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It is shown that a quantum kinetic theory approach to line broadening, extended to stationary 

non-equilibrium states, yields corrections to the standard electron impact widths of isolated lines 

that depend on the population of the radiator internal levels. A consistent classical limit from a 

general quantum treatment of the perturbing electrons also introduces corrections to the isolated 

line widths. Both effects are essential in preserving detailed-balance relations. Preliminary 

analysis indicates that these corrections may resolve existing discrepancies between theoretical 

and experimental widths of isolated lines. An experimental test of the results is proposed. 
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1. INTRODUCTION 

The Stark broadening of spectral lines provides a valuable diagnostic tool as well as a probe 

to study the interface between atomic and plasma physics. Therefore, it is crucial to validate line-

broadening theories with well-characterized experiments. To this end experiments measuring the 

2p-2s and 3p-3s line profiles in the Li- and Be-like series of elements ranging from Be to Ne 

generated valuable data. [1-9] There are two important features of these transitions. Firstly, they 

involve simple atomic systems making full quantum mechanical calculations tractable. Secondly, 

the ion broadening is small. [9] Consequently, these transitions afford tests of electron line 

broadening theories and the underlying electron-ion collision processes in plasmas. 

There is clear evidence indicating significant discrepancies between experiment and theory 

for these isolated lines. [1-13] Recent quantum mechanical calculations of the electron Stark 

widths corroborated earlier theoretical results and did not resolve the discrepancies. [10-13] The 

latest version of the non-perturbative semi-classical method [14] is also in good agreement with 

the quantum mechanical results. Therefore, the discrepancies are probably not due to numerical 

inaccuracies. On the other hand, an alternative interpretation of the experiments was proposed; 

[10] however, different experiments using distinct plasma sources have obtained consistent line 

width measurements decreasing the possibility of large systematic experimental errors. [1-9] 

A possible explanation is the failure of some approximations in the standard impact theory 

[15] employed in the line width calculations. [1,10-14] Indeed, the standard impact theory 

assumes classical thermal averages and neglects initial correlations between radiator and 

perturbers at the onset of the theoretical development. The purpose here is to show that the 

quantum kinetic theory method to line broadening, [16,17] extended to stationary non-

equilibrium systems, yields corrections to the standard impact theory of isolated lines. 
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In the kinetic theory approach the neglect of initial correlations is not formally necessary and 

is only introduced to compare with previous theories or to simplify calculations. As a result, 

there are radiator level population dependent terms absent in the standard impact theory. A 

consistent classical limit from a quantum treatment of the perturbing electrons also introduces 

corrections to the width. Both effects are essential for satisfying detailed-balance relations. 

Preliminary application of these corrections to past experiments suggests possible resolution to 

the above discrepancies. Finally, experiments are proposed to test their validity. 

The organization of the paper is as follows. The main results from the kinetic theory method 

for isolated lines are summarized in Section 2. The formalism is applied to a two-level radiator in 

Section 3 and contact is made with the standard impact theory in Section 4. The experimental 

consequences are discussed in Section 5 with conclusions in Section 6. 

2. FORMALISM 

The starting point is the quantum kinetic theory of time correlation functions applied to line 

broadening. [16,17] This method confirmed anticipated results in plasma line broadening that 

were previously introduced through ad hoc assumptions. Here the kinetic theory approach is 

extended to obtained second-order width expressions for radiators with stationary non-

equilibrium internal level populations typical of experiments. 

2.1 Radiator-perturber system 

The assumed system consists of a single radiator (emitting or absorbing atom or ion) 

immersed in an electron gas. In the experiments the electron gas is well described by a 

Maxwellian velocity distribution at a local temperature. The electrons in the radiator internal 

states, however, are often not in thermal equilibrium with the perturbing electron gas. In these 

situations the experimental apparatus (e.g.; the gas-liner pinch [2-6] or low pressure pulsed arc 
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[7-9]) provides an external field that constrains the plasma from reaching thermal equilibrium. 

No specific assumptions are made about this external field except that during the measurements 

it is time independent so that the system relaxes to a stationary non-equilibrium state and it does 

not interact with the radiator internal degrees of freedom. 

For stationary conditions 

 
  

! 

"#

"t
= $ih$1 H,#[ ] = L# = 0 (2.1.1) 

with 

! 

" , 

! 

H , and 

! 

L  the density matrix, Hamiltonian, and Liouville operators for the system, 

respectively, and 
  

! 

L,L[ ] the commutator operation. Expanding the density matrix in terms of 

orthonormal Hamiltonian eigenstates 

! 

" j{ }  with eigenvalues 

! 

E j{ } where 

! 

j  ranges over the 

complete set leads to 

 
  

! 

" j # t( )" $ j = " j e
Lt# t = 0( )" $ j = e

%i E j %E $ j ( ) t h
" j # 0( )" $ j . (2.1.2) 

A stationary state occurs when all off-diagonal matrix elements of 

! 

