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Abstract

This paperdescribeghe applicationof four evo-

lutionary algoithmsto the identificationof fea-

ture subsetsfor classificationprodems. Be-

sidesa simple GA, the pape consides threees-
timation of distribution algorithns (EDAs): a

compat GA, an exterdedcompactGA, andthe

BayesiarOptimizationAlgorithm. Theobjectve

is to determire if the EDAs preseh adwartages
over thesimpleGA in termsof accurag or speed
in this prodem. The experimentsuseda Naive

Bayesclassifierandpublic-comainandartificial

datasets. In contrastwith previous studies,we

did notfind evidenceto suppot or rejecttheuse
of EDAs for this problem.

1 INTRODUCTION

In machine learning the prablem of supervisedlassifica-
tion is concered with using labeledexamges to induce
a modelthat classifiesobjectsinto a finite setof known

classes. The exanples are describedby a vector of nu-
meric or nominal featues. Someof thesefeaturesmay
be irrelevant or redurdant. Avoiding irrelevant or redun

dantfeaturess important because¢hey may have a nega

tive effect on the accurag of the classifier In additian, by
usingfewer featureswe may obtainsasingsin the costof

acquiing the data,andimprove the compehensibility of

theclassificatiormodel.Findingfeaturesubsetshatresult
in accurae classifierscanbe castasa searchprodem, and
simplegeneticalgorithns have beenusedsuccessfullyfor

this prablemin the past.

This pape presentsxpeiimentswith a simplegengic al-
gorithm (sGA), andthreeestimationof distribution algo-
rithms (EDAs): a commct GA (cGA), an extended com-
pactGA (ecGA),andtheBayesiarOptimizatian Algorithm
(BOA). Insteadof the mutationand cross@er operatios

of conventiond GAs, EDAs usea statisticalmocel of the
individualsthatsurvive selectionto geneatenew individu-

als. EDAs areanimportantsteptowardsolvingthelinkage
prodem, afundamentabbstacleto the applicationof sim-

ple GAs to prablemswith unknown relatiorshipsamory

variades. Numepus experimentalandtheoetical results
shawv that EDAs cansolve hardproblemsreliably andeffi-

ciently (Pelikanetal., 1999 Etxelerria& Larraiaga,199;

Miuhlerbein& Mahnig,1999.

Theobjective of this studyis to determire if EDAs present
adwartagesover simpleGAs in termsof accuray or speed
when appliedto featureselectionproblems. The expeli-
mentsdescribedn this pape usepublic-domainandartifi-
cial datasets. The classifierwasa Naive Bayes,a simple
classifierthat can be inducedquicKy, andthat hasbeen
shavn to have goodaccurag in mary prablems(Kohavi &
John,1997).

Ourtargetwasto maximze the accurag of classification.
The expelimentsdemastratethatall the featureselection
method tried hereresultedn higheraccuracisthanusing
all the features. However, in contrastwith otherstudies,
we found no evidenceto suppat or rejectthe useof the
adwvarcedEDASs in this problem.

The next sectionbriefly reviews previous applicatiors of
EAsto featue subseselection.Section3 describesheal-
gorithms, datasets,andthefitnessevalugion methal. The
expetimentalresultsare presentedn section4. Section5
concludesthis paperwith a summay anda discussiorof
future researclhdirectiors.

2 FEATURE SELECTION

In adomainwhereobjectsaredescribedy d featues,there
are2? possiblefeaturesubsets.Obviously, searchig ex-
haustvely for thebestsubse{usingary criteriato measure
quality) is futile. Oneapprachto dealwith this prodem
is to prepocesshedataandselectfeatuesbasedon prop
ertiesthatgoodfeaturesetsare presumedo have, suchas



orthagonalityandhighinformationcontent.This is known
asthefilter apprach(John,Kohavi, & Phleger, 199%). Al-
thoudh it canberelatively fast thefilter apprachmaypro-
ducedisapminting results,becauset ignores compleely
theinductian algoilithm.

