
UCRL-CONF-204061

An Improved N–Bit to N–Bit

Reversible Haar–Like

Transform

Joshua Senecal
Peter Lindstrom
Mark A. Duchaineau
Kenneth I. Joy

This paper was submitted to the 12th Pacific Conference on
Computer Graphics and Applications, to be held October 6–
8, 2004, in Seoul, South Korea

May 10, 2004

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work

sponsored by an agency of the United States Govern-

ment. Neither the United States Government nor the

University of California nor any of their employees,

makes any warranty, express or implied, or assumes any

legal liability or responsibility for the accuracy, com-

pleteness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use

would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or

service by trade name, trademark, manufacturer, or oth-

erwise, does not necessarily constitute or imply its en-

dorsement, recommendation, or favoring by the United

States Government or the University of California. The

views and opinions of authors expressed herein do not

necessarily state or reflect those of the United States

Government or the University of California, and shall

not be used for advertising or product endorsement pur-

poses.

This is a preprint of a paper intended for publication

in a journal or proceedings. Since changes may be made

before publication, this preprint is made available with

the understanding that it will not be cited or reproduced

without the permission of the author.

This research was supported under the auspices of the

U.S. Department of Energy by the University of Cali-

fornia, Lawrence Livermore National Laboratory under

contract No. W-7405-Eng-48.

Approved for public release; further dissemination

unlimited

An Improved N–Bit to N–Bit Reversible Haar–Like Transform

Joshua Senecal∗‡, Peter Lindstrom†, Mark A. Duchaineau†

∗Institute for Scientific Computing Research
†Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

Kenneth I. Joy‡

‡Center for Image Processing and Integrated Computing

Computer Science Department

University of California, Davis

Abstract

We introduce the Piecewise–Linear Haar (PLHaar)

transform, a reversible n–bit to n–bit transform that is

based on the Haar wavelet transform. PLHaar is contin-

uous, while all current n–bit to n–bit methods are not,

and is therefore uniquely usable with both lossy and loss-

less methods (e.g. image compression). PLHaar has both

integer and continuous (i.e. non-discrete) forms. By keep-

ing the wavelet coefficients to n bits PLHaar is particularly

suited for use in hardware environments where chan-

nel width is limited, such as digital video channels and

graphics hardware.

1. Introduction

Integer wavelet transforms have what is termed dynamic

range expansion. Simply put, the range over which the

wavelet coefficients have their values is larger than the

range over which the inputs have their values (for a discus-

sion of dynamic range expansion and its effects see [4]). As

an example, the S–Transform [1] (to be reviewed later) is

an n–bit to (n + 1)–bit transform. This means, from a prac-

tical standpoint, that the process of designing and building

custom hardware implementing this transform will incur ex-

pense and complexity from the necessity of handling the ex-

tra bit. Also, because modern computer architectures allo-

cate storage in 8–bit increments, an implementation of this

algorithm on a computer will require 16 bits to store what

∗ L–419, PO Box 808, Livermore, CA 94551, Tel: 925–422–3764, Fax:
925–422–7819, senecal1@llnl.gov

† L–561, PO Box 808, Livermore, CA 94551, {pl,duchaine}@llnl.gov

‡ One Shields Ave, Davis, CA 95616, {jgsenecal,kijoy}@ucdavis.edu

is essentially a 9–bit coefficient (an 8–bit magnitude plus a

sign bit).

To our knowledge there are only two published lossless

methods for completely eliminating dynamic range expan-

sion. These are the TLHaar method [7] and the method of

Chao and Fisher (here referred to as the CF method)[2] (to

be reviewed later). PLHaar improves on these methods by

supporting lossless and lossy methods.

2. The Haar Wavelet Transform

A good illustration of dynamic range expansion is found

in the Haar wavelet transform [6]. The transform is a 45–

degree (or one–eighth) rotation about the origin in Eu-

clidean (or L2) space. Points in the domain that are equidis-

tant from the origin lie on a circle. The transform rotates all

points on a particular circle.

Given two input values A and B the corresponding high–

pass value H and low–pass value L can be computed by

equations 1 and 2.

