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Abstract

In the previous paper [1], we have derived a dispersion relation for the free electron

laser (FEL) gain in the exponential regime taking account the diffraction and electron's

betatron oscillation. Here, we compare the growth rates obtained by solving the dispersion

relation with those obtained by simulation cMculation for the waterbag and the Gaussian

models for the electron's transverse phase space distribution. The agreement is found to

be good except for the limiting case where the Rayleigh length is much longer than the

gain length (1-D limit). We also generalize the analysis to the case where the electron

beam cross section is elliptical as is usually the case in storage rings, and derive the

first-order dispersion relation.

I. Introduction

In the previous paper [1], we have presented a three-dimensional (3-D) FEL theory

based upon the Maxwell-Vlasov equations including effects of the energy spread, emit-

tance, and betatron oscillations of the electron beam. In this theory, the orthogonal

expansion of the electron distribution function converts the combined Maxwell-Vlasov

equations into a matrix equation, from which a dispersion relation for the FEL gains is

derived. The series expansion converges very quickly, unless the Rayleigh range is mucho

longer that the gain length of the one-dimensional (l-D) theory (in which case the 3-D ef-

fects are unimportant). Ali accurate FEL gain for the fundamental mode can be obtained

* This work was supported by the Director, Office of Energy Research, Office of Basic Energy

Sciences, Materials Sciences Division, the U.S. Department of Energy under Contract No. DE-
AC03-76SF00098.
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by taking only the lowest-order expansion term except for the 1-D limit. In this approx-

imation, the matrix the dispersion relation is reduced to a single scalar equation. The

gain for the fundamental mode can be obtained for any initial electron transverse phase

space distribution including the hollow beam, the waterbag, and the Gaussian models.

We have compared the growth rates obtained by solving the scalar dispersion relation

with those obtained by Yu, Krinsky, and Gluckstern's variational approach [2] for the

waterbag model of the electron transverse phase space distribution. Good agreement was

found.

In this paper, we compare the growth rates obtained by solving the dispersion relation

with those obtained by simulations using the code TDA [3] for the waterbag and the

Gaussian models for the electron transverse phase space distribution. This will provide a

further verification of the present FEL theory. We also generalize the analysis to the case

where the electron beam cross section is elliptical and the betatron focusing is asymmet-

rical in the x- and y-directions. Such a case is interesting for application to storage ring

FEL systems. Further details can be found in ref. [4].

II. Comparison with Simulations

The growth rate of the fundamental guided mode can be expressed in a scaled form us-

ing four dimensionless scaling parameters. One form of such a scaling relation convenient

when the total beam current is constant is

Re(q) _ F(2kl_, °'r kz k- kl
k,D D ' k,D ' kt D )' (1)

where .Re(q) is the growth rate in the exponential growth regime. The growth rate Re(q)

is related to the power gain length La as Re(q)Lv - 1/2. The dispersion relation for the

Gaussian beam model, for instance, can be written in the above scaling form as

k_ x2 ts
i klg./D F>° t OO e 2 xae 2 dxdt

__X 2

fo ° e xdxx k- k, x2 kO , (2) .q t-i_+i--
k,,,D kl D 2kl _ k_D

where we apply a rule that the integral signs in the multiple integrals are paired with the

differential signs from inside to outside, unless otherwise specified. Here, k_ is the wiggler

wave number, kl -- 2kw7_/(1 + I(2) is the resonant radiation wave number corresponding
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to the resonant energy 7r of the reference electron in units of its rest mass mc 2, c is the

speed of light, K is the rms wiggler parameter, ex is the rms transverse emittance of the

, electron beam, a_ is the rms relative energy spread, k_ is the betatron wave number,

and k = w/c is the wave number of the radiation field. The quantity D is the scaling

• parameter defined by

D=i8-- li 2 lo [jj] (3)7rl +K2IA '

where I0 is the total beam current, IA = ec/r, _ 17.05kA is the Alfv6n current, e is the

electron charge, and rr is the electron classical radius. For a planar wiggler, the Bessel

factor [J J] is given by

It'22(1+ _ K22(1+[JJ] = Jo( K2))- Jl(K2)), (4)

where Jm(x) is the Bessel function. For a helical wiggler, [JJ]=l. The parameter D was

originally introduced by Yu, Krinsky, and Gluckstern [2]. However, the value of D defined

here is smaller than that defined by Yu, Krinsky, and Gluckstern by a factor of vr2 .t The

scaling parameter D is related to the Pierce parameter [5] p as

p - 31/4 2.15 r0-D--'-'-"_ " (5)"_G "L'G

Here, LO -D) is the power gain length of the one-dimensional theory given by

LO_D) 1
- 2vf_pk,, ' . (6)

Also, LR is the Rayleigh range given by

2_± kl_

LR- _1 r (7)

where A1 is the radiation wave length, and 2C.Lis the transverse beam area (defined by

Io/Y],.L = peak current density on axis).

