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Abstract

We present, a measurement of the dipion mass spectrum in the decay X (3872) — J/¢ 7+ 7~ using
a 360 pb~' sample of pp collisions at /s = 1.96 TeV collected with the CDF IT detector at the
Fermilab Tevatron Collider. As a benchmark, we also extract the dipion mass distribution for
¥(2S) = J/Ymtn~ decay. The X (3872) dipion mass spectrum is compared to QCD multipole
expansion predictions for various charmonium states, as well as to the hypothesis X (3872) —
J/p®. We find that the measured spectrum is compatible with 3S; charmonium decaying to
J/mra~ and with the X (3872) — J/1p" hypothesis. There is, however, no *S; charmonium
state available for assignment to the X (3872). The multipole expansion calculations for ' P; and
®D; states are in clear disagreement with the X (3872) data. For the 1)(2S5) the data agrees well
with previously published results and to multipole expansion calculations for S; charmonium.
Other, non-charmonium, models for the X (3872) are described too.

We conclude that since the dipion mass spectrum for X (3872) is compatible with J/¢p°
hypothesis, the X (3872) should be C-positive. This conclusion is supported by recent results
from Belle Collaboration which observed X (3872) — J/v¢ v decay. We argue that if X (3872)
is a charmonium, then it should be either 1'Dy-+ or 23P++ state, decaying into J/¢ 77~ in
violation of isospin conservation. A non-charmonium assignment, such as DD* molecule, is also
quite possible.
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Chapter 1

Introduction: What is the X (3872)7

One of the interesting problems in contemporary Heavy Quark physics is to determine the prop-
erties of newly discovered particles. It becomes especially captivating when such a particle does
not fit into the existing scheme, and many new hypotheses are created to interpret this fact.

The discovery of the state X (3872) with unexpected properties reported by the Belle Col-
laboration [1], and confirmed by CDF [2], DO [3] and BaBar [4], gave rise to many hypotheses
trying to explain the nature of this new state. The original, and most natural, interpretation of
the X (3872) was a new cc state, but the X (3872) does not seem to fit into the conventional c¢
framework. So, many other theories came forth ~ molecular models, more general 4-quark in-
terpretations including a diquark-antidiquark model, hybrid models etc — to explain the nature
of the X (3872). We will review these ideas, including the simple c¢ options, in the subsequent
sections.

One of the ways to gain insight into the nature of the X (3872) is to investigate its decays.
Originally the X (3872) was found through its decay into .J/1) 7", but other decay modes were
also investigated. No evidence was found for X (3872) decaying into x.17v [1], xe2v [5], J/¢n [6],
D*D~ [7], or DD [7]. Also, there are no traces of the X (3872) found in e*e collisions [8],
nor in 7y fusion [9]. Charged partners X* are also not observed [10]. The Belle Collaboration
has reported an ostensible signal in the X (3872) — J/¢7"n 7" decay mode, interpreted as
J/1w [11]. More information about these searches will be given in Section 1.1.

Another way to investigate the X (3872) is to look at the distributions of different parameters
of its decay. This approach has the merit of directly studying a property of the X (3872) rather
than making inferences based on what one does not see, as is the case for null searches of decay
modes. As was pointed out in the literature [1, 12, 13] the shape of the distribution of the
invariant mass, m.,, of the two pions coming out of the decay X (3872) — J/¢ 77~ may shed
light on the properties of the X (3872). For example, if these two pions are consistent with coming
from a virtual p°, then the C-parity of the X (3872) should correspond to it decaying into .J/1p°.
Figure 1-1 shows a w"7~ invariant mass distribution obtained by Belle. It is fitted with
two theoretical curves, corresponding to two different quantum states of the dipion. Based on
the results of such fits one could distinguish between these states and, therefore, help extract
information about the X (3872) properties. We will discuss this in more detail in Chapter 6. Due
to the small data sample, the points on the plot have large errors that make it hard to determine
the true shape of the m,, distribution. Only the general inclination for high dipion masses is
observed. The m,, spectrum reported by BaBar [16] is shown in the top plot in Figure 1-2. Tt
has the same drawbacks  a small data sample and, therefore, large error bars. Because of this,
it is hard to draw any definite conclusions about the dipion mass shape from this plot. One can



not even judge if the dipion system favors high or low masses.
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Figure 1-1: A modified version (sideband-subtracted and rebinned) of Belle’s dipion invariant mass spectrum
for the X (3872) [14]. The solid line is a multipole expansion prediction [15] for a D-wave charmonium state
decaying into J/1 "7, and the dashed-dotted line is for an S-wave state.

This thesis is a measurement of the dipion invariant mass distribution in X (3872) — J/¢yntn~
decays at CDF. We use the large X (3872) sample available at CDF to obtain the X (3872) m
distribution with greater precision, i.e. a better constrained shape. The thesis is organized as
follows: in this chapter a general overview of different X (3872) models is given. The second and
third chapters are devoted to the description of the CDF detector and the data sample selection.
The actual measurement of the dipion invariant mass spectrum m,, is described in Chapter 4.
Chapter 5 discusses the systematic uncertainties. After that, in Chapter 6, the m,, spectrum is
compared to different theoretical models. The conclusions come last, in Chapter 7.

1.1 Established Facts About the X (3872)

The X (3872) was first announced by the Belle Collaboration in August 2003. It was found in an
exclusive decay Bt — KT X (3872) — K*.J/¢ntn~ [1]. Figure 1-3 shows the mass distribution
of J/¢ w7~ from Belle’s report. One can see a quite sharp peak in the middle of the plot, to
the right of the larger peak, corresponding to the ¢(2S). The smaller peak corresponds to the
X (3872). As we will see later, the small width of this peak may help to identify the X (3872)
or, at least, provide grounds for excluding some hypotheses about its nature. Belle observed a
signal of 34.4 £+ 6.5 events and measured mass:

m(X(3872)) = 3872.0 & 0.6(stat.) + 0.5 MeV /c*(syst.), (1.1)
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Figure 1-2: The m,, spectrum from BaBar [16]: a) for the X (3872) and b) for the 1)(2S).

and set a quite tight limit on its decay width:
I'(X(3872)) < 2.3 MeV (at confidence level (CL) 90%). (1.2)

Also, the relative branching ratio is given:

Br(Bt — X(3872)K*) x Br(X(3872) — J/atn")
Br(B+ — ¢(25)K+) x Br(X(3872) — J/¢mrr)

= 0.063 £ 0.012(stat.) £ 0.007(syst.).

The CDF [2] and the DO [3] Collaborations later confirmed this discovery in proton-antiproton
collisions and measured the X (3872) mass. The BaBar Collaboration [4] also found the X (3872)
in B-meson decays and obtained its mass. All the four mass measurements are summarized in
Figure 1-4.

Belle has performed a few more searches for different X (3872) decay modes, mostly with
null results. One of the searches, for the X (3872) — J/¢ 77 7" [11], showed an enhancement
in the yield which was interpreted as J/¢w. The w signal obtained by Belle is depicted in
Figure 1-5 [11]. The left plot displays the distribution of the “beam-constrained” mass M.,
which is calculated as a difference between the energy of the beam and the 3-momentum of the
reconstructed B-meson in quadrature. The center plot shows the distribution of AF, i.e. the
difference between the energy of the beam and the energy of the reconstructed B-meson. The
right plot gives the tripion mass from the M,.-AF signal region. The tripion mass peaks at the
upper kinematic limit, as one would expect for the .J/¢ w hypothesis.

The relative X (3872) width for this decay is found to be:

D(X = J/iw)
N(X — J/yntn)

= 0.8 £ 0.3(stat.) £ 0.1(syst.). (1.3)

11
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Figure 1-3: The J/¢ 77~ mass distribution from Belle [1].

The Belle result looks encouraging, but it has quite low statistics, and we will still reserve final
judgment at this point.

The other X (3872) decay modes searched for by Belle fall into two categories:

1. Radiative decays: i.e. decays with emission of a photon [1, 11]:

(X (3872) = xa17)

X (E872) > Jjp e < 089 (at 90% CL) [1] (1.4)
L e

2. Double-charm decays, i.e. decays into two D-mesons [7]:
Br(B* — X(3872)K ") x Br(X(3872) — D™D") < 4 x 1075 (at 90% CL), (1.7
Br(B* — X(3872)K) x Br(X(3872) — D'D) < 6 x 107° (at 90% CL),  (1.8)

Br(B* — X (3872)K*) x Br(X(3872) — D"D°7%) < 6 x 1077 (at 90% CL).  (1.9)

All of these results are negative. This means that the X (3872) decays to these final states with
quite low branching ratios, if at all®.

PAfter this work was completed, Belle announced a new result indicating that the X (3872) decays into

12
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The BaBar Collaboration performed a search for X (3872) — .J/v¢ n decay, which yielded [6]:
Br(B* — X(3872)K*) x Br(X(3872) — J/yn) < 7.7 x 10~° at 90% CL. (1.10)

As mentioned earlier, BaBar also looked for charged companions of the X (3872) with negative
results [10]:

Br(BY/B’ - X*K¥ X* — J/¢7*7r") < 5.8 x 105 at 90% CL, (1.11)
Br(B* — X*K3 X* = J/yn¥7%) < 11 x 107 at 90% CL. (1.12)

The BES Collaboration contributed to this list by setting a strong limit on the relative width
of X (3872) — ete™ decay [8]:

(X (3872) — ete”) x Br(X(3872) — J/¢ntr ) < 10 eV at 90% CL. (1.13)
CLEOTIT confirmed that this branching ratio is very small [9]:

(X (3872) — ete ) x Br(X(3872) — J/¢yntr) < 8.3 eV at 90% CL. (1.14)

J 17]:
/¢y [17) I(X(3872) = J/¢7)

= 0.14 £ 0.05.
[(X(3872) — J/ypnta—) 0 0.05

Also they now claim to see X (3872) — DODO7% The discussion of the possible implications of these results has
been added to Chapter 7.

13
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Figure 1-5: The X (3872) — J/¢ nt 7~ n° signal from Belle. The tripion invariant mass (right plot) peaks near
the upper kinematic limit [11].

They also looked for the production of a C-positive X (3872) via two-photon fusion and set the
limit [9]:

(27 + 1)T(X — 77) x Br(X(3872) — J/yntn7) < 12.9 &V (at 90% CL), (1.15)

where J stands for the (unknown) spin of the X (3872).

We can see that the final states searched for by Belle, BaBar, BES and CLEOIII are not
among the preferred X (3872) decay channels. Based on all the listed facts we will make a few
conclusions about the properties of the X (3872) in the subsequent sections, but first we review
some basic features of quantum numbers of particle states.

1.2 Review of C- and P-parity, and Isospin

Before proceeding further, we remind the reader about the concepts of C- and P-parity and
isospin. An important characteristic of any quark state is the behavior of its wave-function under
certain transformations. One very important transformation is the replacement of all particles
with their anti-particles, so-called C-conjugation. Another one, called P-transformation, is the
switching the signs of all coordinates. Many, but not all, quark states are eigenstates of these
transformations. This means that for such states the wave-function @' after the transformation
is proportional to the wave-function ® before the transformation: ® = C® = Ag - @, and
®" = PO = \p - &. These numbers, A\c and \p, are called the C-parity and P-parity of the
particular quark state and are usually referred to simply as C' and P. Both these transformations
have a special property: being applied twice to the wave-function ® they return it into the
original condition. From mathematical point of view this means that C?® = ® and P%?® = ®.
It immediately follows that C? = P2 = 1, i.e. that the particular quark state may have C or
P-parity either “+1” or “—1”. For example, the P-parity of m-meson family is known to be —1:
Pr® = —7° Prt = —x*, Pr~ = —7m . The symbol 7 here stands for the wave-function of the
m-meson. As for the C-parity, it is “+1” for 7°, O™ = 4+7%; but 77 and 7~ do not have definite

14



C-parity. Under the C-transformation they turn into each other, C7* =7, Cn~ = ", but not
into themselves.

The C- and P-parity of a system of a quark and an antiquark with half-integer spins (fermions)
depend on its orbital angular momentum L and spin S as follows:

P= (-1 C=(-1)"% (1.16)

For particles with an integer spin (bosons) these formulae look differently. For example, for a
system of 71 and 7~ mesons:
P=C=(-1~ (1.17)

It is common practice to talk about the J”¢ combination for a particular system, denoting it as,

for example, 07", 17~ etc. This combination is referred to as a spin-parity of a particle.

An important property of C' and P parities is that they are conserved in strong and electro-
magnetic interactions [18]. This means that C and P parities of a particle may be determined
via the C' and P parities of its decay products, if the decay occurs via strong or electromagnetic
interactions. We will use this property when discussing possible C' and P assignments for the
X (3872). Though we do not know the nature of the X (3872) and, therefore, the exact mecha-
nism of its decay, we may assume that it decays via strong or electromagnetic interaction. Had
the X (3872) been decaying via the weak interaction into a final state containing ¢ and ¢ quarks,
it should have contained at least one b quark and, therefore, have a mass much larger than what
is observed. We, therefore, assume that the X (3872) does not decay weakly and that both C
and P parities are conserved in its decays.

Another important characteristic of any quark-antiquark state is its isospin, I. This is a
quantum number which is “almost” conserved in strong interactions and which obeys the same
algebraic rules as the regular spin S. It is convenient to characterize a quantum state by the
combination of the isospin itself and its third projection, I3, in complete analogy with regular
spin states |S, S,). The sets of states having equal or close masses, and equal isospin, but differing
by the values of I3 or, equivalently, by the electric charges?, are called isospin multiplets. The
I3-component is strictly conserved in both strong and electromagnetic interactions. The isospin
itself is not conserved in the electromagnetic interactions, as demonstrated in the following decay:

YU =1,13=0) = Ay|I =0, I3 = 0).

Neither isospin nor its third component is conserved by the weak interaction, as exhibited in the
decay:

1 1 1,31 2,1 1
Aj0,0) = pm |1, 1)\5, §> =3 \§,§> \/;\5, §>,

We said that the isospin is “almost” conserved in strong interactions meaning that its con-
servation is actually an approximate law. This law holds with the same precision with which
the mass difference between v and d quarks is negligible compared to the energy scale in the
experiment F: m, — myg << E, so that m, ~ my << E. This equality of the quark masses
is often referred to as “isospin symmetry”. The higher the masses and energies we are dealing

with, the more exact this symmetry becomes. In the realm of low energies, of order of m, or my,
the isospin is not conserved. The isospin symmetry is said to be “broken”. The isospin of v and

2The electric charge is related to I so that the members of the isospin multiplet with different I3 have different
electric charges.

15



d quarks is equal to %, with u-quark having positive isospin projection I3 = +%, and d-quark a

negative one, I3 = —%. The isospins of all the other quarks are zero. In particular, the isospin
of any charmonium state is zero. We will often refer to isospin considerations when discussing
possible assignments for the X (3872).

In the following we derive the relationship between C-parity and isospin I of 77~ system.
This relationship will be important in our analysis. Let us factorize the total dipion wave-function
into spatial, spin and isospin components. The spin component is irrelevant, because pions have
zero spin. If we swap the pions, the spatial component of the total wave-function acquires a factor
of (—=1)". As for the isospin component, it behaves just like the normal spin and is symmetric
under swapping of the pions if I is even and antisymmetric if I is odd. This is easy to see,
for example, from the Clebsch-Gordan coefficients for addition of two states with spin one [19].
Thus it obtains a factor of (—1)’. Since the total wave-function of two pions (bosons) must be
symmetric under their swapping, the total obtained factor must be +1, i.e. (—1)*! = +1. This
means that even I must correspond to even L, odd [ to odd L. From Equation 1.17 it follows
that the C- and P-parity of the 7t7~ system are equal to

P=C= (-1 (1.18)

Using this knowledge let us consider the C-parity and isospin of the X (3872).

1.3 Experimental Evidence for the C-parity and Isospin
for the X (3872)

We do not know a priori the C- and P-parity of the X (3872), but there is some evidence of its
decay into J/¢ mTn 7%, interpreted as a decay into .J/1w [11], leading to the implication that
X (3872) should have positive C-parity, because of negative C-parities of both .J/¢ and w. If the
decay X (3872) — J/1¢ w is confirmed, the positive C-parity of the X (3872) will be established.
The same implication does not hold for P-parity, because J/v and w after the decay may have
an orbital angular momentum L with respect to each other and then P-parity of the X (3872) is
determined as Py, - P, - (—1)".

The observation of the decay X (3872) — J/¢ 7’7" would also help resolve the question about
its isospin and C-parity. For the 7%7° system the C-parity is always positive, since the pions in
this system are identical and the total wave-function does not acquire a (—1)% factor under their
swapping. So that the decay X (3872) — J/¢ 77" is only possible for C-negative X (3872). The
dipion 7% (i.e. the sum of two |I = 1,13 = () states) contains only the [I = 0,13 = 0) and
|I = 2,13 = 0) components and has zero contribution from the |I = 1,13 = 0) component [19].
Neglecting the I = 2 possibility for the X (3872), we see that the observation of the decay
X (3872) — J/¢ 77" is only possible if the X (3872) has isospin I = 0 and I3 = 0. This state
|I = 0,13 =0) is decomposed into the sum of the three states

I=1,L=+1)|I=1,I3=—-1)(r"7"),
I =1,I;=0) | =1,I; = 0)(x°x?),
I=1,13=-1)[T=1,I3 =+1) (7 7")

in such a way that the partial width I'(X (3872) — J /¢ 7°7%) is two times smaller than the partial
width T'(X (3872) — J/v 7 x~) [19]. So, the observation of the X (3872) — J/v 7°7° decays in
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Figure 1-6: Belle’s search for: a) ¢(25) — J/v 7°7% b) X (3872) — J/¢ n°=° [11].

the comparative rate of 50% to the X (3872) — J/¢ m* 7~ decays would select negative C-parity
for the X (3872). If the X (3872) — J/¢ 7’7" decay rate is negligible with respect to X (3872) —
J/m ™, it would select positive C-parity [20]. Belle searched for X (3872) — J/¢ 7°7® and
measured the ratio of the widths of X (3872) — J/¢ 7% and X (3872) — J/¢ 7" 7. Figure 1-
6 [11] displays the main distributions for this search. The My, in this plot stands for beam-
constrained mass which is described in Section 1.1. The result

(X (3872) — J /¢ n°7) <13 L'(y(2S) — J/¢ n'7°)
(X (3872) = J/yntn~) T T((2S) = J/Ymtao)

(at 90% CL)

is not sufficiently stringent to distinguish between the I = 0 and the I = 1 hypotheses.

The C-parity of the X (3872) can also be determined from the C-parity of the 777~ system
in the decay X (3872) — J/¢mtm~. Equation 1.17 gives the possible values for the J” for the
dipion: 07*, 177, 2%% etc. The corresponding C-parity of the X (3872) is opposite to the C-parity
of the dipion because of the negative C-parity of the .J/1 (J7¢ =1~ [21]). The determination
of the C-parity of the dipion system will also help to obtain its isospin, since these quantities
are related as C' = (—1)! (Equation 1.18). Thus, C-positive dipion (JFY = 0+* 2+F etc) would
imply isospin I = 0, while C-negative one (JF¢ = 17" etc) isospin I = 1. One should mention
an important fact here: dipions in the mass range of interest with J7¢ = 1=~ and isospin I = 1
couple to a (virtual) p’~meson, because the p° has the same J"“ and I. Even though the X (3872)
is nominally too light to decay via .J/1 p°, the broad width of the p° easily extends down into the
allowed range. This feature would cause the dipion system to favor high masses. This preference
is seen in Belle’s Figure 1-1, which may actually mean that the X (3872) really decays via .J /1 p"
and has positive C-parity. In Chapter 6 we will apply this ./ p° hypothesis to our dipion mass
spectrum.
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1.4 Charmonium Hypotheses

The fact that the X (3872) decays to J/¢ w7~ suggests that it contains ¢ and é quarks, and
the most obvious and natural choice would be to try to interpret the X (3872) as a so-far unseen
charmonium state.

The cc system is very similar to a regular hydrogen atom, or better yet to positronium?.
Thus, to characterize the charmonium quantum state, one can use the same quantum numbers
as for the hydrogen atom: the radial quantum number n, the orbital angular momentum L, the
total spin S and the total angular momentum .J. The quantum states are classified using the
spectroscopic notation n?°*!'L ;. The states with different orbital quantum number L are usually
denoted with letters: S, P, D, F... for L =0,1,2,3... For example, the state with L = 0 is
called S-state or S-wave. Sometimes it is convenient to combine the n>*'L; notation with the
spin-parity JJF¢ to give a fully explicit characterization of a quantum state: n?9+!

The lightest charmonium state is called 7.. This is the S-state in which the spins of the ¢ and
¢ quarks are antiparallel, so that the total spin S = 0 and the total angular momentum J = 0.
The radial quantum number of the 7, is n = 1, so that the spectroscopic notation for this state
is 1'Sy and the JP¢ is 0~ F. The next, a bit heavier, state is the J/1. It differs from the 7. by
the fact that the spins of both ¢ and ¢ quarks are parallel to each other, so that the total spin
S =1, the total angular momentum .J = 1 and the spectroscopic notation is 1>S;. The J"¢ for
the J/v is 17~ The next cc state is called the x.o. It is a P-wave, more exactly 13 Py, with .J7¢
being 0**. This is a part of a triplet  three particles with the same L and S, but different .J.
The other two particles in the triplet are called x.i(1°Pi++) and Xe2(1° Py++). Another particle
with the same L = 1, but different S = 0 is called h., and has the spectroscopic notation 1' P,
and JP¢ = 1*7. These states, as well as a few of their higher radial and orbital excitations,
are shown in Figure 1-7. The lowest line in this figure gives the spectroscopic notations of the
states, and the lines above it display L, S and J"¢ for them. The arrows schematically show the
directions of the spins of individual quarks and the orbital momentum of their relative motion.
The states themselves are represented by horizontal bars. The long thin arrows between them
indicate possible strong (denoted as hadrons) or electromagnetic (via real v, radiative, or via
virtual 7*) decays of the charmonium states into lighter states. We discuss the upper part of this
picture later.

Most of the low-lying states, such as 7.(15), J/1¥(15), xco(1P), Xe1(1P), xe2(1P) and ¢(25),
have been discovered and their properties are well established. Some others, like 7(2S) or h.(1P),
were seen, but were confirmed only very recently. The 7(2S) was first reported by the Crystal Ball
Collaboration over 20 years ago [23], but just a few years ago it was re-discovered at a different
mass by the Belle Collaboration [24], and was so confirmed by the BaBar Collaboration [25].
The h.(1'P;) state is less well investigated. Even though some observations of this state have
been made [26], none of them were very convincing. Only recently the Fermilab experiment E835
observed a few 7.~ candidates [27], and another recent observation of h. was made by CLEO
Collaboration [28].

Only a few of the charmonia states with masses above the DD threshold are identified. In
Figure 1-7 the higher states are plotted by “spread” rectangles which symbolize their substantial
widths. The expected (i.e. not forbidden by spin-parity conservation) decays of these states
into DD are shown too. The rapid decays via this channel (so-called open-charm or double-
charm channel) should make these charmonia states very broad and difficult to find, e.g. the

LJPC.

3Positronium is a bound state of electron and positron ete™, discovered by Martin Deutsch of MIT in 1951 [22].
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Figure 1-7: The lower mass part of the charmonium spectrum. The known states with masses below the
DD threshold are shown with horizontal lines. The arrows denote the hadronic and electromagnetic transitions
between the states. The most of the states above the DD threshold are not observed. Four of them can be
candidates for the X (3872) — see text for a detailed discussion.

¥ (3770) (3Dy) lies just above DD, and yet it has width of about 20 MeV. The heavier charmonia
states should have a width of the same order or even larger. There are a few interesting exceptions,
e.g. 'D, and 3D, states. The decay of these states into DD is forbidden because of their spin-
parity JP¢ = 2-*. Indeed, both D and D have zero spin and the spin-parity of the DD system
is determined by Equation 1.17, the same way as for two pions: JPC = JED (D" = jD)7 (=17
Therefore, the even total angular momentum J of DD system constrains the C- and P-parities
to be positive. Since J, C' and P must be conserved in the decay, the states ' D, and *D, cannot,
decay into DD and are, therefore, expected to have small widths.

The E705 Collaboration offered evidence for 1°D, at 3836 MeV /c? [29] but this claim has
been disputed by the higher statistics result of the E672/E706 Collaborations [30], and by the
BES Collaboration [31].

As mentioned earlier, initially the X (3872) was expected to be one of the so far unknown
higher-mass charmonium states. However, interpreting the X (3872) as such a conventional state
is problematic. Let us go through all the c¢ states which are not yet identified and evaluate their
suitability for the X (3872).

The list of all the cc states considered is given in the form n?5!

L;rc in the first column of
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Table 1.1. The second column of this table contains the name of this c¢ state, if the particle has
been observed. The mass of this particle, or its predicted value for yet unobserved particles, are
shown in the third column. The fourth column gives the width for the known particles. The
next two columns are related to the possibility for a given particle to decay into J/¢ 77—, The
fifth column represents the JF¢ of the dipion system in this decay. We ignore the possibility of
D-wave dipions. Last comes the main objections against interpreting X (3872) as this particular
state.

We need not consider 1S5, 1P and 2S states, because they are unambiguously identified
already. The states 2D, 3P, 3D and higher are expected to be too heavy to be associated with
the X (3872). The same statement is true for the states with L > 2 [32]. Ten states remain. Two
of them are known: 1°D;-- is ¢(3770) and 33S;-- is ¢/(4040), so we will not consider them as
serious candidates for the X (3872). Furthermore, had the X (3872) been one of these states, it
would have J¥¢ = 17—, would decay electromagnetically to ete™ via a virtual photon, which has
the same JP¢ = 17~ and would therefore have likely been discovered in e*e~ collisions already.

Now we discuss the eight remaining states.

1'D,_+ State

As was mentioned earlier, the state 1' Dy + cannot decay to the open-charm channel DD, so
that it must decay through the weaker short-distance c¢ annihilation processes, radiative decays
and closed-flavor hadronic transitions. All these decays lead to a predicted total width of about
1 MeV [13], which makes this state a plausible candidate for the X (3872). The closeness of the
predicted [32] mass to the observed one is also favorable to this hypothesis.

The positive C-parity of this state and negative C-parity of the J/v¢ (JFC = 17") forces the
pions in the decay 1'Dy-+ — J/¢p 777~ to have a negative C-parity, i.e. odd L. As we saw in
Section 1.2, this leads to a necessity of having isospin I = 1 in the final state. The charmonium
in the initial state, though, has isospin I = 0. So that, the decay of 1'Dy 1, or any other
charmonium state, into a 17~ dipion state breaks the conservation of isospin. As was mentioned
earlier, the isospin conservation is an approximate law of nature. This means that such decay
is possible, but should normally be highly suppressed. A quantitative example of an isospin-
violation suppression comes from ¢(25) — J/¢ 7° decay. Its width is 0.3 keV, which is 200 times
smaller than the width of a similar isospin conserving decay 1(2S) — J/¢ n°7° [21]. Therefore,
the 1'Dy-+ should have a very small partial width to .J/¢ 77 ~. The isospin-conserving decay
to n.m"m~ should have a much larger partial width [13, 32], but it has not yet been observed,
though Belle is searching for this mode. This fact makes the interpretation of the X (3872) as
1'D, + state questionable®.