" 0( )  between non-degenerate 

energy levels vanish. For degenerate energy levels the diagonalization is done simultaneously for 

eigenstates of 

! 

H  and additional invariants of the motion. Furthermore, the diagonal matrix 

elements of 

! 

" 0( )  give the populations of the energy eigenstates. 

2.2 Kinetic theory 

The line shape function at photon energy   

! 

h" , neglecting ion and Doppler broadening, is 

written as [16] 
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d t( )

o

&

'

= $#$1
ImTra

r 
d % (" $ B a( ) $ M a,"( ){ }
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 (2.2.1) 
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where 
  

! 

L  denotes an ensemble average, 

! 

Tr
a
 a trace over the radiator internal states, and 

! 

f a( ) 

the reduced distribution function for those states. Also,   

! 

r 
d  is the radiator dipole operator, 

 

! 

"# =# $ L a( ) , (2.2.2) 

 
  

! 

L a( ) = ih"1 H a( ),L[ ] , (2.2.3) 

with 

! 

H a( )  the internal degrees of freedom Hamiltonian for the isolated radiator. The “width and 

shift” operator, 

! 

B a( ) + M a,"( ) , is expressed as a generalized binary collision by a single 

perturbing electron. [16] The many-body aspects are contained in reduced distribution functions, 

screened radiator-electron interactions, mean field terms, and multiple collision effects appearing 

in its definition. No approximations are made in obtaining this expression, except it was assumed 

that the reduced distribution functions, 
  

! 

f a,1,K,s( ) , satisfy the equilibrium hierarchy equations. 

[16] Consequently, the results are not necessarily applicable to non-equilibrium states. 

2.3 Second-order theory 

An exact expression for 

! 

M a,"( ) that takes advantage of the stationary property in Eq. (2.1.1) 

but does not invoke thermal equilibrium is given by [18] 

 

! 

M a,"( ) = TrpLI# " $ L( )
$1
Trp# " $ L( )

$1[ ]
$1

$ f
$1
a( )

% 
& 
' 

( 
) 
* 
. (2.3.1) 

where 

! 

Trp  denotes a trace over the electron gas plus the apparatus external field and 

! 

L
I
 the 

Liouville operator corresponding to the radiator interaction with the electron gas excluding the 

radiator net charge. 

A second order expansion in the radiator-electron interaction is obtained by noting that for 

 

! 

" # L = $" # LI # Lp , (2.3.2) 

then 

 

! 

" # L( )
#1

= $" # Lp( )
#1
1+ LI $" # Lp( )

#1{ } +O LI
2( ) (2.3.3) 
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where 

! 

Lp  is the Liouville operator for an electron gas interacting with the net radiator charge 

plus external field. Substitution of Eq. (2.3.3) into Eq. (2.3.1) leads to 

 

! 

M
2( )
a,"( ) = neTr1LI a,1( ) #" $ Lo 1( ){ }

$1
fo a( ) fo 1( )LI a,1( ) fo

$1
a( ) (2.3.4) 

where 

! 

n
e
 is the perturbing electron number density and 

! 

Tr
1
 denotes a trace over a single 

perturbing electron. For simplicity an ideal electron gas was assumed. Use was also made of the 

fact that the domain of 

! 

M a,"( ) is in the radiator subspace. Here, 

 
  

! 

L
o
1( ) = ih"1 H

o
1( ),L[ ] , (2.3.5) 

 
  

! 

L
I
a,1( ) = ih"1 V a,1( ),L[ ] , (2.3.6) 

with 

! 

H
o
1( )  the perturbing one-electron Hamiltonian and 

! 

V a,1( ) the radiator interaction with a 

single perturbing electron where both exclude the interaction with the radiator net charge. 

The distribution functions appearing in Eq. (2.3.4) are zeroth-order in the interactions. In 

thermal equilibrium (LTE) 

 

! 

fo 1( )"exp #Ho 1( ) T{ } ,

fo a( )"exp #H a( ) T{ } ,

(LTE) (2.3.7) 

with 

! 

T  the temperature in energy units. Otherwise, 

! 

fo a( )  is the time independent function 

describing the steady-state radiator internal state populations and is a functional of 

! 

H a( ) . 

Equation (2.3.4) is identical to the second-order expression in Ref. 16 for non-interacting 

perturbers. However, the agreement may not continue to higher order expressions. 

A tetradic matrix representation may be obtained by taking matrix elements between radiator 

eigenstates of H a( )  leading to 

 

! 

" M a,#( )Y a( ) $ = M"$ , % " % $ #( ) % " Y a( ) % $ 
% " % $ 

&  (2.3.8) 
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where 

! 

Y a( ) is an arbitrary operator in the radiator subspace. Combining Eqs. (2.3.4) and (2.3.8) 

gives to second order in the radiator-electron interaction 
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 (2.3.9) 

where the sums are over all radiator internal states 

! 

"  and 

! 