H =
B − A√

2
(1)

L =
A + B√

2
(2)

Or in matrix form

[

L
H

]

=
1√
2

[

1 1
−1 1

] [

A
B

]

(3)

2.1. The S–Transform

If the normalization (division) by
√

2 is removed from

the Haar equations, the range of the transform is equiva-

lent to the domain, expanded by a factor of
√

2 and rotated

Domain Range

Non−normalized
Haar

11

Figure 1. The non–normalized Haar trans-
form, showing dynamic range expansion.

45 degrees about the origin. The range of possible high–

and low–pass values, as measured along the axis, is now

twice that of the domain (see figure 1). If the domain con-

tains only integers, it should be obvious that the range of the

non–normalized Haar transform will also contain only inte-

gers, and that the number of positions occupied in the range

is equal to the number of positions in the domain. If the do-

main is [0, N]2 then the range of values will be drawn from

[−N,+N]2, arranged in a lattice as in the left side of fig-

ure 2.

S–Transform [1], defined by equations 4 and 5, is an in-

teger version of the Haar Transform (the S–Transform is

sometimes called the Haar Integer Wavelet Transform).

H = B − A (4)

L =

⌊

A + B

2

⌋

(5)

It eliminates dynamic range expansion in the low–pass co-

efficients by “squashing” the low–pass range so that it is

equal to the domain, as shown on the right of figure 2. Note

that for any pair of inputs to the non–normalized Haar trans-

form, H and L have the same least–significant bit (LSB).

Because of this the low–pass values can be squashed with-

out loss of information (the LSB needed to completely re-

construct L can be taken from H) and the transform is com-

pletely reversible. However, the range of high–pass coeffi-

cients is still twice the domain.

2.2. TLHaar

Because the number of occupied positions in the domain

and range are equal it is possible to eliminate dynamic range

expansion in the low– and high–pass coefficients by intel-

ligently remapping each position in the domain to a posi-

tion in the range, such that the range is equal to the domain

and the resulting transform de–correlates the input data.

Non−normalized Haar Range

L

H

S−Transform Range

H

L

Figure 2. Eliminating low–pass dynamic
range expansion by “squashing”.

TLHaar [7] is an integer–to–integer transform that, given

a bit width n, uses a set of two–dimensional lookup tables

(each of size 22n, with an edge dimension of 2n). One table

is a mapping (A,B) → (H,L) for the forward transform,

and the table for the inverse is a mapping (H,L) → (A,B).
Each table is initialized with an identity transform, and then

the rows and columns of the inverse transform table are

sorted to agree with their true Haar counterparts. When a

swap occurs in the inverse transform table, the correspond-

ing entries in the forward transform table are also swapped.

Given two pairs of inputs (Ai, Bi), (Aj , Bj), the sort of

the inverse transform table obtains the following two prop-

erties:

∀L : |Hi| ≤ |Hj | ⇐⇒ H̃i ≤ H̃j (6)

∀H : Li ≤ Lj ⇐⇒ L̃i ≤ L̃j (7)

where H indicates a Haar high–pass coefficient, and H̃ in-

dicates a TLhaar coefficient. The intent is to create tables

such that, for any given two pairs of data values their high–

and low–pass values as created by TLHaar will tend to have

the same magnitude relationships as those created by Haar.

Because the tables are initialized with an identity transform

no table entry will have a value outside the transform do-

main. Thus range expansion cannot occur.

Although this method decorrelates the data, it has sev-

eral shortcomings. The first is that it is not continuous and

is therefore suitable only for use with lossless methods, al-

though lossy methods are possible if the loss is confined to

the subbands at the finest levels of detail. Second, for n–

bit inputs the lookup tables are of size 2 × 22n each, which

quickly becomes unwieldy at larger values of n.

2.3. The CF Method

The CF method [2] is also an integer–to–integer trans-

form, and takes advantage of modulo arithmetic to eliminate

dynamic range expansion. Given a bit width n, the range of

representable signed values is [−2n−1, 2n−1−1]. Given in-

puts A and B the CF transform is computed as in equations

8 and 9.