An alternatve to prepocessinghe datais the wrapper ap-
proad. Thekey ideais to considetheinductian algorithm
asablackbox thatcanbeusedby a heuistic searchalgo-
rithm to evaluate eachcandidatdeature subsetJohn Ko-
havi, & Phleger, 199). Thefeaturesubsetith the higher
evaluatian is selectedasthefinal setonwhichto runthein-
ducerwhichthenshoud betestedon datanot usedduring
thesearch.

Numeraus searchalgorithms have beenusedto searchfor
featuresubsetgJain& Zongker, 1997). Geneticalgoiithms
are usuallyrepated to deliver godd results,but thereare
excepions wheresimpler (andfaster)algoritms resultin
highe accugacieson particulardatasets(Jain& Zongker,
1997

Applying GAs to the featue selectionprodem is straight-
forward: the chranosomesf the individuals contan one
bit for eachfeatue, and the value of the bit deternines
whetherthe featurewill be usedin the classification.Us-
ing thewrappe apprach,theindividualsareevaluatedby
trainingtheclassifierausingthe featuresubseindicatedby
the chronbsomeand using the resultingaccurag to cal-
culatethefitness. SiedleckiandSklansky (1989 werethe
first to describeheapplication of GAsin thisway.

GAs have beenusedto searchfor featue subsetsn con-
junction with several classificationmethals suchas neu-
ral networks (Brill et al., 1999 Brotheton & Simpson
1995, decisiontrees(Bala et al., 1996, k-nearestneigh
bors (Kelly & Davis, 1991, Punchet al., 1998; Raymer
et al.,, 1997, rules (Vafaie & Jong, 1998), and Naive
Bayes(Inzaetal.,199).

BesidesselectingeaturesubsetsGAs canextractnew fea-
turesby searchindor a vectorof numeic coeficientsthat
is usedto transfom linearly the origind featuregKelly &
Davis, 1991; Punchet al., 1998). In this case,a value of
zeroin the transfomationvectoris equivaent to avoiding
thefeatue. Raymeretal. (1997) andRaymeretal. (2000)
comhbnedthelineartransfamationwith explicit featue se-
lectionflagsin the chronosomesandreportedan advan
tageover thepuretransformationmethal.

As far aswe could tell, only one mocel-building EA has
beenusedpreviously to selectfeatue subsets.Inzaet al.

(199) andinzaetal. (200]) presentedxperimentswith an
algorithm thatlearnsa Bayesiametwork to mode promis-
ing solutions. Inzaet al. (200L) repated thatthe mockl-

building algorithm found subsetdhatresultin betteraccu-
raciesthansimple GAs andtwo sequentiafeatureselec-

tion algorithns. Theiralgoiithm is similar to oneincluded
in our study andwe usesomeof the samedatasets.

3 METHODS

This sectiondescribs the algorithns andthe datausedin
this studyaswell asthemethal usedto evaluatethefitness.

3.1 ALGORITHMS AND DATA SETS

The simple geneticalgorithm in this study usesbinary
strings,binary (pairwise)tourramentselectionwithout re-
placemet one-mint crosseer, and bit-wise point muta-
tion. SimpleGAs suchasthis have beenusedsuccessfully
in mary applicatiors. However, it haslongbeenrecogized
that the problemindependentcrosseer opeatorsusedin
simple GAs can disrupt groups of relatedvarialles and
prevent the algorittm from reachingthe global optimum
unlessexporentially-sizedpopuations are used(Thierens
(199) givesa gooddescriptionof this prablem).

One appoach to identify and exploit the relatiorships
amory variablesis to estimatethe joint distribution of the
individualsthat survive selectionandusethis distribution
to geneatenew individuals. Thecompexity of themodels
hasincreaedover time asthe methails of building models
from datamatue and more powerful compuers becone
available.Interestedeades canconsultthereviews by Pe-
likan etal. (199) andLarrafiagaetal. (1999).

