

2 Maxwell’s equations with PML

We consider the TMz problem for Maxwell’s equations, i.e., the two-dimensional case
where the magnetic field lies in the (x, y)-plane, H = H(x)(x, y, t)ex+H(y)(x, y, t)ey, and
the electric field only has a component perpendicular to that plane, E = E (z)(x, y, t)ez. By
scaling the dependent variables and time, Maxwell’s equations describing a homogeneous,
lossless material without charges simplify to, cf. [4],

∂H(x)

∂t
= −∂E

(z)

∂y
, (4)

∂H(y)

∂t
=

∂E (z)
∂x

, in Ω, t ≥ 0, (5)

∂E (z)
∂t

=
∂H(y)

∂x
− ∂H(x)

∂y
, (6)

subject to the constraint

∂H(x)

∂x
+
∂H(y)

∂y
= 0, in Ω, t ≥ 0. (7)
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By cross-differentiation,
∂2E (z)
∂t2

= ∆E (z), in Ω, t ≥ 0, (8)

where ∆ = ∂2/∂x2 + ∂2/∂y2. Initial data is given by

E (z)(x, y, 0) = f(x, y),
∂E (z)
∂t

(x, y, 0) = g(x, y) =:
∂H(y)

∂x
(x, y, 0)− ∂H(x)

∂y
(x, y, 0).

We are interested in the case where the domain Ω is external to perfectly electric con-
ducting (PEC) objects, see Figure 1. The boundary of the PEC objects will be denoted
Γi. The PEC boundary condition n ×E = 0, where n = n(x)ex + n(y)ey is the outward
normal of the boundary, becomes

(
exn

(y) − eyn
(x)
)
E (z) = 0, on Γi,

i.e.,
E (z) = 0, on Γi.

We solve the second order wave equation (8) for E (z). The magnetic field can then be
integrated passively because once E (z) is known, equations (4)-(5) reduce to ordinary
differential equations at each point of Ω.

The solution of the original problem (posed on the unbounded domain Ω) is computed
inside a bounded sub-domain Ωi. The PML is added outside of Ωi, and the union of Ωi

and the PML layer defines the computational domain Ωc. In Figure 1, we display an
example of Ωi with three objects, (O1, O2, and O3), surrounded by a PML. The outer
boundary of the PML will be denoted Γo.

Basic properties and derivation of a PML can be found in [18]. Here, we only give a
brief introduction to the underlying ideas. We begin by Fourier transforming the solution
of the wave equation (8) in time,

E (z)(x, y, t) = 1√
2π

∫ ∞

−∞

Ê (z)(x, y, ω)eiωt dω.

In the absence of boundaries, the wave equation has plane wave solutions,

Ê (z)(x, y, ω) = e−iω(k1x+k2y).

Here k1 and k2 are real and normalized to satisfy k21 + k22 = 1. In this way, the vector
(k1, k2) becomes the unit direction of the wave. Let us consider the case where we want
to compute the solution in the quarter-plane x < x0, y < y0. The PML is introduced
outside that quarter plane, that is, in x > x0 and y > y0. Let us look for a modification
of the wave equation such that it gets exponentially decaying solutions in the PML,

Ê(z)(x, y, ω) = e−k1S1(x)−k2S2(y)e−iω(k1x+k2y). (9)
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Here S1(x) is a real-valued function which is zero for x < x0 and increasing. The func-
tion S2(y) has the same properties in the y-direction. The decaying solution (9) can be
rewritten as

Ê(z)(x, y, ω) = e
−iω

(
k1

(
x+

S1(x)
iω

)
+k2

(
y+

S2(y)
iω

))
. (10)

Hence, this can formally be seen as a plane wave solution of the wave equation in the
transformed variables (x̃, ỹ), where

x̃ = x+
S1(x)

iω
, ỹ = y +

S2(y)

iω
.

Let s1(x, ω) =: dx̃/dx = 1 + σ1(x)
iω

and s2(y, ω) =: dỹ/dy = 1 + σ2(y)
iω

, where σ1(x) = S ′1(x)
and σ2(y) = S ′2(y). In terms of the original independent variables, the Fourier transformed
wave equation in the (x̃, ỹ) variables becomes

− ω2Ê(z) =
∂2Ê(z)

∂x̃2
+
∂2Ê(z)

∂ỹ2
=

1

s1(x, ω)

∂

∂x

(
1

s1(x, ω)

∂Ê(z)

∂x

)
+

1

s2(y, ω)

∂

∂y

(
1

s2(y, ω)

∂Ê(z)

∂y

)
. (11)

Since s1 does not depend on y and s2 does not depend on x, we can rewrite (11) as

−s1(x, ω)s2(y, ω)ω2Ê(z) =
∂

∂x

(
s2(y, ω)

s1(x, ω)

∂Ê(z)

∂x

)
+

∂

∂y

(
s1(x, ω)

s2(y, ω)

∂Ê(z)

∂y

)
. (12)

To transform back to the time domain, we introduce new dependent variables. There
is some ambiguity in defining these variables but the important properties are that (12) is
satisfied on the Fourier transformed side, and that the resulting PDE becomes well-posed.
We start by noting that the left hand side of (12) can easily be transformed back to the
time-domain, since

−s1(x, ω)s2(y, ω)ω2Ê(z) = (iω + σ1(x))(iω + σ2(y))Ê(z).

To be able to transform back the last fractional expression in the right hand side of (12),

we define Ĥ(x) according to

iωĤ(x) = −s1(x, ω)
s2(y, ω)

∂Ê(z)

∂y
.

Therefore,

(iω + σ2(y))Ĥ(x) = −∂Ê
(z)

∂y
− σ1(x)

iω

∂Ê(z)

∂y
. (13)
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By also defining

iωB̂(x) = −∂Ê
(z)

∂y
, (14)

we can transform back both (13) and (14) to the time-domain. We handle the other frac-
tional expression in (12) in a corresponding way by introducing H (y) and B(y) according
to

iωĤ(y) =
s2(y, ω)

s1(x, ω)

∂Ê(z)

∂x
, iωB̂(y) =

∂Ê(z)

∂x
.

