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ABSTRACT 
  
 The objectives of this work include automatic recovery and visualization of a 3D 

chromosome structure from a sequence of 2D tomographic reconstruction images taken through 

the nucleus of a cell.  Structure is very important for biologists as it affects chromosome 

functions, behavior of the cell and its state.  Chromosome analysis is significant in the detection 

of deceases and in monitoring environmental gene mutations. The algorithm incorporates 

thresholding based on a histogram analysis with a polyline splitting algorithm, contour 

extraction via active contours, and detection of the 3D chromosome structure by establishing 

corresponding regions throughout the slices.  Visualization using point cloud meshing generates 

a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a 

user to interactively analyze chromosomes using visualization software. 

 
Keywords: 3D Chromosome Structure, Region Segmentation, Medical Image Visualization, 
Medical Image Processing 
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1 Introduction 

1.1 Motivation 

Tracking and visualizing chromosomes gives biologists valuable information regarding 

their three-dimensional (3D) structure and behavior.  Previously, segmentation of banded 

chromosomes frozen in metaphase of mitosis was important for classification especially in the 

karyotyping process.  This process facilitates the classification and detection of chromosomal 

abnormalities such as Kleinfelter’s, Down’s, and Turner’s syndrome.  Chromosome analysis is 

important in such situations as prenatal amniocentesis examination, detection of malignant 

diseases, and monitoring environmental gene mutations.   

In this paper, we propose a new method for (1) an automatic recovery of chromosomes in 

a sequence of 2D images, and (2) visualizing the resulting chromosomes in 3D.   Such 3D 

visualization provides biologists with information that cannot be obtained by 2D images alone.  

Various imaging systems rely on reconstruction of an image from its projections through the 

process of computed tomography (CT). In medical imaging, for example, X-ray plates, CT scans, 

magnetic resonance imaging (MRI), and various types of positron emission tomography (PET) 

all record 2D projections of 3D objects  [14].  Hence, tracking the contour of an object along  

each successive slice allows us to recreate a 3D representation of the object.  We see that 3D 

visualization of the chromosome can be useful for biologists in the following ways: (1) 

identifyng the space occupied by the chromosome within the cell, (2visualizing specific 

structures along the contour such as “constrict points,” and binding sites with other intercellular 

molecules such as proteins, enzymes, and other organelles, (3) using the visualization to 

accurately classify the chromosomes, (4) detecting anomalies, such as chromosomal distorders, 

 3



and (5) helping to identify the behavior of the organelle over time(sometimes called 4D 

reconstruction, with time as the the fourth dimension). 

1.2 Previous Work 

 Previous research of chromosomes in 2D images was primarily focused on abnormality 

detection and classification of chromosomes. In chromosome classification (Karyotyping), one 

of the main efforts includes the problem of separation of partially occluded chromosomes.  

Lerner et al. [1] proposed classification based on skeleton points, and local feature extraction for 

classification purposes (CPOOS – Classification-Driven Partially Occluded Object Segmentation 

method).  Shi et al. also used local features such as cut points, skeleton points, junction points, 

and ravine points to separate touching chromosomes using Parallel Mesh algorithm [3].  Some of 

the local features extracted were based on topology, such as concavities, that indicated where 

occlusions between chromosomes occurred.  Hence, their separation and classification were 

based on landmarks and occlusion points.  Lerner et al. [22] trained Multilayer Perceptron (MLP) 

Neural Networks to classify chromosomes and used a “knock out” technique as well as Principle 

Component Analysis (PCA) for feature selection.  Both techniques yielded the benefit of using 

only about 70% of the available features to get the most out of classifier performance.  Vidal et 

al. used syntactic/structural pattern recognition algorithms such as Error-Correcting Grammatical 

Interface (ECGI) and MLP to classify chromosomes by formulating rule-based string 

representation of the features extracted [2].  Keller et al. presented a fuzzy logic system in 

addition to neural network based classification system to deal with ambiguities during the 

classification process.  These ambiguities included imprecisions in computation, and in-class 

definitions in mid-level computer vision processes [23].  Minor chromosomal abnormalities 

cannot be detected by applying available techniques to 2D images.  Based on banding patterns 
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and skeletal line lengths, only major chromosomal abnormalities, such as deletions, can be 

detected.  Inversion abnormalities may cause problems in information extraction for the 

formulation of rules in the syntactic/structural methods.  However, 3D visualization enables 

scientists to discern occluding chromosomes for further classification better than 2D image 

analysis.    