On the other hand, a large isospin violation could be explained by the fact of the proximity of
the X (3872) mass to the mass of D°D*° system, making the virtual coupling between the X (3872)
and DD*® possible. The D°D* system is not an isospin eigenstate, so that the X (3872), even
being a conventional charmonium, may “bypass” the isospin conservation law and decay into
17~ dipions via the virtual coupling to this system.

The 1'D,-+ state can be produced in the vy fusion. The X(3872) was not seen in this
channel by CLEOIII [9], but they did not have enough sensitivity to exclude the X (3872). The
predicted [33] partial width to v for this state is nearly six times smaller than the limit from

4The same reasoning applies to all C-positive charmonium states because all of them must decay into a 17~
dipion. We will discuss this again in Section 6.7.1.
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1¢

1 2 3 4 3
n %+t pc | Known Mass, Width, | 777~ | Main objections for the X (3872) assignment
States MeV /c? MeV | JPC

1'Sp+ | n(1S) 2080 [21] | 17[21] | —

138~ | J/w | 300721 |o01f21]| —

1P | he(1P) | 3526 [21] 0++

13Pys | xo(1P) | 3415[21] | 1021] | 1

13Ps | xa(1P) | 3511[21] | 121] | 1

13Pyss | Xe2(1P) | 3556 [21] 2021] | 1

1'D, + ~ 3838 [32] 1~ expect . wmw > J/¢ e [32]
13Dy~ | (3770) | 3770 [21] | 25[21] | O*+

13D, - ~ 3830 [32] ot+ not seen decay to X1 v [1]
13Dg ~ 3868 [32] ot+ not seen decay to X2 v [5]
218, + | 1.(25) | 3654 [21] | 17[25] | 1

235~ | ¢(25) | 3686[21] |0.3[21]| 0+*

2P ~ 3968 [32] o+t wrong cos 6/, distribution [5]
23 P+ ~ 3932 [32] 1-— DD not suppressed — broad [13]

not seen in ~+y fusion [9]
23P 4+ ~ 4008 [32] 1=~ | too large expected width to J/¢ v [5]
23 P4+ ~ 3966 [32] 1—~ DD not suppressed — broad [13]
not seen in ~+y fusion [9]

318,-+ 1—— mass expected to be close to 35;
335 _ | (4040) | 4040 [21] | 52[21] | o+*

Table 1.1: Summary of conventional charmonium states and the main objections for assigning them to the X (3872).




Equation 1.15.

The evidence of the decay X (3872) — J/1¢w (Equation 1.3) implies positive C-parity of
X (3872), and, therefore, is consistent with 11 D,-+ assignment.

Overall we conclude that 1'D,-+ is a possible, though a bit problematic, charmonium inter-
pretation of the X (3872).

13D,—_ State

Similar to 1! Dy-+, this state is expected to have a narrow width about 1 MeV [13] due to absence
of an open-charm decay mode. One of the objections for the interpretation of the X (3872) as
this state is that it should have a substantial radiative width to .J/1¢ ~, much larger than Belle’s
limit from Equation 1.4. Though, this prediction may suffer from inaccurate estimation of the
X (3872) — J/¢y T~ decay rate [13].

The evidence of the decay X (3872) — J/1¢w (Equation 1.3) also plays against the 13Dy -
interpretation of the X (3872) because of the negative C-parity of this state. But overall we
consider 1°D,-— state as a plausible assignment for the X (3872).

13D;__ State

The state 1>D3;-— does have an open-charm decay mode (DD), but due to the large (L=3)
centrifugal barrier® it should have a small width, maybe a few MeV [13]. Reference [32] argues
that the open-charm decay should be a dominant one for this state, and that its partial width
at mass 3872 MeV /c? should be even less than 1 MeV. The predicted [32] mass of this state is
close to 3872 MeV /2.

The problem with this assignment, is that the 123 partial width to x. 7y is expected to
be of the same order or larger than to .J/i¢ 7" 7~ opposing Belle’s results from Equation 1.5 [32].
The evidence for X (3872) — .J/v w decay does not support the C-negative 13 D5 assigment for
the X (3872) either. But overall we will still consider this state as a possible X (3872) candidate.

2! P,+_ State

Assigning the observed mass of the X (3872) to the 2' P+ state would result in a total predicted
width of this state to be about 1-2 MeV [13]. This is consistent with the observed width for the
X (3872). But the predicted mass of this state is about 80 MeV /c? higher than the X (3872)’s
observed mass [12, 13, 34, 35|. This state should prefer to decay into 7.~ and 7.(2S) 7, and the
partial width to 2' P+~ — J/¢ 77~ is predicted to be small [13], which does not support the
X (3872) assignment.

The main obstacle for interpreting the X (3872) as this state can be inferred from Belle’s Fig-
ure 1-8 [36]. This plot shows the angular distribution of the .J/v in the decays BT — KX (3872).
If we denote 6/, the angle between the momentum of J/1 and the negative momentum of K+

5In systems with central symmetry the energy conservation law can be written as: 5 (%)2 + % +V(r)=
const, where L? is the square of the orbital angular momentum. The term L?/(2mr?) is called centrifugal barrier.
In quantum mechanics it remains almost the same, only the operator of the square of total angular momentum
L2 gets replaced with its eigenvalue L(L 4 1). The DD system coming from the 1D3;-~ charmonium state must
have orbital angular momentum L = 3 (because the intrinsic spins of both D and D are equal to zero). Thus
the centrifugal barrier for this system is large. For the decay of, for example, 1°D;- - charmonium state the DD
orbital momentum equals L = 1, the centrifugal barrier is small, the decay is not suppressed and, therefore, this

state has a large width into DD.
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in the X (3872) rest frame then the measured distribution of |cosf;y| is in clear disagreement
with the expectation for the 2' P4+ state. The x? per degree of freedom for the comparison of
the measured and the expected distribution is 75/9 [36].

12 ‘ I I
7 / J/W |
gl K X___’Ey!/!_ _

Events/bin
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Figure 1-8: The |cosf;,,| distribution for X (3872) — J/¢ a7~ events from Belle [36]. The histogram shows
the expectations for a 17~ hypothesis.

The evidence for the X (3872) — .J/¢ w decay also does not support assigning 2' P+ state
to the X (3872) because of C-parity.

23P0++ State

The 23P,++ state is allowed to decay into open charm channels and has a predicted total width
an order of magnitude larger than 2.3 MeV [13], which makes the X (3872) interpretation as
23 Py++ unlikely.

Another point against such interpretation is that the X (3872) was not seen in v fusion by
CLEOTII [9]. The partial width into v of the lighter companion of 23 Py++ state, the x.o(1° Py++)
state, is almost 4 times greater than the limit in Equation 1.15. Assuming that the partial
widths of 28 Py++ and 13Py++ states into yy are of the same order we can dismiss hypothesis of
the X (3872) being 23 Py++ state.

23 P, 1+ State

According to Reference [13] the 2° P ++ state, similar to the 2! P;+— state, should have a narrow
width of about 1-2 MeV, if its mass is set to be equal to the observed mass of the X (3872).
This is consistent with the observed narrow width for the X (3872). The predicted value of
the 23P++ state’s mass, though, is about 80 MeV /c¢? higher than the observed mass of the
X (3872) [12, 13, 34, 35].

Other shortcomings of 2°Pj++ assignment include a small partial width to J/¢7*7~ and
dominant decays to J/¢~ and 1(2S) 7, in contradiction with Belle’s result (Equation 1.6). But
despite all these difficulties we consider the 23 P 1+ state as a possible c¢ candidate for X (3872).
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The lack of X (3872) being seen in v+ fusion is not a problem for this assignment. Two photons
with J =1 can produce a state with J = 0 or J = 2 but not with J = 1 because the production
cross-section in vy fusion is normally proportional to the partial width of the decay into v+, and
the latter must vanish for mesons with J =1 according to Yang’s theorem [37].

23P,,+ State

The state 23 Py++, just like the state 23 Py++, is allowed to decay into open charm and should have
a large width. Reference [13] predicts its total width to be an order of magnitude larger than
2.3 MeV. These predictions make this state a poor candidate for the X (3872).

Another point against the X (3872) assignment is that CLEOIII did not see the X (3872) in
v~y fusion [9]. This reasoning is similar to that for the 2°Py++ state. The lighter companion of
23 Py++ state, the y.o(1°Py++) state, has the partial width into vy almost 4 times greater than
the limit in Equation 1.15. Assuming that the partial widths of 23P,++ and 13P,++ states into
vy are of the same order, we can dismiss the 23 P+ hypothesis for the X (3872).

31S,-+ State

The state 3'Sy-+ is a part of 3S; doublet. Its mass is pegged by 1(4040), which is interpreted
as the 35, -state. From the 1S and 2S5 states we know that the mass splitting between 'Sy +
and 3S;-- is about 120 MeV /¢? and about 50 MeV /c? respectively, i.e. it is relatively small and
gets smaller as one goes further up the potential well — a pattern also seen in the T family. This
makes it difficult to imagine how the normal 'Sy-3S; splitting could be so badly corrupted as to
bring the 315, anywhere near the X-mass.

Also, the X (3872) as the 3'.Sy-+ would require a severe violation of the pattern observed for
n. widths: T' ~ 17 MeV for both the 7.(1'Sy-+) [21] and 7.(2'Sp-+) [25], which is much larger
than the observed X (3872) width.

Summary

In conclusion, we found four more or less reasonable cc candidates for the X (3872): 'Dy+,
3Dy, 3D5-— and 3Py++. The C-positive ones, !Dy-+ and 3 P++, decay into J/¢ 777~ with the
+71~ system having JP¢ = 17, The other two decay into 0*F dipion. We will consider the
theoretical models for the shapes of the dipion mass distribution for both types of the dipion
system in Chapter 6.

™

1.5 Weakly Bound D-D* State and Other 4-Quark States

Conventional charmonium is not the only possible interpretation of the X (3872). The most
popular non-charmonium hypothesis is that of a weakly bound deuteron-like “molecule” made
of DY and D*" mesons. The weighted-average mass of the X (3872) from References [1, 2, 3, 4]

m(X) = 3871.9+ 0.5 MeV /c?
is equal, given the uncertainties, to the sum of the masses of D° and D** mesons

m(D"D*") = 3871.2 £ 1.0 MeV /c* (Ref. [21]),
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as shown in Figure 1-4. This fact suggests that the X (3872) may be some kind of D°-D*C
compound.

The general possibility of meson-meson molecules within QCD is quite old. It started in the
late-sixties with the attempt to explain a low mass I = 1 enhancement in pp — K K7 [38] by a
K-K bound state. Later, in the mid-seventies, the light scalar mesons a(980) and f(980) were
considered as candidates for K-K molecules [39]. At the same time the concept of “molecular
charmonium” was proposed [40]. This hypothesis was applied, for example, to the t(4040)
state [41] to explain the anomalously high decay rate of DD* compared to DD. Later this
phenomenon was explained without molecular hypothesis, and the conventional charmonium
interpretation of ¢(4040) prevailed.

The binding forces in the DD* and BB* systems, described by the pion-exchange interaction,
are investigated in References [42, 43]. There is no attractive forces in the DD and BB systems.
It can be shown that the DD* molecule can only be loosely bound, if at all, while the BB* can
be bound more tightly [42].

A very important feature of the molecular model is that the DY-D*® system is not a pure
isospin eigenstate and the isospin conservation does not forbid it to decay into 1=~ dipion states.
This decay proceeds via an intermediate p’-meson (which also has J7¢ =1-7), just like for the
charmonium case. Of course, the decays of such molecules into dipions with other JX¢ are also
possible.

If the molecular interpretation of the X (3872) is correct, one could as well expect there to be
charged analogs of the X (3872). The search for them performed by the BaBar Collaboration gave
negative results. This could be explained by the fact that the binding by pion exchange forces is
expected to be three times stronger for isoscalar (I = 0) molecules, than for the molecules coming
in isospin triplets (I = 1). Reference [42] argues that in the limit of complete isospin symmetry
only isoscalar molecules can be bound. Reference [44] adds that this conclusion should hold even
in the case of broken isospin symmetry. The symmetry must be broken because the binding
energy of the DD* molecule (about 8 MeV) is of the same order as the isospin mass splitting
between D° and D mesons (about 5 MeV). This symmetry breaking results in more tightly
bound D°D** and less tightly bound D*D*® and D*D*~ molecules. This gives us a reason as
to why the charged DD* molecules need not exist.

It is hard to bind charm mesons with high orbital momentum, therefore the D and D* in the
weakly-bound molecule are most likely to be in S-wave. The total angular momentum of DD*
molecule is J = 1 and the P-parity is P = Pp - Pg. - (=1)" = (=1)-(=1) - (+1) = +1. Either
C-parity is possible [13]. Reference [20] points out that C-positive D"D** molecules should
preferentially decay into D°D°7? while C-negative ones — into D°D%y. Many other authors
predict the ratio of the width for the decays into D?D%7® and D°D%y to be approximately 3:2,
and their sum to be about 60-100 keV [13, 42, 44, 45]. This is consistent with the small observed
total X (3872) width < 2.3 MeV [1].

Reference [42], considering pion-exchange interactions, suggests that not only S-wave, but also
P-wave molecules can be bound. It considers models with 0~ " and 1**. The positive C-parity
forbids the decay into .J/1 plus S-wave dipion with JF¢ = 0%+ and I = 0 (see Section 1.4), so,
Reference [42] concludes, such molecule should decay via a 17~ dipion with I =1, i.e. via J/¢p.
The preferred decay mode for this model, though, is D’D°7°. The total width of such molecule is
estimated to be ~50 keV, which is also consistent with the upper limit on the observed X (3872)
width [1].

An interesting molecular model is proposed in Reference [46]. It assumes that the mesons
in the molecule are bound not only with pion-exchange forces, but also with quark-gluon forces.
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Figure 1-9: LEFT: The various components of the “molecular” wavefunction from the model of Reference [46].
RIGHT: The relative contributions of each component versus the molecular binding energy.

Actually, in this model the X (3872) is not a simple D"D** molecule, but a 17+ state composed
of DYD** with a little mix of J/¢ w, J/¢p, and D*D*~. The wavefunction of this mixture is
shown in the left part of Figure 1-9 [46]. The relative contributions of different components
versus the binding energy are shown in the right part in this figure. The molecule in this model
decays into both J/¢p and J/1w due to internal rescattering of molecular components. The
model makes the prediction that the X (3872) branching ratio to J/¢¥p and J/¢w are of the
same order, and that the branching ratios to DD and DD7" are small. The branching ratio
into J/1 v is expected to be smaller than into J/¢ 7" 7, which is consistent with Equation 1.6.
The total width is predicted to be ~ 2 MeV /¢?, which is close to the X (3872) width reported by
Belle [1]. Though the w meson is kinematically above threshold, it may manifest itself through
its width, similar to the p°. The tripion invariant mass should peak near the upper kinematic
boundary [47]. The prediction of a significant /1) w decay rate in this model prompted Belle to
search for this mode, and indeed, they found the evidence for the X (3872) — J/¢ ntm n° decay
with a large rate [11].

Reference [12] considers mixtures between molecules and c¢¢. For such mixing to occur both
the molecule and the charmonium should have the same spin-parity. The most favored candidates
for this model are 2=~ and 17~. Both of them have negative C-parity and may decay into a
scalar 071 or a tensor 2+ dipion. Unfortunately, Reference [12] does not provide predictions for
the shape of the dipion mass spectrum.

Diquark-Antidiquark Model

All the exotic models considered so far worked with a “molecular” [cq][cq] state. This is a
particular case of a more general scenario, where all four quarks interact with each other equally,
without being paired. Reference [48] considers a different “extreme” of a 4-quark system, the
so-called diquark-antidiquark [cq|[¢q'] state with ¢,q¢" = u,d. Different quarks make different X
particles, which can be put in the same isospin multiplet with components:

X, = [cullea], Xy = [ed][ed). (1.19)
This model gives a rich X spectrum (Figure 1-10) and accommodates the states X (3940) seen
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Figure 1-10: The full spectrum of “X” particles predicted by the diquark model of Reference [48].

by Belle [49] and D?,(2632) claimed by the SELEX Collaboration [50]. The model predicts two
0F* states, two 177, one 1t and one 2. The 177 state is proposed for the X (3872), because
it explains many of its properties. In particular, the 1t state is predicted to be narrow, just
like all the other low-lying diquark-antidiquark states. Its decay to DD is forbidden by parity
conservation. The decay into 7. + mesons is also forbidden. The decays into both .J/vp and
J/1pw are allowed. All these features are consistent with the observations of the X (3872).

The states in Equation 1.19 can mix with some angle 6 forming the mass eigenstates:
Xiow = Xy cos + Xysinf,

Xhigh = — X, sinf + X, cos 0.

The mass difference between them is predicted to be
M(Xpigh) — M(Xjow) = (7 £ 2)/ cos(20) MeV/c”. (1.20)

This model considers the decays of both BT and B° into X, 4. From the limit on the X (3872)
width [1] the authors infer that one of these states, X, or Xy, should dominate in B decays and
another one in B° decays. The mass difference in Equation 1.20 can be observed by separately
reconstructing BT — X (3872) K and B’ — X(3872) Kg decays. In CDF’s inclusive sample
both X, and X, would be produced equally. Our inclusive .J/¢ "7~ mass histogram in Figure 3-

1 shows no “double-hump” structure in the X (3872) peak, unless we see an unresolved mixture
of both X, and Xj.

Also, this model possesses charged members of an X multiplet, in addition to Equation 1.19:

X* = [edled], X~ = [ed][cal.
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The limits on the production of these states in B decays from BaBar [10] are not in contradiction
with this model.

1.6 Hybrid Hypothesis

There are a number of other exotic models considered for the X (3872) — neither simple c¢, nor
DD* molecules, even including general 4-quark states. One of these models is a “hybrid meson”.
It interprets the X (3872) as a ccg system, i.e. charmonium with a valence gluon [13, 44, 51].
Such states were proposed back in 1978 [52]. The question about the existence of these gluonic
excitations is one of the most important in the contemporary hadron physics. The bona fide
discovery of such a state would open an entirely new domain of QCD to explore [53]. The main
drawbacks for the hybrid interpretation of the X (3872) is that the expected masses for the hybrids
are higher than 3872 MeV /c?. The so-called flux tube model predicts eight low-lying hybrid states
in the mass region between 4 and 4.2 GeV/c? [54, 55, 56, 57] with JP¢ = 0*F 1%F 2%F and
1%%. Three of these states have non-¢gg quantum numbers, incompatible with Equation 1.16:
0t—, 17" and 2. The mesons with non-q¢ spin-parity J7¢, also known as unnatural spin-
parity, are important because they must have an exotic, non-qg, content. Reference [55] predicts
the masses of these states to be 4.7 GeV /c?, 4.3 GeV /c?, 4.9 GeV /2, respectively. Other lattice
QCD predictions [56, 57] for the mass of the lightest 1~ state are between 4.04 GeV/c* and
4.4 GeV/c*. These results put the 17T state close to DD** threshold of 4.287 GeV/c* [53].
There is a possibility though, that this state could lie close to the observed mass of the X (3872),
i.e. below DD** and therefore have a relatively small width [53]. This would then make it a
possible candidate for the X (3872). The observed X (3872) properties are consistent with 27~
and 07~ hybrids, but the mass discrepancy makes these assignments unlikely.

The width for the hadronic transitions hybrid — cc+1ight mesons can be obtained with the
aid of the multipole expansion model. conventional quarkonia may in some cases be viewed as a
transition via an intermediate hybrid state [58]. Thus, the matrix elements for the conventional
quarkonia interactions and for hybrid conventional conversions are related. This facilitates the
prediction of the hybrid widths to conventional final states. These widths turn out to be of the
order of 10-100 keV for transitions like 1=+ — 0.+ (77, n,n') and (07—, 277) = J/Y+ (77, n,71).
BaBar found no evidence of X (3872) — .J/v¢ n decay (Equation 1.10), which puts restrictions on
the hybrid hypothesis for the X (3872).

There are no direct calculations for the radiative widths of charmonium hybrids, but similar
calculations for hybrids with light quarks [59, 60] suggest that the partial widths for 1-+ —
v+ (J/,h.) and (07—,277) — ~v + (1., xes) are of the same order of magnitude as for the
conventional charmonium: 1-100 keV. This is consistent with the observed narrow width of the
X (3872).

Reference [51] predicts that a hybrid X (3872) should be seen in the photon fusion: vy —
X (3872) + ntn~, though CLEQ’s search gave negative results (Equation 1.15).

1.7 Glueball-Charmonium Mixture

Reference [61] suggests an interesting idea that the X (3872) could be a glueball  a bound state
containing no quarks, but only gluons  with a small (about 3%) admixture of cc. A lattice
QCD calculation [62] predicts a 3-gluon vector glueball with mass 3850 + 50 + 190 MeV /¢* and
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JPC = 17, The pure glueball does not couple to ete™, which explains why the X (3872) was
not found in eTe~ collisions long time ago despite the suitable spin-parity.

This model supposes that the c¢ admixture is the 1)(2S) state and that it is responsible for
the observed decay X (3872) — J/¢pm"m~. The model predicts decays X (3872) — J/¢n and
X (3872) — J/¢ 77, but it is unable to say anything about X (3872) — DD’ or X (3872) —
D*TD~. The decays of X (3872) to J/vy~, J/v p and to J/i w are forbidden because of negative
C-parity of the X (3872) in this model.

1.8 Dynamic “Cusp” Hypothesis

In the dynamic “cusp” model [63, 64] the X (3872) arises as a dynamical effect of the D and
D* interaction. Cusps can appear in the cross-section for any process at the threshold where
coupled channels are open and where there is an effective attraction between the particles [65].
The rescattering cross-section is proportional to 1/k, where k is the momentum of the components
in their center-of-mass reference frame. It competes with the available phase-space and produces
a peak in the rescattering amplitude, but not a true resonance.

Reference [63] claims that this model can explain the threshold pp peak observed by the
BES Collaboration in J/¢ — v pp [66], the low mass pp peaks in B* — K*pp [67] and B® —
D pp [68], reported by Belle, the peaks in pp — AA, reported by the PS185 Collaboration [69],
YN threshold in K~d — 7~ (Ap) [70] and other similar observations, including the X (3872).

The proximity of the X (3872) mass to the DD* threshold is an implied feature of this model,
while in some other models (charmonium, hybrid, glueball) this is just an effect to be accommo-
dated. A large isospin violation is an inherent part of the model, which allows the decays into
J/1p. The favorite decay, though, is to D'D*’. The author suggests that the observation of
D-wave decays for X (3872) with JP¢ = 17+ would be a sign that this is a bound state and their
absence would indicate a cusp.

1.9 Summary

As we saw in this chapter, the nature of the X (3872) is an open question. It could be a con-
ventional charmonium (with 'Dy-+, 3Dy~ *D3-- and 3Pj++ being the most viable options), a
DD* molecule, a hybrid meson or some other exotic object. These hypotheses do not exclude
each other. The X (3872) can be some mixture of any of them [12, 14, 71]. This would be the
most complicated scenario, and, probably, even more difficult to identify.

Our goal is to measure the distribution of the dipion invariant mass m,, in the decay
X (3872) — J/¢ymtn~ and compare it to various theoretical hypotheses, with the intention
of shedding light on the X (3872) puzzle.
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Chapter 2

The Experimental Apparatus

2.1 Tevatron Overview

A particle Z, a particle Y,
Travel fast in concrete tube

Underground, ride mile after mile...

Particle Song, “Army of Lovers”.

The Tevatron [72] is a large (2 km in diameter) particle collider, located at Fermilab. Tt is
devised to accelerate protons and collide them with antiprotons at the center-of-mass energy
Vs = 1.96 TeV /¢ This is the highest particle collision energy available in the contemporary
world. This fact makes Tevatron a unique research instrument at the frontier of the modern high
energy physics.

The Tevatron complex is shown in Figure 2-1. The protons are produced from gaseous
negatively ionized hydrogen in a Cockcroft-Walton electrostatic generator, where it is accelerated
to a kinetic energy of 750 keV. Then, the H~ ions are fed into a linear accelerator, the Linac [73],
where they are accelerated up to an energy of 400 MeV. The Linac consists of two parts: the drift
tube Linac, accelerating the ions to 116 MeV, and the side-coupled cavity Linac, which pushes
their kinetic energy up to 400 MeV. The bunches of protons in the Linac output are usually
about 40 ms long. This means that it takes 40 ms for the whole bunch to go past a specific
point. After the Linac, the H~ ions pass through a carbon foil, which strips the electrons, and
the remaining protons are injected into a synchrotron accelerator called Booster. There their
energy is pushed up further until 8 GeV. The Booster’s radius is 74.47 m [74] and the revolution
time is about 2.78 ms. It takes 13 turns in the Booster to fill the main injector [75], in which
the protons enter after leaving the Booster. The main injector is a new part of the accelerator,
completed in 1999 for RunII. It has four different functions:

1. Tt increases the energy of the protons from 8 GeV to 150 GeV.

2. It produces 120 GeV protons, which are used for the antiproton production in the antiproton
source.

3. It receives antiprotons from the antiproton source and accelerates them to 150 GeV.

4. Tt injects protons and antiprotons into the Tevatron itself.
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Figure 2-1: The Fermilab’s accelerator chain.

To produce antiprotons, the main injector sends 120 GeV protons to the antiproton source,
where they hit a nickel target. These collisions produce a lot of secondary particles including
many antiprotons. The antiprotons are focused, collected and then stored in the accumulator
ring. To focus them a Lithium lens (a high-current magnet) is used. Another magnet separates
the antiprotons from the other particles using the mass-spectrometer principle. The antiproton
source produces about 20 antiprotons for each million protons on target. When a sufficient
number of antiprotons has been collected, they are sent to the main injector for acceleration and
injection into the Tevatron.

Another important part of the facilities in the Tevatron complex is an antiproton recycler.
Initially it was designed to store the antiprotons returning from a store in the Tevatron and
to re-inject them after cooling, hence the name. But currently the recycler only receives the
antiprotons from the accumulator, focuses them even better, and stores them. It serves as an
additional storage ring.

The Tevatron receives 150 GeV protons and antiprotons from the main injector and accelerates
them to the energy 980 GeV. The protons and antiprotons circle the Tevatron in opposite
directions. During Runl there were 6 proton bunches and 6 antiproton bunches in the Tevatron
ring during normal operation. For RunII this number is 36 bunches of each kind. The bunches
cross each other every 396 ns. During the bunch crossing, a few actual collisions between the
protons and antiprotons may occur.

The bunches cross each other in two points in the ring. The point of proton-antiproton
interaction is called primary vertex. They are surrounded by the detectors CDF and DO (see
Figure 2-1). The detectors are arranged in such a way that the primary vertices are located near
the geometrical centers of the detectors.

32



Figure 2-2: Cutaway view of the CDF detector.

The next section will be devoted to the description of the CDF detector. Similar description
could be found in References [76, 77].

2.2 CDF Detector

2.2.1 General Overview

The CDF detector is a multi-purpose solenoidal detector, which includes a precision tracking
system and fine-grained muon detection. These are the parts which are the most important for
this analysis. The other parts of the detector include electromagnetic and hadronic calorimeters,
a Time-of-Flight system and a Cherenkov Luminosity Counter. They will be described in further
sections.

The detector’s cutaway view is shown in Figure 2-2 and its elevation view in Figure 2-3. They
depict the main parts of the detector the innermost silicon system, surrounded by the central
drift chamber, the Time-of-Flight system, the magnetic solenoid, calorimeters and outermost
muon detectors.