We apply the inverse Fourier transform and obtain the PML system

∂H(x)

∂t
= −∂E

(z)

∂y
+ σ1(x)B

(x) − σ2(y)H
(x),

∂B(x)

∂t
= −∂E

(z)

∂y
,

∂H(y)

∂t
=
∂E(z)

∂x
+ σ2(y)B

(y) − σ1(x)H
(y), (15)

∂B(y)

∂t
=
∂E(z)

∂x
,

∂2E(z)

∂t2
=

∂

∂x

∂H(y)

∂t
− ∂

∂y

∂H(x)

∂t
− (σ1(x) + σ2(y))

∂E(z)

∂t
− σ1(x)σ2(y)E

(z).

Substituting the time derivatives of H (x) and H(y) gives the modified wave equation

∂2E(z)

∂t2
= ∆E(z) +

∂

∂x

(
σ2(y)B

(y) − σ1(x)H
(y)
)
− ∂

∂y

(
σ1(x)B

(x) − σ2(y)H
(x)
)

− (σ1(x) + σ2(y))
∂E(z)

∂t
− σ1(x)σ2(y)E

(z).

We note in passing that the original un-damped wave equation is recovered outside the
PML, where σ1 = 0 and σ2 = 0.

To investigate the well-posedness of (15) it is convenient to write it as a first order
system, by introducing the variable D according to

∂D

∂t
=
∂H(y)

∂x
− ∂H(x)

∂y
− σ1(x)D. (16)

Then,
∂E(z)

∂t
=
∂H(y)

∂x
− ∂H(x)

∂y
− σ1(x)D − σ2(y)E

(z), (17)

and the first four equations of (15) together with (16) and (17) can be written in the
standard form

∂w

∂t
= Awx +Bwy + C(x, y)w. (18)
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One can show that the matrix

M = κ1A+ κ2B, κ1 and κ2 real, κ21 + κ22 = 1,

has real eigenvalues and a complete set of eigenvectors. The system (18) is therefore
strongly hyperbolic, see [12]. However, because of the lower order term Cw, the system
(18) can have solutions that grow in time.

In practical computations, the PML must be limited to a finite width d > 0, and
boundary conditions must be applied at the outer boundary of the PML. Here we will
simply set a homogeneous Dirichlet condition,

E(z)(x, y, t) = 0, (x, y) ∈ Γo, t ≥ 0. (19)

We also consider the wave equation in cylindrical coordinates (r, θ), where x = r cos θ,
y = r sin θ. The derivation of the cylindrical PML equations can be done in exactly the
same way as in the Cartesian case by the change of variables

r̃ = r +
S(r)

iω
,

see [16, 6] for details. In this case, the PML will have a circular interface to the interior
domain. We define the interior as Ωi = {x2 + y2 < r2i }, for some fixed radius ri > 0.
Since we shall use a Cartesian grid, the computational domain is rectangular with Ωc =
[−ri − d, ri + d]× [−ri − d, ri + d]. In this case, the thickness of the PML varies between
d and

√
2d. The resulting cylindrical PML equations, when transformed back to the time

domain are

∂B(x)

∂t
= −∂E

(z)

∂y
− σ̄(r)B(x) + s(r)(− sin2 θB(x) + sin θ cos θB(y)),

∂H(x)

∂t
= −∂E

(z)

∂y
+ s(r)((cos2 θ − sin2 θ)B(x) + 2 sin θ cos θB(y)),

∂B(y)

∂t
=
∂E(z)

∂x
− σ̄(r)B(y) + s(r)(− cos2 θB(y) + sin θ cos θB(x)), (20)

∂H(y)

∂t
=
∂E(z)

∂x
+ s(r)((sin2 θ − cos2 θ)B(y) + 2 sin θ cos θB(x)),

∂2E(z)

∂t2
= 4E(z) +

∂

∂x
(s(r)((sin2 θ − cos2 θ)B(y) + 2 sin θ cos θB(x)))

+
∂

∂y
(s(r)((sin2 θ − cos2 θ)B(x) − 2 sin θ cos θB(y)))

− s(r)
∂

∂t
E(z) − σ(r)σ̄(r)E(z).
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Here we have used the definitions

σ̄(r) =

{
1
r

∫ r
ri
σ(s) ds, r > ri,

0, r ≤ ri,

and
s(r) = σ(r)− σ̄(r).

One advantage of the cylindrical PML is that H (x) and H(y) are not required in (20),
whereas they must be computed in (15). However, if H (x) and H(y) are needed they
can always be computed passively by integrating point-wise ODEs along with the other
variables.

The PML/interior boundary is placed some distance outside of all perfectly conducting
objects in the domain. The PML/interior boundary is determined by the location where σ
changes from zero to a positive value, and is hence implicit in the method. For simplicity,
the systems (15) and (20) are solved in the entire computational domain Ωc with σ = 0
in Ωi.

3 Numerical approximation

We use centered second order accurate differences in space to discretize the PML systems
(15) and (20). Since the wave propagation speed is the same in all directions, we discretize
the equations on a uniform grid xi = ih, yj = jh, where h > 0 is the constant grid size.
Time is discretized on a uniform grid with tn = nk, where k > 0 is the constant time-
step. The approximation of a field u(xi, yj, tn) is denoted uni,j. The usual finite difference
operators are defined by

D
(i)
+ ui,j =

ui+1,j − ui,j
h

, D
(i)
− ui,j = D

(i)
+ ui−1,j , D

(i)
0 ui,j =

1

2

(
D
(i)
+ +D

(i)
−

)
ui,j .