The simplestmocel-building EA that was usedin the ex-
perimetts repated hereis the compat GA (Harik, Lobo,
& Goldbeg, 1998). This algorithmassumeshatthe vari-
ables (bits) that repesentthe problem are indepeident,
andtherefae it modelsthe population with a product of
Bernodli distributions. Thecompat GA recevesits name
from the compact way it representsthe population: the
cGA usesavectorp of lengthequalto theprodem’slength
[. Eachelementof p containghe probability thata sample
will take thevaluel. If theBernodli trial is not success-
ful the samplewill be 0. All positiors of p areinitialized
to 0.5to simulatethe usualuniform randan initialization
of simpleGAs. New individualsareobtainedoy samplirg
consectively from eachposition of p and concateating
thevaluesobtaired. The probabilitiesvecta is updatedhy
comparing the fitnessof two individuals obtainal from it.
For eachp;, k = 1,..,1, if thefittestindividual hasa 1 in
the k-th position py, is incresedby 1/n, wheren is the
size of the virtual populdion that the userwantsto simu-
late. Likewise, if thefittestindividual hasa O in the k-th
position,py, is decreasebly 1/n. ThecGA iteratesuntil all
positionsin p;, containeitherzeroor one.

The PBIL (Baluja, 1994 and the UMDA (Mihlerbein,
1999 areotherexanplesof algoithmsthatuseunivariate



modds andoperteon binaryalphabés. They differ from
thecGA in themethodto updatethe probabilitiesvecta.

Theextendedcompat GA (Harik, 1999 usesa prodict of
mauginal distributions onapartitionof thevarables.In this
modé, subset®f varialescanbemocdeledjointly, andthe
subsetsare consideredndependen of othersubsets.For-
mally, themodelis P = []}", P;, wherem is the numker
of subsetsn thepartitionof variablesand P; represets the
distribution of thei-th subset.The distribution of a subset
with k¥ memlersis storedin a table with 2¥ — 1 entries.
Theprodem corsistsonfinding a partitionthatmocelsthe
popuation correctly. Harik (1999) proposedagreed algo-
rithm thatinitially supposeshatall variadles areindepen-
dent. Themockl searchtriesto meige all pairsof subsets
andchooseghe meger thatminimizesa compleity mea-
sure basedon information theay. The searchcontirues
until no further subsetanbe memged. In contiastto the
cGA, theecGAhasanexplicit popuationthatis evaluatel
andsubjectto selectionat eachiterationof the algorithm
Thealgorithm builds the model consideriig only thoseso-
lutionsthatsurvive selection.The popuation is initialized
randamly, andnew individuals are generatd by samplirg
consectively from them subsetistributions.

TheBayesiarOptimizationAlgorithm (Pelikan,Goldbeg,
& Canti-Paz, 199) mockls the selectedindividuals us-
ing a Bayesiannetwork, which canrepresendepenlence
relationsamongarbitray numbe of variables. Indepen-
dently, Etxekerria and Larrafiaga(199) and Muhlerbein
and Mahnig (199) introducedsimilar algorithns. The
BOA usesagreedysearchio optimizetheBayesiarDirich-
let metric, a measureof how well the network represents
thedata(the BOA coulduseothermetrics).Theuserspec-
ifies the maximum numter of incoming edgesto ary noce
of the network. This numter correspadsto the highest
degree of interactionassumedmongthe varialles of the
prodem. As the ECGA, the BOA builds the modelcon-
sideringonly the solutionsthat survived selection. New
individuals are generged by samplingfrom the network.
ThemaindifferencebetweertheecGAandtheBOA is the
modé thatthey useto representthe survivors.

Figurel illustratesthe differentmodéds usedby the ecGA
andthe BOA. The ecGA cannotrepresentindividual rela-
tionshipsamory thevarigblesin a subset.

The classifierinducedin the experimentswas a Naive
Bayes(NB). This classifierwas chosenfor its speedand
simplicity, but the evolutionarywrapper methal is suitable
for any other supenised classifiers,as mertioned in the
previous section. In the NB, the probabilities for noninal
features wereestimatedrom thedatausingmaximumlik e-
lihood estimation(their obsened frequenciesin the data)
and apgying the Laplacecorrection. Numeric features
wereassumedo have a nomal distribution. Missing val-

uesin thedatawereskipped

The experiments used the C++ implemenations of the
ecGA(Lobo & Harik, 1999)andthe BOA versionl.0 (Pe-
likan, 1999 that are distributed by their auttors on the
weh! The ecGA codehasa nonlearnirg mode thatem-
ulatesthecGA. ThesGA andNaive Bayesweredeveloped
in C++. All progamswerecompled with g++version2.96
using-O2 optimizatims andexecuedon a Linux worksta-
tion with dual1.5GHz Intel Xeonprocessorgall progams
were executed on a single processor). For the ecGA and
theBOA codes, we usedtherandbm numbergeneatorsin-
cludedin their distributions, for everythng elsewe useda
Mersene Twister.