There have also been several papers published on visualization and 3D reconstruction of 

large and small biological objects based on various imaging modalities.  The Visible Human 

Project of the National Library of Medicine used transverse CT, MR, and cryosection images of 

representative male and female cadavers to obtain 3D human body representations [20].  The 

cryosection images, used for full body visualization were taken at regular intervals, the male was 

sectioned at one-millimeter intervals, and the female at one-third of a millimeter intervals.  

Subramanian et al. used Intravascular Ultrasound (IVUS) images, which is a technology for 

imaging the vascular lumen and atherosclerotic plague structure, and devised a technique to 

accurately reconstruct 3D geometry of blood vessels [21].  Various imaging modalities were also 

employed in 3D reconstruction such as biplane X-ray fluoroscopy, X-ray, and echo images.  The 

path of the catheter tip was estimated by fitting an interpolating spline through the 3D points.  

Arnison et al. presented a modality called Differential Interference Contrast (DIC) microscopy 

and applied Hilbert transforms to distinguish features of chromosomes from background in each 

2D slice, and selective opacity to 3D pixels (voxels) according to their intensity to visualize 

chromosomes [24].  Engelhardt et al. visualized metaphase chromosome from human (HeLa) cell 

lines using electron microscopy (EM) [25].  The images were aligned using colloidal gold 

particles as reference points, and reconstruction was produced by the weighted back-projection 
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method.  Our work focuses on automatic recovery and visualization of chromosomes in 

tomographic reconstruction volume slices.        

2 Methodology 
 
2.1 Overview of the Approach 
 
 The objective of our research is to track the contour of chromosomes in a sequence of 

tomographic reconstruction images, thus enabling us to recover the chromosome object and to 

provide visualization.  The dataset was generated in the Sedat Lab at the University of California 

San Francisco.  The slices are grayscale images of two chromosomes of the common fruit fly 

(Drosophila melanogaster).  The slices progress along a plane of capture, and total sixty-five 

slice images.   

 Our proposed methodology consists of five stages.   

1. Segmentation of the chromosome regions in each 2D image slice is performed by image 

thresholding.  The threshold is automatically selected by analyzing the histogram contour 

using a polyline splitting algorithm [7].   

2. Noise removal is achieved by connected component labeling (CCL) [7] to filter out 

foreground regions below a certain size.   

3. Two-dimensional contour refinement on each slice is performed on the contour of the 

chromosome regions extracted after step 2. This step employs an active contour model 

(snake) technique [9].   

4. Region correspondence is performed by tracking the 2D regions of the same chromosome 

in adjacent slices.  We use a region comparison method proposed by Hoover et al. [8] to 

correspond regions of the same chromosome between slices. This method achieves 

tracking even when the chromosome breaks into multiple regions in some slices.   
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5. Visualization of the chromosome in 3D consists of two steps.  Initially, we extract a set of 

nodes from the contour of a single chromosome in each slice using chain-coding 

algorithm [7].  This set is taken for each chromosome, to create point clouds.  Then, using 

meshing technique [13], we construct a mesh representing the surface of each 

chromosome.     

These steps are described in separate sections in this paper.  Figure 1 illustrates the flow chart of 

our methodology, showing sample output images from each step described above. 
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Input Images 
The three sample input images on the right 
are from the set of tomographic 
reconstruction volume images.  The total 
number of slices is 65, and is greyscale.  
From left to right, the image samples are 
slice number 23, 24, and 25, respectively.        
1. Region Segmentation 
Sample binary images from left to right are 
output images after region segmentation 
has been performed.  

     
2. Noise Removal 
Images on the right show the result of 
noise removal performed on the output 
images of region segmentation.   
 