"# 0
+ after the evaluation of the 

integrals. The eigenvalues of operators involving 

! 

H a( )  are defined as 

 
  

! 

H a( )" = h#" " , 

 

! 

"#$% =# & #$ &#%( ) , (2.3.10) 

 

! 

fo a( )" = f" " , 

where the density matrix diagonal nature in the energy eigenstate representation for stationary 

systems was used. The radiator-electron interaction matrix elements are given by 

 
  

! 

˜ V "#

r 
k ( ) = " ˜ V a,

r 
k ( ) # , 

  (2.3.11) 

 
  

! 

V a,1( ) =
d

r 
k 

2"( )
3

exp #i

r 
k $

r 
r 1( ) ˜ V a,

r 
k ( )% , 

with   

! 

r 
r 
1
 the perturbing electron position operator and   

! 

h
r 
k  the momentum transferred to the 

perturbing electron during the collision. 

2.4 Dynamic structure factor 

The dynamic structure factor for an ideal quantum electron gas, 

! 

S
o
k,"( ) , was introduced in 

Eq. (2.3.9) by using [19] 
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! 

ne

d
r 
q 

2"( )
3

fo q( )

h# $ Eo q( ) + Eo

r 
q +

r 
k ( ) + i%

= h
$1 d&

2"

So k,&( )
# $&+ i%

$'

'

((  (2.4.1) 

where 

! 

fo q( )  are the momentum distribution and 
  

! 

Eo q( ) = h
2
q
2
2m  the kinetic energy of the 

perturbing electron with m the electron mass. 

In the experiments of interest the electron gas is assumed to be in local thermal equilibrium 

so that the dynamic structure factor satisfies the detailed-balance property [19] 

 
  

! 

S
o
k,"#( ) = eh# T

S
o
k,#( ) (LTE). (2.4.2) 

It expresses that to destroy an excitation of energy   

! 

h"  in the electron gas, it must first exist with 

relative abundance given by the Boltzmann factor. This asymmetry led to theoretical line shifts 

from electron collisions among levels with the same principle quantum number (

! 

"n = 0 ) in 

hydrogen atoms that incorrectly vanish in a semiclassical approximation. [20] 

In order to retain the detailed-balance property in the classical limit of the thermal averages, a 

consistent approach is required. This is accomplished by 

 

  

! 

S
o
k,"( )# S

o

cl( )
k,"( )

1 " > 0

e
$h" T " < 0

% 

& 
' 

( 
' 

 (2.4.3) 

where 

 

! 

S
o

cl( )
k,"( ) =

n
e

k

2#m

T
exp $

m" 2

2k
2
T

% 
& 
' 

( 
) 
* 

 (2.4.4) 

is the dynamic structure factor for an ideal classical electron gas in thermal equilibrium. [19] 

2.5 Isolated lines 

For isolated lines where the widths and shifts produced by the perturbing electrons are much 

smaller than the energy separation between adjacent radiator levels of different total angular 

momentum, the line shape function is approximately written as, [15,21] 
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! 

I "( ) = #$1
r 
d µ%

2

fµ

&µ% "( )
'"µ%

2 + &µ%
2 "( )

+ f%
&%µ "( )

'"%µ
2 + &%µ

2 "( )

( 
) 
* 

+ * 

, 
- 
* 

. * 
m%

/
mµ

/  (2.5.1) 

where for clarity line shifts were neglected, 

 
  

! 

r 
d "# = "

r 
d # , (2.5.2) 

 

! 

"#$ %( ) = &ImM#$ ,#$ %( ) , (2.5.3) 

and the sums are over magnetic quantum numbers. The adopted convention has upper radiator 

internal states designated by 

! 

µ , 

! 

" µ , etc and lower states by 

! 

" , 

! 

" # , etc. 

2.6 Emission and absorption line profiles 

The energy loss and gain by a radiation field to and from a plasma is described by the plasma 

emission and absorption coefficients. Thus, these coefficients relate experimental quantities to 

the line shape function. 

The emission coefficient is given by [22] 

 
  

! 

" #( ) = n
a

# 4

3$c
3
Re

dt

2$
e

i#t
r 
d %

r 
d t( )

&'

'

(  (2.6.1) 

with 

! 

c  the speed of light in vacuum and 

! 

na  the radiator number density. The absorption 

coefficient is given by [22] 

 
  

! 

" #( ) = n
a

4$ 2#

3hc
Re

dt

2$
e

i#t

%&

&

'
r 
d t( ) (

r 
d %

r 
d (

r 
d t( ){ } (2.6.2) 

where the subtracted term accounts for stimulated emission. 

In local thermal equilibrium, [19] 

 
  

! 

dt

2"
e

i#t
r 
d t( ) $

r 
d 

%&

&

' = e
h# T dt

2"
e

i#t

%&

&

'
r 
d $

r 
d t( ) (LTE) (2.6.3) 

so that 
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! 