We have compared the growth rates obtained by solving the dispersion relation with

those obtained by simulations using the code TDA [3]. The nominal FEL parameters

tThe difference of the definitions of D by a constant factor dose not affect any physical results such

as the gain length. We have used the definition of D given by Eq. (3) in our previous paper [1], and have

done the computations for the present paper based on this definition. Therefore, to avoid confusion, we

also use this definition in the present paper. However, the best way of defining D might be such that the

lr tr(1-D)_l/2 instead of that in Eq. (5). In this way, D becomes aratio of D to p becomes Dip = _,_,'I/'-'G J

natural generalization of the quantity p introduced in the one-dimensional theory.
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used in the simulation are as follows: the radiation wavelength ,kl = 7.5#m, the average

electron energy _/r = 100, K = 2, _ = 3cre, the electron beam current I0 = 53.28A, the

betatron wavelength Az = 2r/k_ = 2.12132m, and the scaling parameter D = 0.014142.

Here, we have chosen the FEL parameters such that the scaled betatron wave number

ka/(k_D) = 1, a value large enough to show clearly the effects of Landau damping

due to the betatron focusing and the emittance. The detuning parameters used for the

simulations are identical to those for the analytical results which yield the maximum

growth rates. In Fig. l(a), we plot the scaled growth rate Re(q)/(k,_D) as a function of

2k1¢, for the zero energy spread for the Gaussian and the waterbag beam distributions.

The agreement is excellent. The benchmark for the non-zero energy spread a.y/D = 0.2 is

shown in Fig. l(b) for the Gaussian beam distribution. The agreement is also excellent.

We have examined the accuracy of the approximate dispersion relation (2) obtained

by truncating the exact dispersion relation at the lowest-order of the azimuthal and the

radial expansions [4]. We found that the truncated dispersion relation provides a good

approximate growth rate, unless Rayleigh range is much longer than the gain length of the

one-dimensional theory (typically, LR > 30), so that 3-D effects such as the diffraction
L(__D) ""

effect become negligible.

III. Generalization to Elliptical Cross Section

The method can be generalized to the case where the electron beam cross section is

elliptical and the betatron focusing is asymmetric in the z- and y-directions, that may be

more realistic in a storage ring FEL system with a planar wiggler. The procedure closely

follows the formulation for the round beam case [4].

We consider the electron beam moving in the z-direction through a planar wiggler

with a parabolic pole face with longitudinal wave number kw. For a small transverse dis-

placement from the wiggler axis, the vector potential of a planar wiggler with a parabolic

pole face, A_, can be approximated by

kwy( 1.2 _ 1._ 2, . k,_,= 1+ + - kz], (S)
where

+ = (9)

Here, k_, and k_ are the wave numbers of the wiggler field in the x- and y-directions,

respectively. We choose z, the distance from the wiggler entrance, as the independent

variable. The transverse trajectory of the electron consists of the betatronmotion and the

4
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wiggler motion. The betatron oscillations are governed by the equations of motion for a

simple harmonic oscillator with the betatron wave number ka. and kay on x- and y-planes,

. respectively (in the absence of external focusing, k_x = Kkw_/7, and k_u = Kk,,u/7).

Here, 7 is the electron energy, and Ii" = eB/(v_mc2k_,) is the rms value of wiggler

. parameter where B is the peak magnetic field on axis. The transverse variables to be used

in the Vlasov equation are the betatron oscillation vector _¢ and its canonical momentum

conjugate p_. The longitudinal variables are r = t - t/vr, the relative position of an

electron from the resonant electron in time units (vr is the longitudinal velocity of the

reference electron), and the electron energy 7.