Thefirst four datasetsusedin the experimentsare avail-

ablein the UCI repasitory (Blake & Merz, 199B). The
datasetsarebriefly describedn tablel. Randon21 and
Redunént2laretwo artificial datasetswith 21 features
each. The tamget conept of thesetwo datasetsis to de-
fine whethe the first nine featuresare closerto (0,0...,0

or(9,9,..,9)in Euclidean distance Thefeatuesweregen-
erateduniformly atrancbmin therange[3,6]. All thefea-

turesin Randon21arerancm,andthefirst, fifth, andninth

features arerepeatedour timeseachin Redunént21.We

took the definitionof Redundat21from the paperby Inza
etal. (199).

3.2 MEASURING FITNESS

Sincewe areinterestedn classifiersthat generalizewell,

the fithesscalculationsmustinclude someestimateof the
genealizationof the Naive Bayesusingthe candichtesub-
sets. If enaigh dataare available,the genealizationmay
be estimatedy dividing thetrainingdatainto training and
testingsets.Thetraining setis usedto find the classcond-

tional prababilities,andthe accurag of the trainedclassi-
fier onthetestingsetis usedto calculatethefitness.

Unfortunately the training datasetsare small, so the pro-
cedue above maynotbe practicd in our case.Insteadwe
estimatethe gereralizationof the network usingcrossali-
dation. In k-fold crosswalidation, thedataD is partitionel
randamly into k non-overlappirg sets,D 1, ...Dy. At each
iteration: (from 1 to k), thenetwork is trainedwith D\ D
andtestedon D;. Sincethe dataare partitionedrandanly,
it is likely thatrepeded crosswalidationexperimentsretumn
differentresults. Although therearewell-knovn methals
to dealwith “noisy” fithessevaluationsin EAs (Miller &
Goldbeag, 1996) we choseto limit the uncetainty in the
accurayg estimateby repeatinglO-fdd crosswalidation ex-
perimerts until the standardieviation of theaccugagy esti-
matedrops belov 1% (or a maximum of five repetitiors).
This heuistic wasproposedby Kohavi andJohn(1997) in

!Availableatht t p: // wai | i gal . ge. ui uc. edu
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Figure 1: Representationf themodelsusedin theecGAandthe BOA.

Domain Instances Classes Numeric Feat. Nominal Feat Missing
lonosghere 351 2 34 - N
Seggmentatio 2310 7 19 - N
Sick Euthyroid 3163 2 7 18 Y
SoybeanLarge 683 19 - 35 Y
Random2 2500 2 21 - N
Redundat?1 2500 2 21 - N

Tablel: Descriptionof the datausedin the expetiments.Thelastcolumnindicatesf the datahasmissingvalues.



their study of wrapper method for featureselection,and
was adoptedby Inzaetal. (199). We usethe accurag
estimateasour fitnessfunction.

Eventhowh crosswalidationis expersive computationally

the costwasnot prohibitive in our case sincethe datasets
wererelatively smallandtheNB classifiers vely efficient.
If larger datasetsor otherinducerswere used,we would

have to dealwith the uncertaity in the evaluation by other
means suchasincreaing slightly the popuation size (to

compensatdor thenoisein theevaluaion) or by samplirg

thetrainingdata.We defera discussiorof possibleperfa-

manceimprovementauntil thefinal section.

Our fitnessmeasuredoes not include ary termto biasthe

searchtoward small featue subsets. However, the algo-

rithms found small subsetsandwith somedatathe algo-

rithmsconsistentlyfoundthe smallesisubsetshatdescribe
the target conceps. This suggestghat the datasetscon-

tainedirrelevant or reduindantfeaturesthat decreasedhe

accuray of the Naive Bayes.