The niobium-titanium magnetic solenoid has a radius of 1.5 m and a length of 4.8 m. It
generates a 1.4 T magnetic field, parallel to the beam axis. The current in the solenoid is
4605 A, which is regulated by a feedback loop monitoring an NMR probe. The magnetic field
curves the particles’ tracks, and the measured curvature allows us to obtain the tracks’ momenta.
It is important to know the magnetic field precisely, because the accuracy of the track parameters
depends on it.

It is convenient to use Cartesian (x,y, z), cylindrical (r, ¢, z) or polar (r, ¢,6) coordinates to
describe the detector. The origin of the CDF coordinate system lies in the center of the Central
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Figure 2-3: Elevation view of the CDF detector.

Outer Tracker. The z axis is directed horizontally along the beamline, the positive direction is
to the east. The protons move in the positive direction, the antiprotons in the negative one. The
x axis is also directed horizontally, pointing towards the outside of the main ring, and the y axis
is upwards. The ¢ angle is calculated from the x axis in the x-y plane. It ranges from 0 to 2.
The azimuthal angle 8 measured with respect to the positive direction of the 2z axis.

The protons and antiprotons in the detector travel along the 2z axis of the detector’s reference
frame. It is often convenient to describe their motion in their own reference frame. To do so
one should perform a Lorentz boost of the particles momenta and energy along the z axis. The
f coordinate is not invariant under these boosts what makes it somewhat inconvenient to use.

The quantity
1 | E+ P,
= — 10 ————
Yy=35185 P,
called rapidity, is invariant under such boosts. Here E is the energy of a particle and P, is its
momentum along the z axis. In the ultrarelativistic (massless) limit the energy E can be replaced

with the momentum P of the particle, and the rapidity turns into the pseudorapidity

1 1 P+ P, log t
— — 10 = — 10 an —.

T=3 %% p P, 1S
This purely geometrical quantity is used instead of y. The coordinates (r, ¢, n) are usually chosen
to describe the detector. The components of the detector are usually partitioned in ¢ and 7. In
the following sections we will use these coordinates.

With this coordinate system it is often more convenient to express the distance between two
different directions (e.g. two different tracks) not in terms of an opening angle between them,
but in terms of a quantity AR = /A¢? + An?. Though, the shape of a surface described by an
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equation AR = const around some direction is not really a cylindrical cone, it is still referred
to as a cone.

2.2.2 Tracking Systems

When charged particles pass through matter, they ionize the atoms and molecules of the medium
nearby their trajectories. By detecting this ionization the tracks of the particles reconstructed.
This process is called tracking.

The tracking systems in the CDF detector are located inside the homogeneous solenoidal
magnetic field parallel to the z axis. The charged particles inside such a field move along helices
with axes parallel to the magnetic field. For this reason the tracks at CDF are described by five
parameters: curvature C, the angle cotf in the r-z plane, the coordinates of the point of the
closest approach of the track to the primary vertex ¢y and z, and the distance from this point
to the primary vertex dy, called impact parameter.

The curvature and the impact parameter can be positive or negative. They are defined by
the relations:

_ 1 _ 2 .2 _
C_ 2R7 d() q( ‘Z‘c +yc R)J

where ¢ is the charge of the particle, (z.,y.) is the center of the projection of the helix onto the
r-¢ plane, and R is the radius of the helix.

The momentum components of the track are expressed in terms of the five track parameters
as follows:

B

p¢ = const - m
Pe = Pt Sin ¢
Py = Pt * COS g
P, = p; - cot f

The particle’s production point cannot be determined from only these 5 parameters, because
the defined helix extends to infinity in both directions. We only can say that the particle
was created somewhere on the helix. To determine the place of the particle production more
precisely we need to find another particle which, presumably, originated from the same space
point. Generally more than two particles come from the same place. The point of intersection
in space of the particles’ tracks gives us the vertex for all of them. The process of finding this
point is called vertexing. The determination of the vertex coordinates with good precision is very
important for this analysis.

The tracking system in CDF detector consists of two main parts: the Silicon VerteX detector
(SVX) and Central Outer Tracker (COT). There are two additional parts: the Intermediate
Silicon Layer (ISL) and Layer 00 (L00). Figure 2-4 gives the schematic view of the CDF tracking
volume. The calorimeters are also shown in this picture.

Below is a short description of all of the tracking systems.

Silicon Vertex Detector

The Silicon VerteX detector (SVX) is the innermost part of the CDF detector serving for a precise
determination of the position of the secondary vertices. SVX consists of 720 silicon microstrip
detectors, also called wafers. The microstrip detectors are assembled in so-called ladders, 4 wafers
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Figure 2-4: The schematic view of the CDF tracking system.

in each ladder. Twelve ladders in ¢ comprise a layer. Five layers of radii from 2.5 cm to an outer
radius of 10.7 cm make a barrel. SVX consists of 3 such barrels, each is 29 cm long, oriented
coaxially. The ladders in the barrels are mounted on beryllium bulkheads, together with the
water channels necessary to cool the readout electronics. The side view of a bulkhead is shown
in Figure 2-5, and the description of different parts of the picture is given in Table 2.1.

The silicon microstrip detector consists of strips of strongly p-doped silicon (p*) which are
implanted on a lightly n-doped silicon (n~) substrate of about 300 um thick. The opposite side
of the substrate is covered with the strips of strongly n-doped silicon (n™). The n™ strips are
oriented at some angle with respect to the p™ strips. A positive voltage, applied to the n™ side,
takes away the free electrons from the n~ volume and creates an electric field in it. A charged
particle traversing the n~ volume creates the electron-hole pairs along its track. The holes drift
toward the p* strips and produce a signal. The electrons drift toward the n', also producing a
signal. The position of the hit on p™ side gives us an r-¢ coordinate of the hit, while the n~ side
is used to measure the stereo coordinate.

Usually, the signal is found on several strips rather than just one. In this case the exact
position of the hit is calculated as an average position of all the hit strips, weighted by the
amount of charge on them. The precision achieved in CDF with this method is 12 pm.

The SVX layers are numbered from 0 (innermost) to 4. In the layers 0, 1 and 3 the n* stripes
are oriented at 90° angle with respect to the axis of the detector (stereo angle), and in the layers
2 and 4 the stripes are oriented at the stereo angle 1.2° (Table 2.2). Perspective views of ¢-side
and z-side of a Layer 0 ladders are shown in Figure 2-6.

The SVX barrels are placed as coaxially, as possible. The remaining alignment shifts are
taken into account when we assemble hits into a track. It is more important that the axis of
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Figure 2-5: The side view of the SVX system.

# Description Radius, cm
1 Beam pipe outer radius 1.6700
2 | Beam pipe flange outer radius 1.8542
3 Inner screen inner radius 2.0500
4 Bulkhead inner radius 2.1000
15 Bulkhead outer radius 12.9000
16 Outer screen inner radius 12.9000
17 Outer screen outer radius 13.2500
18 Port card inner radius 14.1000
19 Cables 16.1000
20 Half cylinder inner radius 16.3000
21 Half cylinder outer radius 17.3000

Table 2.1: The description of different parts of Figure 2-5.
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Figure 2-6: Side perspective views of 7-¢ side (top) and r-z side (bottom) of Layer 0 ladder in the SVX system.

38



Layer | Radius, cm | # of strips | Stereo | Ladder active, mm | Strip Pitch, ym
stereo | r-¢ | stereo | r-¢ | angle | width length stereo r-¢
0 2.55 | 3.00 256 | 256 | 90° 15.30 | 4 x72.43 60 141
1 4.12 4.57 576 384 90° 23.75 | 4 x72.43 62 125.5
2 6.52 | 7.02 640 | 640 | +1.2° | 38.34 | 4 x 72.38 60 60
3 8.22 | 8.72 512 | 768 | 90° 46.02 | 4 x 72.43 60 141
4 10.10 | 10.65 | 896 | 896 | —1.2° | 58.18 | 4 x 72.38 65 65

Table 2.2: The summary of SVX mechanical parameters

the SVX would coincide with the beam axis, rather than with the axis of the detector. The
SVT trigger relies on the impact parameter of the track, dy, measured by SVX, and it must be
measured with respect to the beamline. It turns out to be more convenient to store the locations
of the primary vertices throughout the run, then fit all these locations with a straight line and
use this fitted beamline rather than the primary vertices in the physics analyses. Actually, due to
misalignment the beamline in the CDF detector is a few millimeters away from the geometrical
central line of the detector. This shift is taken into account in the SV'T trigger and in the track
reconstruction.

Intermediate Silicon Layer and Layer 00

The Intermediate Silicon Layer (ISL) and Layer 00 (L00) were introduced in RunII. Together
with the SVX they comprise the CDF silicon tracking system, shown in Figure 2-7 [77]. The ISL
and LOO were integrated into the detector system relatively late and the latter did not become
fully operational for the data in this thesis.

The LO0O is a silicon detector inside the SVX. It consists of 6 narrow and 6 wide groups of the
microstrip detectors, called “wedges”. Six of them are placed at radius 1.35 cm and the other six
at the radius 1.62 cm. There are 6 modules in z of a total length of 95 cm. The sensors in L00O are
single-sided and made of more light-weight and radiation-hard silicon than the SVX. They are
mounted on a carbon-fiber support structure, which also provides cooling. L00 helps to overcome
the multiple scattering effects for tracks passing through the high-density SVX material. This
results in the dy resolution being as small as 25 pym.

The ISL consists of three layers of silicon placed outside of SVX. The region 0 < |n| < 1 is
covered by a single layer of radius of 22 c¢m, and the region 1 < || < 2 is covered by two layers,
at the radii 20 and 28 ¢m. The layers consist of the double-sided silicon microstrip detectors,
similar to that of SVX, with 55 pum strip pitch on the axial side and 73 pm strip pitch on the
stereo side with a 1.2° stereo angle. Only every other strip is readout, which makes the single
hit resolution about 16 pum on the axial side and 23 pm on the stereo side. ISL improves the
tracking in the central region and allows (together with SVX) for the silicon standalone tracking
in the region 1 < |n| < 2. The schematic view of the ISL system is represented in Figure 2-8.

Central Outer Tracker

The Central Outer Tracker (COT) is a cylindrical drift chamber with inner radius of 40.6 cm,
and outer radius of 137.99 cm, and length of 310 cm. It is filled with a 50:50 mixture of Argon
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Figure 2-9: A quarter of the COT sense wires.

and Ethane plus trace amounts of alcohol. The information about the particle tracks is obtained
from the wires. The wires are subdivided into two classes: sense wires, which are actually used to
collect the information about the particle tracks, and the potential wires, configuring the electric
field in the COT. When a particle passes through the gas, it excites and ionizes gas molecules.
Under the influence of the electric field the released electrons start drifting towards the sense
wires. In close vicinity of the wire the 1/r electric field accelerates the electrons, causing them
to produce more electrons when hitting the gas molecules. These secondary electrons form an
“avalanche”, which is registered by the sense wire. The time difference between the original pp
collision and the occurrence of the hit gives us r-¢ position of the track with respect to the sense
wire.

The electrons in the COT do not drift along the electric field direction because of the presence
of the magnetic field. In such crossed fields, a charged particle, initially at rest, moves at an
angle o with respect to the electric field lines. At COT this angle is v = 35° [78§].

The sense wires are subdivided into 96 layers, which are organized into 8 superlayers, con-
taining 12 wire layers each. The view of a quarter of the COT is shown in Figure 2-9. One can
see the 8 superlayers and the end slots for the potential (field) wires and for the sense wires. Four
superlayers have the wires parallel to the axis of the detector. They are called azial superlayers
and give us the information about r-¢ position of the track. The hits in them are called axial

stereo superlayers and they provide stereo hits. The tilt angle of the stereo wires, 35°, is chosen so

that the drift of the ions would be in the direction perpendicular to the wire, which ensures the
best resolution. The sense wire planes are separated by gold-plated Mylar cathode field sheets.
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Two such sheets together with a sense wire plane in the middle are called a drift cell. The cell
layout for superlayer 2 is shown in Figure 2-10. Other superlayers have similar layout.

The relative precision with which the COT determines the transverse momenta of the tracks,
i.e. the raw momentum resolution, is given by:

o(pr) Dt
=07001——+—
D © GeV/c%

Track reconstruction

Two different algorithms are used to reconstruct the tracks from the hits in the COT  segment
linking and histogram linking. The first one looks for 3-hit seeds in each axial superlayer. The
hits are fit with a straight line and all the other hits within a given distance from this line are
added to the segment. The segments are linked to each other by a simple circle fit. After the
r-¢ projection of the track is found, the stereo information is added, and then the final helix fit
is performed.

The histogram linking algorithm also uses the 3-hit seeds. For each new hit we determining
the radius of a potential track from the positions of the 3-hit seed, the new hit itself, and the
beamline. All these radii for all the hits are histogrammed and the position of the highest bin
in the histogram is taken as the radius of the track helix.

The hits from the SVX are added to the tracks, found in COT by using the so-called “Outside-
In” procedure [79]. The COT track is extrapolated inside the SVX and all the silicon r-¢ hits
found within the cone of a given size around the track are progressively added to the track. Every
time a new hit is found, the covariance matrix of the track is updated. After all the r-¢ silicon
layers are taken into account, the z information from the silicon stereo layers is added.

If there is more than one track candidate found, with different combinations of SVX hits
attached to the same set of COT hits, then the track candidate with the largest number of SVX
layers is chosen.

Because the energy losses are not accounted for in the tracking algorithms we have to re-fit
the reconstructed tracks during the analysis with the particle hypothesis of interest. The re-fit
procedure is described in Section 3.1. During the re-fit we drop the hits found by LO00, because
this system has not been fully calibrated yet.

2.2.3 Muon Systems

Muons do not interact hadronically so that they do not have to loose their energy interacting with
nuclei. Muons are about 200 times heavier than electrons and their bremsstrahlung radiation is
therefore about 40000 times smaller. Thus, muons can travel inside material further than any
other charged particle and the muon chambers can be placed in the outermost location of the
detector.

There are four systems of scintillators and proportional chambers used in CDF for muon
detection: the Central MUon detector (CMU), the Central Muon uPgrade (CMP), the Central
Muon eXtension (CMX) and the Intermediate MUon detector (IMU). They cover the region
In| < 2.0. The muon chambers in the CMP and CMX are placed together with scintillators, which
are used to suppress the backgrounds coming from the interactions in the beampipe material.
The scintillator systems are called CSP and CSX, correspondingly. The technical specifications
of all these systems are given in Table 2.3. The pion interaction lengths and multiple scattering
are quoted for a reference angle of # = 90° in CMU and CMP/CSP, for an angle of § = 55° in
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43



CMX/CSX and show the range of values for IMU. The Figure 2-11 displays how the coverage of
the muon detectors was extended from the RunI to RunlII.

CMU CMP/CSP | CMX/CSX IMU
Pseudorapidity coverage In| < 0.6 Inl <06 |06<|n <1.0] 1.0<|n <20
Drift tube cross-section | 2.7 x 6.4 cm? | 2.5 cm? 2.5 cm? 2.5.4 cm?
Drift tube length 226 cm 640 cm 180 cm 363 cm
Maximum drift time 800 ns 1.4 ps 1.4 ps 800 ns
# of drift tubes 2304 1076 2208 1728
Scint. counter thickness 2.5 cm 1.5 cm 2.5 cm
Scint. counter width 30 cm 30 — 40 cm 17cm
Scint. counter length 320 cm 180 cm 180cm
# of counters 269 324 864
Pion interaction length 2.5 7.8 6.2 6.2-20
Minimum muon p; 1.4 GeV/e | 2.2 GeV/c 1.4 GeV/c 1.4 —2.0 GeV/c
Multiple scat. resolution | 12 cm/p; 15 cm/py 13 cm/py 13-25 cm/p,

Table 2.3: The technical specifications of the CDF muon systems.

Muons are detected in the muon chambers by leaving small track segments, called muon
stubs. Not all the stubs actually come from muons, some may be due to hadronic punch-throughs
(hadrons getting beyond the hadronic calorimeter) or because of the electronics’ noise. The stubs
found are matched to the tracks previously found in COT. To do so for each stub we extrapolate
all the tracks with p, > 1.3 GeV/c to the radial position of the stub. If the distance between
the track and the stub in the CMU or CMP is smaller than 30 cm (50 cm for CMX), this track
is added to the candidate list for the stub. Then, the stub-track pair with the smallest relative
distance is chosen as a muon candidate, and this track is removed from the candidate lists for
all other stubs. The procedure is repeated while the stub-track pairs are available.

The shielding, provided by the parts of the detector on the way of the muons, plays both
positive and negative roles. The positive effect is that it gives us “clean” muons, removing all
the other particles coming from the primary vertex. Among the negative effects is the fact that
it does not allow muons below certain p; threshold to reach the muon chambers. But this not a
big problem, because the interesting muons, 7.e. the muons which we are triggering upon, should
have a large p, anyway. Another negative issue is the multiple Coulomb scattering which may
randomly deflect the muons from their initial trajectory. It complicates a little the procedure of
stub-track matching, but the roughly gaussian and narrow mismatch can be taken into account,
as described in Section 2.2.6.

Below, each of the muon systems described in more detail.

CMU

The Central MUon (CMU) detector is placed at the radius 347 cm around the hadron calorimeter.
Only muons with p, greater than about 1.4 GeV /¢ can reach it. The CMU is divided into 24 ¢
wedges covering 15° each. The working part of the wedge covers only 12.6°, so that the CMU
has 24 gaps, 2.4° each. Also, there is about an 18 cm gap between the East and the West halves
of the CMU.
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Figure 2-11: Muon coverage for RunT (left) and Run I (right).

A wedge consists of three chambers of angular coverage 4.2°. Each of them has 16 rectangular
drift cells, arranged into 4 layers, as shown in Figure 2-12. The cells are filled with same Argon-
Ethane gas mixture as the COT. The voltage on the aluminum cathodes of the cells is is —2500 V,
while the stainless steel sense wires are kept at +2325 V. Two of the four cell layers are oriented
along a radial plane passing through the 2z axis, while the other two are laid along the parallel
plane, offseted by 2 mm from the first one. The offset is measured at the midpoint of the chamber.
This arrangement allows us to know on which side of the sense wires a track is, by looking at
which sense wire got the signal first.

The z position of the hit on a sense wire is determined from the charge division between the
ends of the wire. The resolution in the CMU chambers is about 250 pym in the r-¢ plane and
about 1 mm in z.

Reference [80] has a more detailed description of the CMU system.

CMP

The Central Muon uPgrade (CMP) also covers the central region of the detector. It is shielded
by an additional steel absorber to reduce hadronic punch-through contamination which the CMU
suffers from. The path of the muons is effectively increased by this absorber to 7.8 interaction
lengths. Only muons with p;, above 2.2 GeV /¢ can get to CMP.

The CMP approximately has a shape of a rectangular box with the walls of equal lengths in
z. The r-¢ view of the CMP system is shown in Figure 2-13. Due to such shape the CMP covers
the CMU’s gaps in ¢. For Run Il the CMP coverage in ¢ was extended, as shown in Figure 2-11.
Both systems ~ CMU and CMP  help us to obtain clean muon selection in the central region
of the detector.
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Figure 2-13: The r — ¢ view of the CMP system looking at the end of the CDF detector.
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The CMP chambers are mounted directly on the absorber. They consist of single-wire tubes
2.5 cm x 15 em x 640 ecm. Some of them are a little bit shorter to allow the cables from the inner
parts of the detector go outside. The drift tubes are organized into four layers with each layer
being shifted by a half-size of the tube with respect to the neighboring layers.

The CMP is described more completely in Reference [81].

CMX

The Central Muon eXtension (CMX) consists of the wedges, forming a conical shapes on both
ends of the detector. Each wedge covers 15° in ¢ and the range 0.6 < || < 1.0. The (mentally
extrapolated) apexes of the cones lie on the z-axis of the detector and the opening angle of all
the cones is about 45°. The elevation view of the CMX system is displayed in Figure 2-14. The
IMU barrel chambers and scintillation counters, the toroid counters, and the endwall counters
are also shown. In the RunI CMX had a 30° gap at the top on the West end and 90° gap at
the bottom in both East and West ends. The first gap was created to make space for the liquid
helium lines and the second gap was due to intersection of the conical section with the collision
hall floor. For RunII both these gaps are covered by KeyStone and MiniSkirt additions to CMX.
The KeyStone consists of two more CMX wedges, while the MiniSkirt has a little bit different
geometry, shown in Figure 2-15.

The CMX chambers consist of the same tubes as in CMP with only the length of the tubes
being different: 180 cm. Each wedge in the CMX has 48 tubes arranged in 8 layers, each layer
has 6 tubes. The layers are staggered so that there are at least 4 tubes in any coverage in ¢.
Figure 2-16 shows the arrangement of the CMX tubes. The layers are placed at a slight stereo
angle, which allows for the measurement of the z coordinate.

More information on the CMX can be found in Reference [81].

IMU

The Intermediate MUon system (IMU) covers the region 1.0 < |n| < 2.0 with fine granularity. Tt
was introduced to complement ISL in the reconstruction of the tracks with |n| > 1.0.

The IMU’s drift chambers and counters are placed around the steel toroids on the both ends
of the CDF. There are additional counters between the toroids. The detailed section of the IMU
Barrel is shown in Figure 2-17 and the complete elevation view of the IMU system — in Figure 2-
18. The IMU chambers and scintillators are represented by the outer circle around the toroids.
The CMX lower 90° section is also shown. The chambers and counters used in the IMU are the
same as those in CMX and CMP, and the electronics is the same too. Reference [82] provides
further information on the IMU.

The dimuon trigger was not available for this system at the time when the data for this thesis
was collected. For this reason, the IMU is not used in our analysis.

2.2.4 Other Systems

The other systems in the CDF detector include the Time-of-Flight (TOF), the calorimetry and
the Cherenkov Luminosity Counters (CLC). They are not used in this analysis, so we will present
only a short description.
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Figure 2-15: The MiniSkirt portion of the CMX system.
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Figure 2-16: The arrangement of the layers in the CMX system.
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Figure 2-19: The Time-of-Flight performance.

Time-of-Flight

The Time-of-Flight (TOF) system surrounds the COT. It serves to determine the masses m of
particles, and thus identify it, with the formula:

P P 5 1
BT A S \/62 VL?

where ¢ is the time passed from the collision moment, L is the path length and P is the momentum
of the particle.

The TOF system is located between the COT and the solenoid magnet, at a radius of 138 cm.
It consists of 216 scintillator bars 4 cm x 4 ¢cm X 279 cm. These bars cover the region |n| < 1.
When a particle passes through a bar, the photons from ionized molecules travel to both ends
of the bar, where they are detected by fine-mesh photomultiplier tubes. The travel time of the
photons determines the position at which the particle crossed the tube. These tubes can operate
inside the magnetic field of 1.4 T, created by the solenoid.

The ability of the TOF system to distinguish particles of different mass (separation power)
is illustrated in Figure 2-19. The time difference between kaons, pions and protons over path
of 140 ¢cm as a function of momentum, expressed in terms of picoseconds (left scale) and the
separation power o (right scale) assuming a time resolution 100 ps. This is close to the real value
of ~120 ps. The dashed line shows the separation between kaons and pions obtained from the
energy loss measurements (dF/dx) in COT.

Reference [83] gives a more detailed discussion of the TOF system.

Calorimetry

The Time-of-Flight system is surrounded by an electromagnetic calorimeter, which, in turn, is
surrounded by a thicker hadron calorimeter. Geometrically the calorimeters are divided into
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Figure 2-20: The cross-section of upper part of the end plug calorimeter.

central, wall and plug parts. They are called, correspondingly: the Central ElectroMagnetic
(CEM), the Central HAdron (CHA), the Wall HAdron (WHA), the Plug ElectroMagnetic (PEM)
and Plug HAdron (PHA) calorimeters.

All the calorimeters in CDF are sampling calorimeters, which means that they consist of
alternating layers of absorber and scintillator. The absorber is necessary to make the passing
particle create a shower, while the scintillator gives us the signal, read out by phototubes. The
CEM and PEM use lead as the absorber.

The central parts cover the region |n| < 1.1 for EM and |n| < 1.3 for hadron calorimeters.
They are divided into towers of equal size: 15° in ¢ and 0.1 in 7. The plug calorimeters extend
down to n = 3.6 and have variable segmentation. The schematic view of the plug calorimeters is
shown in Figure 2-4 and the cross-section in Figure 2-20.

Both the CEM and PEM have electromagnetic strips called CES and PES, respectively. These
are gas proportional chambers with the wires inside being perpendicular to the strips outside.
This configuration allows us to measure both ¢ and z coordinates of the particle shower. The
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Calorimeter | Thickness Number of layers: thickness Resolution (F in GeV)

CEM 19 X, 20-30 lead:3 mm, scintillator:5 mm 2% @ 13.5%/VE - sinf
PEM 21 X 22 lead:4.5 mm, scintillator:4 mm 0.7% ® 14.4% /' E - sin 6

+ preshower scint. layer 10 mm
CHA/WHA | 4.7/4.5) | 32/15 iron:25/50 mm, scintillator:10 mm | 3% & 75%/V E - sin
PHA 7 Xo 23 iron:51 mm, scintillator:6 mm 5% @& 80%/V E - sinf

Table 2.4: The basic properties of the calorimeters at CDF

spatial resolution is about 2 mm in both directions for the CES and about 1 mm for the PES.

The CES and PES are located inside the calorimeters, to give us the transverse shower profile
measurement at the place where it is the largest, i.e. at the depth of about 6 radiation lengths
Xy. They measure the position of the shower, so that it could be matched to COT tracks. This
way electrons can be distinguished from photons and neutral pions.

The CEM is preceded by a Central PReshower (CPR) multiwire proportional chamber. Tt
was introduced because of the delayed initiation of y-showers. The PEM has no such chamber,
only its first scintillator layer, called PPR, is much thicker than the others, and has an individual
read out.

The hadron calorimeters are located after the electromagnetic calorimeters. They use iron as
the absorber which makes the incident hadrons create showers. The hadron and electromagnetic
calorimeters are similar, differing from each mainly by the depths. The basic properties of the
calorimeters are given in the Table 2.4.

More information about calorimetry in CDF can be found in References [82] and [84].

Luminosity Counters

The Cherenkov Luminosity Counter (CLC) serves to determine the instantaneous luminosity £
of the Tevatron at the CDF interaction point by the formula:
E — /"L ' JCbC7

Opp

where p is the average number of interactions per bunch crossing, f. is the rate of the bunch
crossings at the Tevatron and o,; is the total pp cross-section at /s = 1.96 TeV, scaled [85] to
this energy from the results of the previous measurements [86].

According to Poisson statistics, the probability to have an empty bunch crossing, i.e. a bunch
crossing with no pp collisions, is P = e #. The CLC actually measures the number of such
empty bunch crossings. This measurement is based on the well-known Cherenkov effect: a
charged particle traveling in some media with a speed higher than the speed of light in this
media radiates light in a narrow cone around its direction. If the total amount of the collected
light is below a threshold, the CLC counts it as an empty crossing. The measured fraction of
these crossings, corrected for the CL.C acceptance, is used to calculate p.

The Cherenkov counters are located in the gaps of the Plug Calorimeter, between the Plug
Calorimeter and the beamline. They are directed towards the interaction point, so that the
particles coming from this point would generate the largest amount of light into the counters. The
time resolution of the CLC system is about 50 ps, which makes it possible to distinguish between
particles coming from different interactions. The precision of the luminosity measurement at
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Figure 2-21: The trigger and DAQ system functional block diagram.

CDF is about 5%.
More details about the CLC may be found in Reference [87].