H = (B − A) mod 2n (8)

L =

(⌊

H

2

⌋

+ A

)

mod 2n (9)

where we use the standard convention that −x mod 2n =
2n − x for 0 < x < 2n.

The CF method has an aliasing problem that causes in-

correct behavior when the difference between A and B
overflows and wraps around, causing L to have a sign op-

posite the expected. CF is unable to distinguish large posi-

tive numbers from small negative ones (and vice–versa) be-

cause they have the same representation. For example, if

n = 8, the range is [-128,127]. If A = −1 and B = 127,

the CF method computes L = −65, which is not near the

expected average of 63 (recall that the L value is an aver-

age of A and B). If the wavelet coefficients are kept lossless

then this aliasing does not cause any problems and the orig-

inal image can be reconstructed. However, if a lossy method

is used to store or encode the coefficients then artifacts can

appear in the image. Most continuous–tone images do not

have adjacent pixel pairs with differences wide enough to

cause this behavior, so in practice this method works well

for a wide range of images, reconstructed both lossy and

lossless. However, this aliasing problem is a fundamental

weakness in the method, and means that the CF transform

is not continuous. The PLHaar transform, unlike the CF and

TLHaar transforms, performs this remapping while com-

pletely preserving continuity.

3. The PLHaar Transform

Unlike the Haar transform, which is defined as a 45–

degree rotation in Euclidean L2 space, the PLHaar trans-

form is a similar rotation in L∞ space. In this space, points

that are “equidistant” from the origin lie on the perimeter

of a square. A one–eighth rotation (analogous to the 45–

degree rotation of the Haar transform) about the origin in

this space amounts to moving a point one–eighth of the dis-

tance along the perimeter of its square. If we divide the do-

main and range into octants, then as shown in figure 3 a

one–eighth rotation moves all points from their positions in

a given octant into the next lower octant (with wraparound).

The transform of a given point is given by

[

L
H

]

= U

[

A
B

]

(10)

where U is one of four matrices, depending on the octant

(Oct.) where the point (A,B) is located.

Domain Range

PLHaar

H

L

1
23

4

5
6 7

8

1
23

4

5
6 7

8

A

B

Figure 3. The PLHaar transform’s rotation

in L∞ space. Numbered octants are also
shown.

U =

[

1

−1

0

1

]

if 0 ≤ +B ≤ +A

or 0 ≤ −B ≤ −A

Oct. 1

Oct. 5

[

0

−1

1

1

]

if 0 ≤ +A ≤ +B

or 0 ≤ −A ≤ −B

Oct. 2

Oct. 6

[

1

0

1

1

]

if 0 ≤ −A ≤ +B

or 0 ≤ +A ≤ −B

Oct. 3

Oct. 7

[

1

−1

1

0

]

if 0 ≤ +B ≤ −A

or 0 ≤ −B ≤ +A

Oct. 4

Oct. 8

(11)

Note that U is the non–normalized Haar matrix, but with

one of the four elements zeroed out. Also, in the PLHaar

transform, PL(x,x) = (x,0), decorrelating adjacent identi-

cal values, just as in the Haar transform. The PLHaar trans-

form maps integers to integers, is an autohomeomorphism

(meaning it maps the domain onto itself, is continuous, and

is one–to–one), and is piecewise–linear.

PLHaar’s continuity gives it an advantage over other

n–bit to n–bit transforms, as this continuity makes PL-

Haar uniquely suitable for lossy compression. Given a

pair of inputs (A,B) and their outputs (L,H), if the out-

puts are modified—via quantization or some other

lossy procedure—to nearby values (L′,H ′), the recon-

structed values (A′, B′) will be close to the original input

pair. The TLHaar and CF transforms do not have this prop-

erty.

3.1. Efficiency Considerations

In the definitions of the Haar and PLHaar transforms, the

choice of using H = A−B or H = B−A is arbitrary; the

choices presented thus far make Haar and PLHaar rotations.

If the opposite choice is made, the result is a rotoinversion

R—a rotation followed by a reflection—with the property

that R(R(A,B)) = (A,B), i.e. R = R−1 is an involution.