     
3. 2D Contour Refinement 
Using the resulting contour as an initial 
estimate, we apply active contour models 
(snakes) [9] to refine it.  Image on the right 
shows the refined contour of chromosome 
1 (red) in slices 23, 24, and 25, 
respectively.          

4. Region Correspondence 
Tracking these chromosomes in adjacent 
slices (region correspondence) yields blue 
regions corresponding to chromosome 1 
and red regions corresponding to 
chromosome 2.  

     
5. Visualization 
Points along the refined contour 
corresponding to each chromosome 
(nodes) are extracted to obtain point 
clouds.  Meshing technique [13] is applied 
to the point clouds to obtain the mesh 
describing the surface of the chromosome. 

                   
 
Figure 1: Flow chart of the methodology showing sample input images, and output images 
corresponding to steps outline in the left column.        
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2.2 Dataset 

Various imaging systems rely on reconstruction of an image from its projections through 

the process of computed tomography (CT). In medical imaging, for example, X-ray plates, CT 

scans, magnetic resonance imaging (MRI), and various types of positron emission tomography 

(PET) all record 2D projections of  3D objects [14].  Our dataset consists of tomographic 

reconstruction of 2D chromosome image slices.  There are a total of 65 images representing 

slices taken along a plane of capture. Most medical imaging systems separately reconstruct 2D 

slices of a 3D object. Those slices closest to Slice 1 are more indistinct, consisting primarily of 

background.  Some of the slices, in particular ones closer to the end of the sequence, contain 

significant noise, which makes the task of chromosome segmentation more difficult.   

3 Region Segmentation and Noise Removal 

3.1 Overview 

 The goal of this step is to create a methodology that allows us to segment chromosome 

region from its background in each 2D slice, through automatic selection of an appropriate 

threshold for segmentation.  In this step we also remove slices for which suitable thresholds 

could not be determined.  The histograms of the slices are either unimodal or multimodal.  The 

histograms of the end slices are unimodal, as the end slices contain only background.  The 

histograms of the middle slices, however, are multimodal.   To perform thresholding and 

subsequently segment chromosomes from the background successfully, we must establish that 

the histograms of the slices are multimodal.    

Segmentation of many clinical and biological images is currently performed using 

manual slice editing. [6].  This method has some deficiencies, such as difficulty in achieving 

reproducible results, operator bias, and it is tedious to perform. Segmentation using techniques 
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such as region growing, edge detection, and mathematical morphology operations, mostly 

requires considerable amounts of expert interactive guidance because some knowledge of the 

domain (the content of images) is necessary.  Hence, automatic segmentation with little to or 

human intervention would be preferred.   

 Applying polyline splitting on the contour of the histogram enables us to determine 

whether the histogram is unimodal or multimodal, subsequently excluding slices with a unimodal 

histogram.  This method also provides a basis for threshold selection through the peakiness 

method [7], which will be described in the following section.  Details of the polyline splitting 

algorithm can be found in [7].  By using the polyline splitting algorithm on a histogram contour, 

we can find the list of edges with vertices end-to-end that describes the histogram curve by 

recursively splitting it into line segments. 

 Otsu’s method of thresholding (recommended by Shi et al. [3]), based on minimizing 

intra-group variance and maximizing inter-group variance, is not applicable to this dataset.  

These algorithms assume that the histogram is bimodal and demonstrates essentially two 

distributions.  Hence, we seek an automatic method that analyses the histogram contour of each 

slice to determine whether it is unimodal or multimodal, excludes unimodal slices, and selects an 

appropriate threshold based on a reasonable measure such as the peakiness method.  Slice 2 

(Figure 2a), one of the top end slices, is unimodal (Figure 2c) and it is therefore very difficult to 

distinguish foreground from background.  In contrast, slice 35 (Figure 2b), one of the images 

from the middle slices, is bimodal (Figure 2d).  Hence, it is possible to extract the chromosome 

from background using region segmentation.   
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                          (a) Slice 2 
 

                              (b) Slice 35 
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              (d) Histogram of slice 35              (c) Histogram of slice 2 
 
Figure 2: (a) Slice 2 is one of the earlier slices of the CT scan images with a unimodal histogram 
distribution of intensity.  (c) The histogram for slice 2. (b) Slice 35 is one of the middle slices 
with a bimodal histogram distribution of intensity suitable for thresholding. (d) The histogram 
for slice 35. 
 