The linearized Vlasov equation for the perturbed part of the distribution function,

fl(xB,P,O, %7; z), is written as

0£ Of, k2B.vxo Ofl Of, _ Of.,,_ dr"oqfl d"_Ofo = 0, (10)
0-'_ + p_ Oxz _ + p_ Oy_ k_yY_-o-P"_u + d'-z 0-'-_+ "dz 07

where f0 is the unperturbed electron distribution. In the following, we assume that

the focusing in the wiggler is matched to the electron beam so that fo is a function of

xg+(Po,/k_,) 2, Yg+(Pa,/kou) 2, and _ only (i.e., f0 is uniform in the longitudinal direction).

Furthermore, the distribution in 7 is usually sharply peaked around an average value. It

is then a good approximation to assume that fo can be factorized as follows:

fo = foz(Z_ + (p#,,,/k#x)2,y_ q- (P#u/k#u)2) • foil(7), (11)

where f0 is normalized so that its integral over six dimensional phase space is equal to

the total number of electrons, N. The equation of motion of r is given by

d'r 1 [_2kt_.wT- 7r + 1 2 2 2 2d-;= 7 .., 7_ 2(P_+ k_:_ + p_ + k_)], (',2)
where % is the resonant energy of the reference electron with zero transverse oscillation

amplitude. The energy change by the radiation field is given by

dr_ 1 _ 1 [qo+i¢_rf:.P,,,,_(k._,k,J)P,,.,q(ka.)eik"t"Xt3d'_k-t.le'_-"dq}e-i'''dw, (1.3)

where p,.,,q(kx) is the Laplace-Fourier transform of the charge density, which is related to

fx(_o,po,r,7;z) by

. p_(k_)= ]-=(J0 tj-=( = :'("°'V'°"r'";z)'e'V'°_7)_-"_'L'_°_"°l:"Zaz}e'""'r_'"
(14)

. In the limit of small amplitude of the wiggler motion, P_q is approximately given by

(K)_ [jj],_/2 , (_5)
re

P_q(k.,,,,ku) = - E
¢1 (Ikzl/k)'tq iCpk,_+_/£?Ik.l_ _)]_-'--00 .....
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where
k K 2 k K 2

[JJ]P = J2e-i_( k_ 2(1 + K2) ) - J_('k'_ 2(1 + K 2) )" (16)

Higher-order harmonics terms (lP[ > 1) arise because of the longitudinal velocity modu-

lation due to the planar wiggler field. The function P_q can be further approximated by

retaining only the fundamental harmonic term of the forward radiation, p = 1. In that

case, we simply denote [JJ]_ as [JJ] defined by Eq. (4) in what follows.

If we substitute Eqs. (12) and (13) into Eq. (10) and take its Fourier-Laplace trans-

form, the linearized Vlasov equation becomes

_z-py

-fo± df°ll f P_q(k=,kv)p_,(lex)e'kx'_od2k± (17)d7

Let us introduce the transverse polar-coordinates as

x_ = r_ cos¢_, y_ = ry cos ¢y, (18)

P_._ = r=sin¢_, P__..._u= rvsinev. (19)

The matching condition, Eq. (11), can be written in terms of r= and rv as

fo = f0.L(r., r_). f011(7). (20)

Now, due to the periodic boundary condition for f_q in the azimuthal angles ¢. and

¢_, f_q can be Fourier decomposed with respect to ¢. and ey into an infinite series of

azimuthal modes:
oo

(21)

where rn and n are integers. If we insert Eqs. (14) and (21) into Eq. (17), divide the

resulting Vlasov equation by [q- iw_- i(mk_, + nk_y)] and iintegrate the both sides ofdz

the equation over 7, we obtain an integral equation for

R_'_'n)(rx, ry) = f_, (r_, ry,

The result is

dfoll(7)d7
oo _[R(_'") ( r_, r_)

J' q- iwg(r,7 ) -i(mk_x + nk_)

' rv)r=dr=rvdrv,

6
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where the kernel K('_ '"'m''n') is given by

K(m._.m'._')(r , = I+l_q)21rk_x•

• The integral equation (23) can be solved by expanding the radial function R(_ '_) using

a complete set of orthogonal functions f_J'q'lnl)(r_, rv) as [6]
ez5

R(wq'n) (rz, ry) -- W1 (rx, ry) E _k_'(m'n)Jk¢('m"Jn[){_'k'x,ry) FJm[r[nlxy . (25)
k=O