The j-direction operators D
(j)
0 , D

(j)
+ , and D

(j)
− are defined in a corresponding way. The

time integration is based on the technique developed in [13, 14, 15]. The second order time
derivative in the wave equation for E(z) is discretized using a time-centered second divided
difference, and the first order equations for H (x), B(x), H(y) and B(y) are discretized with
a second order accurate Adam-Bashforth method. For the Cartesian PML system (15),
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this leads to

B
(x)
i,j

n+1 −B
(x)
i,j

n

k
=− 3

2
D
(j)
0 E

(z)
i,j

n
+

1

2
D
(j)
0 E

(z)
i,j

n−1
,

H
(x)
i,j

n+1 −H
(x)
i,j

n

k
=− 3

2

(
D
(j)
0 E

(z)
i,j

n
+ σ2(yj)H

(x)
i,j

n − σ1(xi)B
(x)
i,j

n
)

+
1

2

(
D
(j)
0 E

(z)
i,j

n−1
+ σ2(yj)H

(x)
i,j

n−1 − σ1(xi)B
(x)
i,j

n−1
)
,

B
(y)
i,j

n+1 −B
(y)
i,j

n

k
=
3

2
D
(i)
0 E

(z)
i,j

n − 1

2
D
(i)
0 E

(z)
i,j

n−1
,

H
(y)
i,j

n+1 −H
(y)
i,j

n

k
=
3

2

(
D
(i)
0 E

(z)
i,j

n − σ1(xi)H
(y)
i,j

n
+ σ2(yj)B

(y)
i,j

n
)

− 1

2

(
D
(i)
0 E

(z)
i,j

n−1 − σ1(xi)H
(y)
i,j

n−1
+ σ2(yj)B

(y)
i,j

n−1
)
, (21)

E
(z)
i,j

n+1 − 2E
(z)
i,j

n
+ E

(z)
i,j

n−1

k2
=
(
D
(i)
+ D

(i)
− E

(z)
i,j

n
+D

(j)
+ D

(j)
− E

(z)
i,j

n
)

+D
(i)
0

(
σ2(yj)B

(y)
i,j

n − σ1(xi)H
(y)
i,j

n
)

−D
(j)
0

(
σ1(xi)B

(x)
i,j

n − σ2(yj)H
(x)
i,j

n
)

− (σ1(xi) + σ2(yj))
E
(z)
i,j

n+1 − E
(z)
i,j

n−1

2k

− σ1(xi)σ2(yj)E
(z)
i,j

n
+ αh3dni,j.

Note that an explicit expression for E
(z)
i,j

n+1
can easily be found from the last equation. The

last expression in the last equation is a stabilizing term developed in the aforementioned
papers by Kreiss, Petersson and Yström. Away from all boundaries, it simplifies to

dni,j = ∆2
h


E

(z)
i,j

n − E
(z)
i,j

n−1

k


 , ∆2

hE
(z)
i,j

n
=
(
D
(i)
+ D

(i)
− +D

(j)
+ D

(j)
−

)2
E
(z)
i,j

n
.

When σ = 0, the stability restriction for the time step is

k ≤ Ch, C ≈ 1√
2
.

Since σ 6= 0 only introduces lower order damping terms, it does not change the time step
restriction as long as σ is independent of h and h is sufficiently small.

As initial conditions, we give E(z), ∂E(z)/∂t, B(x), and B(y). Furthermore, we initially
set H(x) = B(x) and H(y) = B(y). To start the three level time integration, the solution
at time −k is computed using a truncated Taylor-series expansion in time.
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Figure 2: The points used for discretizing the Dirichlet boundary condition.

At the boundaries of the perfectly conducting objects, a Dirichlet boundary condition
is imposed for E(z) using the method described in [13]. We only outline the technique
here and refer to that paper for further details. We consider the inhomogeneous Dirichlet
boundary condition

E(z)(x, y, t) = f(x, y, t), (x, y) ∈ Γi, t ≥ 0.

The boundaries of the perfectly conducting objects are allowed to intersect the grid in
an arbitrary manner. To be able to evaluate the right hand side of (21) at all grid
points inside Ωc, we use ghost points just outside the domain, see Figure 2. Let xI , xII
be the intersections between the normal going through xi,j and the grid lines y = yj+1
and y = yj+2, respectively. Denote by ξI , ξII = 2ξI the distances between xi,j and
(xI , yj+1), (xII , yj+2), respectively. To aid in the approximation of the Dirichlet condition,

we construct a Lagrange interpolant between three points along the normal: (0, E
(z)
i,j ),

(ξI , E
(z)
I ), (ξII , E

(z)
II ),

Lv =: g0(ξΓ)E
(z)
i,j + gI(ξΓ)E

(z)
I + gII(ξΓ)E

(z)
II , (22)

where the coefficients are given by

g0(ξ) =
(ξI − ξ)(2ξI − ξ)

2ξ2I
, gI(ξ) =

ξ(2ξI − ξ)

ξ2I
, gII(ξ) =

ξ(ξ − ξI)

2ξ2I
. (23)

To approximate E
(z)
I and E

(z)
II , we interpolate along the horizontal grid lines yj+1 and

yj+2:

E
(z)
I = c1E

(z)
i,j+1 + c2E

(z)
i+1,j+1 + c3E

(z)
i+2,j+1, (24)

E
(z)
II = c4E

(z)
i,j+2 + c5E

(z)
i+1,j+2 + c6E

(z)
i+2,j+2. (25)

12



where ck = O(1) are the quadratic Lagrange interpolation coefficients. The interpolant is
a third order approximation of the boundary value, i.e., Lu(t) = u(xΓ

i,j, t)+O(h3), where
xΓ
i,j is the intersection point between the boundary and the normal going through the

ghost point xi,j .

The interpolation formulas for E
(z)
I and E

(z)
II , (24)-(25), hold when the angle θ between

the normal and the x-axis satisfies π/4 ≤ θ ≤ π/2. When 0 ≤ θ ≤ π/4, the horizontal
interpolations are replaced by corresponding interpolations in the vertical direction. The
expressions in the remaining three quadrants are simply obtained by reflections in index
space, leading to a total of 8 different cases to treat all possible directions of the boundary.