3.2 Description of the process 

The goal of this step is to robustly segment chromosome regions by (1) determining 

whether the image contains any chromosome and (2) finding the correct threshold even when the 

histogram of image contains multiple modalities.  The polyline splitting algorithm is used to 

analyze the contour of the histogram [7].  It iteratively divides a curve into a set of line segments 

denoted by a set of vertices (see Figure 3).  If we detect no local minima in an image slice, we 
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determine that the histogram of the image is unimodal; thus the image does not contain any 

chromosomes (see Figure 3a.)  When a local minima is detected, we find the threshold by finding 

the local minima (k) with the highest peakiness [7].  The peakiness as  

min{H(i), H(j)}/ H(k)                 (3.1) 

where i and j are the intensity value of the neighboring local maximas and H(x) is the histogram 

value at the intensity of x. 

3.3 Results of Region Segmentation 

 In Figure 3, no local minima is present on the histogram for slice 9 (Figure 3a), while one 

local maxima is found at intensity 37, thus indicating that the histogram for slice 9 is unimodal.  

After applying polyline splitting to the histogram contour of the entire sequence, slices with 

unimodal histogram are excluded from the subsequent processes performed for visualization.  

They include slices 1 through 6, 9, 13 through 22, and 54 through 65.     

Figure 3b shows local maxima 1 and local maxima 2 found with a local minima 

containing the highest peakiness value in-between these two local maxima.  The intensity of this 

local minima is selected, and this value is used for region segmentation throughout the process of 

thresholding.  A polyline distance threshold value of 25 enables proper distribution of vertices in 

the polyline, giving rise to a single minima vertex placed in-between two local maxima vertices. 

Figure 4 represents the results of polyline splitting of the histogram contour, applied to 

the original image (Figure 4a) with the threshold point at intensity 58.  Thresholding then 

extracts the foreground chromosome objects (white represents intensity 255) from the image, and 

the rest is labeled as background (black is intensity 0).  The table in Figure 5 shows results for 

every fifth slice followed by threshold values and peakiness estimates. 
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                               (a)                               (b) 

 
Figure 3: (a) Histogram for slice 9 with polyline (blue) modeling the contour of the unimodal 
histogram curve (red), (b) Histogram for slice 30 with polyline (blue) modeling the histogram 
contour (red) of the bimodal histogram curve.   

 

 
           Slice 30 

 
Threshold slice 30 at intensity 58 

             (a)                                                                         (b) 
Figure 4: (a) Slice 30 in its original form, and (b) binary thresholded image transformation of 
slice 30 to reveal white (foreground) chromosome regions, and black background.  
 

SLICE PEAKINESS THRESHOLD 
1 0.0 Not Found 
5 0.0 Not Found 

10 1.614 73 
15 0.0 Not Found 
20 0.0 Not Found 
25 1.358 59 
30 1.762 58 
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35 2.054 62 
40 2.005 58 
45 1.764 59 
50 1.527 64 
55 0.0 Not Found 
60 0.0 Not Found 
65 0.0 Not Found 

 
Figure 5.   The computed threshold for every fifth slice is shown.  Note that a threshold is not 
found for slices with the maximum peakiness of 0, indicating that those histograms are unimodal.  
 
3.4 Noise Removal 

After region segmentation, small region removal is performed to eliminate noise in the 

thresholded image.  Regions are detected by using connected component labeling [7] and the 

regions smaller than 500 pixels are removed.   

    
                         (a) 

      
                            (b) 

 
Figure 6: (a) Slice 53 after region segmentation and (b) after small region removal. 
 