" #( )
$ #( )

=
h# 3

4% 3c2 eh# T
&1( )

(LTE) (2.6.4) 

satisfying the Kirchhoff-Planck relation. [22] 

Combining Eqs. (2.2.1), (2.5.1), (2.6.1), and (2.6.2) to get the emission and absorption 

coefficients for 

! 

" > 0 near the isolated line center, 

! 

"
o

="µ #"$ > 0 , yields (neglecting Doppler 

and ion broadening) 

 
  

! 

" #( ) = na

# 4

3$c
3

r 
d µ%

2

fµ

&µ% #o( ) $

# '#o( )
2

+ &µ%
2 #o( )m%

(
mµ

(  (2.6.5) 

and 

 
  

! 

" #( ) = na

4$ 2#

3hc

r 
d µ%

2

f%
&%µ '#o( ) $

# '#o( )
2

+ &%µ
2 '#o( )

' fµ

&µ% #o( ) $

# '#o( )
2

+ &µ%
2 #o( )

( 

) 
* 
* 

+ 

, 
- 
- m%

.
mµ

. . (2.6.6) 

The widths were taken in the impact limit 

! 

"# $ 0( ) and the terms with a maximum near 

! 

" = #"
o
 were assumed negligible in the positive-frequency parts of 

! 

" #( )  and 

! 

" #( ) . In thermal 

equilibrium the Kirchhoff-Planck relation requires 

! 

"µ# $o( ) = "#µ %$
o( ). For radiator level 

populations in stationary non-equilibrium, however, 

! 

"µ# $o( ) % "#µ &$
o( ) as shown below. 

3. TWO-LEVEL RADIATOR 

To illustrate the present results, the second-order expression for the width is applied to the 

isolated lines of a two-level radiator, each with possible rotational degeneracy. Furthermore, the 

assumed radiator-electron interaction, appropriate for a Li-like system, describes a radiator with 

one bound electron outside a frozen, spherically symmetric core, 

 
  

! 

˜ V a,
r 
k ( ) =

4"e
2

k
2

e
i
r 
k #

r 
r 
a $1[ ]  (3.1) 
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with e the electron electric charge and   

! 

r 
r 
a
 the bound electron position operator. Results for a 

multi-level radiator are briefly discussed in Appendix A. 

It is advantageous to separate the width contributions according to the kind of collision, 

 

! 

"#$ %( ) = "#$
in %( ) + "#$

el %( )  (3.2) 

where in and el denote inelastic and elastic radiator-electron collisions, respectively. 

The second-order inelastic collision contribution to the width includes interaction terms 

involving the upper and lower radiator internal states (e.g.; 

! 

˜ V µ" ), but not those involving only the 

upper or only the lower states (e.g.; 

! 

˜ V µ " µ  or 

! 

˜ V " # " ). Thus, from Eqs. (2.3.9) and (2.5.3) one gets 

 

! 

"µ#
in $( )

"#µ
in $( )

% 

& 
' 

( 
' 

) 

* 
' 

+ 
' 

=

f# fµ
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1

% 

& 
' 

( 
' 

) 

* 
' 

+ 
' 
-µ
in $( ) +

1

fµ f#
,1

% 

& 
' 

( 
' 

) 

* 
' 

+ 
' 
-#
in $( )  (3.3) 

where 

 

  

! 

"µ
in #( )

"$
in #( )
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& 
' 

( 
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) 

* 
' 

+ 
' 

=
1

2h
2

d

r 
k 

2,( )
3

S
o

k,#( )
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k ( )

2

m - $ 

.

˜ V - µ $
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k ( )

2

m - µ 

.

% 

& 

' 
' 

( 

' 
' 

) 

* 

' 
' 

+ 

' 
' 

/ . (3.4) 

Inserting the interaction in Eq. (3.1), neglecting spin, and performing the angular integrations as 

well as the sums over magnetic quantum numbers yields 

 

  

! 

"µ
in #( )

"$
in #( )

% 

& 
' 

( 
' 

) 

* 
' 

+ 
' 

=

2l$ +1( )

2l µ +1( )

% 

& 
' 

( 
' 

) 

* 
' 

+ 
' 

dk S
o
k,#( ) 2l +1( ) Jµ$

l( )
k( )[ ]

2

l=0

,

-
o

,

. , (3.5) 

 
  

! 

Jµ"
l( )
k( ) =

2e
2

hk

l µ l l"

0 0 0

# 

$ 
% 

& 

' 
( dr r

2
j
l
kr( )Rµ r( )

o

)

* R" r( ) , (3.6) 

with 

! 

R" r( )  and   

! 

l"  the radial wavefunction and orbital quantum number for the radiator state 

! 

" , respectively, and 
  

! 

j
l
x( )  the spherical Bessel function of order   

! 

l . [23] It follows that 



 12 

 
  

! 