2.2.5 General Triggering

The proton and antiproton bunches cross in the Tevatron every 396 ns at CDF. At the current
luminosity of about 10*' cm 25! we have approximately one p-p interaction per bunch crossing.
This means that 2.5 million events are produced at CDF every second. Recording all of these
events would require an enormous data throughput of 250 GBytes/sec (assuming an average size
of an event of 100 KB). It is not only not possible to achieve this rate with existing technology,
but it is also not desirable to do so. Even if we managed to record all these data, it would take
a very long time to analyze it afterwards. To make the data throughput and the size of the
data samples reasonable, we have to somehow select and write to tape only the most interesting
events, letting all the others go unrecorded. To decide which events are the most interesting, we
look for the specific signatures, such as high-p; tracks, leptons, jets etc. To do so on-the-fly, a
special trigger system was built. Ideally this system has no deadtime, which means that there is
no situation when an event can not be recorded because the previous one is still being processed.
This is achieved by having three trigger levels (Level-1, Level-2 and Level-3), connected with
buffered pipelines. The block scheme of the data acquisition (DAQ) and trigger system at CDF
is shown in Figure 2-21.

The Level-1 trigger has only 5.5 us to make a decision about each event. On average, it
accepts only one event out of 250, bringing the event rate down to about 10 KHz. The accepted
events go further to Level-2. Level-2 has a little bit more time to decide, about 20 30 us per
event. If Level-2 accepts the event, the whole detector is read out, and the event goes further,
to the Event Builder and Level-3. The event rate at this point is about 200 300 Hz. In the

o4



Event Builder the data fragments from the different parts of the detector are collected into a
single event record, which is submitted to the Level-3. At Level-3, the event is reconstructed
and, again, is considered for possible rejection. Level-3 accepts about one event out of 4. The
accepted events are transmitted to the mass storage devices at a rate of approximately 75 Hz
and get written on a tape.

Below all three levels of the CDF trigger discussed in more detail. Even more information
can be found in References [82] and [88].

Level-1

As was mentioned earlier, Level-1 trigger has only 5.5 us to accept or reject an event. Therefore,
it can not do the detailed reconstruction of COT tracks and muon stubs or obtain the details of
showers in the calorimeters. Instead, it uses some very crudely reconstructed versions, which are
called primitives. For example, for the muon stubs we only know which muon chamber has the
stub, the stub position and slope are not measured. The muon or calorimeter primitives, being
combined with the track primitives give us electrons, muons and jets, which we can trigger upon.

The full list of trigger algorithms can be found in Reference [89]. The most important trigger
for this analysis is so-called dimuon trigger based on detecting two muons in the event. It will
be described later, in Section 2.2.6.

XFT and XTRP

The eXtremely Fast Tracker (XFT) uses information from only 4 axial superlayers of the COT to
identify high-p, track primitives in the r-¢ plane. To do so the hits from the COT are separated
into two classes, according to their drift time: prompt hits with the drift time less than 44 ns and
delayed hits with longer drift time. Then the hit pattern in the event is compared to a predefined
set of patterns for both prompt and delayed hits. This predefined set of patterns helps to find
the segments of high-p; tracks coming from the beamline very fast. For all the found segments
the information about the charge, curvature and the ¢ position at the COT superlayer 6 is kept.
Then the segments which look like they came from the same track are linked together into the
track primitive. Of course, the parameters of the track primitive are estimated very crudely,
given the short time which XFT has for this. The information about the found track primitives
is given to the eXTRaPolator unit (XTRP) and to Level-2.

The XTRP matches the track primitives from XFT with the muon and calorimeter primitives.
A detailed description of this matching utilized in dimuon trigger is given in Section 2.2.6. XTRP
also uses a predefined set of patterns to speed up the matching.

The detailed information about XFT and XTRP logic is available in References [90] and [91].

Level-2

The events accepted by Level-1 go to Level-2 for the further processing. The Level-2 uses the
primitives from the Level-1 plus some additional information from the calorimetry and from the
SVX (see Figure 2-22). The information about r-¢ hits from the SVX is used to extrapolate the
XFT track primitives inside the SVX and to determine the tracks impact parameter, dy. Some
triggers look for tracks with high dy, i.e. for the events with displaced vertex. This capability
was introduced in RunII.

If the event is accepted, the primitives, constructed at Level-2 are submitted further, to the
Event Builder and Level-3.
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Figure 2-22: The CDF trigger-system block diagram.

Event Builder and Level-3

In the Event Builder system the event fragments from the different parts of the detector are
put together and go further as one whole piece. This is done with the aid of an Asynchronous
Transfer Mode (ATM) network switch, which takes the event fragments from the Level-2 VME
crates, puts them in the proper places and then feeds them to the Level-3 (see Figure 2-23).

The Level-3 consists of 292 computers. They are subdivided into 16 groups (subfarms) of
16-18 computers in each. One computer in each subfarm serves as a converter node, accepting
the data from the Event Builder and directing it to one of the other computers in the subfarm
(processor node) for the analysis. The accepted events go to the output nodes and then further
to the mass storage device. Each output node is shared by two subfarms.

The processor nodes transform the event fragments into a united event record, which has
all the information about the event from all the parts of the detector. The Level-1 and Level-2
have to deal with crudely reconstructed primitives because of the lack of time. The Level-3 has
enough time to fully reconstruct tracks, muons, electrons, jets, etcand to apply the final trigger
requirements to them. The parallel data handling of Level-3 allows for this time to make the
decision about each event.

More information about the Event Builder and Level-3 is available in Reference [92].

2.2.6 Dimuon Trigger

The dimuon trigger at CDF looks for events with two muons. One of the muons should be
from the CMU, another can be either from CMU or from the CMX. Let us first consider the
case when the second muon also comes from the CMU. For this scenario the trigger is called
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Figure 2-23: The block scheme of the Event Builder and Level-3 system.

“L1_.TWO_CMU_PT1.5”, because only muons with p, > 1.5 GeV /e can get to the CMU.

The muon chambers in the CMU are organized in stacks of four. Each end of the detector
has 288 such stacks. The stack may have a stub  a track segment in which the hits in the cells
1 & 3 or cells 2 & 4 are separated in time by no more than 396 ns. The adjacent stacks are
logically assembled into pairs, called towers. If at least one stack in the tower has a stub, the
tower has fired. Otherwise, the tower is empty.

The information from muon chambers is linked to the tracking information as follows. First,
the XFT reports the charge, p, and ¢ (measured at the 6th COT superlayer) of the tracks to
the XTRP. The latter extrapolates the tracks (assuming they came from the beam line) to the
inner radius of the CMU - 347.8 cm. The multiple scattering in the detector material leads to
an uncertainty in the determination of the position of the track at this radius. So that, for each
track a ¢ window is determined, where the track could end up with 99.5% (30) probability. This
window in ¢ is called a footprint.

If a fired CMU tower is covered by at least one track footprint, it is called muon tower. The
event gets accepted by Level-1 dimuon trigger if it has at least two muon towers. These towers,
though, must be separated by at least two other towers (which may or may not be empty), or to
be on the different ends of the detector. If the muon towers are separated by a 2.4° gap between
CMU wedges, this is also counted as a tower. This requirement ensures that there is a separation
in ¢ between the two muons.

If one muon in the event comes from the CMU while another muon comes from the CMX, the
trigger has a different name, “L1_CMU_PT1.5_.CMX_PT2.2”, which reflects the fact that only
muons with p; > 2.2 GeV/c can reach CMX. Another difference is that the CMU and CMX
muon towers require no separation in ¢. There is no requirement for the muons to be of the
opposite charge at Level-1.
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Figure 2-24: The mass spectrum of muon pairs obtained via different triggers at CDF. The dimuon trigger used
in this analysis is called “JPsi”.

Reference [93] give more information about the Level-1 dimuon trigger. Figure 2-24 shows
the mass spectrum of the muon pairs obtained with different triggers in CDF. The described
here dimuon trigger is called “JPsi” on this plot.

Level-2 does not impose any additional cuts on the dimuons, and the events accepted by Level-
1 trigger proceed directly to Level-3. At Level-3 the muons are required to have opposite charge.
The invariant mass of both muons should be between 2.7 GeV /c? and 4.0 GeV /¢? (selecting .J /)
and ¢(25)), the difference in z, should be smaller than 5 cm and the opening angle between
them less than 130°.

2.3 Offline Data Handling

The data obtained from the Level-3 are split into ten “streams” which are called by first ten
letters of the alphabet: “A” “B”... “J”. The events passing the requirements of the dimuon
trigger go into the stream “J”. These events are written to tape in real time mode, i.e. online.
Further manipulations of the data are performed offline. The data on the tape is written in the
form of the raw data banks from different parts of the detector. One needs to unpack these
banks and produce the objects for actual physics analysis, such as tracks, muons, electrons, etc.
This procedure is called production. The data for this analysis was produced with a production
version 5.3.3. The data after the production is split into so-called datasets, containing the events
satisfying a particular set of trigger requirements. These datasets are given to the end users to
do the physics analysis. There are 35 datasets in CDF. This analysis is done with the jpmmOc
dataset, which contained the events with dimuon candidates found by the detector. The events
in this dataset are “stripped” by removing the banks and objects not needed for the further
analysis. The compressed version of our dataset is called xpmmOc. The stripping greatly speeds
up the analysis, because much of the time is usually taken reading the data files, rather than
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actually processing the data. The stripped data is subject to a further reduction by applying
some loose cuts. This is called skimming. The skimmed data files contain mostly the interesting
events and it takes quite a short time to apply tighter cuts to them and extract the final results.

The amount of data in the final datasets is usually measured not in the number of events, but
rather in the inverse units of the cross-section. In this way the users can multiply the size of the
dataset by the cross-section of the process they are interested in to obtain the expected number
of the events of this type in the dataset. The total size of the dataset used for this analysis is
about 360 pb .

A few words should be said about the format of the data in the data files. After production,
the data files contain the collections of tracks, muons, electrons etc. During the analysis though,
it is more convenient to work with the collections of .J/¢ candidates, X (3872) candidates etc. For
this purpose a special framework is developed, in which the particle candidates can be created,
put into collections and stored in a special kind of ntuple — stntuple. This framework allows
one to handle the particle candidates faster and in more convenient way. More details about the
stntuples can be found in Reference [94].
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Chapter 3

Data Sample and Selection Cuts

The dataset used in this analysis is collected via the dimuon trigger. This dataset comprises
Runs 138425 through 186598, corresponding to an integrated luminosity of 360 pb™*.

The CDF detector consists of many different subsystems which may be turned on or off during
the data taking. In particular, the silicon part of the tracking system, the muon systems and the
parts of triggering system may not be fully activated for a particular set of runs. The shift crew
marks the detector subsystems for each run as “good” or “bad”. We use only the data from the
runs for which all the crucial subsystems for the analysis were marked as “good”. We call these
runs “good”. We loose about 10-20% of the total luminosity because of this requirement. More
information about the good run system is given in Reference [95].

3.1 Track Preparation

After the basic algorithm of the track reconstruction has been performed there are a num-
ber of additional refinements to the track parameters introduced for the analysis. Some of
them are performed during the production stage. Others, are done in a special module called
TrackRefitter [96, 97] which is applied during the analysis stage. This module takes the raw
tracks from COT and refits them introducing the necessary changes.

During the track reconstruction at the production stage, the hits coming from the 100 are
not included in the fit, because this tracking subsystem was not yet completely calibrated at the
time when this analysis was performed. The TrackRefitter also excludes the L0O hits from the
fit. Though this is not a change with respect to the production stage, it is an important part of
the track treatment at CDF, and we mention it here.

Another feature of the track reconstruction at CDF is the correction of the track parameters
for the small non-uniformities in the magnetic field produced by the CDF solenoid, which were
well known from Runl [99]. Another effect, related to the magnetic field, is the correction for the
nominal value of the field. To take these effects into account, the magnetic field was measured
in different places in the solenoid and the data was fit with smooth functions to provide the field
map for the whole CDF detector. The full magnetic map is taken into account during the track
reconstruction. This correction is performed for all the tracks during the production stage.

The parameters of the tracks in CDF are calculated with respect to the detector coordinate
system with the origin in the center of the COT (Section 2.2.1). To obtain a consistent picture
from both the COT and the SVX, one needs to take into account possible angular and transla-
tional misalignments between the COT and the SVX coordinate systems. These misalignments
are found empirically and are corrected for during the track reconstruction. This is mostly done
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during the production stage and after this we only introduce small corrections for the refinements
obtained after the production has run.

And the last, but probably the most important, correction is the correction for the energy
loss in the detector material. The CDF detector appears to have more material than it should
according to a priori tabulations. To obtain the correct parameters of the track one needs to
take into account all this material. This is achieved by introducing into GEANT simulation
of the detector a number of special cylindrical layers of silicon, so that the integrated effects
of the additional detector material on the passing particles would be simulated [96, 97, 98].
The widths of these layers are tuned, so that the Monte Carlo track parameter distributions
correspond to that of the tracks in the data. During the production stage the parameters of the
tracks are corrected for the presence of these layers, assuming the mass of a charged pion for
each track. After the production, during the analysis stage the TrackRefitter module performs
these corrections for other mass assignments — charged kaon, proton, muon etec.

To select only good quality tracks for the analysis we require each track to have r-¢ hits in
at least three distinct SVX layers. As for the COT-related requirements, we want to use only
tracks which do not leave the COT before they cross superlayer 6. Also, all the pion tracks used
in this analysis must have the total of at least 10 axial hits and at least 10 stereo hits in COT.
The transverse momentum p; of these tracks has to be higher than 400 MeV /c.

3.2 Muon Preparation

The muons in CDF consist of muon stubs from the muon subsystems (CMU, CMP etc) matched
to COT tracks. These tracks must be the trigger tracks, i.e. the XFT must have found them.
Though, in our analysis we do not verify explicitly that the muons in the sample satisfy the
trigger. Also these tracks must have hits in at least three SVX layers in r-¢ plane.

We require that in the muons reported by the CMU the stub and the COT track have the
matching x? < 9. The muons found in CMP and CMX do not have this requirement, because
of the much lower level of noise. Also, there is a cut on the offline p, of the muons, reconfirming
the cut imposed by the XFT, p; > 1.5 GeV/c®. These cuts are summarized in Table 3.1.

3.3 J/v Reconstruction

In our dataset only those events are present which have been collected via the dimuon trigger,
i.e. which have two muons of the opposite charge satisfying the trigger cuts. These two muons
are required to form a J/1) candidate. The muon tracks in this candidate are forced to come from
a common vertex in three dimensions. The parameters of these tracks are adjusted accordingly.

The mass of the J/¢ candidate is required to be within a window of +£60 MeV /¢? around
the nominal J/1) mass 3096.87 MeV from the PDG [100]. To have a high-quality pu*-pu~ vertex
we require the x? of the vertex fit to be smaller than 15. The p; of the p™-p~ system must be
greater than 4 GeV/c. The full list of cuts applied to the .J/i¢ candidates is given in Table 3.1.

3.4 J/v wtw~ Sample

To reconstruct .J/¢ 7~ candidates, we use the J/¢ candidates constructed out of two muons
and two additional oppositely-charged tracks, assigned with the mass of a charged m meson.

62



Cut Value
Single muons:
Number of SVX layers with a hit in r-¢ plane > 2
x? for track-stub match (CMU only) < 9.0
pe(pe) > 1.5 GeV/c
w T system:
pe(ptp) > 4.0 GeV/c
3D vertex fit x? for utpu~ <15
Mass window M (pt =) — M(J/¥)| < 60 MeV /c?

Table 3.1: The J/4 reconstruction cuts.

First, the raw mass of the candidate is calculated based on the track momenta, and candidates
are only accepted within a loose mass window between the kinematic limit of 3.3 GeV/c? and
6.5 GeV/c?. Then the three-dimensional vertex fit is performed.

The vertex fitting package used in CDF [101] allows one to put constraints on some of the
parameters of the fit, e.g. to fix the total invariant mass of two tracks or to make track point
into a specific place. For the reconstruction of the J/¢ candidates we do not apply any pointing
or mass constraints. The only requirement at that point is that the fit converges. For the
pp~mtrT reconstruction, though, we constrain the mass of the dimuon to the PDG value of
the J/v mass. We want the x* from the vertex fit to be smaller than 25, ensuring the good
quality of the vertex.

The X (3872) mesons produced in CDF are highly boosted and its daughter tracks are ex-
pected to be relatively close to each other. To suppress background in the .J/¢ 7+ 7~ reconstruc-
tion we only consider the pion tracks lying in the narrow cone AR = /A¢? + An? < 0.7 around
the momentum of the X (3872) candidate.

We need to correct our data for the acceptance and inefficiency of the detector and selection,
and therefore want to stay away from kinematic regions in which the detector’s acceptance is
low and our modeling of the detector’s efficiency is poor. For this reason we impose fiducial cuts
(¢ /X) > 6 GeV/c? and |n(v'/X)| < 0.6. These cuts keep 66% of the 1(2S5)’s.

The final cut values are mostly taken from the analysis presented in Reference [2]. We slightly
divert from that analysis by imposing the just described additional fiducial cuts, and by releasing
the cut on the number of the candidates per event described in Reference [2]. By releasing this
cut we slightly decrease the significance of the X (3872) peak in the full .J/¢ 7+ 7~ sample, but the
significance of the X (3872) peak in the J/¢ 7+ 7~ sample after the cut m,, > 500 MeV /c? grows.
Because we mostly care about this m,, range, we choose to release the number of candidates
cut in this analysis.

In the analysis presented in Reference [2], the cuts are optimized by improving the signal-to-
noise ratio for the X (3872), where the rescaled 1(2S) signal is used to mimic the X (3872) signal.
The final cut values, obtained this way, are summarized in the Table 3.2. This table includes the
cuts used for the .J/1¢ reconstruction already listed in Table 3.1.

The mass distribution of J/¢ w7~ after all these cuts is shown in the top part of Figure 3-
1. This is the full J/¢7"7~ sample which we use for this analysis. For the X (3872) mass
measurement we impose another cut, m,, > 500 MeV /c?, which selects only the most important
for the analysis events [2]. The mass distribution of .J/¢ 7T~ after this cut is shown in the
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Cut Value
Pion tracks:
Number of hits in axial COT superlayers > 10
Number of hits in stereo COT superlayers > 10
Number of SVX layers with a hit in r — ¢ plane > 2
pe(m) > 0.4 GeV/c
Single muons:
Number of SVX layers with a hit in r — ¢ plane > 2
x? for track-stub match (CMU only) <9.0
pe(10) > 1.5 GeV/c
whp system:
pe(pt ) >4 GeV/e
3D vertex fit x? for utpu~ <15

Mass window

(M (ptp—) = M(J/$)| < 60 MeV/c?

J/Y i system:
AR, cone around X (3872) candidate momentum

containing both pions < 0.7
3D vertex fit x? for J/op mrm— < 25
Fiducial cuts:
pe(J/YpmtaT) > 6 GeV/c?
In(J/¢atn)| <06

Table 3.2: The J/¢ 7t 7~ reconstruction cuts.
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bottom part of Figure 3-1. The second histogram in the lower plot, fitted with dashed line,
shows the events rejected by the m,, cut.

We fit the J/¢) 777~ mass distribution using a double Gaussian with a common mean for the
1(2S) peak and a single gaussian for the X (3872) peak. The background is approximated by a
quadratic polynomial az? + bz + ¢, where z stands for the measured .J/¢ 7t7~ mass.

The double Gaussian for the 1(2S) peak is parametrized in the following way:

1 (.Z'—mw(gs))Q)

Mt = - a] yC)

1
Nytas)| (1~ Nya) Nt T P 22,02

With this parametrization the fit automatically determines the error on the 1(25) yield Ny ss).
One Gaussian is o0,. times wider than the other one. We call the width of the narrow one,
Onarrow = 0, a narrow width and the width of the wide one, oyige = 0,00, a wide width. The
My(2s) here is a common mean of both Gaussians. All the parameters are floating during the fit.

The fit of the full J/¢ 7T7~ sample yields 11503 + 221 ¢(2S) candidates and 929 + 154
X (3872) candidates before the cut on m,,. After the cut, the number of ¢)(2S) candidates
goes down to 6813 + 131, while the number of X (3872) candidates grows up to 1262 + 134. To
understand this growth, we fit the J/¢¥ 77~ mass distribution of the events rejected by the
cut my; > 500 MeV/c?, shown in Figure 3-1. The mass and width of the X (3872) are fixed
during this fit. We observe a little depletion of 147 4+ 88 candidates in the signal region which
is compatible with a background fluctuation. This depletion explains part of the growth in the
X (3872) yield. Another reason for the X (3872) yield increase is that the X (3872) width after
the m,, cut also grows from 4.7 to 5.0 MeV /. The complete results of the mass fits for the full
sample and for the sample after the m,, cut are presented in Table 3.3. Table 3.4 gives the full
correlation matrices for both fits.

Quantity No cut After cut Rejected by
on My, on My, cut on My,
¥(25) total yield, Ny (as) 11503 + 221 | 6813 + 131 50304208
¥(2S) mass, my(2s) [MeV/c?] 3685.9 &+ 0.1 | 3686.0 & 0.1 3685.940.1
¥(28S) narrow width, o [MeV/c? 23 +£0.3 24+£0.3 2.91+0.2
¥(2S) double Gaussian area ratio, Ny 0.37 £ 0.07 | 0.32 £ 0.09 0.31+0.05
¥(2S) double Gaussian width ratio, .. | 2.95 + 0.27 | 2.53 + 0.26 5.00+0.37
X (3872) yield, Nx 929 + 154 1262 £+ 134 -147+88
X (3872) mass, myx [MeV/c?] 3873.0 & 1.0 | 3872.2 £ 0.6 | fixed to 3872.2
(3872) width, ox [MeV/c?] 4.7 + 0.7 5.0 £ 0.6 fixed to 5.0
Fit x?2 116.3 78.2 40.4
Number of degrees of freedom 73 61 70
S/\/B for X (3872) 7.9 9.9 -

in mass region (3.858, 3.886) GeV/c?

Table 3.3: The results of the fit in Figure 3-1 (statistical errors only).

The residuals of the fit, which are the differences between the fitted distribution and the data,
divided by the error on the fitted distribution are shown in Figure 3-2. The upper-left plot has no
cut on m.,, the upper-right plot has a cut of m,, > 500 MeV /c?. The vertical lines on the upper
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Full-sample fit:

PARAMETER
NAME
Ny(2s)
My (25)

Nx
mx
Ox
a

b

C
Nrel
Orel

CORRELATION COEFFICIENTS

NO. 1 2 3 4 5 6 7 8 9 10 12

1.000 0.163 0.253 0.032 0.001 0.014 0.085 -0.007 -0.081 -0.217 0.407
0.163 1.000 0.772 0.008 0.000 0.004 0.013 -0.002 -0.012 -0.656 -0.299
0.253 0.772 1.000 0.012 0.000 0.005 0.024 -0.003 -0.023 -0.927 -0.222
0.032 0.008 0.012 1.000 0.077 0.430 -0.070 -0.003 0.069 -0.010 0.016
0.001  0.000 0.000 0.077 1.000 0.176 -0.011 0.000 0.009 -0.000 0.000
0.014 0.004 0.005 0.430 0.176 1.000 -0.032 -0.001 0.032 -0.004 0.007
0.085 0.013 0.024 -0.070 -0.011 -0.032 1.000 -0.893 0.594 -0.021 0.048
-0.007 -0.002 -0.003 -0.003 0.000 -0.001 -0.893 1.000 -0.892 0.002 -0.004
-0.081 -0.012 -0.023 0.069 0.009 0.032 0.594 -0.892 1.000 0.020 -0.046
-0.217 -0.656 -0.927 -0.010 -0.000 -0.004 -0.021 0.002 0.020 1.000 -0.028
12 0.407 -0.299 -0.222 0.016 0.000 0.007 0.048 -0.004 -0.046 -0.028 1.000

5 O 00~ O Ut W

x?/DoF = 116.295/73, Prob = 0.0665231%

After m, > 500 MeV /c?:

PARAMETER
NAME
Ny(as)
My (25)

Nx
mx
ox
a

b

C
Nrel
Orel

CORRELATION COEFFICIENTS

NO. 1 2 3 4 5 6 7 8 9 10 12

1.000 0.107 0.188 0.027 0.002 0.015 0.157 -0.007 -0.162 -0.176 0.430
0.107 1.000 0.662 0.006 0.001 0.003 0.013 -0.001 -0.013 -0.566 -0.053
0.188 0.662 1.000 0.009 0.001 0.005 0.040 -0.002 -0.041 -0.930 0.098
0.027 0.006 0.009 1.000 0.170 0.534 -0.118 -0.000 0.111 -0.008 0.019
0.002 0.001 0.001 0.170 1.000 0.298 -0.028 0.001 0.027 -0.001 0.001
0.015 0.003 0.005 0.534 0.298 1.000 -0.069 0.000 0.065 -0.005 0.010
0.157 0.013 0.040 -0.118 -0.028 -0.069 1.000 -0.753 0.122 -0.040 0.118
-0.007 -0.001 -0.002 -0.000 0.001 0.000 -0.753 1.000 -0.744 0.002 -0.005
-0.162 -0.013 -0.041 0.111 0.027 0.065 0.122 -0.744 1.000 0.041 -0.123
-0.176  -0.566 -0.930 -0.008 -0.001 -0.005 -0.040 0.002 0.041 1.000 -0.350
12 0.430 -0.053 0.098 0.019 0.001 0.010 0.118 -0.005 -0.123 -0.350 1.000

S © 00 =10 Ut W

x?/DoF = 78.2306/61, Prob = 6.57205%

Table 3.4: The full correlation matrices for the combined (2S) and X (3872) mass fits.
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Figure 3-2: The residual plots and the pull distributions of the mass fits in Figure 3-1.

plots display the positions of the 1(2S) and the X (3872) peaks. The bottom plots represent
the pull distributions which show how many standard deviations the data points in each bin are
away from the expected values of the fit. The pull distributions are fitted with Gaussians which,
for correct statistical behavior, ought to have a mean of zero and a width of one. As we can see,
the fitted values are consistent with these ideal quantities, which indicates that the fits describe
the data well.

The X (3872) mass measured in our sample (after m,, cut) is equal to

Mix(3s79) = 3872.2 + 0.6(stat.) GeV/c’.

This result is consistent with the values obtained in other measurements [1, 2, 3, 4].
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Chapter 4

Dipion Mass Spectrum Measurement

As we can see in Figure 3-1, the combinatorial background in the J/¢) "7~ sample is quite
high. For this reason the m,, distribution obtained with a conventional sideband-subtraction
technique would have large errors and, therefore, poorly constrained its shape. We use a different
method to measure the m,, spectrum. We divide our sample into slices of the dipion mass, fit
the mass histogram of J/¢) 7Tn~ candidates in each slice and plot the dependence of the yield
Versus M.

The J/¢ w7~ mass distribution has two peaks: the larger one corresponds to the 1(25)
and the smaller one to the X (3872). Our goal is to obtain the m,, spectrum for the X (3872),
and we use the 1(2S5) as a well-studied convenient testbed with a large number of events. For
this reason, we first apply our slicing method to the ¢(2S) and compare its m,, spectrum to
the equivalent spectra obtained in other experiments. Then we apply the same technique to the
X (3872).