4 2D Contour Refinement 
 
4.1 Overview 

The objective of this step is to refine the contour of the chromosome regions in each 2D 

slice of the volume data, prior to region correspondence, so that we may obtain an accurate 

contour of the chromosome regions in each 2D slice.  The process employs 2D snakes to refine 
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the contour in each slice.  A snake, also known as an active contour model, builds a controlled 

continuity spline governed by an energy function under the influence of image and external 

constraint forces. The snake can be either closed or open. To obtain a desired contour, the snake 

is moved to a minimal energy condition. The total energy can be described as  

∫ ++=
1

0 int ))(())(())(( dssvEsvEsvEE conimage                                      (4.1)  

where v(s) = (x(s), y(s)), Eint indicates the internal force of the spline due to bending, Eimage 

denotes the image influence, and Econ represents the external constraint forces which permit to 

control a snake interactively. 

Several different energy functions have been developed, as well as the calculation of each 

force term. In this paper, snake implementation is based on [10] due to speed and stability 

considerations.  A brief explanation of this method is included below. 

4.2 Internal Force 

To describe the bending effect, two terms are considered: 

2/))()()()(( 22
int svssvsE sss βα +=                                                (4.2) 

The first-order term controlled by α(s) causes the snake to act like a membrane, and the second-

order term controlled by β(s) makes it act like a thin plate.  This modifies the behavior of a snake 

to be more membrane-like or thin-plate-like by adjusting these two coefficients. Notice that 

when β(s) = 0, it represents a corner. 

If vi = (xi, yi) is a node of snake, then the first-order term can be calculated easily by a backward 

finite difference approximation: 

2
1

2
1

2
1

2

2

2

)()( −−− −+−=−≈ iiiiii
i yyxxvv

ds
vd                                (4.3) 

The second-order term represents the curvature in vi(xi, yi), which can be computed as: 
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More details and discussion can be found in [10]. 

4.3 Image Force 

This term can provide a force that attracts the snake toward the desired feature of the 

object.  In [9], the authors present three different force functions, those attracting a snake to lines, 

edges, and terminations.  In this research, edge function is chosen to be the image force function. 

The energy function becomes: 

∫ ++= dsEsEsEsE inagecurvcont ))()()(( γβα     (4.6) 

where Econt and Ecurv are the first- and second-order terms of internal forces described in 4.1, 

respectively.  As previously, one can adjust the weight of this term by changing the value of γ. 

4.4 Greedy Algorithm 

Once a snake and its energy function are decided, a greedy algorithm is used to find the 

best contour that has minimal energy.  A greedy algorithm has been proved faster than dynamic 

programming and also more stable and flexible than variational calculus.  

The algorithm can be outlined as follows: 

A. For each node of the snake, evaluate the total energy at its neighbor point (8 points) then 

move each node to its neighbor point that has minimal energy. 

B. After finding the minimal energy for all nodes, corners are checked.  If a node satisfies 

conditions below, it could be a corner, which sets β to 0.  This means that the curvature 

constraint is off. 
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a. Curvature is larger than for neighbor nodes. 

b. Curvature is larger than threshold. 

c. Edge strength is above threshold. 

Repeat steps a and b until the snake does not move anymore, or the number of moved 

nodes is below a threshold.  In this research, if the moved node is less than 5% of total nodes or 

the iteration is more than 1000, we consider that the snake is in stable condition and has 

converged. 

4.5 Contour Extraction from Images 

The initial contour of a snake is estimated by performing chain coding [7] after noise 

removal.  An example is shown in Figure 7. 

   
Figure 7: A slice before and after contour extraction. 
 
4.6 Preprocessing before Snake Application 

Before a snake can work on the images, additional image processing techniques must be 

performed on the original grayscale images so that the image forces can be computed correctly.  

First, a double-level thresholding with values Tlow (lower threshold bound) and Thigh (upper 

threshold bound) is applied.  The original threshold value from region segmentation represents 
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an initial estimate for Tlow and Thigh.  Any pixel with a value between Tlow and Thigh belongs to a 

foreground, while everything else constitutes background.  Next, a median noise reduction is 

performed.  A Gaussian smoothing algorithm is then employed to blur the image.  Sobel edge 

detection is used to find the edges; and the resulting image is called a normal Gaussian image.  

