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Abstract 
Expressions for small-angle multiple intrabeam scattering (IBS) emittance growth rates 
are normally expressed through integrals, which require a numeric evaluation at various 
locations of the accelerator lattice.  In this paper, I demonstrate that the IBS growth rates 
can be presented in closed-form expressions with the help of the so-called symmetric 
elliptic integral.  This integral can be evaluated numerically by a very efficient recursive 
method by employing the duplication theorem.  Several examples of IBS rates for a 
smooth-lattice approximation, equal transverse temperatures and plasma temperature 
relaxation are given. 
 

1. Introduction 
 
 This paper presents the results, previously obtained by Bjorken and Mtingwa [1], 
as closed-form analytic expressions.  In fact, all of the rates, presented here, are strictly 
identical to the ones in Ref. [1].  Also, the notations are essentially the same as in Ref. 
[1].  Suppose that the bunched-beam distribution function, f, is described by the following 
expression: 
  ( )Sf −= exp , (1) 
where 

  βααβ
β

ααβ
βα

αβ xxC
p

p
xB

p
p

p
p

AS
2
1

2
1

2
1

++= , (2) 

xα (=x, y or s) is the particle coordinate, pα is its momentum and p=βγMc.  It is 
normalized to a total 6-dimensional rms invariant phase-space volume, Γ, as 
  ∫=Γ pxf 33 dd . (3) 
 
 There have been attempts in the past [1, 2] to express the IBS rates through 
Legendre’s incomplete elliptic integrals. Let me now introduce a symmetric elliptic 
integral of the second kind, RD(x,y,z), following Carlson’s definition [3]: 
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The following are some useful properties of this integral: 
  2/3),,( −= xxxxRD , (5) 
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There exists the so-called duplication theorem [4] for this integral, which allows for a 
very efficient numerical evaluation using a recursive method [5].  Only rational 
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operations and square roots are required.  Such a numerical method gives, in my opinion, 
the main advantage for expressing the IBS rates through this integral. 
 
 The IBS formulas, I am proposing in this paper, require evaluating the symmetric 
elliptic integral, with its variables cycled, three times at each point of the accelerator 
lattice.  Actually, Eq. (6) allows to reduce the number of integrals to two. 
 
Some of the IBS rates for special cases are expressed by the following combination of 
elliptic integrals: 
  ),,(),,(),,(2),,( zyxzRyxzyRxzyxRzyx DDD ++−=Ψ . (8) 
For example, the Eq. (3.6) in B-M [1] paper can be written as follows: 
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where λ1, λ2, and λ3 are the eigenvalues of the matrix A in Eq. (2), and L is the ring 
circumference.  
 

2. IBS rates for uncoupled betatron oscillations 
 
Uncoupled betatron oscillations can be described by the following expressions: 
   ,)cos(2 δϕβ xxxx DJx +=  (10) 
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are the action variables, φx, φy are the betatron phase variables of unperturbed oscillations 
and δ is the relative laboratory frame momentum spread.  The function Φ is expressed as 
follows: 
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Similarly, the synchrotron action variable for a parabolic potential well is described by 
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Suppose now that the distribution function, f, in Eq. (1) can be written as 
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where εx, εy are the rms non-normalized transverse emittances, and εs= σpσs with σs and σp 
being the rms bunch length and the rms relative lab-frame momentum spread. 
 Before presenting the IBS rate formulas, I will first define several parameters. Let 
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The three eigenvalues of the matrix A (Eq. 2) can be now expressed as follows 
  ya=1λ , (22) 

  2222
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The three integrals are calculated at each location of the ring lattice as follows: 
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Here, Eq. (7) can be used to avoid extreme values in the arguments of RD(x,y,z) and 
Eq. (6) to reduce the number of integrals to two. 
 The total 6-dimensional emittance growth rate in Eq. (9) can be written as 
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where 
  psyxcM σσεεγβπ 333338=Γ . (29) 
The partial emittance growth rates can be now written as follows 
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where functions Sp, Sx, and Sxp are expressed through the functions defined in Eqs. (25- 
27) as  
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Thus, by computing the three integrals R1, R2, and R3 one fully defines the IBS rates at a 
given lattice location. 
 

3. Smooth approximation 
 
In a smooth-lattice approximation case I will assume Φ = 0, thus 
  ya=1λ , (36) 
  xa=2λ , (37) 
  sa2

3 γλ = . (38) 
The functions Sp, Sx, and Sxp can be written as 
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  0=xpS . (41) 
These formulas can be simplified even further if one neglects the dispersion function, Dx.  
With this assumption, one obtains the following partial growth rates: 
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  4.  Round beam approximation 
 
Further useful approximation can be obtained by assuming equal transverse beam sizes 
(σx= σy= σ) and temperatures (θx

2= θy
2= θ2).  One can then introduce a single variable, z, 

such that 

  22

2
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is the ratio of the longitudinal to transverse temperatures in the beam rest frame.  The 
partial IBS growth rates are expressed as follows: 
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The function F(z) can be expressed analytically through hyperbolic functions, instead I 
propose an approximate function,  G(z), which deviates from function F(z) by no more 
than 20% in the range of z values from 0 to 10. 
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Both of these functions are shown in Figure 1. 
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Figure 1: The exact and the approximate IBS functions for a round beam. 
 
 The round-beam approximation, presented here, is identical to that, obtained from 
the theory of Ichimaru and Rosenbluth [6] for a nonrelativistic plasma with initially 
unequal longitudinal and transverse temperatures.  This theory has been recently 
confirmed by experiments [7] with a nonneutral electron plasma. 
 In a general case of unequal temperatures, if Tx, Ty, and Tz are the plasma electron 
temperatures, the plasma temperature relaxation rates can be written as 
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where ions have been treated as a stationary background and the external fields have been 
neglected.  Rates for Ty and Tz are obtained by cycling the variables in Eq. (50). 
 
  5.  Coasting beam IBS rates 
 
The total 6-dimensional emittance growth rate for a coasting beam can be written as 
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The partial emittance growth rates can be now written as follows 
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where functions Sp, Sx, and Sxp are defined in Eqs. (33- 35). 
 
  6.  Conclusions 
 
Starting from results reported in Ref. [1], I have expressed the IBS rates in a convenient 
form containing symmetric elliptic integrals.  These integrals can be evaluated 
numerically by an efficient recursive procedure, requiring only rational and square-root 
operations.  This allows to make accurate IBS rate calculations with commonly used 
software packages, such as MathCAD. 
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