4 EXPERIMENT S

The simple GA useda population with 100 individuals,
one-mint cross@erwith probability 1.0,andmutatian with
prokability 1/, wherel wasthelengthof thechranosomes
that correspondgto the total nunber of feature in each
prodem. Promisingsolutionswereselectedvith pairwise
binarytoumamentswithout repla@ment.The experiments
wereterminatedafter 50 geneations,althoughwe did not
obsere muchimprovemeirts after 10-2) generatias.

The cGA, ecGA, and the BOA useda popuation with
1000individuals. Larger populationswerechoserbecause
thesealgorithms may needlarge samplego estimatecor
rectly the paraméers of their modds of promisingsolu-
tions. Thesealgoithmsweretermiratedaftera maximum
of 50 geneations. The remainar of the paranetersused
werethe defaultsprovidedin their distributions: the cGA
andecGAusedtourramentsamorg 16 individuals,andthe
BOA usedtruncatian selectionwith athresholdof 50%.

To evaluatethegenealizationaccurngy of thefeatureselec-
tion methodsye useds iteratiors of 2-fold crosswalidatian

(5x2cv). In eachiteration the datawererancdbmly divided

in halves. Onehalf wasinputto the featureselectionalgo-
rithms. The final featuresubsefoundin eachexperiment
was usedto train a final NB classifier(usingthe training

data),which wasthentestedon the otherhalf of the data.
The accungy resultspreseted in table 2 arethe averag

andstandadl deviationsof thetentests.

To determire if the differencesamoryg the algoithms are
statistically significant, we useda comhned F test pro-

posedby Alpaydin (1999. Letpgj) denotethe difference

in the accurag ratesof two classifiersn fold j of thei-th
iterationof 5x2 cv, p = (pgl) + p§2))/2 denotethe mean,
ands? = (pi" — p)* + (pi”) — p)” thevariarce, then

A 2
E?:l 25:1 (pgj))
- 2 Z?=1 CH
is appoximately F distributed with 10 and 5 degreesof
freedan, andwe rejectthe null hypothesighatthetwo al-
gorithms have the sameerra ratewith 0.95confidenceif
f > 4.74 (Alpaydin, 199). Caremustbetakento ensure

thatall thealgoithmsusethesametraining andtestingdata
in thetwo folds of thefive crosswalidationexpeliments.

f

Table2 hasthe averag accuaciesobtaired. The bestob-
sened resultin the tableis highlightedin bold type, and
thoseresultsthataccording to the combired F testaresig-
nificantly different from the bestare marked with a bul-
let (o). Ther aretwo immedate obsenationsthatwe can
male from the results. First, the featureselectionalgo-
rithmsresultin agreatimprovemer in accurag over using
aNB with all the features.However, this differerceis not
always significant(SoybeanLarge, Random2). Second
all the featue selectionalgoithms resultin similar accu-
ragy values. Thereis not a single statistically significant
differencein thesedatasets.

We mustbe carefu notto take theresultsatfacevalue and
conclweincorrectly thatthe cGA andthe ecGAfind fea-
ture subsetghat resultin betteraccuracieghanthe other
EAs, sincethedifferencesaresmallandnotsignificant.For
thesameeasonsye canrot disqualifythe BOA, whichdid
notscorehighestin ary dataset,or ary otheralgoilithm.

Our resultsdisagreewith the conclwsions of Inza et al.
(199) andInzaetal. (200L), who found statisticallysig-
nificantdifferencesbetweertheaccuray of theirEDA and
othergeretic andsequentiafeatureselectiormethals (us-
ing the samecomnbined F test). This disageementmay
be dueto differencesin the algorithns or the expetimen-
tal setup. Their EDA learnsa Bayesiannetwork from the
selectedndividualsusinga greed searchthataddsedges
to thegraph thatmaximizetheBayesiarinformationCrite-
rion; the BOA consides edgeadditiors anddeletiors and
attemptgo maximizea differentmeasuref model quality.
Anothe important differenceis thatthey stoppel their al-
gorithms after not obsening a (significart) improvement
over the previous geneation, while we stoppedafter 50
geneations. Iteratingthe algorithmlongercouldresultin
overfitting the training data, but preliminary experiments
usingtheir stoppingcriterion do not shav ary significant
differences.