Then Gaussian smoothing is performed again resulting in a smoothed Gaussian image.  At the 

beginning, we use a smoothing Gaussian image to attract the snake.  When the snake is close 

enough, normal Gaussian image is then used to revise the snake to the correct edges. 

4.7 Results of 2D contour refinement 
 

Since a single particular energy function is not suitable for every domain, combinations 

of the coefficients have been tested to achieve results.  An empirically selected set of parameters 

produces the results shown in Figure 8.  Through zooming (Figure 8), we can find that the snake 

nodes are attracted by the edges successfully, and a more accurate contour is obtained.                                         
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Figure 8: (Slice 23, Tlow = 61, Thigh = 110) Initial snake position (left), and snake in a stable 
position with minimal energy (right). Enlarged images show the detailed changes of the snake. 
 

If the initial threshold estimate is incorrect, then the algorithm does not perform 

optimally, and improper node placement can result.  Figure 9 is extracted from the same slice as 

the one in Figure 8, but with a lower Tlow at 60.  The detected edges with lower Tlow have 

moved slightly away from the center when compared to Figure 8.  The order of this snake is 

marked from 1 to 5.  When the snake starts moving, the node marked 3 could move to a higher 

edge or a lower edge.  If node 3 moves in-between 1 and 2, the order of the snake points 

becomes incorrect.  Then, node 4 tends to follow node 3 due to the continuity force.  Also, node 

5 will follow node 4, and so on.  The method used in this research to avoid such problems checks 

for nodes at conflicting positions.  If so, one of the nodes will be deleted.  For example, if node 3 

moves to node 1, then node 3 will be deleted, and the order becomes 1, 2, 4, and 5.  In the 

meantime, it is quite likely that node 4 will move to node 2’s position because they have the 

same internal energy.  If this does happen, node 4 is deleted as well.  The order now becomes 1, 

2, and 5.  The order is now correct but the number of nodes has decreased.  This may occur in 

various parts of a snake, which would become shorter and would re-form again trying to achieve 

an even point distribution.  

One possible resulting problem is the occurrence of gaps, such as that between nodes 1 

and 2, shown in Figure 10, once the snake has reached a stable state.  The reason node 2 does not 

move closer to position 3 is as follows.  For node 2, the energies in position 3 and its current 

position are almost the same. Therefore, a snake may be attracted to a very sharp point. 
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Figure 9: An initial position of a snake in 
an image with an incorrect initial threshold 
selection (the same slice as in Figure 8). 

                       

Figure 10: A snake in a stable 
position with a gap. 
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5 Region Correspondence 

The objective of this step is to track 2D foreground regions of the same chromosome, 

which are corresponded by comparing adjacent slices, and to recover the set of regions 

comprising a 3D structure.  During the previous step of 2D contour refinement, a more accurate 

contour of the chromosome regions in 2D is established after segmentation and noise removal.  

The 3D structure is produced by a set of 2D regions of same chromosome.  We establish the 

correspondence between the slices by using the region comparison scheme proposed by Hoover 

et al. [8] that was used for range image segmentation comparison.  Given a pair of images with 

segmented regions, the scheme classifies each region into five categories of correct, missed, 

noise, over- and under-segmentation. After the noise removal and 2D contour refinement, pairs 

of images are considered for regions correspondence learning.  As the process iterates through 

the candidate pairs in the sequence, regions corresponding to 2D chromosome structure in each 

slice are tracked, producing sets of regions corresponding to a 3D chromosome. 

Figure 11 represents two instances of segmented images from end slices (the left image is 

from slice 23, and the right one is from slice 53) with disjoint regions in chromosomes 
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(chromosomes 1 and 2, respectively).  The image in the middle is slice 38 after segmentation, 

which is a mid-slice in the sequence with both chromosomes well-defined. 

 

   

(a) Slice #23   (b) Slice #38   (c) Slice #53 
 
Figure 11:  Corresponding regions among slices.  Note that the two chromosomes shown as two 
regions in slice #38 could be broken up in slice #23 and slice #53. 
 