2l µ +1( ) "µ
in #( ) = 2l$ +1( ) "$

in #( ) . (3.7) 

Note that the inelastic collision width contributions in Eq. (3.3) depend on the population of the 

radiator internal states, terms that are absent in the standard impact theory. [15] 

The second-order elastic collision contribution to the line width includes terms with 

! 

˜ V µ " µ  and 

! 

˜ V " # "  but not those containing 

! 

˜ V µ" . Thus, after straightforward manipulations Eq. (2.3.9) gives 

 

! 

"µ#
el $( )

"#µ
el $( )

% 

& 
' 

( 
' 

) 

* 
' 

+ 
' 

=

Fµ# $( )

F#µ $( )

% 

& 
' 

( 
' 

) 

* 
' 

+ 
' 

 (3.8) 

where 

 
  

! 

F"# $( ) =
1

2h
2

d

r 
k 

2%( )
3

S
o

k,&$"#( ) ˜ V ""

r 
k ( ) ' ˜ V ## '

r 
k ( )

2

( . (3.9) 

The dependence on the radiator level populations cancels in the elastic contribution since 

! 

f"  is 

assumed independent of magnetic quantum numbers. 

For an LTE electron gas the absorption and emission width contributions are then related by 

 
  

! 

"#µ
in $%( ) = fµ f#

$1
e

h% T"µ#
in %( ) (3.10) 

and 

 
  

! 

"#µ
el $%( ) = e

h&% µ# T
"µ#
el %( ) (3.11) 

which follow from the detailed-balance property of the dynamic structure factor. From Eqs. 

(3.10) and (3.11) one obtains in the impact limit 

! 

"# $ 0( ) 

 

! 

"#µ $%
o( ) = "µ# %o( ) + Pµ# $1( )"µ#

in %
o( )  (3.12) 

with 

 
  

! 

Pµ" = fµ f"
#1
e

h $ µ #$"( ) T  (3.13) 
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In thermal equilibrium 

! 

Pµ" =1 and 

! 

"#µ $%
o( ) = "µ# %o( ) satisfying the Kirchhoff-Planck relation. 

4. COMPARISON TO STANDARD IMPACT THEORY 

The standard impact theory [15] uses a Maxwellian velocity distribution to describe the 

electron gas, which seems appropriate for the relatively high experimental temperatures. [1-9] A 

comparison of the kinetic and standard impact theories then requires the classical limit of the 

thermally averaged collision cross-sections. 

For a classical electron gas in LTE the emission and absorption line widths are obtained 

using Eq. (2.4.3) so that 

 

  

! 

"µ# $o( )

"#µ %$
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' 
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-
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( 
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( 

* 

+ 
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, 
( 

=

P#µ

1

& 

' 
( 

) 
( 

* 

+ 
( 

, 
( 
e

h$
o
T .µ

in $
o( )

cl

+

1

Pµ#

& 

' 
( 

) 
( 

* 

+ 
( 

, 
( 
.#
in $

o( )
cl

+ Fµ# $o( )
cl

 (4.1) 

where 
  

! 

L
cl

 denotes the thermal average in Eqs. (3.4) and (3.9) but with the classical ideal gas 

dynamic structure factor in Eq. (2.4.4). Clearly, 

! 

"#µ
cl $%

o( ) & "µ#
cl %

o( ) except for LTE radiator 

level populations as required by the Kirchhoff-Planck relation. [22] 

As shown in Appendix B the second-order width in the standard electron impact theory [15] 

is given by 

 

! 

"
std
#
o( ) = $µ

in #
o( )

cl

+ $%
in #

o( )
cl

+ Fµ% #o( )
cl

. (4.2) 

Note that 

! 

S
o

cl( )
k,"( )  in 

  

! 

L
cl

 is symmetric in 

! 

"  and does not satisfy the detailed-balance 

condition. Hence, 

! 

"
std
#
o( ) = "

std
$#

o( )  giving identical emission and absorption profiles 

independent of the radiator level populations. 

The comparison of the isolated line width expressions for a two-level radiator from kinetic 

theory in Eq. (4.1) and the standard impact theory in Eq. (4.2) is the main result of the paper. The 

former displays radiator internal state population dependent corrections due to retaining initial 
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correlations until the end of the formal development as well as corrections due to the detailed-

balance property of the electron gas. 

5. EXPERIMENTAL DISCUSSION 

To motivate an experimental resolution of the width discrepancies, [1-13] the results in 

Sect. 4 are applied to previous as well as proposed isolated line width experiments. For 

convenience the discussion treats the Li-like 2p-2s and 3p-3s lines separately. 

5.1 BIII 2p-2s lines 

The two-level radiator is an excellent approximation to the BIII 2p-2s lines since the upper 

and lower levels in the transition are well isolated from all other radiator states. [10] These lines 

have   

! 

h"o # 6eV  and the experimental conditions were 

! 

n
e

=1.81"10
18  cm-3 and 

! 