The produced X (3872) and (2S) mesons are not always registered in the detector. Some-
times their daughter tracks lie outside of the regions where they can be found by the detector
tracking systems, 7.e. outside of the detector acceptance. This is true, for example, for the tracks
with very low p; or very high |n|. Also, the tracks inside the detector acceptance regions may
be not registered properly, due to the imperfect efficiency of the detector. To compare our m,,
spectrum to the spectra obtained in other experiments, we need to take these effects into ac-
count. This is done with the aid of Monte Carlo simulation of the detector’s efficiency in the
acceptance region. We generate Monte Carlo samples of the events before detector effects and
after the detector is simulated, and calculate the detector’s efficiency for each m,, slice. For this
analysis it is important that the p;, , and m,, distributions of the 1(2S) and the X (3872) in
the data are properly described by the Monte Carlo simulation.

The following few subsections describe how we measure the p, spectra for both ¢ (2S) and
X (3872), how we generate the Monte Carlo samples using these spectra, and how we calculate
the detector efficiency corrections. Then we describe how we fit the .J/¢ 7™7~ mass histograms
in the m,, slices, obtain the m,, spectrum, and apply the efficiency corrections to it.

4.1 Measurement of the p; Spectra

The p; spectrum for the 1(2S) is fairly well studied, but is a priori unknown for the X (3872).
If the X (3872) is a charmonium state one might be prepared to accept using the ¥(2S) p,
distribution, but we cannot assume that. If, for example, the X (3872) is a fragile molecular
state, it could have a quite different p; spectrum, as it tends to be more difficult to make complex
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and weakly bound states in hard fragmentation. For this reason we obtain the p; spectrum for
the X (3872) from the data, independently of the one for the ¢(25).

Our data sample has a large number of 1(2S5) mesons, so that it is easy to obtain the ¢ (2S5)
pi spectrum by a regular sideband-subtraction technique. But for the X (3872) it is not so easy,
because of the low event yields and the large combinatorial background. We divide our data
into a few p; slices and do a binned likelihood fit of the J/¢ 77~ mass distribution in each of
them, with the fitting function being integrated over the bin range. In this way we obtain the
1(2S) and the X (3872) yields for each p; slice. The individual mass fits for the ¢(25) are given
in Appendix A, and for the X (3872) in Appendix B.

Figure 4-1 displays the sliced p; spectra, overlaid on top of the sideband-subtracted ones, in
both normal and logarithmic scales. The spectra are normalized to have the same number of
events. We find that the slicing technique reduces the uncertainties compared to the sideband
subtraction — by about 10-20% for the ¢(2S) and by about 50-60% for the X (3872).

The ¥(25) and X (3872) p; spectra are overlaid on top of each other in Figure 4-2 in both
linear and logarithmic scales. As we can see, they are the same within the uncertainties. We use
the respective p; spectra to derive the input for the Monte Carlo generation for the ¢(2S) and
the X (3872).

4.2 Detector Efficiency Corrections

In our Monte Carlo simulation the X (3872) particle is generated by a program, called HeavyQuark-
Gen [102] developed in CDF, and then decayed with the QQ [103] program, created in CLEO.
The decay products are put through a special filter (HepgFilter [104]), which uses generator
level information without taking into account the detector smearing, efficiency ete. This filter
keeps only the events with the X (3872) decay products within the fiducial region, which means
that the particles should have p; > 1.4 GeV /c and low pseudorapidity |n|. The latter requirement
translates into a cut on the distance from the beamline to the point at which the particle crosses
the COT end cap, i.e. the exit radius from the COT of R.;; > 1010 mm. For the Monte Carlo
generation most of the unknown X (3872) properties are taken from the ¢ (2S5), except for the
mass, of course. The details of Monte Carlo generation are given in Appendix C, similar to
Reference [76].

We need to make sure that the Monte Carlo sample kinematically reflects the data, i.e. has
the same p; and 7 distributions. To do this we start generating Monte Carlo samples with a flat
pi-n distribution. Each event goes through the GEANT simulation of the detector, the simulation
of the trigger, production and the reconstruction code. The output p; distribution is an efficiency
curve for the detector. For each p; bin it gives the fraction of the 1(25)’s or X (3872)’s initially
generated in the fiducial volume in which all the daughter tracks are registered by the detector
and reconstructed in our analysis.

To avoid using the bins with low number of events, and keep the true distributions reasonable
and trustworthy, we constrain ourselves to the region p;(¢)(25)) > 6 GeV /c* and p,(X (3872)) >
6 GeV/c?. The pseudorapidities of both (25) and X (3872) are also constrained to || < 0.6.
The true n distribution is considered flat within this region. The histograms for the Monte Carlo
generation are produced in a little bit wider region p; > 5 GeV/c? and |n| < 0.7 to allow for
smearing at the boundaries. These additional margins are chosen to be significantly larger than
the resolutions on p,; and 7.

We want to make sure that the m,, distribution in the Monte Carlo simulation adequately
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describes the data. The shape of the m., spectrum for the ¢(2S) decay is well known from
measurements. We call this shape S-wave, because the 1(25) is a *S; charmonium state. A
good description for it is given by:

N
jm—x ~ (m2_ — 4m?2)*® \/(mfp(%) —m7,, —mz)? —4m7, m2 . (4.1)
This parametrization was used, in particular, in a CDF Run1 analysis [105] and by the MARKIII
Collaboration [106]. While we know the shape of the m,, distribution for the (25), it is
a priori unknown for the X (3872) this is what we wish to determine in this analysis. So, to
generate the proper Monte Carlo m.,, spectrum for the X (3872) we have to bootstrap ourselves
by feeding our measured m,, distribution into the Monte Carlo and then iterating, to obtain a
better approximation. It is reasonable to use the S-wave m,, spectrum as an input for the first
iteration. It turns out that this shape is a quite good approximation already. For this reason we
do not actually iterate and simply use the S-wave parametrization for the m,, spectrum of the
X (3872). We will assign a systematic uncertainty to our imperfect knowledge of the true shape
of the m,, distribution.

The ratios of the measured p;-distributions for the (2S) and the X (3872) to the efficiency
curves give us the true p; spectra, not distorted by the detector effects and by our selection.
In Figures 4-3 (for the ¢(2S5)) and 4-4 (for the X (3872)) the upper-left plot represents the raw
measured p;, the upper-right plot the efficiency curve, and the two lower plots their ratio (true p;)
in linear and logarithmic scales. The true p;-distributions for both the ¢ (2S) and the X (3872)
are parametrized by the function exp(ag + a1 (p; — pio) + a2(pr — Pw)?), where py is a convenient
expansion point of the polynomial exponent. This point is chosen to minimize the correlation
amongst the fit parameters, i.e. it is near the p;-centroid of the data. The parameter a( is a
normalization and has no physical meaning. The parameters a; and as determine the shape of
the p; spectrum. The fits are also given in Figures 4-3 (for the ¢/(25)) and 4-4 (for the X (3872)).

We use the result of these fits to produce new p;-n histograms, which correspond to the true
pe-n distributions. These new histograms are used in HeavyQuarkGen to generate a new set
of Monte Carlo samples. In these samples the output p, and 7 spectra are quite close to the
measured ones, as shown in Figures 4-5 and 4-6. In principle, this process may be repeated a
few times in an attempt to achieve even better coincidence of Monte Carlo and data. But the
next iterations are not very much different from the last one, so that we stop here.

Having matched the p; and n distributions for both the ¢(2S) and the X (3872), and the m
distribution for the (2S) in Monte Carlo and in data, we calculate the detector efficiency for
the m,, spectrum. Actually, we obtain the inverse detector efficiency, &(m,,), which we find
more convenient to use than the detector efficiency € = 1/£(my,). To find the &(m,,) we divide
the m,, distribution before the detector ((m,.) by the m,, distribution after the detector and
trigger simulation, production, reconstruction, and selection cuts, Z(mm). We use a quadratic
polynomial &(m.,) to parametrize this ratio.

All these distributions and functions are shown in Figure 4-7 for both the (2S) and the
X (3872). Each plot in this figure shows the m,, spectra before (triangles) and after (boxes)
detector simulation and event selection. The solid dots with error bars give the ratio of the
former to the latter (i.e. the inverse efficiency). This ratio is to be read on the scale at the
right-hand side of the plot. The fitting quadratic function £(my,,) of this ratio (dashed line) is
also shown in each plot. The parameters of the fits are given in Table 4.1. These respective
functions &(m,,) are used to correct the raw m,, spectra for the ¢(2S) and the X (3872).
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Figure 4-3: The p; distributions of ¢(2S). Upper-left plot: raw data. Upper-right plot: the detector efficiency
curve. Two lower plots are the ratio of the data and the efficiency curve in both linear and logarithmic scales.
The m,, parametrization for Monte Carlo simulation in this figure is S-wave (Equation 4.1).

4.3 Measurement of the m,, Spectrum for the ¢ (25)

To obtain the m,, spectrum for the ¢)(2S) we do a bin-integrated likelihood fit of the J/¢ wt7™
mass histogram in each m ., slice. To fit the signal we use the same function as for the mass fit of
the full sample, a double Gaussian for the ¢)(2S) and a single Gaussian for the X (3872). Because
we are subdividing our sample, each slice will have a considerably reduced number of events, and
thus larger uncertainties. We stabilize the results by fixing mass and width parameters of the
slice fits to the values obtained in full-sample fits for the ¢(2S), and for the X (3872) to the
values from the fits of the sample after the m,, > 500 MeV /c? cut.

The double Gaussian for the ¢ (25) is parametrized in the form of Equation 3.1. The common
mean and the widths of both Gaussians, ¢ and oo,,;, are fixed to the values obtained from the
full-sample fit. Their relative normalization, N,.;, is also fixed to the value extracted from the
same source. The total area of both Gaussians Ny g is allowed to be both positive and negative,
to take into account possible negative fluctuations in the background dominated fits, and thereby
not bias the yield. The J/¢ 77~ background is parametrized with the following function:

(a4 1)(z — x0)?® Be—Be
(xup - xlmu)a_l_l efﬁmlmu — e*ﬂrr,up7

A (4.2)
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Figure 4-4: The p; distributions of X (3872). Upper-left plot: raw data. Upper-right plot: the detector efficiency
curve. Two lower plots are the ratio of the data and the efficiency curve in both linear and logarithmic scales.
The m,, parametrization for Monte Carlo simulation in this figure is S-wave (Equation 4.1).

where  stands for the J/¢ w7~ invariant mass, A is a normalization coefficient, o and f
are shape parameters and x; is a turn-on parameter. The background is set to be equal to
zero for values of x < xy. This turn-on value is constrained to be close to the kinematic limit
“Myp + minimum m,,” for each m., slice. The parameters A, o and 3 float freely in the fit.
The parameters x,, and x4, denote the upper and the lower boundary for the fit and are fixed
for each individual mass fit. The expressions in the denominator are introduced to normalize the
power function and the exponent.

The J/¢ mm mass fits for the ¢(2S) in each m,, slice are given in Appendix D. The fit
range normally starts 100 MeV /c? below the mass of ¢(2S), and is kept to be 200 MeV /c?
wide. However, as we move to higher m,,, the kinematic threshold increases and when the turn-
on reaches the window the right boundary increases correspondingly to maintain a 200 MeV /c?
window with data in it. The last few m,, slices have a somewhat smaller fit window, 180 MeV /c?,
to avoid fitting the X (3872) peak. We always ensure that the fit range starts and ends at the
bin boundaries.

The first five my, slices are 20 MeV /c? wide in an effort to pool together the data and to
be sensitive to the low ¢ (2S) yield at low m,, values. Most of the rest of the slices after the
first five are 10 MeV /c* wide, giving reasonable yields and maintaining fairly fine resolution.
The exception is the few last slices, which are made 5 MeV /c?* wide to better resolve the rapid
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Table 4.1: The parameters of the fitted inverse detector efficiency correction functions &(m)
€2m?2_ for both the (2S) and the X (3872).

78

=0 +eWmer+



fall-off of the spectrum. The normalization to 10 MeV /¢? per slice is chosen to give the reader
the generally correct impression of the total raw yields over most of the slices.

We fix the means and widths for most of the ¢(25) fits in order to better constrain the
results. Though for the last two slices they are allowed to float, because of the following reason.
By taking a slice of data near the upper kinematic limit we are potentially biasing the J/¢ w7~
mass. A candidate that has fluctuated to a high value of m,, most likely will also have a high
J/1p T r~ mass. In normal slices candidates can fluctuate in and out of the slice from both low
and high mass slices. In the slices near the kinematic limit, though, entries are only lost to the
low side. This results in a shift in the peak position. Appendix F describes this in more detail.

Another effect, unique to the last few slices near the kinematic limit, is that the turn-on is
very close to the peak, so that it becomes hard for the fitter to determine the position of the
turn-on precisely. In Chapter 5 we will assign a systematic uncertainty due to this effect. Also,
in the last slice the turn-on comes so closely to the peak that the peak shape is distorted. For
this reason we fit it with a single Gaussian rather than the double one. This effect is also taken
into account with a systematic uncertainty. This is discussed into more detail in Appendix F.

We calculate the fit probabilities in the individual m,, slices for the full fit range. They are
shown in Figure 4-8. The points on this plot are uniformly scattered, producing neither trends
nor clusters. The fit probability for the full fit range is generally dominated by the background
distribution. For this reason we also compute the probability in the narrow region between
3.675 GeV/c? and 3.695 GeV/c?, roughly corresponding to a six standard deviations window
centered around the (2S) mass value. This probability shows how well the 1(25) peak itself is
described. The probability for each m,, slice is shown in Figure 4-9. This plot also manifests a
quite uniform distribution of the points.

The resulting plot of the yield versus m,, for ¢(25) is given in Figure 4-10, both before and
after the detector efficiency corrections. The efficiency corrections have a quite small effect over
the range where the (2S5) yield is significant. The yields after the correction in the i-th m,,
slice are obtained by multiplying the yield before correction, NV;, by the integrated-average, &,
of the nominal correction function, &(m,,), over the i-th m, slice range:

1

bi — a;

b;
NZ'COTT = N;- / f(mmr) AdMgr = N; - gz (43)

Here a; and b; denote the lower and upper boundaries of the i-th m,., slice. The inverse efficiency
correction factors, &;, are globally rescaled as to preserve the total number of candidates. The
same data in tabular form are given in Chapter 5 (Table 5.1) after the determination of the
systematic uncertainties.

One should notice that our m,, spectrum for the ¢)(25) after the detector efficiency correction
matches the S-wave parametrization from Equation 4.1 quite well, as shown in Figure 4-11. In
Chapter 5 we assign the systematic uncertainties due to our imperfect knowledge of the m,,
shape for the Monte Carlo generation.

4.4 Measurement of the m,, Spectrum for the X (3872)

We apply the same fitting procedure to obtain the m,, spectrum for the X (3872). We change
the binning of the .J/¢ 77~ mass histograms from 2.5 MeV per bin to 5.0 MeV per bin because
we have a weaker and broader signal. For the same reason we fit the signal with a single Gaussian
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same total number of events.
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Figure 4-11: The comparison between the m.., spectrum for ¢/(2S5) in data, corrected for the detector efficiency,
and from Monte Carlo simulation, generated from Equation 4.1 with no detector effects simulated.

for the X' (3872). The X (3872) mass and width are fixed to the values from the whole-sample fit
after the m,, > 500 MeV /c? cut as listed in Table 3.3.

Just as in the case of the 1(2S) fits, we start each individual fit about 100 MeV /c? below
the mass of the X (3872), keeping the size of the fit window to be 200 MeV /c2. Similar to the
) (2S), the last three m,, slices require somewhat special handling because of the biases and
uncertainties that arise near the kinematic cutoff. The X (3872) yield in the last slice is quite low
on top of a relatively large background. Due to these reasons we allow the width of the X (3872)
to float in the last slices, constraining it to be greater than 3.0 MeV /c?. Another special feature
of the last slices is the concern that the value of the turn-on parameter, zy from Equation 4.2,
cannot be reliably determined from the data. The fitter has trouble varying this parameter in the
minimization when background turn-on starts nearly under the Gaussian signal, i.e. it becomes
strongly correlated with the background and signal shape parameters. The resulting X (3872)
yield in the slice changes depending on the position of the turn-on. To independently constrain
the value of the xy we extrapolate from the turn-on information from the previous slices. The
second half of Appendix F has more details.

The individual fits for each m,, slice are given in Appendix E. They show reasonable agree-
ment between the fit functions and the data. The plot of the fit probability for the full fit range
is given in Figure 4-12. Just as in the 1(2S) case, the points in the plot are distributed uni-
formly, making neither clusters nor trends. The plot in Figure 4-13 shows the fit probabilities for
the description of the X (3872) peak itself. They are computed in the narrow window between
3.855 GeV /c? and 3.885 GeV/c?, which roughly corresponds to a six standard deviations window
centered on the X (3872). This plot displays a uniform distribution of the points too.

The final plot of the X (3872) yield versus m,, is given in Figure 4-14. Just as for the
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Figure 4-13: The X (3872) mass fit probability for the range from 3.855 GeV /c? to 3.885 GeV /¢? around X (3872)

mass peak.

X(3872) mass fit probability, %

Figure 4-12: The X (3872) mass fit probability for the full mass range versus mg.
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Figure 4-14: The X (3872) yield vs. m,, before (top) and after (bottom) the detector efficiency corrections.
The efficiency corrections are rescaled so that the total number of events is preserved.
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¥ (29), the inverse efficiency correction factors, &;, are rescaled so that the total number of the
events is the same before and after the corrections. The net effect of the efficiency corrections is
quite small. The results in tabular form are given in Chapter 5 (Table 5.2) after we obtain the
systematic uncertainties.

The my, spectrum for the X (3872) looks similar to that for the ¢(2S). It also favors high
dipion masses and falls off rapidly at the upper kinematical limit. In Chapter 6 we will fit this
spectrum with different theoretical models.
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Chapter 5

Systematic Uncertainties

The systematic uncertainty in our analysis is very small with respect to the statistical one. This
is explained by the fact that the X (3872) peak is found on top of a quite large background so
that the statistical uncertainty of this background dominates the total statistical uncertainty.

As for the systematic uncertainty, there are two main contributions: uncertainties on the
yields N; in each of the individual m,, slices, and uncertainties on the efficiency corrections
&(Mar). The determination of the uncertainty on the yield o®**(N;) is further separated into
issues surrounding the signal and the background parametrizations. The uncertainties on the effi-
ciency corrections &(m.,,) are subdivided into components related to the assumed m,, spectrum,
and to that of the p; spectrum. We will consider all these categories separately.

Our systematic errors are grouped into two sets of uncertainties: correlated and uncorrelated
ones. Correlations in the efficiency uncertainties originate from the fact that we are concerned
with the shape of the distribution, i.e. the efficiency in a given m,, slice is correlated with that
of its neighbors. This distinction is neglected when we plot the m,, spectra or quote a total
systematic error, but it is exploited when we fit the data with various theoretical models.

5.1 Yield Systematics

The models we chose for the signal and background may have a systematic bias in the yields.
To estimate the systematic uncertainty arising from this bias for the majority of the m,, slices
we perform a few variations of the fit model and compare the changed yields with the nominal
ones. The last few slices require special handling because of the effects unique to the upper
kinematic limit, discussed in Chapter 4. We will assign these points with special systematics
later, in Section 5.1.4.

5.1.1 Systematics from Modeling the Signal

For the systematic uncertainty from the signal model for the (2S) we exploit three variations
of this model. In the first variation we calculate the number of the events in the peak obtained
from simply counting bin entries. Specifically, we first obtain the number of background events
under the peak from our background parametrization, and then subtract it from the total number
of the events in the peak region. The peak region used for this estimate is chosen to be from
3.675 GeV/c* to 3.695 GeV/c?. This range roughly corresponds to a six standard deviations
window centered around the ¢ (2S) mass. The thus obtained number of events is compared to
the nominal one, and the yield differences § N; for each m,, slice are plotted in the upper part
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of Figure 5-1. The nominal and alternate yields are determined from the same sample, therefore
the nominal uncertainties on each of them are highly correlated. For this reason we only use the
nominal uncertainties from one set of yields for the error bars, rather than double count them by
adding the two sets of uncertainties in quadrature. Nevertheless, this is still a gross over estimate
of the true uncertainty of the difference between two highly correlated measurements. Thus, the
fluctuations of the yield differences in this plot are much smaller than the error bars.

We focus our attention on the high-mass part of the m,, spectrum which has significant
yields, whereas the low-mass slices are dominated by noise rather than the signal. The significant
points are plotted with the large circles in Figure 5-1, and the ones we ignore with the small
symbols. For this set of the large points we compute the mean value v = (JN), the RMS
spread 6 = /((6N — v)?) and the sample variance 0, = —=—=+/((0N — v)?), which is used as
an estimate of the uncertainty on the mean value v. The last two points in the middle and
bottom plots in Figure 5-1 are also shown in small symbols, because they are excluded from the
calculations of the mean, RMS and sample variance. As was mentioned earlier, these points will
be assigned special systematics later.

If there were a clear systematic bias, systematic trends should be apparent among the large
points. Given the seemingly random scatter, we use the mean value v of the differences JN; to
quantify a possible bias, and use the uncertainty on the mean o, to judge if the mean is signifi-
cantly different from zero. There is no clear evidence of a bias, but arguably we cannot exclude
the presence of a bias any smaller than the uncertainty on the mean, o, = +2.7 candidates for
the ¢(2S) and o0, = £4.9 candidates for the X (3872). Thus we take these values as our yield
systematic for the signal model. These are quite small numbers, and clearly if this were a large
effect we should have more judiciously separated out any remaining statistical contributions, or
have better understood our model.

In the next two variations of the signal model we shift the width o and the relative nor-
malization N, of the 1(2S), which are fixed in the slice fits, by plus (minus) one standard
deviation from the central value, as determined by the mass fit of the whole sample. The in-
creases (decreases) in the yields with the changed models turn out to be proportional to the
yields themselves. The fractional differences between the changed and the nominal yields are
displayed in the middle plot in Figure 5-1 for the shift in the relative normalization N,.;, and in
the bottom plot for the shift in the width o. The plots show that the yields change by ~ 2.7%
for the relative normalization and by ~ 1.7% for the width. These are clear and well defined
systematic shifts. However, we are only concerned with shape differences, and the uniform frac-
tional shifts are of no significance to our result. Multiplication of all the points by the same
number does not change the shape at all. We only care about the residual variation within this
global shift, which is less than about 0.5%, and we neglect it.

In the case of the X(3872), the corresponding systematic plots are shown in Figure 5-2.
The top plot displays the difference in the yields between the fitted and the counted numbers
of the entries in the peak. The range for the counting is chosen to be from 3.855 GeV/c? to
3.885 GeV/c?, which roughly corresponds to a six standard deviation window centered on the
X (3872) mass.

The general picture manifested by the yield difference distribution for the X (3872) is similar
to that of the ¢(2S5): modest fluctuations, with a relatively small mean. We again take the value
of the sample variance, o, = +4.9 candidates, as an upper bound on the size of the systematic.

The next two plots in Figure 5-2 show the fractional yield differences for the X (3872) mass!

'We do not vary the ¢(2S) mass, because due to the large number of ¢(2S)’s in the sample one standard
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Yield diff due to signal shape change (count minus nominal fit)
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Figure 5-1: TOP: The yield differences (variation minus nominal) for the ¢/(2S5) yield vs. m., for the first signal
model variation, counting bin entries. The first four points are drawn in small symbols to reflect the fact that
they are excluded from the calculation of the mean v, the RMS spread 6 and the sample variance o,. MIDDLE
and BOTTOM: The fractional yield differences for two other variations, shift in ¢(2S) relative normalization and
1(2S) width by one standard deviation up and down. The last two points in the middle and the bottom plots
are given special treatment and for this reason also excluded from the mean, RMS and sample variance.
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Yield diff due to signal shape change (count minus nominal fit)
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Figure 5-2: TOP: The yield differences (variation minus nominal) for the X (3872) yield vs. m, for the first
signal model variation, counting bin entries. The first five points are drawn in small symbols to show that they are
excluded from the calculation of the the mean v, RMS 8 and sample variance o,. MIDDLE and BOTTOM: The
fractional yield differences for two other variations, shift in X (3872) mass and X (3872) width by one standard
deviation up and down. The last three points are made smaller in size to show that they are also excluded from
the mean, RMS and sample variance.
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and width shifted by plus or minus one standard deviation from the central value. They show
systematic trends, but the statistical fluctuations start to wash out the clear pattern observed in
the 1(2S). We apply the lesson from the ¢(2S) and take the effect of these variations to be the
universal fractional shifts, and assign no systematic for them.

5.1.2 Systematics from Modeling the Background

To obtain the systematic uncertainty coming from the background shape, we consider three
different variations of the background modeling: the background shape parametrization, the size
of the fit window and the number of the points skipped in the beginning of the turn-on.

To change the background shape parametrization we replace the background fitting function
from Equation 4.2 with a polynomial. We rely upon the high-mass sideband to largely fix the
background polynomial and do not fit the low-mass sideband, to allow for greater freedom in
the low mass shape which varies more. To do so we shift the left boundary of the fit range
from the nominal value of 100 MeV /c? lower than the X (3872) mass, to just a few standard
deviations below the peak. For the ¢(2S), which has two Gaussians, we use: m(y(25)) —
4.0/ Nye102 4o + (1 = Nyet) 020w For the X (3872) the lower limit of the fit range is m(X) —
3.50(X). The background shape can not be well described with a polynomial when the turn-on
comes close to the mass peak, so that we do not use the polynomial for the very last m,, slices.

The top plots in Figure 5-3 and Figure 5-4 show the differences between the yields with
nominal and alternate background parametrization for the 1(25) and the X (3872), respectively.
For the ¢(25) the yield variations are dominated by statistical fluctuations, no clear systematic
trend is observed. We take the uncertainty on the mean o, as an upper bound on the systematic
from the background parameterization. The picture, and our conclusion for the X (3872) in
Figure 5-4 is similar.

The other major check of systematics is the variation of the exact starting point of the fit
window. Looking through the .J/¢ 7*7~ mass distributions in the m,, slices we see occasional
hills and valleys in the data below the mass peaks that are potentially systematic deviations from
our background model. Depending on where the window edge falls these features may distort
the yields. To make alternate versions of the fit we visually inspect the fits and add or drop
the points from the fits by hand if we have a reason to believe that adding or dropping certain
points produces a significant effect on the yield. The bottom plots in Figures 5-3 and 5-4 show
the graphs of the yield differences for the 1(2S) and the X (3872), respectively. The plot with
open markers is for the case of the fit window starting at a bit lower mass, to include certain
points. The other plot corresponds to the beginning of the fit window moved to a bit higher
mass value to drop certain points from the fit. For the 1)(2S5), where we have good statistics, the
mean v and the sample variance o, are fairly small. They are a little bit larger, though, than the
previously alloted systematics, and we take this slightly larger value, +2.4 candidates, as a final
estimate of the background systematic uncertainty. Likewise for the X (3872), this systematic
uncertainty coming from the background shape modeling is £6.8 candidates.

deviation is quite small and shifting the mass value by it would cause a negligible effect, whereas the X (3872)
mass has a larger uncertainty.
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Figure 5-3: The yield differences (variation minus nominal) for the ¢(2S) yield vs. m,, for the background
shape variation — polynomial background (top) and shifting the beginning of the fit range (bottom). The first
four points and the last two are drawn in small symbols to show that they are excluded from the calculation of
the mean v, the RMS € and the sample variance o, .
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Yield diff due to background shape change
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Figure 5-4: The yield differences (variation minus nominal) for the X (3872) yield vs. m . for the background
shape variation — polynomial background (top) and shifting the beginning of the fit range (bottom). The first
five points and the last three are drawn in small symbols to show that they are excluded from the calculation of
the mean v, the RMS € and the sample variance o,,.
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5.1.3 Final Systematics from Signal and Background

To obtain the total uncorrelated systematic uncertainty for the yields for each m,, slice we add
the signal and the background uncertainties in quadrature. These are: +3.6 candidates for the
1(2S), and £8.4 candidates for the X (3872). These values are utilized in all m,, slices with the
exception of some slices at the end of the spectra.