Having PLHaar be an involution is a desirable property

because it reduces the number of procedures required to

compute the forward and inverse transforms–the same pro-

cedure is able to compute both. Also, if lookup tables are to

be used, instead of a procedure, the same lookup table can

be used for the forward and inverse transforms. Thus, com-

pared to TLHaar and CF, the storage required for tables is

cut in half. To make PLHaar an involution we negate the

second row of each U matrix, previously defined in equa-

tion 11. This has no effect on the transform’s continuity.

Conceptually, in order to make the transform an involu-

tion an additional step is added to the transform, where after

rotation H is negated. This causes a vertical flip in the do-

main. If these coefficients are also rotated and flipped, they

return to their original positions. This is illustrated for the

discrete case in figure 4.

3.2. Implementation

Source code for the continuous PLHaar transform is

given in figure 5, and for the discrete transform in figure 6.

Note that both of these procedures used the modified trans-

form (the involution) described above.

rotate flip

rotateflip

Figure 4. How PLHaar is an involution. Note
that both rotations are in the same direction.

The procedure for the discrete transform uses no extra

intermediate precision, and can take both signed and un-

signed integers. Its use is self–explanatory, with the excep-

tion of the bias parameter, which is used to move the out-

put range. For example, if the inputs are 8–bit values from

a range [0,255] the bias parameter should be set to 128 to

keep the high– and low–pass coefficients in the same range.

In the source, the lines marked “asymmetry” are necessary

only when the domain and range contain an even number

of integers (e.g. [0,255]). In this case there is no unique ori-

#define ABS(x) ((x) < 0 ? -(x) : (x))

#define SIGN(x) ((x) < 0 ? -1 : 1)

void

plhaar_float(

FLOAT *l, // low-pass output

FLOAT *h, // high-pass output

FLOAT a, // input #1

FLOAT b // input #2

)

{

if (SIGN(a) == SIGN(b)) {

*l = ABS(a) > ABS(b) ? a : b;

*h = a - b;

}

else {

*l = a + b;

*h = ABS(a) > ABS(b) ? a : -b;

}

}

Figure 5. The source code for the continuous

PLHaar transform.

gin, so we translate each quadrant so that its origin is at

a common point, perform the transform, and then translate

the quadrant back.

These procedures are able to perform both the forward

and inverse transforms. To perform the inverse transform, L
is passed as parameter a, H as b, and A and B are taken

respectively from parameters l and h.

4. Transform Entropy

Transforms are used because the transformed data may

be more easily manipulated, a common manipulation being

compression. To verify that PLHaar is usable as a transform

for compression we iteratively transformed some standard

test images, at each iteration applying the transform to the

low–pass coefficients resulting from the previous iteration,

until there was a single low–pass coefficient remaining. We

then took a histogram of the coefficients and measured the

normalized zero–order entropy E [8] according to equation

12

E =

∑m

i=1
−pi × log pi

log m
(12)

where pi is the probability of coefficient value i and m is

the number of coefficient values with nonzero counts in the

histogram. We compared the entropy resulting from the PL-

Haar transform to those of the S, TLHaar, and CF trans-

forms. Results of the entropy measurements are given in

figure 7, where “Image” is the entropy of the untransformed

void

plhaar_int(

INT *l, // low-pass output

INT *h, // high-pass output

INT a, // input #1

INT b, // input #2

INT c // bias

)

{

const INT s = (a < c), t = (b < c);

a += s; b += t; // asymmetry: nudge

// origin to (+0,+0)

if (s == t) { // A * B > 0?

a -= b - c; // H = A - B

if ((a < c) == s) // |A| > |B|?

b += a - c; // L = A

// (replaces L = B)

}

else { // A * B < 0

b += a - c; // L = A + B

if ((b < c) == t) // |B| > |A|?

a -= b - c; // H = -B

// (replaces H = A)

}

a -= s; b -= t; // asymmetry:

// restore origin

*l = b; *h = a; // store result

}

Figure 6. The source code for the discrete PL-

Haar transform.

image. A graph of the histograms for the “lena” image is in

figure 8.