Here, the weight function Wj.(r_, rv) is defined by

Wl(r_,ru) = Cfo±(rx, ru), (26)

where C is a normalization constant to be chosen. The functions f_lml'l_l)(r_,ru) are

determined so as to satisfy the following orthogonality relationship

ry)rx 5kt. (27)

Using f(Iml.l-0(rx, rv), we expand the Bessel functions as
oO

Jlml(k_r_)Jl.l(kuru) = __, Ci.q,l.l,k(kx, ku). f_l'q'M)(r_, r_). rl_mlrl:I, (28)
k=O

where

"Y ]'X

(29)
Inserting Eqs. (25) and (28) into Eq. (23), multiplying by fk(Iml'l"l)(r_,r. )rl,_l+,rl-I+ly/ x y

and integrating over rx and rv, we have a matrix equation for the coefficients a(k'_'"):

ay,_) + __. .,,_,,, ..,,,,,,,, (m,,,v)Pk.i IeZrn'.n'.jaj -- 0, (30)
ml,nl,l,j

where the matrix elements are given by

' ' -_ dr_drydT,_'k.t = . dr

q- - i(mk +
" (31)

and

Mm,_,t = ilml+i-I-(I.¢l+l_'l) (27r)2k/_k/_u
_',_'d C

/:/:x P_q(k,, k_)Clml.l,l.l(k, , ku)Cl,vl.l_,lj(k,, k_)dkxdku, (32)
O0 O0



respectively. The matrix equation can be symbolically written as

(I + 13. M)a -- O, (33)

where a is the vector of the coefficient a_''"), I is the unit matrix, and the matrix elements

of/3 and M are given by Eqs. (31) and (32), respectively. The nontrivial solution of Eq.
,lt

(33) require_ that

det(I + ft. M) = O. (34)

This dispersion relation gives eigenvalues q as a function of w or vice versa.

If we retain only the lowest-order term m = n = k = 0 in the azimuthal and radial

expansions as we have done for the round beam case [1,4], the dispersion relation (34)

can be written in a general form as

.k re If 2kw [JJ]' jo°°Jo°°joo f.f_oll(7!d_/foi(r=,r,)(2'Ir)'k_=k_,r=dr=r, dr,

q + ik, k_+,-kl .k_ + k_
kl 2k

× fox(r=, rv)Jo(k=r=)Jo(k_ry)(27r)2k_kz_r_dr_r_dr_] 2, (35)

where fox (r_, r_) is normalized such that

]o ]o fo1(, =1. (36)
For a Gaussian beam

2 F2
rx y

1 2a_ 2a_ (37)=

2%a_ (38)£11(3') = N 1 2 2
7 eT;_ _

where _ is the length of the electron beam in time units, the above dispersion relation

can be written in a scaled form as

V k_D oo oo oo e 2 dsuduvdv .

--0_ 2

x _.-_ ik-kl .[ .__a2 k_= ft2 k_ 'oo oo q + _ + -- !- ]
k_D kl D z'2kle, k_,D 2kl¢y kwD



where we have replaced k by kl except in the detuning term (k - kl)/(kaD) to a good

approximation. The scaled growth rate Re(q)/(k_D) is a function of the six scaling

parameters:
" k_x k_y k-k1

Re(q) _ F(2k,¢x, 2k,¢_ _.._,_D kwD k,-----D)" (40)k,,,D ' ' '

" The authors specially wish to thank J. S. Wurtele for kindly providing us with the

code TDA.
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Figure Captions

FIG. l(a). Comparison of the.scaled growth rate Re(q)/(k,,,D) with the simulation results

for the Gaussian and the waterbag beam distributions. Here, the scaled betatron wave

number k_/(k,oD) = 1 and the scaled energy spread a.y/D = 0. The solid and the broken

curves show the solutions of the dispersion relations for the Gaussian and the waterbag

beam distributions, respectively, while the triangles and the circles show the simulation

results for the Gaussian and the waterbag beam distributions, respectively.

FIG. l(b). Comparison of the scaled growth rate Re(q)/(k,,D) with the simulation results

for the Gaussian beam distribution. Here, kp/(kwD) = 1 and aT/D = 0.2. The solid curve

shows the solution of the dispersion relation for the Gaussian beam distribution, while

the triangles show the simulation results for the Gaussian beam distribution.
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