5.1.4 Systematics for Yields in the Last Few m,, Slices

As alluded to earlier, the last few points in the m,, spectra for both ¢(2S5) and X (3872) merit
special handling. To determine the systematic uncertainty on these points we perform a variety
of special fits and monitor the stability of the yields under different assumptions. The various
fits are shown in Appendix F, and since the process is somewhat involved we leave most of the
details there. But the major issues that we contend with are:
e Near the upper kinematic limit, the selection bias of taking a narrow m,, slice may
bias the mass and width of the .J/¢ 7*7~ signal Gaussian;
e As the kinematic turn-on reaches the lower range of the signal Gaussian the background
turn-on is more difficult for the fit to determine.
To grapple with these issues we experiment with letting the mass and width parameters of the
fit float, and we use the lower m,, slices to extrapolate the turn-on point of the background in
the problematic slices. In the end we finally assign the following systematic uncertainties:

Nt =99 + 16 (stat.) *13 (syst.),

Nq'/)as“] = 292 + 43 (stat.) "2 (syst.),
N =10 £ 9 (stat.) 5 (syst.),
N'st=1 — 35 4+ 15 (stat.)*3, (syst.),
N2 — 189 4 30 (stat.) 12 (syst.).

5.2 Efficiency Systematics

5.2.1 Uncertainty in the m,, Spectra

In Section 4.2 we obtained the detector efficiency correction based on the S-wave m,, spectra
&(myr). This efficiency correction depends on the p; distribution, as shown in Figure 5-5 for
the ¢(2S) and Figure 5-6 for the X (3872). The £(m,,) curves in different p; slices are different.
Figures 5-5 and 5-6 also manifest that in our Monte Carlo simulation the m,, distribution itself is
correlated with the p;. Because of these correlations, the detector efficiency correction &(my,) is
also correlated to the m,, distribution in the Monte Carlo simulation itself. To obtain the correct
&(my,) we must make sure that the m,, distribution assumed in the Monte Carlo generation is
the same as in the data. An incorrectly simulated m,, results in a distorted p; spectrum, leading
to a distorted m,, efficiency.

The S-wave mg, distribution reflects the data very well for the ¢(25), but for the X (3872)
it does not have to be so. We introduce a systematic for our ignorance of the true shape of the
M., distribution for the X (3872). Fortunately, the efficiency &(m.,) is not very sensitive to the
exact m,, shape, and we may change this shape quite dramatically to quantify an uncertainty
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Figure 5-6: The S-wave m,, spectra for X (3872) in different ranges of p;.
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Figure 5-7: The inverse detector efficiency fitted curves &(m,.) for both the ¢ (25) (left) and the X (3872)
(right) based on the S-wave and phase-space models.

on our nominal S-wave model. The model which we adopt as a gross alternative to the S-wave
is to distribute dipion masses according to phase space:

PS = (5.1)

(M3 — 4m72r)((M3;(25') B M.?/¢)2 - 2(M$(25) + M.?/q/;)m?rﬂ +mzz)

2 My (2s) '

The details of the Monte Carlo generation for this phase space model are given in Appendix G.

The resulting inverse efficiency correction curves £7%(m,,) are compared to the nominal & ()

in Figure 5-7 for both the ¢(2S) and the X (3872). We see that the shapes of &(mg,) and

EPS(myy) are practically the same for both the (2S) and the X (3872). Given these small

variations it is unnecessary to try and achieve a better approximation for the m,, spectrum for

the X (3872), as could be done by feeding the measured spectrum back into the Monte Carlo
generation and iterating.

To determine the systematic uncertainty for the ¢(25) and for the X (3872) we take the ratio
of the phase space correction factor to that from the S-wave distribution (Equation 4.1) that
serves as our default:

B fPS(mmr)

M) = §(Mer)

This ratio y"(m,,) is shown in Figure 5-8 for both ¢(25) and X (3872). We are only interested

77 (5:2)
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Figure 5-8: Variations in ¢(2S5) (left) and X (3872) (right) efficiency correction factors due to the form of the
My, parametrization. Using the maximum and minimum of the variations over the mass range of prime interest
(lower bound is indicated by the vertical dashed lines) we get the values quoted in the figure. These, however,
are not the errors finally used, but only an overall estimate (See text for details).

in shape changes, so that the absolute normalization of this ratio is chosen arbitrarily. We choose
it so that the extremum value of y"*(m.,,) is 1.0.

We see that low dipion masses have a more rapidly changing shape of the correction, because
this is where the correction factor has the most significant change itself. We are primarily con-
cerned with the uncertainty in the high mass region, and if we restrict ourselves to the variation
above 360 MeV /c? for 1(2S) and 570 MeV /c? for the X (3872), and use half of the maximum-
to-minimum span over the above mass ranges as a systematic estimator we get something like
+1.5% for both the ¢(25) and the X (3872). Since this systematic is clearly correlated across
My slices, we use the whole shape determined from the efficiency ratio y"*(m,,), rather than
the maximum-to-minimum span estimators. Thus, when quoting tabulated numbers of yields
per i-th slice and their uncertainties, we will add in a systematic uncertainty on the efficiency
ag‘zt(ﬁi) obtained by averaging this efficiency ratios over the slice range:

Ufgﬁf(f?) PS 1 = 1

b;

PS

; ar) A — 1, 53
" b/v (1) dim (5.3)

where a; and b; are the lower and upper boundaries of the i-th m,, slice. But given that these
uncertainties are correlated from slice to slice, we will fold the full polynomial parametrization
into the fits of various theories to our m,, spectra.

5.2.2 Uncertainty in the p; Spectrum

There is one more potentially important source of systematic uncertainty for the m,, shape for
the X (3872). The detector efficiency determined from the Monte Carlo is dependent on the
py spectrum used in the generation. To verify the efficiency corrections we match the Monte
Carlo output p; spectrum to the one observed in the data, but this is only done to the statistical
precision of our data. Therefore, we assign a systematic uncertainty to the resulting detector
efficiency corrections based on the uncertainty of the fitted slope of the p; spectrum.

The p; spectrum for Monte Carlo generation is parameterized with exp(ag + aip; + aap?).
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Figure 5-9: The p; distributions of the 1(2S). Upper-left plot: raw data. Upper-right plot: the detector
efficiency curve. Two lower plots are the ratio of the data and the efficiency curve in both linear and logarithmic
scales, fitted with the normal parametrization functions and the ones “shifted” by 1 standard deviation.

We determine the parameters ag, a; and ay from the fit of the ratio of the data to the detector
efficiency curve shown in Figure 4-4. The quadratic term a, turns out to be not very important
and to simplify our systematic study we fix it. Since the parameter aq is a normalization, only
the slope a; has relevance to the shape. Therefore, to obtain the systematic uncertainties on the
shape we shift the parameter a; by one standard deviation up and down, as determined from
the above mentioned fit to p; data. The fits with shifted a; parameters are shown in Figures 5-9
for the ¢(2S5) and 5-10 for the X (3872). In the case of the 1(25) these shifts, plotted as dotted
and dashed lines, only appear as a slight thickening of the default fitted curve (solid line). For
the X (3872) the slope variations are more apparent due to the larger statistical uncertainties of
the X (3872)-data.

With these variations of the p; spectra we can determine the corresponding inverse detector
efficiency corrections €X'?(my,). The ratios of these curves to the nominal curve

_ ()
mmr) N f(mmr)

are plotted in Figure 5-11 for the X (3872). The dashed curve in this figure represents ™' (m,,),
and the solid curve v7'7(m,,). Just as in the case of the shape variations for different m,,

el (54)
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Figure 5-10: The p; distributions of X (3872). Upper-left plot: data. Upper-right plot: the detector efficiency
curve. Two lower plots are the ratio of the data and the efficiency curve in both linear and logarithmic scales,
fitted with normal parametrization functions and the ones “shifted” by 1 standard deviation.

parametrization, the absolute normalization is arbitrary and we choose it so that the maximum
values of ¥y£'7(m,,) are equal to one. The horizontal lines show the maximum and minimum
ratios for masses above 570 MeV /c?, the prime range of interest for the systematic variation.
The crude estimator of half of the maximum-to-minimum for this m,, range gives less than 1%.
But even though it is so small, we follow the approach adopted in the previous section and use
the full polynomial parametrization of the efficiency uncertainty due to p; in the theory fits of
the X (3872) dipion spectrum described in Chapter 6.

To estimate the systematic uncertainty for the 1(2S) due to p; spectrum parametrization in
Monte Carlo we do exactly the same thing. The ratios of the m,, parametrizations fyi]”(mm)
are shown in Figure 5-12 with the crude estimation of the systematic uncertainty in the region
above 360 MeV /c? being less than 1.5%. The dashed curve in this figure represents v™'7 (m.,),
the solid curve v~ '7(m,,) for ¢(2S). The normalization of both curves is chosen so that the
minimum is equal to one.

Our crude estimation of the systematic uncertainty for the ¢(25) is actually larger than that
for the X (3872) because the inverse detector efficiency curve is flatter for the X (3872).
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Figure 5-11: The systematic variation in detector efficiency for the X (3872) coming from the parametrization
of the Monte Carlo p; spectrum.

5.3 Final Yields and Uncertainties

We combine the various sources of uncertainties on the ¢(2S5) and X (3872) yields in Tables 5.1
and 5.2. In the second column we show the raw yields per slice with their statistical and un-
correlated systematic uncertainties. The third column gives the yields, rescaled appropriate to
the number of MeV /c? per slice. These yields (per MeV /c?) are used when we plot the spectra.
The per slice inverse efficiency correction factors with their correlated uncertainties appear in
the fourth column, although we necessarily treat them as uncorrelated here. The uncorrelated
uncertainties are scaled in such a way that the yields after the correction have the same area
under the curve as before the correction. In mathematical language, the expression in fourth
column is given by:

&i (1 + \/(’Vz'PS —1)2+ (,y;lo _ 1)2) =& 1+ \/(0‘@21‘(&))2&"‘ (0;319(1‘7(51))2 _¢ (1 N 05%7(52)> |

This equation gives the systematic uncertainty oy, (&) on the inverse efficiency correction factor
& in the i-th m,, slice used in the table. The numbers v and 7, ' are calculated from the
continuous functions " (m,,) and y7'7(m,,) just as shown in Equation 5.3. We use 7; ' and
not v;''7 because it gives us more conservative estimation of the systematic uncertainty. We will
discuss this in detail later, in Section 6.2. The fifth column gives the efficiency corrected yields
with the systematic uncertainties now being a sum of the correlated and uncorrelated systematics

2
in quadratures, (o505 ¢*?); = fi\/(asyst(Ni))Q + N? (””57’(5)) . The last column gives the final

numbers used for displaying the m,, spectrum.
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Myy TANEE

GeV /c?

Uncorr. 9(2S) yield
per slice
(stat. & syst. error)

Uncorr. 9(25) yield
per 10 MeV /¢?
(stat. & syst. error)

inv. eff. corr. factor,
a.syst i
&(1+ %)
(syst. error only)

Corr. 1(25) yield

per slice
(stat. & syst. error)

Corr. 1(25) yield
per 10 MeV /¢?
(stat. & syst. error)

280 - 300
300 - 320
320 - 340
340 - 360
360 - 380
380 - 390
390 - 400
400 - 410
410 - 420
420 - 430
430 - 440
440 - 450
450 - 460
460 - 470
470 - 480
480 - 490
490 - 500
500 - 510
510 - 520
520 - 530
530 - 540
540 - 550
950 - 560
560 - 570
970 - 575
975 - 580
280 - 585
285 - 590

3.7+ 19.0 £ 3.6
31.9 + 26.4 + 3.6
4.1 4259 + 3.6
17.6 + 27.7 + 3.6
96.5 4+ 30.3 + 3.6
68.7 + 21.6 + 3.6
108.9 + 23.0 + 3.6
164.3 + 25.2 + 3.6
206.2 + 26.2 + 3.6
293.5 + 28.1 + 3.6
310.1 + 28.3 + 3.6
380.4 + 30.1 + 3.6
386.6 + 29.8 + 3.6
413.8 + 30.7 + 3.6
541.0 + 32.9 + 3.6
597.9 + 33.7 + 3.6
671.3 + 35.9 + 3.6
791.2 + 37.5 + 3.6
823.2 + 37.7 + 3.6
834.7 + 37.5 + 3.6
926.9 + 39.0 + 3.6
906.3 + 39.6 + 3.6
919.4 + 40.1 + 3.6
877.1 + 38.2 + 3.6
413.8 + 27.4 + 3.6
351.0 + 25.8 + 3.6
291.8 + 43.0 1120
98.7 + 16.4 F130

19+95+138
159 +13.2 £ 1.8
204129+ 18
8.8+ 13.9+ 1.8
482 + 152 + 1.8
68.7 + 21.6 + 3.6
108.9 + 23.0 + 3.6
164.3 + 25.2 + 3.6
206.2 + 26.2 + 3.6
293.5 + 28.1 + 3.6
310.1 + 28.3 + 3.6
380.4 + 30.1 + 3.6
386.6 + 29.8 + 3.6
413.8 + 30.7 + 3.6
541.0 + 32.9 + 3.6
597.9 + 33.7 + 3.6
671.3 + 35.9 + 3.6
791.2 + 37.5 + 3.6
823.2 + 37.7 + 3.6
834.7 + 37.5 + 3.6
926.9 + 39.0 + 3.6
906.3 + 39.6 + 3.6
919.4 + 40.1 + 3.6
877.1 + 38.2 + 3.6
827.6 + 54.8 + 7.2
702.1 + 51.5 + 7.2
583.5 + 85.9 F240
197.4 + 32.7 +26:0

0.597(1 % 0.138)
0.681(1 + 0.098)
0.756(1 + 0.069)
0.822(1 + 0.049)
0.879(1 + 0.034)
0.916(1 + 0.025)
0.938(1 + 0.020)
0.958(1 + 0.016)
0.975(1 + 0.012)
0.990(1 % 0.009)
1.003(1 & 0.006)
1.014(1 + 0.004)
1.022(1 + 0.003)
1.029(1 £ 0.002)
1.033(1 & 0.001)
1.034(1 £ 0.000)
1.034(1 £ 0.000)
1.031(1 & 0.001)
1.026(1 & 0.002)
1.019(1 £ 0.003)
1.010(1 & 0.005)
0.998(1 + 0.007)
0.985(1 + 0.010)
0.969(1 + 0.013)
0.955(1 + 0.016)
0.946(1 + 0.018)
0.935(1 + 0.020)
0.925(1 + 0.022)

2.2 +11.3 + 2.2
21.7 4+ 18.0 4+ 3.2
3.1 4195 4+ 2.7
14.4 + 22.8 + 3.1
84.8 + 26.6 + 4.3
62.9 + 19.8 + 3.7
102.2 + 21.5 + 3.9
157.3 + 24.1 + 4.2
201.1 + 25.6 + 4.3
290.6 + 27.8 + 4.4
311.0 + 28.4 + 4.1
385.7 + 30.5 + 4.0
395.3 + 30.4 + 3.8
425.6 + 31.6 + 3.8
558.6 + 33.9 + 3.8
618.5 + 34.9 £ 3.7
694.2 + 37.1 + 3.7
816.0 + 38.7 + 3.8
845.0 £ 38.7 & 4.0
850.9 + 38.2 & 4.5
936.2 + 39.4 £+ 5.8
905.0 + 39.5 + 7.3
905.3 + 39.4 + 9.4
849.7 + 37.0 + 11.4
395.3 £ 26.2 + 7.1
331.9 + 24.4 £+ 6.8
272.9 + 40.2 +123
91.3 + 15.1 T§%?

11+57+11
10.9 £ 9.0 + 1.6
154+ 98+ 1.4
724114+ 1.5
424+ 133+ 2.1
62.9 + 19.8 + 3.7
102.2 + 21.5 + 3.9
157.3 + 24.1 + 4.2
201.1 + 25.6 + 4.3
290.6 + 27.8 + 4.4
311.0 + 28.4 + 4.1
385.7 & 30.5 + 4.0
395.3 &+ 30.4 + 3.8
425.6 + 31.6 + 3.8
558.6 & 33.9 & 3.8
618.5 + 34.9 + 3.7
694.2 + 37.1 + 3.7
816.0 & 38.7 + 3.8
845.0 + 38.7 + 4.0
850.9 + 38.2 + 4.5
936.2 + 39.4 + 5.8
905.0 & 39.5 + 7.3
905.3 + 39.4 + 9.4
849.7 + 37.0 + 11.4
790.6 + 52.3 + 14.1
663.9 & 48.7 + 13.5
545.8 + 80.4 +249
182.5 + 30.3 T2

Table 5.1: The 9(2S) yields before (uncorr.) and after (corr.) detector efficiency corrections with their statistical and systematic uncertainties. The inverse
detector efficiency correction factors &; are rescaled so that the total number of events remains the same after correction. The yields are given with an
artificial level of precision, because we want to show the dynamics of the yield change and to treat all the m, slices equally, and therefore keep an excessive

number of digits.
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€01

Mar range | Uncorr. X (3872) yield | Uncorr. X (3872) yield | inv. eff. corr. factor, | Corr. X (3872) yield | Corr. X (3872) yield
GeV /c? per slice per 20 MeV /c? &(1+ %i(&)) per slice per 20 MeV /¢?
(stat. & syst. error) (stat. & syst. error) (syst. error only) | (stat. & syst. error) | (stat. & syst. error)
280 - 360 -44.3 + 46.5 + 8.4 -11.1 £ 11.6 £ 2.1 0.800(1 + 0.086) -3044+372+74 -894+93+1.8
360 - 440 -69.3 £ 55.3 £ 8.4 -17.3 £ 13.8 £ 2.1 0.929(1 + 0.041) -64.4 £ 51.3 £ 8.2 -16.1 £ 12.8 £ 2.1
440 - 490 -11.7 £ 454 £ 84 -4.7 £ 18.2 £ 3.4 0.999(1 + 0.020) -11.7 £ 454 £ 84 -4.7 £ 18.2 £ 3.4
490 - 540 69.6 £ 47.5 + 8.4 27.8 £19.0 £ 34 1.032(1 4+ 0.010) 71.8 £ 49.0 £ 8.7 28.7 £19.6 &£ 3.5
540 - 570 -15.3 £ 39.2 +£ 84 -10.2 £ 26.1 £ 5.6 1.045(1 + 0.005) -15.9 4+ 41.0 £ 8.8 -10.6 = 27.3 £ 5.9
570 - 600 103.9 £ 37.6 + 8.4 69.3 £ 25.0 £ 5.6 1.047(1 + 0.003) 108.8 &= 39.3 £ 8.8 725+ 26.2+5.9
600 - 625 61.0 £ 36.8 &+ 8.4 48.8 £29.4 £ 6.7 1.042(1 4+ 0.002) 63.6 = 38.4 £ 8.8 50.9 £ 30.7 £ 7.0
625 - 650 101.8 £ 37.7 &+ 8.4 81.5 £ 30.2 £ 6.7 1.033(1 4+ 0.003) 105.2 £ 39.0 £ 8.7 84.2 £ 31.2 £ 7.0
650 - 670 66.0 £ 33.6 = 8.4 66.0 &+ 33.6 == 8.4 1.022(1 + 0.006) 67.4 £ 34.3 £ 8.6 67.4 £ 34.3 £ 8.6
670 - 690 1189 + 34.3 + 84 1189 + 34.3 + 84 1.008(1 + 0.008) 119.8 + 34.6 £ 8.5 | 119.8 + 34.6 + 8.5
690 - 710 165.5 £ 35.1 + 8.4 165.5 + 35.1 + 8.4 0.991(1 + 0.012) 164.1 + 34.8 £ 8.6 | 164.1 + 34.8 +£ 8.6
710 - 730 140.8 £ 33.4 + 8.4 140.8 + 33.4 + 8.4 0.972(1 £+ 0.016) 136.8 + 324 £ 85 | 136.8 + 324 + 8.5
730 - 750 164.4 £ 32.2 &+ 8.4 164.4 £ 32.2 &+ 8.4 0.949(1 + 0.020) 156.0 £ 30.6 £ 8.6 | 156.0 = 30.6 &= 8.6
750 - 765 182.2 + 30.4 150 243.0 + 40.5 T2 0.927(1 £ 0.025) 168.9 & 28.2 T2 | 225.3 £ 37.6 T
765 - 770 35.4 + 14.8 T30, 141.6 + 59.3 T4 0.970(1 + 0.028) 34.3 + 14.4 15}, 137.3 4+ 57.5 7§23
770 - 775 10.2 + 9.3 +50 40.9 + 37.3 +320 0.956(1 =+ 0.030) 9.8 + 89 77 39.1 + 35.7 +306

Table 5.2: The X (3872) yields before (uncorr.) and after (corr.) detector efficiency corrections with their statistical and systematic uncertainties. The
inverse efficiency correction factors &; are rescaled so that the total number of events remains the same after the correction. The yields are given with an
artificial level of precision, because we want to show the dynamics of the yield change and to treat all the m, slices equally, and therefore keep an excessive
number of digits.



108 ¢ pt "+1std. dev."

nominal pt
------- Half max-min dist. = 0.51%

1.06— pt "-1 std. dev."

. nominal pt

Foo N e Half max-min dist. = 1.40%
1.04+—
1.02—

Inv. eff. corr. ratio{im(mm)/&(mmo for Y(2S)

0'980.3 0.4 0.5

TUTMass [GeV/cz]

Figure 5-12: The systematic variation in efficiency for the 4(2S) coming from the parametrization of the Monte
Carlo p; spectrum.
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Chapter 6

Fitting 1 (2S) and X (3872)
mqanx Spectra with Theoretical Models

6.1 Models for the m,, Spectra of Charmonia

The dipion mass spectrum for the 1(25) is very well studied theoretically and a few models [15,
107, 108, 109, 110] have been developed to describe its shape. References [111, 112] are very
helpful in providing explicit formulae for them. We will give a short overview of these models
and then apply them to our ¢(2S) data, to see that the shape of our m,, spectrum for ¢)(25)
is in accord with the previous knowledge about it. As was discovered back in 1975 with the
data collected by the MARKII experiment, this shape is very far from a simple phase-space
distribution [107, 113].

The models start their calculations with the matriz element M for the transition between the
initial charmonium states and the final state J/¢ 77, or, in spectroscopic notations, *S; 77 .
The square of the absolute value of this quantity gives a prediction for the dipion mass distribution
dfﬂ%. Reference [15] calculates the matrix element with the help of a multipole expansion of the
QCD Lagrangian. The model from Reference [108] gives a phenomenological analysis of the
shape of the m,, spectrum in the decay ¢ (2S) — J/¢r*n. The other models [107, 109, 110]
which we consider calculate the matrix element by applying current algebra and the partial
conservation of axial-vector currents to the chiral QCD Lagrangian. References [109] and [110)]
also include some multipole-expansion techniques. A brief review of these models follows.

6.1.1 Yan Model

Our baseline model is that of Yan [15]. This model is based on a Taylor series expansion of
the QCD Lagrangian. The idea behind the multipole expansion is the realization that one may
consider the process of the hadronic transition between the initial heavy-quark state ®' and the
final one ® as a two-step process: first the gluons are emitted from the heavy quark system
and then they are converted into light hadrons, ® — & + gg, gg — light hadrons. We will be
considering the heavy-quark system in the external fields generated by the light quarks. The
heavy-quark system moves slowly and has a much smaller size than the emitted light-quark
system [114]. Therefore, one can treat the heavy quarks non-relativistically, and the Taylor
series expansion of the color field converges quickly for heavy enough quark masses.

The author assumes that the multipole expansion is compatible with the hypothesis of partial
conservation of axial-vector currents, parametrizes the matrix element in terms of a few free
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parameters, and calculates the m,, spectrum for 3S;, 'P;, 3D],273 initial states decaying into
3Gyt

We fit our m,, spectrum of the ¢(2S) with the formula for the *S; initial state. Refer-
ence [111] explicitly gives the m.,, spectrum for this case as:

do B 2m72r B?
e (PS) % [(mgm*Qmi)2+3—A(miﬂ—2mi)(miﬂ—4mi+2K2(1+ m%ﬂ))+0(ﬁ)]’ (6.1)
where

2 2 2
K = Mz/)(QS) - MJ/(/) + mo .
2My(2s)

and PS is the 3-body .J/¢ mm phase space from Equation 5.1. The parameters A and B are free
parameters of the theory. The term O(B?/A?) is a higher-order correction, which was originally
derived in Reference [15], but Reference [112] develops an explicit term:

B? 1 B? 2 a2 4 o 2 2 2 K
(32) = gg 2z [7an = 4ma)” + 3 (g — dma) (may + 6mi) =
3 4
g (miy + 2mdm 4 Gml) o], (6.2

T

+

In our fits we use both forms of the model = with and without the higher-order correction.

6.1.2 Brown — Cahn Model

The Brown Cahn model [107] preceded the Yan model. Yan’s model in fact includes some of
its techniques. Reference [107] does not use the multipole expansion techniques because they
were not yet available at that time. Instead they base their calculations on a chiral Lagrangian
approach. The details of the model are given in Reference [107]. Here we constrain ourselves to
the main conclusions. Neglecting chiral symmetry breaking, Reference [107] expresses the matrix
element for the ¢(2S) — J/¢YnTn~ decay as:

M = F e d|—q" A+ Q0B + (€ Gié - 3 + - e - 1) C},

where F; is the pion decay constant, € and ¢ are purely spatial polarizations of the .J/t¢ and the
) (2S), ¢ and ¢4 are the pions’ four-momenta, and A, B, and C are parameters. Both the .J/1
and 1(2S) are treated non-relativistically. The relativistic corrections are assumed to be small,
as well as the momentum-dependent variations of A, B and C. According to Reference [107],
the only significant corrections possibly may come from the S-wave pion-pion rescattering.

The parameters A and B turn out to be the same as for the Yan model. The terms associated
with parameters B and C' have strong angular correlations between the momentum of the dipion
system and the momentum of the J/i¢. Such correlations were experimentally not detected at
the time [113], and therefore Reference [107] assumed that B = C' = 0. The m,, spectrum in
this model is given by:

dN

-~ (PS) x (m2, —2m?2)*, (6.3)

where PS denotes the J/i¢)mm phase space. This formula has no parameters except for the
normalization factor. It is important to notice that Equation 6.3 is obtained from Equation 6.1
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if the parameter B is set to zero.

6.1.3 Pham — Pire — Truong Model

The authors of this model [108] calculated the matrix element M of the ¢(2S) — J/Yntn~
transition starting from the general assumption:

M=f € +gle- (g1 + )€ (@1 +aq))+hle (g1 — @))€ (a1 — ),

where € and € are polarizations of J/¢ and ¢, ¢; and ¢o are are the pions four-momenta and
f,g and h are the scalar functions of the masses and energies of the involved particles.

The m,, spectrum obtained from this matrix element did not agree with the data [115], and
therefore the authors reduced the matrix element to the simplest possible form:

M = (¢ -€)(fi + foa1 - q2).
The m,, spectrum obtained from this matrix element is

dN
dmmr

~ (PS) x (Mg — Am2)?, (6.4)
where ) is a free parameter. This formula is a generalization of Brown — Cahn Equation 6.3.