The data in figure 7 shows that all of the tested trans-

forms are useful for compression. We see that the

S–Transform achieves the lowest entropy, and TLHaar the

highest. In general CF obtains an entropy that is less than

PLHaar, although the difference is slight: from the im-

ages tested the average difference in entropy is 0.0076.

Further testing on a wider range of images is needed to de-

termine more accurately what the average difference be-

tween the two methods’ entropy is.

These results also indicate that there is a trade-off with

using n–bit to n–bit transforms: any advantage gained in us-

ing the transform is offset by a decrease in compression ef-

ficiency.

5. Quantization and PSNR

To gain a basic understanding of how useful PLHaar will

be when used in a lossy compression or progressive trans-

mission scheme, we performed some quantization tests on

Figure 7. The zero–order entropy of the
wavelet coefficients produced by the trans-

forms.

the “Lena” image. We transformed the image as in section

4, and then iteratively quantized the coefficients to shorter

bit widths. We treated the S–Transform coefficients as be-

ing 9 bits wide (sign bit plus an 8–bit magnitude).

Quantized coefficients fall into a range of uncertainty.

For example, if the coefficient 42 (00101010) is quantized

to 5 bits of precision, it becomes 40 (00101000). This quan-

tized coefficient could have had an original value in the

range [40,47]. Assuming a uniform distribution, to avoid bi-

asing everything towards zero, and to preserve contrast, we

place the quantized coefficients near the center of the range

of uncertainty. For a given non–negative uncertainty inter-

val [x, y] we compute the center as ⌊(x + y)/2⌋, and cen-

ter the quantized coefficients accordingly. After performing

this quantization and centering we applied the inverse trans-

form and computed the peak signal–to–noise ratio (PSNR)

of the result, according to equation 13 (RMSE is the Root

Mean–Squared Error).

PSNR = 20 × log

(

255

RMSE

)

(13)

Figure 11 gives an excellent example of the problems in-

herent in the CF method. It shows a grayscale photo that

has been transformed by the S, PLHaar, and CF transforms

and quantized to 4 bits before reconstruction. As expected

many artifacts appear, particularly in areas of high contrast.

PSNR values are respectively 21.88, 25.17, and 11.75.

A graph of the PSNR curve for the image “Lena” is given

in figure 9. This image does not contain many areas of high

contrast, and based on this and the fact that the PSNR val-

ues for CF are better than all other methods, we might ex-

pect that CF would give a better reconstruction of the im-

-300 -200 -100 0 100 200 300
Coefficient Value

0

5000

10000

15000

20000

25000

30000

C
o
ef

fi
ce

in
t

C
o
u
n
t

Original Image

S-Transform
PLHaar
TLHaar
CF

Coefficient Histograms

"Lena"

Figure 8. Histograms of the “lena” image, and
the S–Transform, PLHaar, TLHaar, and CF co-
efficients.

age regardless of quantization. However, in figure 10 a plot

of the L∞ error of each image shows that the L∞ error of

the CF reconstruction suddenly jumps from a value of 27,

at a quantization precision of 5 bits, to 221 at a quantiza-

tion precision of 4 bits. The L∞ error for the PLHaar and

S–Transform methods degrades more gracefully. An image

of the reconstructions for the S, CF, and PLHaar transforms

is given in figure 12. We note in particular that a few arti-

facts appear in the 3–bit image (note the inner edge of the

mirror frame and along brim of her hat).

Overall, our observation is that for images that do not

have areas of high contrast, the CF method is appropriate

if quantization is minimal. Even with images such as Lena

that do not have many areas of high contrast, if the coef-

ficients are quantized past a certain point the resulting im-

age will have artifacts. Regardless of computed error values,

artifacts are undesirable in an image reconstruction. From

this we expect that the CF method is inappropriate for use

in progressive image transmission or lossy image compres-

sion schemes. It is also inappropriate for use in situations

(e.g. digital photography) where a wide variety of images

may be encountered. Because of its lack of aliasing arti-

facts, PLHaar is a more appropriate choice than CF.