When the normal is close to vertical (or horizontal), the boundary can intersect the
grid such that ξΓ is arbitrarily close to ξI , i.e., g0(ξΓ) can be arbitrarily close to zero.
Hence, if (22) would be used to approximate the boundary condition, the time-stepping
of (21) would become very stiff. To mitigate the stiffness, we add an artificial term to the
interpolant (22) and consider instead

g0(ξΓ)E
(z)
i,j + gI(ξΓ)E

(z)
I + gII(ξΓ)E

(z)
II + γ(E

(z)
i,j − 2E

(z)
I + E

(z)
II ) = f(xΓ

i,j , t), (26)

where the constant γ > 0. The artificial term is an undivided second difference in the
normal direction so it inflicts an O(h2) error in the boundary condition approximation.
When the direction of the normal changes smoothly along the boundary, the error due
to the artificial term also varies smoothly along the boundary. This situation is analyzed
in [13] where it is shown that both the solution and its discrete gradient are second order
accurate. That paper also shows that γ = 0.25 is an appropriate value for the coefficient
of the artificial term.

Note that the extra variables H (x), B(x), H(y), and B(y) do not need boundary condi-
tions on the perfectly conducting objects, since σ1 = σ2 = 0 in their vicinity.

4 Errors from the discretized PML equations

The error in the computed solution in the interior of the domain, e, comes from two
sources,

e = e1 + e2.

The first component, e1, denotes the difference between the solution of the continuous
wave equation on the infinite domain and the solution of the continuous PML system
on the truncated domain. The component e2 is the error due to discretization of the
continuous PML system on the truncated domain.

To estimate the error committed by truncating the PML, we first consider the Carte-
sian PML equations where the interior domain Ωi is the half-plane x < 0, σ2(y) = 0,
and the PML is located in 0 ≤ x ≤ d. After Fourier transforming in time and in the

13



y-direction,

Ê(z)(x, y, ω) =
1√
2π

∫ ∞

−∞

Ẽ(z)(x, ξ, ω)eiξy dξ,

equations (12) and (19) become (note that s2 ≡ 1 in this case)

−(ω2 − ξ2)Ẽ(z) =
1

s1(x, ω)

∂

∂x

(
1

s1(x, ω)

∂Ẽ(z)

∂x

)
, x ≤ d, (27)

Ẽ(z)(d, ξ, ω) = 0. (28)

We make the ansatz
Ẽ(z)(x) = Aeik(x+

S1
iω ) +Be−ik(x+

S1
iω ),

where k =
√
ω2 − ξ2. Note that B 6= 0 corresponds to an incident wave traveling from the

interior of the domain into the PML, while A 6= 0 is a spurious reflected wave traveling
in the opposite direction. The boundary condition (28) gives

A = −Be−2ikde−2 k
ω
S1(d).

Hence, in the interior domain (x < 0), the error from truncating the PML to a finite
width d > 0 is given by

ẽ1(x, ξ, ω) = Beik(x−2d)e−2
k
ω

∫ d
0 σ1(s) ds, x < 0. (29)

When ω2 ≥ ξ2, k is real-valued and we set

k

ω
= cos θ,

where θ is the angle of the incident wave on the PML/interior interface. Hence, glancing
waves, where | cos θ| ∼ 0, get the smallest damping by the PML. Also note that the
amplitude of the reflected wave only depends on the integral of σ1(x), but not on its
specific shape.

For the cylindrical PML equations, we can calculate the errors due to truncating the
PML for the case when a plane wave of frequency ω is scattered by a circular disc with
radius a. We can write an outwardly propagating traveling wave solution of Maxwell’s
equations in terms of a series expansion,

Ê (z)(r, θ, ω) =
∞∑

m=−∞

AmH
(2)
m (|ω|r)eimθ. (30)

Here H
(2)
m are Hankel functions corresponding to outwardly propagating waves. In this

expression, Am are constants, determined from the boundary conditions. The coefficients
in (30) representing the scattered field in an unbounded domain are (see [16])

Am = −im Jm(|ω|a)
H

(2)
m (|ω|a)

. (31)

14



Here, Jm is the Bessel function of order m. The solution of the same scattering problem
using the cylindrical PML equations (20) on a circular domain

√
x2 + y2 ≤ ro, with the

PML occupying the space ri <
√
x2 + y2 < ro, can be represented as the following Bessel

function expansion (see [16]),

Ê(z)(r, θ, ω) =
∞∑

m=−∞

Bm(H
(2)
m (|ω|r̃(r)) +RmH

(1)
m (|ω|r̃(r)))eimθ, (32)

where the reflection coefficients are

Rm = −H
(2)
m (|ω|r̃(ro))

H
(1)
m (|ω|r̃(ro))

,

and the expansion coefficients are

Bm = −im Jm(|ω|a)
H

(2)
m (|ω|a) +RmH

(1)
m (|ω|a)

.

Here r̃ is the transformed radial variable, definied by

r̃(r) =

{
r + 1

iω

∫ r
ri
σ(s) ds ri < r ≤ ro,

r r ≤ ri.

In this case, the error due to truncating the PML to a finite width is obtained as the
difference between the solutions (30) and (32). Again we see that the error is determined
by the integral of σ(r), even though the relation is more complicated than in the Cartesian
case.

If the numerical approximation is stable, e2 goes to zero as h → 0, while e1 goes to
zero as the integral over σ gets larger, independently of the discretization. For given mesh
sizes h and k, we must therefore design the PML so that e1 does not dominate e2. If we
know the smallest value of h and the largest incident wave angle (that minimizes cos θ),
we can select the width of the layer, d, or scale σ to make the integral of σ big enough.
However, it is not possible to use the same σ and d independently of the grid size if we
want a method where the error decreases as O(hp) when h → 0. In particular, we are
interested in adjusting the properties of the PML so that e1 goes to zero at the same rate
as e2 when h→ 0.