6.1.4 Voloshin — Zakharov Model

The Voloshin  Zakharov [109] model is based on a chiral Lagrangian approach and utilizes some
multipole-expansion techniques to calculate the parameters of the Lagrangian. The matrix ele-
ment in this model is initially calculated in the chiral limit m, = 0 and then a phenomenological
term Am?2 is added. Reference [111] quotes the differential cross-section for this model as:

dN
~ (PS) x (myr> — Am2)?, (6.5)

dmmr

where PS stands for .J/¢ mm phase space. Equations 6.5 and 6.4 are mathematically the same,
so that we unify them under the same name “PPT/VZ model”. It is worth noting that this
formula (Equation 6.4 or Equation 6.5) for A = 4 is what we use in the Monte Carlo generation
in this analysis as the S-wave parametrization of Chapter 4.

6.1.5 Novikov — Shifman Model

The Novikov — Shifman model [110] is a more elaborate version of Voloshin — Zakharov anal-
ysis [109], published just a few months later. This model includes smaller terms, formally of
order «y, which Reference [109] has neglected in the leading order. Reference [111] puts matrix
element M for this model in a simple, easy-to-use form:

2m2, 3 Am? 1

MN{qQ—m(AM)Q(I—F " )+§m[(AM)2—q2](1— q;)(cosQH;—g)},

where ¢ is the four momentum of the dipion system in t(2S) reference frame, 6% is the angle
between the .J/¢ direction and the 7" in the )(2S) rest frame, and AM = Myg) — M)y.
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The parameter k is a free parameter of the theory. Reference [116] predicts  to be about
0.15 ~ 0.20. The parameter « is expected to be different for ¢/(2S5) and for other charmonia
states. The differential cross-section is:

dN

— ~ (P M?
dmd cos 6% (PS) x ’

where PS is the phase space. The m,, spectrum is given by [111]:
2

N IVE e { [ s(AMP (14 220+ jamy? - (- ) (6.6)

AMgr q 5 q

This model predicts a small D-wave admixture to the predominantly S-wave dipion system. The
matrix element consists of three terms, the first two correspond to S-wave contributions and the
last one to the D-wave. A non-zero x means that there is some D-wave component, but this is
a small effect because the coefficient % is small.

6.2 Fitting the m,, Spectrum of the ¢ (2S)

We want to apply the reviewed models to our m,, spectrum to be able to compare our data
to the existing knowledge about its shape. We do a bin-integrated x? fit to our data with the
theoretical models described above. The naive x? would be:

2 _ Ni&; — Ti>2

where N; + o(N;) is the raw yield in the i-th m,, slice, & is the nominal detector efficiency
correction function &(m,,), integrated over the i-th m.,, slice, and T; is the theoretical yield
prediction for i-th slice, also integrated over the i-th m,., slice.

But because we have shape-related correlations in the uncertainty of the detector efficiency,
i.e. correlations in the uncertainties of the corrections o*¥*(&;) between neighboring m., slices, we
need to include them in this 2. Namely, we want to take into account the correlated systematic
uncertainty due to variations in the shapes of the assumed m,, and p; spectra. We cannot do
this by propagating the error along with o(N;) in the denominator of the x?, because in that case
the errors would be treated as uncorrelated. So, we take a different approach. Let us consider
the m,, parametrization first.

To account for the correlated systematic uncertainty in the variation of the m,, shape we
change this shape from the nominal S-wave parametrization to the phase-space one. In mathe-
matical language, we substitute the nominal correction function &(my,) by the changed function
EP%(myy), introduced in Section 4. We consider this change in shapes to correspond to a one
standard deviation variation. To include this change into the fit we create a new floating param-
eter a, governing the m,, shape. This parameter continuously controls the change of this shape
from S-wave (at a = 0) to phase-space (at a = 1). Mathematically this means that we multiply
the yields N; by a factor [1 + a(v/® — 1)]. The expression v/¥ here denotes the average of the
continuous function from Equation 5.2, 7 (m ;) = €% (mxr) /€ (Mgr), over the i-th m,, slice
range. The parameter a is allowed to float, but is nominally constrained to have zero central
value and a standard deviation of one.

The y? function properly including the correlated systematics uncertainty on the m.,, spec-
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trum parametrization looks like:

2 ]\CE,[I + a('YiPS - 1)] - T; ? a2
=2 < (NJE + a7 — 1) ) o (67

where the term a? should be interpreted as (“;0)2. This term introduces one more degree of
freedom and one more parameter, so that the total number of the degrees of freedom does not

change.

Having included such a correction for the change of the m,, shape into the x?, we do the
same for the p, shape. We change the p, spectrum parametrization from the nominal e+t +azp;
to the functions £*'7(m,,), defined in the Section 5.2.2. These functions are considered as
corresponding to the variation of the shape by one standard deviation up and down (+10).
Then we introduce one more floating parameter, b, controlling the change of the shape of the
correction function from the nominal (at b = 0) to the changed (at b = 1). Mathematically, we
multiply the yields by one more factor, [1 4 b(y;"'? — 1)]. The expression 7;"'7, again, means the
ratio of the correction functions from Equation 5.4, v (m,) = €X' (mrr) /€ (Mg, ), integrated
over the i-th m,, slice. The parameter b is also allowed to float but constrained to have a central

value of zero and a standard deviation of one.

The full x? function properly including the correlated systematics uncertainty looks like:

s N~ (NG a0 = DI b - TN
Ve ( o(N)&[L+a(yf = D)][1+b(y," = 1)] ) +tat+ b (6.8)

We have obtained two systematic variations for the p; spectrum, y™'? and v~ '?, corresponding

to the change of the shape of the p;, spectrum by one standard deviation steeper and shallower
in p; as determined in Section 5.2.2. It is a somewhat delicate matter of how to handle two
asymmetric p; variations into one uncertainty. Fortunately, the effects we are concerned with
are small and we simplify things by taking the variation which has the largest impact on the
shape, and use it to get a conservative estimate of the systematic uncertainty. In order to choose
between y7'7 and y~'7 let us temporarily put a = 0. If there were no p; variation (i.e. coefficient
b were fixed to zero) the fitted x? would necessarily be greater than with such a variation (i.e.
non-zero b). For the systematic variation we want to use the p, shape which is the furthest from
the nominal one. We look at the change in the fit x? to find out which shape is the furthest.
Table 6.1 shows the x? values for using the v™'° and v '? in the x? from Equation 6.8, and with
the theoretical function 7; being Yan’s formula for S-state with higher-order corrections. One
can see that the biggest change in x? value between the naive x? fit (a = b = 0) and the full y?
fit is achieved when 717 is used. For this reason we take v !° for the analysis.

The use of the fit x? for the selection of v '7 over ¥ may in principle bias our fit results,
but we expect this bias to be small. The change in x? due to using "7 instead of v is less
than 0.5 unit and the change in the fit result is small too: the B/A parameter is different by
a tiny fraction of statistical uncertainty. Also, the ¢(2S) fit is only used to obtain the already
known shape of the m,, spectrum for 1)(2S), we do not extract any new physics information
from this fit, so that we neglect the possible small bias.

—lo
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Figure 6-1: Fit of the m,, spectrum for ¢)(25) with theoretical curves from References [15, 107, 108, 109, 110].
TOP: the fits with all the parameters floating. BOTTOM: the fits with only normalizations floating and all other
parameters are fixed to the values from BES [111].
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Parameter b vt or v 7197 | Parameter a Fit 2 B/A

Floats: 0.64 £ 0.56 | Using v™!? | Fixed to zero 39.8234 -0.343 £ 0.021
Floats: 0.75 £ 0.48 | Using v ! | Fixed to zero 39.3317 -0.341 £ 0.022
Floats: 0.62 + 0.58 | Using v™'7 | Floats: 0.89 4 1.40 37.8277 -0.344 £+ 0.022
Floats: 0.73 + 0.50 | Using v ' | Floats: 0.89 + 0.39 | x2,.. = 37.3978 | -0.342 + 0.022
Fixed to zero - Fixed to zero Xoaive = 40.3365 | -0.347 + 0.021
Fixed to zero - Floats: 0.90 £+ 1.40 38.2782 -0.344 £+ 0.021

Table 6.1: The naive and the full x> with y*'?, obtained from the m,, spectrum fit for )(2S).

6.3 Fit Results for the ¥ (25)

The top part of Figure 6-1 displays our ¥(25) data fitted with the different theoretical models.
The Yan model for the 3S,- - state without higher-order correction describes the data reasonably
well, with a 6.0% fit probability. The inclusion of the higher-order correction diminishes the y?
by one unit and thus increases the fit probability to 6.9%. The PPT/VZ model also describes
the data, with a fit probability of 3.4%. The Novikov — Shifman model yields an even higher fit
probability of 10.3%. All these fits are very close to each other, except for the Brown — Cahn
model. This model does not describe the data, because of its assumption that B = (. The fit
x? of 226 is so large for the given number of the degrees of freedom of 27 that we do not even
calculate the tiny probability for this fit.

The complete results of these fits are given in the Table 6.2. This table also compares the
parameters in our fits with those obtained by the BES Collaboration [111] for the ¥(25) —
J/wmtr~ decay. Their sample is quite large [23k of (25)] and they fit the m,, spectrum
with all the same models as we do, except the Brown Cahn model. The BES data and fits
are given in Figure 6-2. All four curves in this picture are very much alike. From Table 6.2 we
conclude that our fit results are very close to the BES ones — less than one standard deviation
away. The numbers in the last column of Table 6.2 are obtained by fitting CDF data with the
theoretical parameters fixed to the BES values, with only the normalization left to float. By fixing
a parameter we loose a degree of freedom, so that the fit probabilities in the last column may be
higher than the original ones. These fit probabilities are reasonable, and this fact confirms, that
our data is in good agreement to that of the BES. The actual fits of our data with the theory
parameters fixed to the BES values are shown in the bottom part of Figure 6-1.

Since our m,, spectrum for the ¢)(25S) is close to that from the large BES sample, we conclude
that our technique of obtaining the m,, spectrum, including the detector efficiency corrections,
are vindicated.

6.4 Models Used for the X (3872)

Unlike the 9(25), the quantum numbers of the X (3872) are unknown. We do not even know
whether it is a cc¢ state. As pointed out in Section 1.3, the properties of the X (3872) could be
inferred from the quantum numbers of the dipion system in the X (3872) — J/¢w"n~ decay.
According to Equation 1.17, the dipion system may be considered either 07+ or 17—, where we
ignore the less likely possibility of D-wave pions.
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Our result

Result from BES [111]

Difference

Our result with

parameters fixed
to BES value

Yan model [15]
35, state
with higher-order corr.

B/A = —0.342 £ 0.022
X}/NDF = 37/26
Prob = 6.9%

B/A = —0.336 £+ 0.009 4+ 0.019
X?/NDF = 60/45
Prob = 6.4%

—0.006 + 0.024 (0.20)

BJA = —0.336

X?/NDF = 41/27

Prob = 8.7%

Yan model [15]
38, state

B/A = —0.245 £ 0.011
X2/NDF = 38/26
Prob = 6.0%

BJA = —0.225 £ 0.004 £ 0.028
Y?/NDF = 84/45
Prob = 0.02%

~0.020 £ 0.030 (0.70)

BJ/A = 0225

X?/NDF = 37/27

Prob = 4.0%

no higher-order corr.
Brown-Cahn model [107] X’/NDF = 226/27
PPT/VZ model [108, 109] A=4.344+0.15 A=4.354+0.06+0.17 —0.01 4+ 0.24 (0.040) A=4.35
X*/NDF = 41/26 X*/NDF = 69/45 ’/NDF = 41/27
Prob = 3.4% Prob = 1.0% Prob = 4.5%
Novikov - Shifman model [110] k =0.189 + 0.007 k= 0.186 4+ 0.003 4+ 0.006 0.003 £ 0.010 (0.30) k= 0.186

X*/NDF = 35/26
Prob = 10.3%

XQ/NDF = 55/45
Prob = 14.6%

X?/NDF = 36/27

Prob = 12.5%

Table 6.2: The results of the different theoretical fits of m,, spectrum for ¢/(25) compared to those obtained by BES Collaboration [111].
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Figure 6-2: The m,, distribution for the )(2S) produced by the BES collaboration [111]. The solid curve is
the Novikov-Shifman model, the long-dashed and short-dashed are the Yan’s 3S; model with and without the
higher-order corrections, respectively, and the dash-dotted curve is the PPT/VZ model.

The 07" dipions must come from C-negative states, either conventional charmonia or exotic.
To check if the X (3872) could be a C-negative charmonium state we fit our m,, spectrum with
the multipole expansion predictions from Yan [15] described in Section 6.1.1. They are developed
for 3S;-—, 'Pi+—, and ®D; 5 3-- charmonia. Unfortunately, we have no predictions for the shape
of the m,, spectrum for C-negative exotic states.

As for the 17~ dipions, they come from C-positive states, again, either conventional charmonia
or exotics. As we saw at the end of Section 1.2, the two pions in the 17~ state must have isospin
I = 1. But charmonium has isospin / = 0, so that the charmonium decays to J/¢ (777 )
are isospin violating, and should normally be highly suppressed. However, we still take this
option into account. The states that decay into 1~ dipions proceed through a virtual p°, and
we describe their dipion mass spectra by a Breit-Wigner resonance for the p° modulated with
the J/¢ m"m~ phase space. This shape, though, does not distinguish between the hypotheses of
the X (3872) being a conventional C-positive charmonium and an exotic state.

6.4.1 07T Dipions

The formula for the multipole expansion of Yan for the 3S; — 35,777~ transitions is given in
Equation 6.1. Of course, it should be modified to accommodate the different masses of the ¢(25)
and the X (3872).

The prediction for the !P; — 3S;7% 7~ transition is obtained in the following way. Refer-
ence [117] gives the multipole expansion prediction for the *S; — 'P7F7~ transition. However,
in the non-relativistic approximation of the multipole expansion the spin and angular momen-
tum components are decoupled and the expansion only depends on the orbital components. This
means that the m,, distribution for the 3S; — "P,7t 7~ is the same as for the 'P, — 3S,7t7~
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transition [118]. The m,, distribution for the 'P; is:

AN ) ava | Ko K§
s K Mgﬂ—4m3r{(Mm—4mﬂ) 4M;§ﬂ_3Mgw_1
K? [ K?
B -t N ()
where
My + Myyy)* — MZJ[(Mx — M) — M2
K = \/[( X .1/1/1) 277\4][( X .I/w) 7r7r]7 and (610)
X
M} — M3, + M
/w T
P . 6.11
; AT (6.11)

For the three D-wave states, 3D, 23— — 38, —7m*7~, the multipole expansion gives:

AN 2 K2 8 K*
~ K/ M2 —4m2 < (M? — 4m?)? |1+ = — MY +2M? m? + 6m?
dmﬂ—ﬂ Vv mﬂ' {( Viwe m?‘r) + 3]\4’7%7.r + 15 M#ﬂ.( Viwis + 7r7rm7r + m?‘r) Y
(6.12)

where K is defined as before (Equation 6.10) [15].

6.4.2 17~ Dipions

The remaining (C-positive) charmonia states fall under the .J/1 p° heading. This case is also
what is expected from the C-positive exotic interpretation of the X (3872). As noted above,
we assume that the dipion spectrum follows the p® Breit-Wigner distribution modulated by the
3-body J/v mm phase space PS from Equation 5.1:

dN r
AMzr  (Mar — M,)? +T2/4

% (PS). (6.13)

To see the effect of the Breit-Wigner resonance in this formula more clearly, we also fit the
X (3872) data with the simple 3-body J/¢ 77 phase space.

6.5 Fitting the m,, Spectrum of the X (3872)

When we fit the X (3872) data we use the same method as for the ¢(2S5), namely we minimize
the x? from Equation 6.8. Just as in the 1(2S5) case we pick one of the systematic variations to
use for the p, spectrum: 717 or 4y 17, The Table 6.3 helps us to make this decision in favor of
717 the same as for the ¢)(25). This variation gives us the greatest change in the shape relative
to the naive y? fit, which is reflected in the largest x? change, i.e. lowest x? value. The theory
function chosen for these comparison fits is the same as for the 1(2S5) case : Yan’s formula for
the 3S; state with higher-order corrections. And just as for the 1)(25) case, even though the
choice of v and not v may introduce a bias into the fit, this bias is small. The changes
in both x? and the shape (the B/A parameter) are negligible. Also, this bias is formally only
present in the Yan’s formula for the 3S; state, the fit with the .J/v p° hypothesis, which will be
the most interesting result for the X (3872), was not utilized in selecting which systematic to use.

—1lo

114



CDF Il Preliminary, 360 pb*

"o 250F X(3872) - J/YriT

%.) - — J/Y p: prob = 36.1%

= 200} ... J/Y T Phase-Space

o -

N - i ; =.

. 150F Multipole Expansions for cc:

8_ C emeaas 3Sl: prob = 27.7%

o 100

Q O

> I R 7 (.
2 B0 S

N TR i~ b SRR (LI
,G\) - T -
o e
X

} . . ! . . . ! . . . !
>0 0.6 0.8

TrtMass [GeV/cZ]

Figure 6-3: Fits of the m,, spectrum for X (3872) with J/v p° hypothesis (Equation 6.13), with simple J/¢ 77
phase-space (Equation 5.1), and with multipole expansion for c¢ for the 3S;,! P and D 5 3 cases [15, 117].

6.6 Fit Results for the X (3872)

Figure 6-3 displays the fits of the X (3872) m,, spectrum with all formulae from Section 6.4:
the c¢ multipole expansion predictions for C-negative S-wave, P-wave and D-wave, the simple
3-body J/v¢ w7 phase-space hypothesis, and with the p° resonance modified by phase-space. The
results of the fit are summarized in Table 6.4. The parameter B/A there is free parameter of
the Yan model. The .J/1 p° hypothesis and c¢ multipole expansion for the *S; give the best
descriptions of the data. The fit probabilities are 36.1% and 27.7%, respectively. The c¢¢ multipole
expansions for the ' P, and ' D; and the simple J/v¢ 77 phase-space model are incompatible with
the data. The fit ¥2 in these fits is so large for the given number of degrees of freedom that we
do not even calculate the infinitesimal fit probability.

The similar m,, plot from the Belle Collaboration is given in Figure 1-1, together with fits
for the *S; drawn with dashed line and ® D; shown by solid line dipion states (Equations 6.1
and 6.12). One can see that the data are peaking somewhat stronger than both theory curves,
but the error bars are too large to make any firm conclusions.

6.7 Discussion of Theoretical Implications

Now let us discuss the implications of our fit results for the X (3872). We will consider separately
the 07" and 17~ dipion systems. First, we consider the charmonium options for the X (3872).
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Parameter b v or v 7177 | Parameter a Fit y? B/A

Floats: -0.03 £ 1.29 | Using v | Fixed to zero 16.6985 -0.582 £ 0.145
Floats: -0.22 + 1.32 | Using v ' | Fixed to zero 16.6913 -0.587 £ 0.110
Floats: -0.01 + 1.14 | Using y™'7 | Floats: 0.40 + 1.52 16.6203 -0.582 £+ 0.145
Floats: -0.22 + 1.32 | Using v '7 | Floats: 0.40 + 1.52 | x2,, = 16.6133 | -0.584 + 0.111
Fixed to zero - Fixed to zero Xogive = 16.6985 | -0.585 + 0.124
Fixed to zero Floats: 0.40 4+ 1.52 16.6203 -0.582 4+ 0.108

Table 6.3: The naive and the full x> with 4(¥1?) obtained from the m., spectrum fit for X (3872).

Model

Fit results for X (3872)

Multipole Expansion|

for cc

Yan [15]

35,1, higher-order corr.

B/A = —0.584+0.111
X?/NDF =17/14

Prob = 27.7%
Yan [117] ’/NDF = 127/15
]P]
Yan [15] X’/NDF =76/15
3D]

J /1w Phase-Space

X?/NDF = 102/15

X(3872) = J/4 0
(Breit-Wigner x PS)

/NDF = 16/15
Prob = 36.1%

Table 6.4: The results of the different theoretical fits of the m,, spectrum for the X (3872).
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n?*10,pc | Known | Mass | JP¢ of Comments
v
1'Sp-+ | ne(LS) | 2980
138, J /Y 3097
1'P+- he(1P) | 3525 | 0t*
13 Pyss Xeo(1P) | 3415 1
13P 4+ X (1P) | 3510 1
3P+t | xe2(1P) | 3556 1=~
1'Dy-+ 3838 177 |« my, allowed (isospin violating)
13D—— | (3770) | 3770 | 0FF
13Dy - 3830 | 0" | + ME prediction incompatible with data
13D - 3868 | 0T | «+ ME prediction incompatible with data
21Sp-+ | n.(25) 3638 | 1~
235, - ¥(2S) | 3686 | 0FF
2LP - 3968 | 0" | « ME prediction incompatible with data,
also can be excluded on other grounds
23 Py++ 3932 | 1 |« my,, allowed (isospin violating), but can be
excluded on other grounds (not seen in 7 fusion)
2P+ 4008 17~ |« my, allowed (isospin violating)
23 Pyiy 3966 17~ | < my, allowed (isospin violating), but can be
excluded on other grounds (not seen in 7 fusion)
3'Sp-+ 1=~ |+  my, allowed (isospin violating),
can be excluded on other grounds
33S1-— | ¥(4040) | 4040 | 0tF | < ME prediction compatible with data,
but can be excluded on other grounds

Table 6.5: Summary of standard charmonium states with the measured/predicted masses and the JFC of dipion
system in the decay into J/¢ 77 ~. The comments about possible assignments for the X (3872) in light of the
measured m,, spectrum shape are also given.

6.7.1 Charmonium

Table 6.5 summarizes the spin-parities of the standard cc states, the names of the known corre-
sponding particles and their masses and the spin-parities of the dipion system in the decay into
J/1pmFm~. The masses of the unobserved states come from Reference [32]. The states 2D, 3P,
3D and higher, and the states with L. > 2 are not included, because they are expected to be
too heavy for the X (3872) [32]. The options for the X (3872) are evaluated in the last column
in Table 6.5.

0+ Dipions

In Section 1.4 we considered a list of possible ¢¢ options for the X (3872) and found four viable
candidates: 1'Dy v, 13D, —, 1Dy~ and 23°P,++. Two of them, 1Dy~ and 1>Dy —, are C-
negative and decay into 0™ dipions. But our shape of the m,, spectrum clearly disfavors the
D-wave charmonium, based on the multipole-expansion predictions. The data favors the 35;- -
state. But all the low-level S, - states are known already: 13S;-- is J/v, 235~ is ¢(2S) and
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33S-- is 1(4040). The 4°S,-- state must be even heavier than 1)(4040), i.e. much heavier than
the X (3872). We, therefore, exclude the *S;-- option for the X (3872), even though its m,,
spectrum is compatible with the multipole expansion predictions.

A word of caution is in order. One may question whether the multipole expansion is a reliable
theory. Just like any other theory, it is based on a series of assumptions and approximations.
The question about its dependability is discussed in the literature [119, 120, 121, 122]. The main
point of this discussion is that the multipole expansion model does not have a very firm grounding
in experimental verifications. Despite several successes, its predictions are known to clearly fail
for T(3S) — Y(1S)n 7~ transition [123, 124]. This is a standing problem in quarkonia physics.

In summary, we found no viable conventional charmonium options for the X (3872) decaying
into 0" dipions based on the multipole expansion predictions. But the multipole expansion
model itself is not completely understood yet.

1~ Dipions

If the X (3872) is a conventional charmonium state decaying into a 1=~ dipion system then the
pions in the final state must have isospin I = 1. Since charmonium has I = 0, such a decay
would be isospin violating and, therefore, should be significantly suppressed. To consider the
1~ dipion for a conventional charmonium the X (3872) one needs to accept the isospin violation.
In principle, this is a plausible option if one takes into account the proximity of the X (3872) to
DYD*® and open channel coupling between these two states. The D°D*? system is not an isospin
eigenstate, so that we can “bypass” the isospin conservation law by virtual coupling to this state.

Another feature of the decay into a 17~ dipion is that this spin-parity coincides with the spin-
parity of the p’-meson, and that the decay proceeds via a p°. The upper kinematic boundary
for the m,, spectrum is below the nominal p° mass and only because of its large width [21] can
the p extend down into the allowed region. Figure 6-3 shows that our data are compatible with
the .J/1 p° hypothesis. There are two cc states available: the 1'Dy-+ and the 23 Py++.

If the X (3872) is a 1' Dy—+ then the isospin-conserving decay into n.7m "7~ is expected to have
a much higher branching ratio than the observed isospin-violating decay X (3872) — J/¢y ntn—.
Belle is searching for X (3872) — n.m"m~, but has not reported anything yet. Although, this
fact by itself cannot be considered as a strong objection against the 1'D, 4+ assignment for the
X (3872), because the 7, is quite hard to isolate. We conclude that the 1' Dy-+ charmonium is a
viable option for the X (3872).

The 2% P,++ state, being assigned a mass of 3872 MeV /c?, is expected to have a narrow width
1-2 MeV [13], which is consistent with the limit on the X (3872) width. The dominant decays
of the 23 P+~ state are predicted to be J/1¢ v and ¥(2S) v, where the former contradicts Belle’s
measurement (Equation 1.6). Also, the predicted mass of the 2°Pj+— is ~ 80 MeV /c? higher
than X (3872)’s observed one [13]. Nevertheless we consider the 23 P ++ as a viable charmonium
option for the X (3872) too.

Our conclusion is that if the X (3872) is a c¢ state decaying with isospin violation into 17~
dipion, then it must be either the 1' D, + or the 23 P, 1+.

6.7.2 Exotica

Now let us consider the implications of the X (3872) m.,, measurement performed in this thesis
for different exotic models described in the Introduction. These models consider the X (3872) as
glueball, hybrid, cusp and molecule (including other 4-quark states). Our main result, relevant
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for these models, is that the m,, spectrum is consistent with J/v p° hypothesis, which implies
the positive C-parity of the X (3872) .

The positive C-parity of the X (3872) invalidates the glueball model from Section 1.7 which
predicts the X (3872) with JP¢ = 1-~. For the case of the hybrid model, our results favor the
available C-positive option 1~ but does not answer the question if the X (3872) is a hybrid or
not. The same statement is true about the cusp hypothesis: our measurement is consistent with
predicted J¢ = 1*F, but conveys no further information as to whether the X (3872) is a real
bound state or a dynamic cusp in the rescattering amplitude at the D°D% threshold.

Speaking of the molecular hypotheses, we conclude that our measurement is consistent with
the models from the References [42] and [46], proposing molecular models with positive C-parity,
and disfavors the model from the Reference [12], considering the C-negative mixture of molecule
with ce.

The diquark-antidiquark model developed in Reference [48] predicts the JZ¢ of the X (3872) to
be 1*% which is compatible with our m,, measurement. Although, the X (3872) isospin doublet,
predicted by this model is not observed in our data (there is no “double-hump” structure in the
X (3872) peak), unless we see an unresolved mixture of both members of the doublet.
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Chapter 7

Conclusion

In August 2003 the Belle Collaboration announced discovery of a new state X (3872) found in
the exclusive decay Bt — K1tX(3872) — K" J/¢7mtn~. A few models were proposed to explain
the properties of this state — from conventional charmonium state to D-D* “molecules” and
other exotic hypotheses. To investigate the viability of these models, a wide net of searches for
other decay modes of the X (3872) was cast, mostly with negative results. The shape of the
mass distribution of the two pions in the decay X (3872) — J/¢ m*m~ may also shed light on the
puzzling nature of the X (3872).