T =10.6eV . [3] 

At the experimental conditions close-coupling calculations [10] yield standard impact widths that 

are about half the experimental results. In addition, the contribution to the width from inelastic 

collisions is about twice that from elastic collisions. [10] 

Assuming that the second-order results extend to the all-order formulation, one gets using 

Eqs. (3.2) and (4.2) 

 

! 

Fµ" #o( )
cl
$ %

std

el  (5.1.1) 

and 

 

! 

"
std

in #
o( ) = $µ

in #
o( )

cl

+ $%
in #

o( )
cl

& 2"
std

el
. (5.1.2) 

Then Eq. (3.7) and Eq. (5.1.2) give 

 

! 

"µ
in #

o( )
cl

$ %
std

el
2 ,  (5.1.3) 

 

! 

"#
in $

o( )
cl

% 3&
std

el
2 ,  (5.1.4) 

with 
  

! 

l µ =1 and   

! 

l" = 0 corresponding to the 2p-2s line. 



 15 

If the experiments were in thermal equilibrium, then at the experimental conditions [3] 

Eqs. (5.1.1) through (5.1.4) together with Eqs. (4.1) and (4.2) yield 

 

! 

"µ#
cl $

o( ) = "#µ
cl %$

o( ) &1.1" std $o( ) (LTE) (5.1.5) 

only slightly improving agreement with the experimental width. The radiator level populations in 

the experiments, however, were not in thermal equilibrium with the electron gas. [24] 

Unfortunately, there are no estimates of the ratio 

! 

f" fµ
#1 to test the kinetic theory results and a 

population kinetics simulation is beyond the scope of the present work. 

Interestingly, the radiator level populations were briefly discussed in Ref. 10 where the 

absence of the BIII 4f-3d line was used to argue for a lower experimental temperature. Applying 

this interpretation to the bound electrons (not the perturbing electron gas which is well-

characterized by Thomson scattering [3]), then the BIII level populations could be described by 

an effective LTE temperature of say 4 eV. [10] The resulting ratio of 

! 

f" fµ
#1 = 4.5  substituted into 

Eq. (4.1) and again using Eqs. (5.1.1) through (5.1.4) yields for the emission width 

 

! 

"µ#
cl $

o( )
"
std
$
o( )

=1.6 (Non-LTE). (5.1.6) 

Accounting for the ion quadrupole width contribution of ~10%, [10] the experimental and kinetic 

theory emission widths now disagree by 16%, not far outside the 

! 

±10%  experimental error. [3] 

Of course, the assumed LTE distribution with a 4 eV effective temperature is only a plausible 

choice, but shows that the width corrections from the kinetic theory method can be significant. 

5.2 Proposed experiments 

The results above suggest possible experiments to test electron impact theories of isolated 

lines. The idea is to repeat the experiments [1-9] with the additional measurement of the 
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absorption coefficient. If the initial and final radiator level populations are in LTE, then the 

emission and absorption profiles are identical. Thus, (neglecting Doppler and ion broadening) 

 

! 

" #( )

$ #( )

% 

& 
' 

( 
' 
)

*µ+ #o( )

# ,#
o( )
2

+ *µ+
2 #

o.( )
(LTE). (5.2.1) 

As noted earlier, however, experiments typically have non-LTE radiator level populations. 

Contrary to the standard impact theory, [15] for stationary non-equilibrium radiator 

populations the kinetic theory method predicts different emission and absorption widths. 

Therefore, (neglecting Doppler and ion broadening) 

 

! 

" #( )

$ #( )

% 

& 

' 
' 

( 

' 
' 

)

*µ+ #o( )

# ,#o( )
2

+ *µ+
2 #o( )

f+*+µ ,#o( )

# ,#o( )
2

+ *+µ
2 ,#o.( )

,
fµ*µ+ #o( )

# ,#o( )
2

+ *µ+
2 #o( )

- 

. 

' 
' ' 

/ 

' 
' 
' 

(Non-LTE). (5.2.2) 

The proposal exploits the difference between 

! 

" #( )  and 

! 

" #( )  in Eq. (5.2.2). 

Applying the same ratio of 

! 

f" fµ
#1 = 4.5  in the emission analysis to the BIII 2p-2s absorption 

line width at the experimental conditions [3] yields 

 

! 

"µ#
cl $

o( )
"#µ
cl %$

o( )
&1.9 (Non-LTE). (5.2.3) 

This leads to different frequency dependence in the emission and absorption coefficients that 

should be discernible by experiments as shown in Fig. 1. 

Figure 1 displays 

! 

" #( )  and 

! 

" #( )  from Eq. (5.2.2). The widths calculations assumed 

! 

f" fµ
#1 = 4.5  with 

! 

"
std
#
o( ) = 0.055Å. [10] To check the plausibility of measuring the difference; 

both Doppler and instrumental broadening [3] were included in generating the results in Fig. 1. 
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In obtaining the absorption coefficient it was assumed that the isolated lines were optically thin 

so that the transmission, 

! 

T "( ), is given by 

 

! 