If we are using a p’th order accurate discretization scheme, e2 is of the order O(hp),
and we also want e1 = O(hp). Hence, in order for e1 to stay of the same order as e2, we
must have ∫ d

0

σ1(x0 + s) ds ≥ p

2 cos θ
| log h|, (33)

where we assumed that the PML layer is located at x0 ≤ x ≤ x0 + d. To satisfy (33),
the PML thickness d and/or σ must change with h. That means that there is no fixed
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PDE with which the PML system is consistent, and we can not rely on standard results
for approximation of PDEs to understand the convergence properties of the numerical
approximation. One possibility, which we will explore below, is to make σ proportional
to | log h| and let the layer thickness be fixed. Note that the largest possible σ under
the explicit time-stepping constraint k/h < const. is σ = O(1/h). By using such a large
σ, one could even allow the thickness of the PML to decrease as h → 0 and still satisfy
(33). However, scaling σ in this way means that σ becomes poorly resolved on the grid as
h→ 0, which in turn increases the discretization error e2. Our numerical experiments will
confirm this hypothesis and show that a σ = O(1/h) results in numerical inaccuracies,
which reduce the convergence rate.

4.1 Discretization error for large σ

We here investigate the convergence rate of the discretization error e2, when σ is allowed
to grow with h. For simplicity, we limit our investigation to the one-dimensional case and
study the system (3). The exact plane wave solution is

E(z)(x, t) = A
(
−eiω(t+x−2d)+

∫ x
0 σ(s) ds−2

∫ d
0 σ(s) ds + eiω(t−x)−

∫ x
0 σ(s) ds

)
(34)

H(y)(x, t) = A
(
−eiω(t+x−2d)+

∫ x
0 σ(s) ds−2

∫ d
0 σ(s) ds − eiω(t−x)−

∫ x
0 σ(s) ds

)
. (35)

Here A is an arbitrary amplitude of the wave. Note that E (z) is bounded independently
of σ. In our computations below, we have used an approximation which before time
discretization corresponds to

dH
(y)
j (t)

dt
= D0E

(z)
j − σjH

(y)
j , j = . . . ,−2,−1, (36)

d2E
(z)
j (t)

dt2
= D+D−E

(z)
j − σj

dE
(z)
j

dt
−D0(σjH

(y)
j ), j = . . . ,−2,−1. (37)

We have been unable to find an energy estimate for the above node-centered discretization
and will here instead analyze the staggered approximation

dH
(y)
j−1/2(t)

dt
= D−E

(z)
j − σj−1/2H

(y)
j−1/2, j = . . . ,−1, 0,

dE
(z)
j (t)

dt
= D+H

(y)
j−1/2 − σjE

(z)
j , j = . . . ,−2,−1. (38)

E
(z)
0 (t) = 0.

The corresponding second order equation for E
(z)
j is

d2E
(z)
j (t)

dt2
= D+D−E

(z)
j − σj

dE
(z)
j

dt
−D+(σj−1/2H

(y)
j−1/2),
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which shows that the node-centered and staggered schemes only differ in how ∂(σH (y))/∂x
is discretized. The grid points are located at xj = d+jh, with j = . . . ,−3,−2,−1, 0. The
differences between the solution of the continuous problem (3) and the discrete approxima-

tion (38) are denoted ej(t) = E(z)(xj, t)−E(z)
j (t) and fj−1/2(t) = H(y)(xj−1/2, t)−H(y)

j−1/2(t).

Inserting these into (38) gives the error equation

dfj−1/2(t)

dt
= D−ej − σj−1/2fj−1/2 + τHj−1/2, j = . . . ,−1, 0,

dej(t)

dt
= D+fj−1/2 − σjej + τEj , j = . . . ,−2,−1, (39)

e0(t) = 0,

where the local truncation errors are

τHj−1/2 =: −∂H
(y)(xj−1/2, t)

∂t
+D−E

(z)(xj, t)− σj−1/2H
(y)(xj−1/2, t)

=
h2

24
E(z)
xxx(xj−1/2 + φ1h, t), (40)

τEj =: −∂E
(z)(xj, t)

∂t
+D+H

(y)(xj−1/2, t)− σjE
(z)(xj, t)

=
h2

24
H(y)

xxx(xj + φ2h, t). (41)

Taylor expansion of the divided differences were used to arrive at the final expressions.
The third derivatives in the right hand side are evaluated at some intermediate points
with 0 < φ1, φ2 < 1.

We consider the case when the exact solution is the plane wave given by (34), (35).
and insert that solution into the truncation error. After a lengthy but straightforward
calculation we obtain

E(z)
xxx(x, t) = ((σ′′ + (iω + σ)3)H(y)(x, t) + 3(iω + σ)σ′E(z)(x, t)) (42)

H(y)
xxx(x, t) = ((σ′′ + (iω + σ)3)E(z)(x, t) + 3(iω + σ)σ′H(y)(x, t)) (43)

If the method is stable, the local truncation errors determine the convergence rate. One
subtle point is that stability must hold also when σ depends on h. We will estimate the
error of the staggered scheme (38) using a weighted 2-norm, which allows us to take the
norm of functions which are bounded but do not go to zero at −∞. Let α(x) > 0 and
define

||u||2α = h

0∑

j=−∞

α(xj)ujūj

satisfying
0∑

j=−∞

α(xj) <∞
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and α′(x)/α(x) bounded. We also require that α(x) = 1 for x > −L, where L À 1 is a
constant. The scalar product corresponding to the norm is

(u, v)α =
0∑

j=−∞

α(xj)uj v̄jh,

For staggered grid functions, we use the convention that uj−1/2 is used instead of uj. An
example of a weight function satisfying these criteria is

α(x) =





1, x ≥ −L,
ex+L, x < −L.