In this thesis we measure the distribution of dipion masses by using a 360 pb~' sample of
dimuon triggers collected at CDF during the Tevatron’s RunII.

For comparison, and as a control, we have also extracted the m,, spectrum for the ¢(25) —
J/pmtr~ decay using the same technique. It is shown in Figure 4-10. This m,, spectrum is
well-studied experimentally and theoretically. Our measurement is consistent with prior mea-
surements [111], and confirms theoretical models described in References [15, 108, 109, 110]. The
model from Reference [107] has noticeable shortcomings due to an improper assumption about
the absence of strong angular correlations.

The measured m,, spectrum for the X (3872) is shown in Figure 7-1. The detector efficiency
corrections, which have a relatively minor effect on the shape of the m,, spectrum, have been
applied. The prior dipion mass spectrum measurements are given in Figures 1-1 (Belle) and 1-
2 (BaBar). Both have rather large uncertainties on the data points, which make it hard to
determine the shape precisely. We confirm Belle’s original report [1] that the m,, spectrum
peaks at high mass values.

We fit the m,, spectrum with theoretical models, based on a multipole expansion of QCD
Lagrangian for ce, for different c¢ quantum states. The 3S; charmonium fits the data quite well,
with the fit probability 27.7%. Although the 3S; charmonium hypothesis must be excluded on
other grounds. The multipole expansions for the 'P; and the ®D; 53 charmonia are in clear
disagreement with the data.

We also test the hypothesis that the dipion originates from a p° by fitting the spectrum with
a Breit-Wigner resonance multiplied by the 3-body .J/¢ w7 phase space factor. This hypothesis
fits the data very well, with the fit probability 36.1%. We conclude that our m,, distribution
for the X (3872) is compatible with .J/¢ p° hypothesis. This hypothesis, in turn, implies that the
X (3872) has positive C-parity.

The C-positive X (3872) is consistent with Belle’s evidence of the decay X (3872) — J/¢nn 7",
with the tripion being interpreted as the w meson [11]. Also, the positive C-parity of the X (3872)
is strongly confirmed by another result from Belle announced after the completion of this work:
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Figure 7-1: The measured m,, spectrum for X (3872) fitted with different theoretical models described in
Chapter 6.

the observation of the decay X (3872) — J/¢ v [17].

As for the nature of the X (3872) we can argue that it could be either a 1'Dy—+ or 23P++
charmonium decaying into J/t¢ 77~ with non-conservation of isospin, or C-positive exotic state,
such as a D°-D*® molecule.
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Appendix A

Mass Fits of p; Slices for the ¥ (2S)

This Appendix contains the J/¢)mT7~ mass histograms for different p, slices. We fit these
histograms to obtain the ¢)(2S) p; spectrum as described in Section 4.1. The resulting p; spectrum
is presented in Figures 4-1 and 4-2.

In all the fits presented here the ¢(2S) peak is approximated by a double Gaussian (Equa-
tion 3.1) with a common mean. On each plot are listed the total fitted yield Nysg), the relative
fraction of the second gaussian NV,., the common mean value myyg), the narrow width oy g
and the ratio of the wide width to the narrow width o,.. The zero fitted uncertainty means that
the parameter was fixed during the fit. The fit y2, the number of degrees of freedom DoF and

the fit probability are given too.
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Appendix B

Mass Fits of ps Slices for the X (3872)

This Appendix, just like the previous one, contains the J/¢ 77~ mass histograms in different
py slices. We fit these histograms to obtain the X (3872) p; spectrum, as described in Section 4.1.
The resulting p; spectrum is presented in Figures 4-1 and 4-2.

On each plot are listed the total fitted yield Nx, the X (3872) mass and width, the fit x?, the
number of degrees of freedom DoF' and the fit probability. The zero fitted uncertainty means
that the parameter was fixed during the fit.
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J/grmmass in p, range (13, 16) GeV/c
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Appendix C

“Realistic” Monte Carlo Generation

The computer simulation of the physics events occurring in the pp collisions and the subsequent
processes in the particle detector is used very often in the high-energy physics analyses. Such
simulation is based in on random sampling, that is why it is called “Monte Carlo”, after a small
principality in Europe known for its casinos.

In physics analysis one may use such computer simulation to model the features which can not
be measured by the detectors. For example, in this analysis we use Monte Carlo to calculate how
many particles escaped registering. Obviously, no detector can provide us with this information.

To simulate a physics particle, we need to specify all its important characteristics, such as
mass, energy, momentum, spin etc. Some of them (e.g. mass, spin, parity) are constants, which
must be setup before the generation. Others (e.g. energy, momentum) are, normally, varying
for different instances of generated particles. Often they are picked up at random from the
distributions prepared in advance. This is usually done by programs called generators, such
as PYTHIA [125], or HERWIG [126], or Bgenerator [127]. In this analysis we use the package
HeavyQuarkGen [102] developed at CDF. This package, normally used for single b-quark simula-
tion, or for bb pair simulation, was adopted for X (3872) simulation in our analysis.

After creation the particle is decayed into two or more other particles, which means that new
particles are also generated with their own masses, spins, parities, energies, momenta etc. The
program makes sure that all the conservation laws are obeyed during this decay. The quantities
which are not strictly determined by these laws, such as, for example, angular correlations, are
again selected at random, unless the rules for this selection are provided by the user. In this
analysis we use the package QQ [103] developed at CLEO, to decay the generated particle.

The decay products pass through the computer simulation of the detector. To obtain this we
use the GEANT package [128], which is designed to describe a very broad range of the detectors.
Once the detector is described in GEANT language, practically any kind of particle can be
put through it, and GEANT will mimic all the physics processes occurring as the particle passes
through the real detector. In particular, GEANT will simulate the responses of different detector
subsystems, which may be converted into banks similar to the ones used in data structures for
the the real detector.

The next step in Monte Carlo generation is the simulation of the trigger. At this point the
data banks from GEANT are fed into the real trigger algorithm (Section 2.2.5) which decides if
the event should be accepted or rejected.

After passing the trigger, the events go through the production stage in which the information
from the raw data banks is used to create physics objects such as tracks, jets, muons, electrons
etc., as described in Section 2.3.
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After the Monte Carlo is generated, one would usually compare it to the data, to make sure
that they match each other reasonably well. A lot of efforts was invested in CDF into devel-
opment the Monte Carlo framework, tuning the material description in GEANT and achieving
realistic detector resolutions [129]. However, the data taking conditions in CDF were not uni-
form, particularly in the early phase of Run Il operations. This means that during a few years of
operation, the detector underwent modifications, and that conditions changed between different
runs. To reflect these changes in Monte Carlo, the simulation is supplied with tables of run con-
figurations that truck the changes in data taking conditions. The number of the events generated
under particular conditions (taken from a particular run) is proportional to the luminosity of
this run. The Monte Carlo generated in this way is called realistic and it reflects the changing
run conditions.
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Appendix D

Mass Fits in my Slices for the 1 (25S)

This Appendix contains the J/¢¥m"7~ mass histograms in different m,, slices.

We fit these

histograms to obtain the (2S) m,, spectrum, as described in Section 4.3. The resulting m,.
spectrum is presented in Figure 4-10. See Appendix A for explanation of the numbers on each

plot.
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Appendix E

Mass Fits in my; Slices for the X (3872)

This Appendix, just like the previous one, contains the .J/¢ 7*7~ mass histograms in different
M. slices. We fit these histograms to obtain the X (3872) m,, spectrum, as described in Sec-

tion 4.4. The resulting m,, spectrum is presented in Figure 4-14. See Appendix B for explanation
of the numbers on each plot.
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Appendix F

Systematic Uncertainty on the Last
Few Slices in the m;; Spectra

During the J/¢ 77~ mass fits in the m., slices we fix the means and widths of the signals to the
values obtained from the whole-sample mass fit in all the slices except the last a few. In normal
slices the entries can smear in and out of the slice from both low and high mass neighboring slices.
In the last slices the entries can only smear in one direction, thus biasing the mean value towards
higher mass. If we allow the mean and width to float in all the slices, they indeed remain quite
constant throughout the whole m,, range, except the last a few slices, as shown in Figure F-1
for the 1(25).

Another special feature of the last a few slices in the m,, spectra is that the mass peaks in
them are very close to the turn-on of the background. As a result, the fit may have difficulty in
determining the background turn-on point.

To determine the systematic uncertainty on the yield in these slices coming from the variation
of the background parametrization, we perform a few special fits, in addition to the normal ones
and see how much the ¢(2S) yield changes. These additional fits include, e.g., the shift of the
turn-on value xy up and down, because for the last slices this may significantly change the yield.
Such variation need not to be done for the regular slices in the m,, spectra. Some fit variations
for these special slices are skipped, e.g. we do not try to fit the background with a polynomial,
because the polynomial does not work very well in the vicinity of the turn-on.

Special treatment is given for the last three (14th, 15th and 16th) slices in the X (3872) m,,
spectrum and the last two (27th and 28th) slices in the ¥(2S) m, spectrum. Below are given
the fits with the following variations for each slice:

e Fit “A” for each m,, slice represents the nominal fit, except for 15th and 16th slices for

the X (3872).

e Fits “C” and “D” show the mass fits with the X (3872) width or ¥(2S) narrow width
shifted up and down by one standard deviation from the fixed nominal value. The standard
deviation is determined from the fit of the X (3872) or ¢(2S) peak in the whole sample.

e Fits “C1” and “D1” show the mass fits with the X (3872) mass or ¢(25) relative normal-
ization N, shifted up and down by one standard deviation from the fixed nominal value.
The standard deviation is, again, determined from the fit of the X (3872) or ¢)(2S) peak in
the whole sample.
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Figure F-1: The ¢(25) mass (top) and narrow width (bottom) versus m,,. Both of them are almost constant
from one m,, slice to another, except for the last a few slices, where a clear bias is seen in the top plot.

e Fits “E” and “F” display the fit over the different mass range: 150 MeV /c? and 250 MeV /2,
correspondingly, instead of the nominal fit range 200 MeV /¢

e Fits “G”,“H” and “I” are performed with a floating X (3872) mass, a floating X (3872)
width and floating both X (3872) mass and width, correspondingly. For the last (16th) and
second to the last (15th) slices the X (3872) width is floating by default, so that the fit “H”
displays the case of fized X (3872) width. There is no fit “I” for these two slices. For the
¥(29) the fit “G” corresponds to the fixed N, and o, the fit “H” — to the fixed ¢(25)
narrow width; the fit “H1” — to the fixed ¢(2S) mass.

e In fits “J” and “K” a few points in the beginning of the range are skipped from the fit or
added to the fit to see what effect will this cause. Not all the considered bins have these fits.
We look at the fits individually to determine if these fit variations are worth consideration.

e Fits “M”  “Q” are related to the changes in the background turn-on point z,. These fits
will be discussed next. Fits “O” are accepted as nominal ones for 15th and 16th slices for
the X (3872).

e Fit “R” is done only for the last (28th) m,, slice for the ¢/(25). It will be discussed later.
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The background turn-on point zy is normally allowed to float in the fit within 420 MeV /c?
around the kinematic limit of the m,, mass: mass of J/v plus the low boundary of the m, slice.
But in the last few slices the turn-on comes very close to the mass peak and it becomes hard for
the fit to determine its value and uncertainty for it. This is an especially delicate problem for
the X (3872), due to the poor signal-to-noise ratio it is unclear what kind of signal is present.
In the last ¢(2S) slices at least there is unequivocal signal present, but one might debate how
much. Being in such an uncertain situation, we used the results of the lower m,, slices to project
an appropriate turn-on point, and an uncertainty on it, for the nominal fit of the last X slices.

To obtain the turn-on point and a reasonable systematic for the associated uncertainty in
each m,, slice, we plot the dependence of zq on m,,, fit it with the straight line z¢(m,.) =
A+ B(mg, — ml. ) and determine the projected value of zy at a given point m?_ (where the
value of zq is simply equal to A) as well as the projected uncertainty on A. The m?_ is chosen
to be the low edge of the given m,., slice.

The linear fits are shown in Figure F-2, where the last two points are not included in the
straight-line fit (the last three in the bottom plot) because we do not trust them, but we still
plot them as open circles as a check that they are not too far off the fitted straight-line. Each of
the three plots in Figure F-2 have the identical data, the only difference is that the linear fits are
performed around different expansion points m? _ for different slices, which are indicated by the
large filled circles. The text in the plots lists numerical details of the fit results. Notice that we
found it more convenient to measure x, from an arbitrarily chosen reference point of 3.7 MeV /2.

These linear fits provide us with a projection A of the expected turn-on point gy, and the
fitted standard deviation o4 defines a plausible range for the precision with which we may know
the turn-on value. This range for the turn-on is unconnected with what the .J/¢rt7~ spectrum
for that particular slice tells us. We study the “validity” of the projected standard deviation o4
value by varying the turn-on in the J/¢ 7t7~ fit by +104 while at the same time monitoring
the fit x2. Nominally the systematic uncertainty on z,, when we fix it to the projected zg, is
obtained by shifting the projection by one o4 up and down.

Now we consider this method in detail. First, let us look at the very last slice (slice 16) in
the m . spectrum for the X (3872). Fit “F-16-A” would normally be a nominal one. If we shift
the zy value by one nominal standard deviation up or down (Fits “F-16-M” and “F-16-N”) the
x? practically does not change, though one would expect it to increase by 1 unit. From this
we conclude that the normal fit grossly underestimates the uncertainty on the turn-on value .
Because of the unreliability of the “would-be” nominal value (and “would-be” nominal standard
deviation) of the turn-on, we adopt the projected value of the zy (3.7 + 169.604/1000) (Fit “F-
16-0”) and the projected standard deviation as the nominal ones. If the xy value is shifted by
plus or minus one projected standard deviation (Fits “F-16-P” and “F-16-Q”) then the X (3872)
yield changes from 10 + 9, up to 15+ 9, and down to 8 + 11. This variation gives a systematic
uncertainty on the yield due to xq of ™} candidates. However, the full yield systematic we adopt
is based on the whole ensemble of variations, and we find other effects that will give a larger
uncertainty on the high side.

The same procedure is followed for the second-to-last (15th) slice. In this case the fitter fails
to find the minimum in the nominal fit at all, because the x? curve looks like a steep wall going
into very shallow valley. To prevent the fitter from wandering in this valley and finally giving
us some random result, we again fix the turn-on to its projected value (Fit “F-15-O") instead of
its “would-be” nominal value (Fit “F-15-A”) and vary it by a projected standard deviation up
and down (Fits “F-15-P” and “F-15-Q") instead of the “would-be” nominal standard deviation
(Fits “F-15-M” and “F-15-N"). The change in the X (3872) yield from 35 + 15, up to 38 + 15,
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Figure F-2: The linear fits for the projected turn-on value of the .J/v 7* 7~ mass distributions for m,, slices.
In each plot the first few lower m slices (small full circles) determine the line, and the big full circle is compared
to the projected value on this line. The big full circle itself is not included in the fit. The big open circles are not
included in the fit too, they are only drawn for the comparison’s sake.
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xo value X2 | ¥(29) yield
3.68493 £ 0.00001 80.2 99
3.68551 ( = 3.68493 + 500) | 81.2 101
3.68415 ( = 3.68493 - 670) | 81.2 97

Table F.1: The zq scan for the last (28th) slice in the 1)(2S) m, spectra. The first line shows the zy value

with its reported uncertainty. The hand-made scan shows that the value is right; but our manual shift for change

in x2 by one unit corresponds to what MINUIT reports as a Jjgg standard deviations shift.

xo value X2 | ¥(29) yield
3.68045 £ 0.00092 68.8 292
3.96682 ( = 3.68045 + 40) | 69.8 304
3.67889 ( = 3.68045 - 1.70) | 69.8 278

Table F.2: The z( scan for the second-to-last (27th) slice in the 1(2S) m,, spectra. The first line shows the

zo value and the nominal uncertainty for it. The hand-made scan shows that the value is right; but our manual

shift for change in x2 by one unit corresponds to what MINUIT reports as a t?:g standard deviations shift.

and down to 31 4+ 16, gives us an estimate of the systematic uncertainty on the yield of only a
few candidates. The effects of the other systematic fit variations, though, will be much more
important.

For the 1(2S) we treat the uncertainty related to the z, position differently. The main
problem here is that the error matrix, calculated by MINUIT, is not complete, though the fit
converges. This results in a gross underestimation of the nominal uncertainty on the z, value.
The xy values and the uncertainties on them for both last (28th) and last-but-one (27th) m .
slices are given in the first lines of Tables F.1 and F.2. Fits “F-27-A” and “F-28-A” are produced
with these zy values. Had the uncertainties on zy been correct, we would vary xy by plus-minus
one standard deviation, and then compare the changed ¢(2S) yields to the nominal one, just
as for the X (3872). But because the reported uncertainties on the x, values are extremely low,
we determine them by hand. Namely, we do a scan of the fit x?, re-minimizing at each point
of the scan. Then we find the y? minimum and the places which correspond to the increase of
the x? by one unit (i.e. true standard deviations). These standard deviations for zy are adopted
as the nominal ones. The nominal value for z; does not get “re-defined”. Having done that
we determine the systematic uncertainty by varying the zy by plus-minus one nominal standard
deviation and looking at the respective ¢ (2S) yields. The bottom two lines in the Tables F.1
and F.2 show the positions of the true standard deviations. The corresponding fits are Fits
“F-27-M”, “F-27-N”, “F-28-M” and “F-28-N”.

For the last (28th) m., slice for the 1)(2S) we do one more novel systematic variation. Being
so close to the kinematic limit the Gaussian shape of the signal might undergo more dramatic
types of distortion, and for the ¢(2S) there is enough signal that we might actually be sensitive to
such an effect. In particular, by chopping the data into slices we may distort the simple Gaussian
into some other shape. We consider this by fitting the peak with an asymmetric Gaussian, i.e.
a Gaussian with different widths above and below the peak. The results of this is shown in
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Fit “F-28-R”. The fit actually prefers to zero out the low-mass half of the Gaussian. But some
residual mass smearing is going to take place anyhow and a vanishing low-side o is not physical.
We limit the fit so that the lower half of the Gaussian must have o > 1.5 MeV/c?, and the
turn-on is fixed to the value found in Table F.1. The fit comes to this limiting value, but still
maintains a respectable x?, which is in fact better than what our nominal fit (Fit “F-28-A”)
gives for this slice.

The purpose of all these fit variations is to see how much the yield changes among them. For
each m,, slice we find what are, generally," the highest and the lowest yields, calculate how far
they are from the default fit, and assign this difference as an asymmetric systematic uncertainty
to the yield from the nominal fit. The final systematic results are summarized in Table F.3,
which also indicates from which fits the uncertainties are derived.

Slice # Myr TANZE Default yield / Highest yield / | Lowest yield /
GeV /c? Fit # Fit # Fit #

X (3872) 14th | 0.730 - 0.750 | 182 + 30 / F-14-A | 197 / F-14-O 166 / F-14-D

X (3872) 15th | 0.750 - 0.765 | 35 + 15 / F-15-O 38 / F-15-C 14 / F-15-F

X (3872) 16th | 0.765 - 0.775 | 10 £ 9 / F-16-O 18 / F-16-Cl1 8 / F-16-Q

$(25) 27th | 0.580 - 0.585 | 292 + 43 / F-27-A | 304 / F-27-M | 270 / F-27-D

¥(2S) 28th 0.585 - 0.590 | 99 + 16 / F-28-A 112 / F-28-R 89 / F-28-D

Table F.3: The default, lowest and highest yields in the last slices in the m,, spectra.

F.1 Fits for the Last Three Slices in m,, Spectrum
for X (3872)

Mass of J/yrutin m(mm) range (0.750, 0.765) Gevic®
Uy

F N,=182£30 m,=38722400 0,=50%00
250 A= 0.1 p=531+075

E 553+0.19 a=048+0.07, .
[£1000*(x, - 3.7) = 152.850 £ 0.641 X" =34.5 DoF =35
* Prob = 49.8%

200
150

100

-t +++++++ Mﬁ |

50

Candidates / 5.0 MeV/c?

LARNRARRN EARRS ARSI

0

35 X
J/ymmtMass [GeV/c?]

Fit F-14-A: nominal mass fit (X (3872) mass and
width are fixed)

!'We consider on a case-by-case basis whether variations do indeed show plausible changes. There are occa-
sionally variations for which we have reasons to doubt their suitability, but this turns out to rarely, if ever, impact
our final systematic.
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Fit F-14-G: mass fit with X (3872) mass floating
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Fit F-14-I: mass fit with both X (3872) mass and
width floating
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Fit F-14-D: the X (3872) width is shifted by one stan-
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ation down from the nominal value
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Fit F-14-D1: the X (3872) mass is shifted by one stan-

dard deviation down from the nominal value
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Fit F-14-F: mass fit with the fit range increased to
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Fit F-14-H: mass fit with X (3872) width floating
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: the turn-on is fixed to the projected value.
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Fit F-14-P: the turn-on is shifted by one projected

standard deviation up from the projected value.
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X (3872) width floating
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Fit F-15-D: the X (3872) width is shifted by one stan-

dard deviation down from the nominal value.
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dard deviation up from the nominal value.
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Fit F-16-D: the X (3872) width is shifted by one stan-

dard deviation down from the nominal value.
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Fit F-16-E: mass fit with the fit range decreased to
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Fit F-16-C: the X (3872) width is shifted by one stan-
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Fit F-16-F: mass fit with the fit range increased to
250 MeV /2.
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Fit F-16-N: the turn-on is shifted by one standard

deviation down from the fitted value.
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Fit F-16-0O: the turn-on is fixed to the projected value

the nominal fit.
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Fit F-16-P: the turn-on is shifted by one projected
standard deviation up from the projected value.

Fit F-16-Q: the turn-on is shifted by one projected
standard deviation down from the projected value.

F.2 Fits for the Last Two Slices in m,, Spectrum for ¢ (25)
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Fit F-27-A: nominal mass fit (Nye;, 0y, mass and
width of ¢(2S) are floating).
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Fit F-27-C: the ¢(2S) width is shifted by one stan-

dard deviation up from the nominal value.
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Fit F-27-E: mass fit with the fit range decreased to
150 MeV /c?.
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Fit F-27-G: mass fit with fixed relative normalization

and relative width.
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Fit F-27-H1: mass fit with ¢(2S) mass fixed.
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Fit F-27-D: the ¢(2S) width is shifted by one stan-

dard deviation down from the nominal value.
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Fit F-27-F: mass fit with the fit range increased to

250 MeV /.
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Fit F-27-H: mass fit with ¢(2S5) width fixed.
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Fit F-27-1: mass fit in the way used for all slices except
for last two (Nper, orer, ¥(2S) mass and width are

fixed).
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Fit F-28-C: the ¢(2S) width is shifted by one stan-

dard deviation up from the nominal value.
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150 MeV /c?.
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Fit F-27-N: the turn-on is shifted down so that the
x? gets increased by 1.
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Fit F-28-D: the ¢(2S) width is shifted by one stan-

dard deviation down from the nominal value.
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Fit F-28-H: mass fit with ¢(2S5) width fixed.

Mass of J/yrutin m(mm) range (0.585, 0.590) Gevic?
a0

Nyos) = 10117 N, =0.00:+0.00
< 100 =
S F M, e, = 3687.6:0.3
2 eoF O, = 17%0.3 0, =3.030.00
o F A=1.02:0.04 a=033+010 B=4.46+143
g e x?=81.2 DoF =66 ==> Prob =9.7%
4 C
2 C
g wf
5 E
2 E
8§ 20F
ol L n L
37 375 38 385
J/iymmtMass [GeV/c?]

Fit F-28-M: the turn-on is shifted up so that the x?

gets increased by 1.
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Fit F-28-R: using asymmetric gaussian for the fit.



Appendix G

Efficiency Corrections for Phase Space
mqar Distribution

To estimate the systematic uncertainty due to our imperfect knowledge of the m,, spectrum for
the X (3872), we grossly change our nominal S-wave parametrization of this spectrum to a phase
space parametrization, given by Equation 5.1. The appropriate detector efficiency curves and the
input p; spectra for the Monte Carlo generation for this phase space model are shown in Figure G-
1 for the ¥(25) and Figure G-2 for the X (3872). We fit them with the same parameterizing
function exp(ag + a1p; + asp?) as for the S-wave case. The fitted slope parameter a; is different
from the S-wave case, but only by 1.4 standard deviations for the ¢)(2S). This difference for the
X (3872) is much smaller: only 0.3 standard deviations. Of course, these small differences can
not be dismissed as statistically insignificant, as the same data is being fit in both cases. We will
use these differences to estimate the systematics.

The comparison plots for the n and p; spectra between the phase space Monte Carlo and the
data are displayed in Figures G-3 and G-4. As we can see, the x? match quality is almost the
same as for the S-wave parametrization (Figures 4-5 and 4-6).

We use the phase space Monte Carlo result to obtain the inverse detector efficiency correc-
tion function £5(m,,), which is different from the nominal S-wave inverse detector efficiency
&(myy). The inverse efficiency £%(my,) is obtained by fitting the ratio of the corresponding

My, distributions before and after the detector, CPS(mW)/ZPS(mW), as shown in Figure G-5 for
both the 1(2S) and X (3872). The plots in this figure display the m,, spectra before (triangles)
and after (boxes) detector simulation and event selection. The points with error bars give the
inverse detector efficiency with the corresponding scale at the right-hand side of the plot. The
fitting function £7%(m,,) is also shown in each plot. The graphical comparison between & (1)
and £7%(my,) curves for the ¢(2S) and the X (3872) is given in Figure 5-7. From this figure
one can see that our detector efficiency corrections are only slightly sensitive to the m,, shape
and that it is not necessary to achieve a better approximation for the X (3872) than the S-wave
shape, which we use.
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pt spectrum for Y(2S), data Efficiency curve for (2S), MC, phase-space m,
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Figure G-1: The p; distributions of 1(2S). Upper-left plot: raw data. Upper-right plot: the detector efficiency
curve. Two lower plots are the ratio of the data and the efficiency curve in both linear and logarithmic scales.
The m,, parametrization used in the Monte Carlo generation for this Figure is phase space (Equation 5.1).
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pt spectrum for X(3872), data Efficiency curve for X(3872), MC, phase-space m_
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Figure G-2: The p; distributions of X (3872). Upper-left plot: raw data. Upper-right plot: the detector
efficiency curve. Two lower plots are the ratio of the data and the efficiency curve in both linear and logarithmic
scales. The m,, parametrization used in the Monte Carlo generation for this Figure is phase space (Equation 5.1).
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n of Y(2S), data-MC match
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Figure G-3: Top: the comparison between the n distributions of ¢)(25) in raw data and after Monte Carlo simu-
lation, generated with the phase-space m,, parametrization (Equation 5.1); middle and bottom: the comparison
between the p; distributions in linear and logarithmic scales.
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n of X(3872), data-MC match
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Figure G-4: Top: the comparison between the n distributions of the X (3872) in raw data and Monte Carlo
simulation, generated with phase-space m, parametrization (Equation 5.1); middle and bottom: the comparison
between the p; distributions in linear and logarithmic scales.
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m for Y(2S), Phase-Space m,, for X(3872), Phase-Space
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Figure G-5: The ratios (points) of pre-detector (triangles) to post-detector (boxes) m,, distributions, (i.e. in-
verse efficiency) for the phase space m,, parametrization for the 1(2S), left; and for the X (3872), right.
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