T "( ) #1= e
#$ "( )

#1 % $ "( )&' "( )  (5.2.4) 

with 

! 

" #( ) the sample optical depth. Therefore, instrumental broadening is equivalent for 

! 

T "( ) 

and 

! 

" #( ) . Although complete verification of the present results requires experimental 

determination of the ratio 

! 

f" fµ
#1, different experimental 

! 

" #( )  and 

! 

" #( )  profiles would 

substantiate them and challenge the standard impact theory [15] for isolated lines. 

5.3 The Li-like 3p-3s isoelectronic sequence 

A feature of the 3p-3s isolated lines is the monotonic increase in disagreement along the Li-

like isoelectronic sequence between theory and experiments. [2-6,8-13] This observation was 

puzzling since the electron standard impact widths for isolated lines of multiply charged ions is 

dominated by inelastic collisions. [11-13] This is a process for which the convergent close-

coupling method used in the width calculations is considered highly accurate. This trend is 

displayed in Fig. 2 where the ratios of experimental to theoretical widths are plotted as a function 

of nuclear charge. The experimental values for Fig. 2 are the average of the 3p-3s doublet lines at 

each plasma condition. [2,6,9] The theoretical widths are obtained by interpolating quantum-

mechanical calculations [13] using standard impact theory. 

Although the two-level radiator is more appropriate for the Li-like 2p-2s transitions than the 

3p-3s transitions, the general result also applies to these isolated lines. That is, there is 

dependence on the non-LTE radiator level populations in the inelastic collision contribution to 

the width absent in the standard impact theory [15] (see Appendix A). 

The conditions for LTE can be estimated from a simple formula derived for steady-state 

plasmas [25] 
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! 

ne
*
"
7 #10

18
Zeff
6

n
17 2

T

EH

cm
$3[ ]  (5.3.1) 

where 

! 

n
e

* is the minimum electron density required for principle quantum number 

! 

n  to be in 

LTE with the perturbing electron gas, 

! 

E
H

is the ionization energy of the hydrogen atom ground 

state, and 

! 

Zeff  the effective hydrogenic charge. 

The ratios 

! 

n
e

*
n
e
 for the various experiments [2,6,9] are plotted in Fig. 3 indicating that in 

most cases non-LTE populations are expected for the 

! 

n = 3 levels. Furthermore, in each set of 

experiments the 

! 

n = 3 level populations are increasingly further away from LTE conditions with 

increasing atomic number. It follows from Eq. (4.1) that the correction to the emission width 

increases as the ratio of the upper to lower radiator state populations decreases. Consequently, 

the level population dependence of the isolated line widths may explain the increasing 

discrepancy along the isoelectronic sequence. 

The present results may also explain some of the scatter in the experimental data (see Fig. 2). 

Since line shapes for a given element are measured over a range of plasma conditions, the 

radiator internal steady-state populations can significantly vary affecting the line widths. A 

consequence of this interpretation is to introduce uncertainty into past measurements [1-9] 

through the width dependence on level populations. Future experiments can attempt to reach 

thermal equilibrium or measure the level populations. Otherwise, comparisons with theory may 

have to rely on kinetic population models. 

6. CONCLUSION 

A possible explanation of the existing discrepancies [1-13] between experimental and 

theoretical widths of isolated lines was presented. The corrections are due to neglected initial 

correlations and incomplete treatment of the classical electron gas in the standard impact theory. 
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[15] For isolated lines these approximations introduce significant errors so that a more complete 

theory is required. 

The second-order kinetic theory results [16] were extended to stationary non-equilibrium 

states. It was shown that the Rydberg-Ritz principle [26] does not apply to isolated lines 

involving non-LTE level populations. That is, the line profile is not described by the addition of 

independent level widths (e.g.; the sum of thermally averaged inelastic cross-sections), but rather 

a line width that explicitly depends on the pair of initial and final levels through their steady-state 

populations. Furthermore, a consistent classical limit of the quantum electron gas introduces 

corrections to the width. Both corrections are essential in satisfying the Kirchhoff-Planck 

relation. In second-order theory the corrections enter as multiplicative factors to the thermally 

averaged inelastic cross-sections allowing for width estimates based on standard impact theory 

(see Appendix A). 

A repeat of earlier experiments [1-9] measuring both photon emission and absorption in the 

spectral region of the isolated line was proposed. Differences in the energy dependence of the 

emission and absorption coefficients would substantiate the present results, which predict 

different emission and absorption isolated line profiles for stationary non-equilibrium internal 

radiator states. On the other hand, the standard impact theory satisfies the Kirchhoff-Planck 

relation but only as a result of compensating approximations and predicts identical emission and 

absorption line widths independent of the radiator level population distribution. 

The proposed resolution of the discrepancies relies on several approximations. The main 

assumptions are an ideal electron gas and a second-order expansion of the width operator. It is 

well known [16,17] that the main effect of the plasma interactions is to screen the radiator-

electron interaction and should not significantly affect the conclusions. The good agreement 



 20 

between the Coulomb-Born and R-matrix calculations for the BIII 2s-2p line [10] suggests that 

using second-order theory to estimate the width corrections is reasonable, at least for that case. 