Lemma 1 Let e0 = 0, assume that α′(x) > 0, α′′(x) > 0, and that

α′(x)/α(x) < c1

for some constant c1. Furthermore, let the grid size satisfy h < 1/(2c1). Then,

(f,D−e)α + (D+f, e)α ≤
3c1
2

(||e||2α + ||f ||2α).

Proof: The following calculations are straightforward:

(f,D−e)α + (D+f, e)α =
0∑

j=−∞

αjfj−1/2(ej − ej−1) +
0∑

j=−∞

αjej(fj+1/2 − fj−1/2)

=−
0∑

j=−∞

(αj − αj−1)ej−1fj−1/2 = −
0∑

j=−∞

(αj − αj−1)

h
√
αjαj−1

h
√
αj−1ej−1

√
αjfj−1/2

≤max
j

(αj − αj−1)

h
√
αjαj−1

||e||α||f ||α ≤ max
j

(αj − αj−1)

h
√
αjαj−1

1

2
(||e||2α + ||f ||2α) (44)

It remains to estimate

(αj − αj−1)√
αjαj−1

=

√
α(x)

α(x− h)
−
√
α(x− h)

α(x)
.

We first prove

1− hc1 ≤
α(x− h)

α(x)
≤ 1.

The upper limit is obvious, since the function is increasing. The lower limit follows from

α(x)− α(x− h) =

∫ x

x−h

α′(s) ds ≤ hα′(x) ≤ h
α′(x)

α(x)
α(x) ≤ hc1α(x)
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where α′′(x) > 0 is needed to estimate the integral. Dividing by α(x) (which is positive)
gives

1− hc1 ≤
α(x− h)

α(x)

and since 1 − hc1 ≤
√
1− hc1, the same lower bound can be used for the square root of

α(x− h)/α(x). We obtain the estimate
√

α(x)

α(x− h)
−
√
α(x− h)

α(x)
≤ 1

1− hc1
− 1 + hc1 ≤ 1 + 2hc1 − 1 + hc1 = 3hc1 (45)

where we used that 1/(1− x) < 1 + 2x for x < 1/2. Using (45) in (44) gives the desired
result and concludes the proof of the lemma.

We can now prove

Theorem 1 Assume that σ(x) = P (x)σmax ≥ 0, where P (x) and its first two derivatives
are bounded independently of h, but σmax is allowed to grow as h→ 0. Then,

||e(t)||α + ||f(t)||α ≤ Ch2(1 + σ3max)e
c2t.

Here C and c2 are constants independent of h and σmax.

Proof: Lemma 1 is used to obtain the following norm estimate for (39)

1

2

d

dt
(||e(t)||2α+||f(t)||2α) =

(f,D−e)α + (D+f, e)α − (f, σf)α − (e, σe)α + (f, τH)α + (e, τE)α

≤ 3c1
2

(
||e||2α + ||f ||2α

)
+ (f, τH)α + (e, τE)α

≤ 3c1 + 1

2

(
||f ||2α + ||e||2α

)
+

1

2

(
||τH ||2α + ||τE||2α

)

The assumption σ(x) ≥ 0 was used to remove the terms (f, σf)α and (e, σe)α from the
estimate. Gronwall’s Lemma gives (after taking the square root)

||e(t)||α + ||f(t)||α ≤ Cec2t max
0<s<t

(||τH(s)||α + ||τE(s)||α),

where we have assumed that the errors are initially zero. Here C and c2 are constants
independent of h and t. The error in the solution is thus bounded by the size of the
truncation error. Assuming that all derivatives of P (x) up to second order are bounded
in (43), we obtain

||τH ||α + ||τE||α ≤ Ch2(1 + σ3max)

with C independent of h. C depends on P (x) and its first two derivatives, C also depends
on ω and the wave amplitude. We used thatH (y) and E(z) given by (34), (35) are bounded.
This concludes the proof of the theorem.
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The theorem tells us that we can let σmax increase as | log h|, and still maintain al-
most second order accurate convergence. A faster increase of σmax could lead to slower
convergence or divergence.

As was mentioned above, we have not been successful in finding a similar norm es-
timate for the node-centered scheme (36), (37). However, the truncation error for that
approximation is

τEj =
h2

12
((σ′′′ + 6(iω + σ)2σ′)H(y) + (3(σ′)2 + 4(iω + σ)σ′′ + (iω + σ)4)E(z)),

and a corresponding expression for τH . Hence, if the method is stable, the corresponding
requirement for P (x) is that it must have three continuous derivatives, bounded indepen-
dently of h. The convergence rate is in that case determined by h2σ4max. For this reason,
we use a σ with three continuous derivatives in the numerical examples below. In Section
5, we shall demonstrate the close to second order convergence rate obtained when σmax

increases as | log h|.

5 Numerical examples

The discussion in the previous sections will here be illustrated by numerical experiments.
In the first example, we study the effect from a single PML. The domain is of size −2 <
x < d, −2 < y < 2. Periodic boundary conditions are used in the y-direction. The PML is
only acting in the x-direction, and is located at 0 < x < d, where d is the layer width. The
problem setup is depicted in Figure 3. The incident plane wave E(z) = sin(π(t− x− y))
is imposed as a Dirichlet boundary condition on the left boundary. This wave travels into
the PML interface at an angle θ = π/4. As absorbing function, we use

σ1(x) = P7(x/dw)σmax,

where P7(s) is the piecewise polynomial

P7(s) =





0, s ≤ 0,

c7
∫ s
0
q3(1− q)3 dq, 0 < s < 1,

1, s ≥ 1.