In termsof the sizeof thefinal featuresubsetsall thealgo-
rithmsfind similarly-sizedsubsetswhich aresubstantially
and significantly smallerthan the original set of features



(seetable3). It is interestingto notethatall the EAs were
ableto find subsetwith nine relevantfeaturedfor the Re-
dundant21data(the sGA found a solutionwith 10 features
once)

The EDAs usedheretook consideably moretime to fin-
ishthanthesimpleGA, whichwasexpectedsincethesim-
ple GA useda smallerpopulationsize? This obseration,
alongwith theexperimentalresultsof accurag andfeatue
subsesize,leadsusto recommendthe simpleGA overthe
EDAs for featureselectionprodems.

5 CONCLUSIONS

This paper presered expeiiments with four evolution
ary algorithns appliedto the featureselectionproblem.
The experimentsconsideed a Naive Bayesclassifierand
public-domainand artificial datasets. With this dataand
classifierwe did not find eviderce to suppot or rejectthe
useof the sophisticatednockl-huilding EAs in this prob
lem. However, if we take into account thatthe simple GA
was muchfasterthanthe otheralgorithms andfound fea-
ture subsetsf similar quality, we areinclined to recom
mendthe sGA overtheotheralgoiithms.

Therearenumerousoppatunitiesto extendthis work. The
resultsthat suggesthat model-liilding GAs are not ad-
vantageousfor featue selectiorshoud be exploredfurther

with additioral datasetsandotherindudion algorithms. It

is not clearwhatcharateristicsof the dataor the classifier
would require an EDA to find featuresubsetghatreliably
resultin highaccurages.

Futurework shouldalso explore methals to improve the
computational efficiency of the algoithms to deal with
muchlarger datasets.In particula, subsamiing thetrain-
ing setsandparallelizingthe fitnessevaluations seemlike
pronising alternatves. In additian, futurework shouldex-
ploreefficient method to dealwith the noisyaccuncy es-
timates,insteadof usingthe expersive multiple crossali-
dationsthatwe emplgyed. Previouswork (Miller & Gold-
berg, 19%) indicaesthatsmallincreasesf the population
sizearesufficient to dealwith noisein the fithessevalua-
tion.

2We would expectthe simple GA to be ten timesfasterthan
the otheralgorithms,sinceits popuation wastentimessmaller
However, the simple GA wasusuallymorethantentimesfaster
thanthe rest. Someof this extra time canbe explainedbecause
the EDAs build a model every generation Thereare also ran-
domvariationsin the numberof crosswalidationsusedto estimate
the accuray, which may accountfor somedeviation from our
expectations.
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Sick Euthyroid  79.04+4.23¢  95.73+1.07 95.74+0.86 9608+1.11 95.8+0.86
Randan21 94.2+0.86 95.8+0.89 95.610.89 9501+0.81 95.4+085
Redumdant2l 76.89+1.32e¢ 95.214+0.9 95.42+0.66 95194+0.82 95.3%+0.78

Table2: Meanaccuracie$ound (+ standardieviation) in the5x2cvexpeliments.Thebestresultis in bold andabullet (o)
dendesaresultthataccoding to the combiredF testis significantlydifferentfrom the bestresultwith 95% conficence.

Domain Original sGA cGA ecGA BOA

lonosphere 3de 11,9422  1243.09 11.2£1.93 11.2£3.12
Segmaentation 19 7.7+£0.82 7.4£0.70 7.74£0.67 7.9£0.99
SoybeanLarge 250 9.8+£1.75 8.2+£162 7.7£205 7.2+1.87
Sick Euthyroid 35e 112432 11742.%9 11.2£434 11.941.97
Randon21 21e 10741499 1154151 11.141.28 11.141.37
Redumant21 21e 9.1+0.32 9+0 9+0 9+0

Table3: Meansizesof final featue subsetg+ standadl deviation).
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