Finally, the corrections to the widths can be significant for isolated lines, but are negligible 

for many other lines. Firstly, the radiator level population corrections to the line widths vanish 

for systems in thermal equilibrium. Secondly, widths are not significantly affected if the 

broadening due to interactions with states distant in energy from the initial and final levels is 

small. For example, for hydrogenic radiators the no quenching approximation [21,25] is often 

valid and the present corrections practically vanish.  
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APPENDIX A: MULTI-LEVEL RADIATOR 

This Appendix extends the second-order kinetic theory emission and absorption widths of 

isolated lines from a two-level to a multi-level radiator. The elastic collision contributions to the 

widths remain unchanged. The inelastic collision contributions, however, are modified. 

Define the thermally averaged inelastic collision cross-section from a state 

! 

"  with total 

angular momentum 

! 

J"  to all 

! 

2J" +1( )  states of a level with total angular momentum 

! 

J"  as 

 
  

! 

"#$%
in &

o( ) =
1

2h
2

d

r 
k 

2'( )
3

S
o

k,&# (&%( ) ˜ V #%

r 
k ( )

2

m%

)*  (A1) 

The identification of the expression in Eq. (A1) with a thermally averaged collision cross-section 

is provided in Appendix B. Then, using Eqs. (2.3.9) and (2.5.3) the second-order inelastic impact 

emission and absorption widths for an electron gas in LTE can be written as 
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To make contact with the standard impact theory, [15] take the classical limit of the electron 

gas. Then, using Eq. (2.4.3) one gets 
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 (A3) 

where 
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! 

" x( ) =
1 x # 0

0 x < 0

$ 
% 
& 

. (A4) 

The brackets 
  

! 

L[ ]  in Eq. (A3) display the detailed-balance property of the electron gas 

asserting that electron impact de-excitations are more probable by a Boltzmann factor than 

excitations. 

The brackets 
  

! 

L{ } in Eq. (A3) contain the level population corrections. These corrections 

depend on the deviations from thermal equilibrium. That is, 

 
  

! 

P"# = f" f#
$1
e

h %" $%#( )
LTE

& ' & & 1 (A5) 

and 

! 

"#µ $%
o( ) = "µ# %o( ) satisfying the Kirchhoff-Planck relation. [22] Furthermore, the 

population dependent corrections are present only for electron inelastic collisions involving the 

initial states of the isolated line. 

Equation (A3), in conjunction with thermally averaged inelastic cross-sections from standard 

impact theory [15] and level populations from kinetic steady-state models, provides a basis for 

numerical comparisons of theory and experiment. 
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APPENDIX B: PROOF OF EQUATION (4.2) 

This Appendix shows that the expression for 

! 

"std #o( )  in Eq. (4.2) is identical to the second-

order standard impact theory. [15] To proceed, write the dynamic structure factor for an ideal 

classical electron gas in the form [19] 

 
  

! 

S
o

cl( )
k,"( ) =

n
e

2
duF u( ) d# ˆ u 

$ " %
r 
k &

r 
u ( )'

o

(

'  (B1) 

where 

! 

d" are the differential solid angle and 

! 

F u( )  the Maxwellian velocity distribution with 

normalization 

 

! 

duF u( )
o

"

# =1 . (B2) 

Using Eq. (B1) write the inelastic contributions to the upper level width as 
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The k-integration limits are determined from momentum and energy conservation, 
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where   

! 

hk
i
 and 

  

! 

hk f  are the initial and final momentum of the perturbing electron, respectively. 

Hence, in the second line of Eq. (B3) 
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The inelastic cross-section in the Born approximation is given by [27] 
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which was used to get the last line of Eq. (B3). Similar manipulations lead to 
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Again using Eq. (B1) the elastic contributions is written as 
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where * denotes complex conjugate. The Born scattering amplitude is given by [27] 
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which was used in obtaining the last line of Eq. (B9). 

Combining results yields 
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reproducing the standard impact result for isolated lines. [15] 
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FIGURE CAPTIONS 

Fig. 1 Emission and absorption coefficients in the spectral region of the BIII 2p-2s doublet lines. 

The profiles have been area normalized and include Doppler broadening. Also included is 

instrumental broadening described by a Voigt function with 0.071 Å Lorenztian FWHM 

and 0.049 Å Gaussian FWHM. [3] 

Fig. 2 Ratios of experimental and theoretical 3p-3s widths along the Li-like isoelectronic 

sequence: Bochum group [2,6] (solid circles); Belgrade group [9] (open circles). 

Fig. 3 Ratios of the minimum electron density for principle quantum number 

! 

n = 3 levels to 

reach LTE and the experimental electron density: Bochum group [2,6] (solid circles); 

Belgrade group [9] (open circles). 
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