The constant c7 normalizes the integral so that P7(s) becomes continuous at s = 1. The
transition width is in this example dw = 1/2. This σ is a function that increases from 0
to σmax over a transition zone of length 1/2, and then stays at the constant value σmax.
There are three continuous derivatives at the break points x = 0 and x = 1/2. Here σmax

is a constant which represents the strength of the PML. A grid convergence study for
the case d = 2 is shown in Figure 4. We show the time evolution of the error, i.e., the
difference in maximum norm between the computed solution and the exact solution on an
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Figure 3: The first test problem.
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Figure 4: Error vs. time for PML thickness d = 2 and constant σmax = 8.0 on a sequence
of refined grids.
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Figure 5: Error vs. time with PML thickness d = 1/2 and constant σmax = 8.0 for a
sequence of refined grids.

infinite domain, evaluated on [−2, 0]× [−2, 2]. The initial data is zero everywhere, which
explains why the error initially is of the order O(1). To avoid unnecessary transients, the
Dirichlet forcing is smoothly turned on at the left boundary, and at time t = 2 it is fully
developed. Since the frequency and wave number of the exact solution are known, formula
(29) can be used to estimate the PML modelling error to be e1 ≈ 2 × 10−9. In Figure 4
we see that the total error is dominated by the numerical discretization error, e2, and
we observe a second order accurate behavior using the present range of grid sizes. The
coarsest grid has 105× 105 points, which corresponds to h = 0.0385. All computations in
this section have the same coarsest h. The refinements are obtained by successive factor
of 2 reductions of h.

Results from the same computation, but with d = 1/2, are shown in Figure 5. Here
the estimated e1 error level is 6× 10−2, which explains why the total error stays constant
when the grid is refined. The coarsest grid has 66 × 105 grid points, which corresponds
to the same grid size as in the previous example. The number of points is smaller in the
x-direction, because the smaller d makes the computational domain shorter.

The results in Figure 4 and Figure 5 are not surprising. The difference scheme con-
verges and reproduces the properties of the the PML system of PDEs. Next we will let
σmax and/or the width of the layer vary with h. In Figure 6 we show the behavior of the
total error in the computed solution when

σmax = 5.6569| log h| − 2.1357

and the layer width d = 1/2. The expression for σmax is selected so that σmax = 8 on the
coarsest grid, and so that (29) gives second order accurate convergence of e1 for the angle
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Figure 6: Error vs. time with PML thickness d = 1/2 for a sequence of refined grids with
logarithmically increasing σmax.

of incidence π/4. The grids in Figure 6 are the same as in Figure 5, and σmax are equal
on the coarsest grid in both figures. Note that the error decreases as O(h2) in Figure 6.

According to the heuristic discussion above, second order error convergence could be
obtained by fixing σmax, and instead use an expanding layer. In Figure 7, we show a
numerical experiment with a logarithmically expanding PML. The above computation is
repeated, but now with σmax = 8, and the layer width d = d0| log h|+ d1. The constants
d0 and d1 are chosen so that d = 1/2 on the coarsest grid and so that e1 according to
formula (29) decreases as O(h2). Conclusion: this also works, but is more expensive since
the computational domain gets larger as h→ 0.

Finally, we make a numerical experiment to show what happens if σ is chosen too
large. We solve the same problem as above, but with a fixed number of grid points in
the PML. Having a fixed number of grid points means that d decreases as O(h) when the
grid is refined. It is therefore necessary to increase σmax as | log h|/h in order to make
the modeling error e1 go to zero. The results in Figure 8 were obtained using 10 grid
points in the PML, the transition width dw = d, and setting σmax = 0.2316| log h|/h. As
before, the total error was evaluated in −2 ≤ x ≤ 0, −2 ≤ y ≤ 2. This corresponds
to σmax = 20 on the coarsest grid (105 × 63 grid points). The value σmax = 20 was
chosen because it gave the smallest error when several different σmax values were tried
on the coarse grid. Note that the smallest error in Figure 8 is obtained on the coarsest
grid and the error increases as the grid is refined. Also note that this σ(x) corresponds
to a P (x) where P ′(x) = O(1/h) and P ′′(x) = O(1/h2), which violates the assumptions
of Theorem 1. However, the error increases slower than the rate given by the bound in
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Figure 7: Error vs. time for a sequence of refined grids with logarithmically increasing
PML thickness and constant σmax = 8.0.

Theorem 1. Of course, the theorem only provides an upper bound on the growth and
there is no guarantee that the bound is sharp. Furthermore, the norm in Theorem 1 is
taken over the entire computational domain, but the total error is only evaluated in the
interior of the domain (not including the PML).

5.1 Scattering

We here consider a standard test problem: scattering from a disk due to an incident plane
wave. We solve the equations for the scattered field by subtracting out the incident plane
wave from the equations. The incident wave only affects the computation through the
boundary forcing on the disk. We will consider both the PML in Cartesian coordinates
(15) as well as the cylindrical PML (20).

In our example, the incident wave is E (z)inc = cos(ω(t−x)), where ω = 5. The scatterer
is a disk of radius 0.5 (i.e., a = 0.5 in (31)) represented as an embedded boundary in a
uniform Cartesian grid. The problem setup is outlined in Figure 9. For the Cartesian
PML, the interior domain is −3 < x < 3, −3 < y < 3, and a PML of thickness d is added,
making the total domain −3 − d < x < 3 + d, −3 − d < y < 3 + d. For the cylindrical
PML, we use a circular PML/interior interface with radius 3, but the total computational
domain is rectangular. Therefore, the solution formula (32) is not directly applicable,
but since the circular domain with ro = 3 + d is included in our computational domain,
applying (32) with ro = 3 + d and ri = 3 should overestimate the error e1.

A computed solution is displayed in Figure 10. Initially all fields are zero, and the
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Figure 9: Second test problem. Cylindrical PML (left) and Cartesian PML (right).
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Figure 10: Computed scattered field including PML (left), corresponding total field ex-
cluding PML (right).

scatter field is smoothly turned on by giving the boundary data

E(z) = −(1− e−5t
3

)E (z)inc, on Γi,

on the disk boundary. The scattering object is perfectly conducting, so the total field
on the physical boundary is zero. Since we solve for the scattered field, the boundary
condition on the perfectly conducting cylinder is E(z) = −E (z)inc, which is satisfied to
machine precision for t ≥ 2. A time periodic solution is obtained after a transient phase.