Among the five different types of classifications [8] namely correct, over-segmentation, 

under-segmentation, missed, and noise, we are interested primarily in the correct, over- and 

under- segmented regions, as it is highly unlikely that the tracked chromosome could be 

classified as missed or in noise regions.  Metrics are designated as follows: 

i. An instance of correct classification is specified when a pair of regions in the adjacent 

images has at least T percent of the pixels in the chromosome region in the first image 

marked as pixels in chromosome region  in second image.  This follows from the premise 

that 

Ri

R j

θ≠RR ji I for all i and j, if i = j.  

ii. An instance of over-segmentation classification is specified when a chromosome region  

in the first image and a set of regions in the second image  to , has at least T percent of 

the pixels in each chromosome region  in the first image marked as pixels in the union of 

chromosome regions  of the second image. 

Ri

Rj
1 Rn

j

Ri

Rn
j
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iii. An instance of under-segmentation classification is specified when a set of chromosome 

regions in the second image  to R  and a chromosome region  in the first image has at 

least T percent of the pixels in chromosome region  in the first image marked as pixels in 

the union of chromosome regions  to  in the second image. 

Rj
1 n

j Ri

Ri

R j
1 Rn

j

Applying the metric described above allows us to track chromosome regions among 

adjacent slices through the sequence of volume image slices and allows recovery of sets of 

chromosome regions that correspond to a 3D chromosome.  Two resulting sets of regions 

corresponding to both chromosomes are shown in Figure 12 (blue and red).  When an instance of 

over-segmentation is detected among the adjacent slices, we are able to track the disjoint regions 

of a chromosome in one image as belonging to a single region in a different image.  This method 

allows us to identify disjoint regions in one image as belonging to a single region in another 

image by classifying the observed instance as under-segmentation.  

This method is used to recover regions in images that correspond to chromosomes 1 and 

2 labeled in blue and red, respectively.  Figure 12 shows color images of slices representing 

examples of correct, over-, and under-segmentation. 

         
 

         
 

(a) Correct segmentation between slice #37 (left) and slice #38 (right). 
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(b) Under-segmentation of region of slice #24 (left) in slice #25 (right) 

         
 

         
 

(c) Over-segmentation of region of slice #52 (left) in slice #53 (right) 
 
Figure 12: Results depicting correct, over-, and under-segmentation respectively in each row.  
All of the instances have been reclassified as either chromosome 1 (blue) or chromosome 2 (red).  
Green arrows show the correspondence.  
 
6 3D Visualization 

6.1 Overview 

The objective of this stage is to extract points corresponding to the contour of each 

chromosome object and visualize the point clouds in 3D.  Such contour points are collected from 

each 2D slice to build a set of 3D point clouds.  Subsequently, a 3D point-cloud-meshing method 

is applied to each set to reconstruct the surface mesh of each 3D chromosome. 

6.2 Point Cloud 

A point cloud is a set of points.  The points can be 2D or 3D points and also can be 

categorized into unorganized point clouds or structured point clouds.  An unorganized point 

cloud is a point set that has only spatial position and no other information such as geometry, or 
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shape.  By contrast, a structured point cloud provides additional information that can be used for 

meshing, e.g., break-lines.  In implementation, the algorithm dealing with unorganized point 

cloud usually transfers the data into structured data based on their coherence before generating 

the surface mesh.  In this research, our data is actually a 2.5D point set, since the z-axis is the 

interval between two slices, which is a constant value.  However, we treat the data as a 3D 

unorganized point cloud. 

6.3 Meshing 

Meshing is the process of generating a consistent polygon model (mesh) from a given 

point set.  The algorithm requires producing vertices, edges, and faces with shared vertices and 

edges.  In many approaches, finite element technique is used to find the optimal mesh.  We 

classify algorithms as 2D, 2.5D, or 3D, according to the data sets on which they operate. Usually 

quadrilateral or triangular meshes are generated in 2D and tetrahedral meshes are generated in 

3D. 

According to Remondino [13], the procedure for meshing can be divided into the four 

steps noted below.  