6. Discussion

PLHaar shows a lot of promise. We have demon-

strated through basic entropy measurements and Quanti-

zation/PSNR computations that PLHaar should be suitable

for lossy and lossless image processing and manipula-

tion. We have shown its superiority over current n–bit to

2 3 4 5 6 7 8
Quantization Precision (in bits)

0

10

20

30

40

50

P
S

N
R

 (
d
B

)

S�Transform
PLHaar
TLHaar
CF

Quantization vs. PSNR
"Lena"

Figure 9. Lena: PSNR values for increasing

quantization precision.

n–bit transform methods–PlHaar does not have the alias-

ing artifacts present in CF, and unlike the TLHaar method

PLHaar has both discrete and continuous forms.

From the entropy measurements it appears that PLHaar’s

compression ratios will not be as good as those obtainable

by the S–Transform. Since the CF and TLHaar methods also

have inferior compression ratios this problem is most likely

part of the nature of n–bit to n–bit transforms and not a flaw

in PLHaar itself. We believe that this lower compression ra-

tio is acceptable since PLHaar was designed first to address

the problem of dynamic range expansion. The loss in com-

pression rate is mitigated by the ability to transform and ma-

nipulate data completely in a limited–width environment.

Future work will center on developing data compression

methods for use with PLHaar. These methods will include

embedded coding methods [3, 5, 9], suitable for progres-

sive transmission. We would also like to compare embed-

ded methods using PLHaar to those using CF, to see how

the embedded encoding affects the aliasing problem in CF.

Since PLHaar was developed for use in a limited–width en-

vironment we will also be experimenting with its use in

hardware and developing prototype applications that can be

run on graphics hardware.

7. Acknowledgements

This work was performed under the auspices of the

U.S. Department of Energy by University of California

Lawrence Livermore National Laboratory under contract

No. W-7405-Eng-48.

Joshua Senecal’s work was supported in part by a

Figure 11. The Wedding photo, transformed (left to right) by the S, PLHaar, and CF transforms. Note

the aliasing artifacts present in the CF reconstruction.

2 3 4 5 6 7 8
Quantization Precision (in bits)

0

50

100

150

200

250

300

L�InfinityError
S�Transform
PLHaar
CF

Quantizationvs.L+InfinityError
"Lena"

Figure 10. Lena: L∞ error values for increas-
ing quantization precision.

United States Department of Education Government As-

sistance in Areas of National Need (DOE-GAANN) grant

#P200A980307.

References

[1] A. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo.

Lossless image compression using integer to integer wavelet

transforms. In Proceedings. International Conference on

Image Processing, pages 596–599. IEEE Computer Society,

1997.

[2] H. Chao and P. Fisher. An approach to fast integer reversible

wavelet transforms for image compression, 1996. Preprint,

available from citeseer.ist.psu.edu.

[3] E. S. Hong and R. E. Ladner. Group testing for image com-

pression. In J. Storer, editor, Proceedings DCC 2000 Data

Compression Conference, pages 3–12. IEEE Computer Soci-

ety, 2000.

[4] A. Kiely and M. Klimesh. The ICER progressive wavelet im-

age compressor. The Interplanetary Network Progress Re-

port 42–155, July–September 2003, Jet Propulsion Labora-

tory, pages 1–46, Nov 2003.

[5] A. Said and W. A. Pearlman. A new, fast, and efficient image

codec based on set partitioning in hierarchical trees. IEEE

Transactions on Circuits and Systems for Video Technology,

6(3):243–250, Jun 1996.

[6] K. Sayood. Introduction to Data Compression. Morgan Kauf-

mann, second edition, 2000.

[7] J. Senecal, M. A. Duchaineau, and K. I. Joy. Reversible n–bit

to n–bit integer Haar–like transforms. In Proceedings of the

7th IASTED Conference on Computer Graphics and Imaging,

2004. To appear.

[8] C. Shannon. A mathematical theory of communication. The

Bell System Technical Journal, 27:379–423, 1948.

[9] J. M. Shapiro. Embedded image coding using zerotrees of

wavelet coefficients. IEEE Transactions on Signal Process-

ing, 41(13):3445–3462, Dec 1993.

Figure 12. “Lena”, with coefficients quantized to 5, 4, and 3 bits. From the top: S–Transform, CF, PL-

Haar.