In Figure 11, we display the norm of the error as a function of time for the cylin-
drical PML system (20), for grids of increasing refinement. Here we use σ(r) = P7((r −
3)/dw)σmax, with dw = 1/2, σmax = 10, and d = 1. An expression for the function σ̄(r) was
found by integrating P7 analytically. The error is calculated as the difference between the
computed solution, and the exact solution of the problem on the infinite domain, evaluated
through the Bessel function expansion (30) with the coefficients (31). The error is mea-
sured in maximum norm over the interior domain, 0.5 <

√
x2 + y2 < ri = 3. According to

the solution formulae (30) and (32), the maximum norm of the e1 component of the error is
less than 10−6. Figure 12 shows the same computation as Figure 11, but using the Carte-
sian PML equations. At the right boundary, the PML has σ1(x) = σmaxP7((x − 3)/dw),
with dw = 1/2 and σmax = 10. The left, lower and upper boundaries are treated in a
corresponding way. The convergences shown in Figure 11 (cylindrical PML) and in Fig-
ure 12 (Cartesian PML) are both second order accurate, since on all grids the total error
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Figure 11: Error norm vs. time, cylindrical scatter. Cylindrical PML, σmax = 10, d = 1.

is larger than the estimated e1 level. Thus the discretization error dominates.
In contrast, the convergences shown in Figure 13 (cylindrical PML) and Figure 14

(Cartesian PML) were obtained using σmax = 3, thus increasing the error due to trun-
cating the PML to e1 ≈ 3.48× 10−2. This change is large enough to let e1 dominate the
discretization error e2 on the finer grids and the effect is clearly seen.

We next study grid convergence when σmax = c1| log h| + c2. In this example, c1 and
c2 are chosen such that σmax is 3 on the coarsest grid and that (33) is satisfied for angles
up to π/4. A careful measurement of the results in Figures 15 and 16 verify that second
order convergence is obtained for both the cylindrical and the Cartesian PML equations.

5.2 Capabilities of the embedded boundary method

In this section we show a few examples of scattering from various objects. The purpose of
these computations is to demonstrate the capabilities of the embedded boundary method.

The method was implemented for parallel computing using the MPI library. Op-
erations related to boundary conditions on the embedded boundary are local, so that
parallelization is just as straightforward as for an explicit finite difference algorithm. The
arrays are distributed uniformly with an equal number of grid points in each processor.
The grid points inside the objects are not used, and therefore the load balance is not per-
fect. Nevertheless, the method works well and considerable speed-up can be achieved. An
example of speed-up is shown in Figure 17, where the cylinder scatter problem was solved
with 833×833 grid points on a cluster of Itanium 2 nodes connected by a Myrinet-2000
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Figure 12: Error norm vs. time, cylindrical scatter. Cartesian PML, σmax = 10, d = 1.
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Figure 13: Error norm vs. time, cylindrical scatter. Cylindrical PML, σmax = 3, d = 1.
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Figure 14: Error norm vs. time, cylindrical scatter. Cartesian PML, σmax = 3, d = 1.
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Figure 15: Error norm vs. time, cylindrical scatter. Cylindrical PML, σmax increases
logarithmically with h, d = 1.
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Figure 16: Error norm vs. time, cylindrical scatter. Cartesian PML, σmax increases loga-
rithmically with h, d = 1.

switch. The solid line shows the speed up actually measured using up to 20 processors.
Perfect speed up is represented by the dashed line.

In Figure 18 we show scattering from a horseshoe shaped object. Contour lines of
the total E(z) field is plotted on [−3, 3] × [−3, 3]. The total computational domain was
[−4, 4] × [−4, 4] with the PML occupying −4 < x < −3, 3 < x < 4, −4 < y < −3,
and 3 < y < 4. The incoming plane wave had ω = 15 and 209 × 209 grid points were
used. The solution was computed to time 25. The boundary of the object is a periodic
cubic spline curve, which was obtained by interpolation through a few specified boundary
points.

With the embedded grid technique, it is straightforward to place more than one object
in the computational domain. An example of this is the scattering from three cylinders,
shown in Figure 19. Contour lines of the total E(z) field are shown. Except for the ge-
ometry, all computational parameters were the same as for the computation in Figure 18.

Finally, Figure 20 shows scattering from an unidentified object. Contour lines of the
E(z) field are shown. The incident plane wave is tilted an angle 25.8 degrees and has
ω = 15. The computational parameters are the same as in the two computations above.
The object is defined as a periodic spline curve, obtained by interpolation through a few
specified points.
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Figure 17: Speed-up vs. number of processors. Fixed problem size.
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Figure 18: E(z) contour lines, horseshoe geometry.
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Figure 19: E(z) contour lines, multiple cylinders.
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Figure 20: E(z) contour lines, unidentified object.

32



6 Conclusions

We have presented a second order accurate scheme for the two-dimensional Maxwell’s
equations in domains external to perfectly conducting objects of complex shape. The
equations are discretized using a node-centered finite-difference scheme on a Cartesian
grid and the boundary condition are discretized to second order accuracy employing an
embedded technique which does not suffer from a “small-cell” time-step restriction in the
explicit time-integration method. The computational domain is truncated by a PML. We
have derived estimates for both the error due to reflections at the outer boundary of the
PML, and due to discretizing the continuous PML equations. Using these estimates, we
have shown how the parameters of the PML can be chosen to make the discrete solution
of the PML equations converge to the solution of Maxwell’s equations on the unbounded
domain, as the grid size goes to zero.

We are interested in extending the method to treat discontinuous wave propagation
speeds, where the discontinuity extends into the PML. We also plan to extend the method
to the three-dimensional Maxwell’s equations in external domains.
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