Preprocessing – reduces computation time by sampling or eliminating points. 

Evaluation – globally estimates the objects’ surfaces and the relationship between adjacent 

points. 

Generation – core step that generates vertices, edges and faces. 

Post-processing – refines the mesh, such as filling holes. 

For detailed information on the meshing algorithm, we refer the reader to [13]. 
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6.4 Results of 3D Visualization 

To visualize the 3D chromosome objects, Points2Polys is used together with openGL.  

This method takes point clouds as input and generates triangular meshes automatically. It also 

provides a function that optimizes the number of points, thus requiring fewer meshes and 

speeding up computation and visualization.  Before we import the point cloud into this software, 

we code a simple program to combine all the slice nodes together, with a small z-interval value 

for distance between slices.  An overview of the 3D chromosome model is shown in Figure 13.  

Figure 14 shows the point at which the chromosomes split up toward the end slices, which can be 

observed in the 3D model.  Figure 15 shows a protrusion on the surface of the chromosome and 

the corresponding 2D image.  This protrusion could be due to errors in segmentation or could 

indicate binding between an intracellular object (such as proteins or mRNA) and the 

chromosome.   

An inconsistent surface generated from a missed initial guess for the 2D contour during 

the refinement process results in a hole in the 3D model.  These holes can be filled by changing 

parameters in the meshing algorithm to accommodate distant vertices in the meshing process.   

From Figures 13, 14, and 15a, one can recognize the relationship between each 2D cross-

section through 3D visualization.  The triangular mesh model can be visualized using openGL to 

add 3D manipulation functionality (translation, rotation, scaling) as well as simulating various 

lighting conditions to view details on the surface of a chromosome.  Snapshots of chromosome 

visualization are provided in Figures 16 and 17, where ambient lighting at different colors and 

orientations is added to the scene, and a 3D chromosome surface model is viewed at various 

orientations in different modes (wire-frame/normal).   
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Figure 13: View of 3D chromosome model 
generated by Points2Polys 

 
 
 

   
                               (a)                                            

  
                                 (c)                                          
Figure 15: (a) A protruding inconsistent surface d
a snake. (b) Original image.  (c) Initial position of
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Figure 14: Chromosome splits up towards 
the top slices 
   
                        (b) 

 
                       (d) 
ue to a missed initial guess and refinement of  
 a snake. (d) Refined contours using snakes. 



       
                                 (a)                                                                (b) 
Figure 16: (a) Chromosomes in ambient and spot lighting in wire-frame (mesh) mode. (b) The 
surface of chromosome 1, including surface detail and light reflection.  
 

                                         
 

Figure 17: Chromosomes viewed from the top 
 
 
7 Conclusions  

In this paper we provide a methodology for an automatic recovery and visualization of a 

3D chromosome structure from a sequence of 2D tomographic reconstruction images taken 

through the nucleus of a cell.  Structure is very important for biologists, as it affects chromosome 

functions, behavior, and the state of the cell.  Chromosome analysis is significant in detection of 

deceases and in monitoring environmental gene mutations. The algorithm incorporates 

thresholding based on a histogram analysis with a polyline splitting algorithm, shape analysis, 

and noise removal, contour extraction via active contours, and detection of a 3D chromosome 
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structure by establishing corresponding regions throughout the slices.  Visualization using point 

cloud meshing generates a 3D surface with a computationally inexpensive and fast approach.  

The 3D triangular mesh of the chromosomes provides surface detail and allows a user to 

interactively analyze chromosomes using visualization software. 

The ability to capture small features such as constriction points and protrusions that may 

correspond to the binding of chromosome with adjacent intracellular organelles attests to the 

accuracy and resolution of our method.  The capacity to study the 3D geometry of chromosome 

structures in an interactive environment is a great asset to physicians and scientists in the 

diagnosis and treatment of chromosomal abnormalities and the scientific analysis of surface 

structures of chromosomes such as binding sites with adjacent organelles or intracellular 

molecules such as proteins or drugs.  One of the foremost advantages of our technique is the 

robustness of visualization based on a fairly small set of input images.            
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