Program NetMoment; Simultaneous Calculation of Moment, Source Corner Frequency, and Site Specific t* from Network Recordings

PDF Version Also Available for Download.

Description

The purpose of computer program NetMoment (Appendix I) is to utilize fundamental knowledge of earthquake sources, propagation attenuation, and site response in a simultaneous inversion of network data to determine the moment and source corner frequency of earthquakes, and site specific t*. The source parameters are especially difficult to determine for small earthquakes. A fundamental problem in determining the source corner frequencies of small earthquakes is that site response can result in spectral corner frequencies in the range that may be expected from the earthquakes themselves. Several authors have identified this as fmax (Hanks, 1982), a constant corner frequency for ... continued below

Physical Description

39p

Creation Information

Hutchings, L December 12, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The purpose of computer program NetMoment (Appendix I) is to utilize fundamental knowledge of earthquake sources, propagation attenuation, and site response in a simultaneous inversion of network data to determine the moment and source corner frequency of earthquakes, and site specific t*. The source parameters are especially difficult to determine for small earthquakes. A fundamental problem in determining the source corner frequencies of small earthquakes is that site response can result in spectral corner frequencies in the range that may be expected from the earthquakes themselves. Several authors have identified this as fmax (Hanks, 1982), a constant corner frequency for small events so that below threshold moment (about 1.0 x 10{sup 21} dyne-cm) the corner frequency remains constant the size of events diminishes. Hutchings and Wu (1990) found that for the southern California region, events with moment less than about 1.5 x 10{sup 21} dyne-cm (about magnitude 3.4) show no source effect in their spectra. Hanks (1982) found the threshold to be about 1.0 x l0{sup 21} dyne-cm for other southern California sites. Baise et al. (2002) found borehole recordings on Yerba Buena Island, in San Francisco Bay, to have corner frequencies limited to about 3-5 Hz for M < 4.0 earthquakes in the region. Some authors have attributed this to a minimum source dimension for earthquakes, which results in a decrease in stress drop for smaller events (Archuleta et al., 1982; Papageorgiou and Aki, 1983). alternative explanation is that the constant corner frequencies result from whole path or near site attenuation and/or amplifications due to soil response. This is supported by a wide body of literature (Anderson and Hough, 1984, Hutchings and Wu, 1990, Blakeslee and Malin, 1991; Aster and Shearer, 1991; Abercrombie, 1995). Abercrombie, for example, estimated source corner frequencies from events recorded in granite at a depth of 2.5 Km in the Cajon Pass scientific drill hole and observed corner frequencies about a factor of 10 higher than observed at the surface.

Physical Description

39p

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-ID-135693-REV-1
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/15013391 | External Link
  • Office of Scientific & Technical Information Report Number: 15013391
  • Archival Resource Key: ark:/67531/metadc1406002

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 12, 2001

Added to The UNT Digital Library

  • Jan. 23, 2019, 12:54 p.m.

Description Last Updated

  • Jan. 31, 2019, 2:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hutchings, L. Program NetMoment; Simultaneous Calculation of Moment, Source Corner Frequency, and Site Specific t* from Network Recordings, report, December 12, 2001; Livermore, California. (https://digital.library.unt.edu/ark:/67531/metadc1406002/: accessed March 22, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.