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Abstract

This paperdescribestheapplicationof four evo-
lutionary algorithms to the identificationof fea-
ture subsetsfor classificationproblems. Be-
sidesa simpleGA, thepaper considers threees-
timation of distribution algorithms (EDAs): a
compact GA, anextendedcompactGA, andthe
BayesianOptimizationAlgorithm. Theobjective
is to determine if the EDAs present advantages
over thesimpleGA in termsof accuracy or speed
in this problem. The experimentsuseda Naive
Bayesclassifierandpublic-domainandartificial
datasets. In contrastwith previous studies,we
did not find evidenceto support or rejecttheuse
of EDAs for this problem.

1 INTRODUCTION

In machine learning, theproblemof supervisedclassifica-
tion is concerned with using labeledexamples to induce
a model that classifiesobjectsinto a finite set of known
classes. The examples are describedby a vector of nu-
meric or nominal features. Someof thesefeaturesmay
be irrelevant or redundant. Avoiding irrelevant or redun-
dantfeaturesis important becausethey may have a nega-
tive effect on theaccuracy of theclassifier. In addition, by
usingfewer featureswe mayobtainsavings in thecostof
acquiring the data,and improve the comprehensibilityof
theclassificationmodel.Findingfeaturesubsetsthatresult
in accurate classifierscanbecastasa searchproblem,and
simplegeneticalgorithms have beenusedsuccessfullyfor
this problemin thepast.

This paper presentsexperimentswith a simplegenetic al-
gorithm (sGA), andthreeestimationof distribution algo-
rithms (EDAs): a compact GA (cGA), an extended com-
pactGA (ecGA),andtheBayesianOptimizationAlgorithm
(BOA). Insteadof the mutationandcrossover operations

of conventional GAs, EDAs usea statisticalmodel of the
individualsthatsurviveselectionto generatenew individu-
als.EDAs areanimportantsteptowardsolvingthelinkage
problem,a fundamentalobstacleto theapplicationof sim-
ple GAs to problemswith unknown relationshipsamong
variables. Numerousexperimentalandtheoretical results
show thatEDAs cansolve hardproblemsreliably andeffi-
ciently(Pelikanetal.,1999; Etxeberria& Larrãnaga,1999;
Mühlenbein& Mahnig,1999).

Theobjective of this studyis to determine if EDAs present
advantagesoversimpleGAs in termsof accuracy or speed
whenappliedto featureselectionproblems. The experi-
mentsdescribedin this paper usepublic-domainandartifi-
cial datasets. The classifierwasa Naive Bayes,a simple
classifierthat can be inducedquickly, and that hasbeen
shown to havegoodaccuracy in many problems(Kohavi &
John,1997).

Our targetwasto maximize theaccuracy of classification.
Theexperimentsdemonstratethatall the featureselection
methods triedhereresultedin higheraccuracies thanusing
all the features. However, in contrast with otherstudies,
we found no evidenceto support or reject the useof the
advancedEDAs in this problem.

The next sectionbriefly reviews previous applications of
EAs to feature subsetselection.Section3 describestheal-
gorithms,datasets,andthefitnessevaluation method. The
experimentalresultsarepresentedin section4. Section5
concludesthis paperwith a summary anda discussionof
future researchdirections.

2 FEATURE SELECTION

In adomainwhereobjectsaredescribedby
�

features,there
are ��� possiblefeaturesubsets.Obviously, searching ex-
haustively for thebestsubset(usingany criteriato measure
quality) is futile. Oneapproachto dealwith this problem
is to preprocessthedataandselectfeaturesbasedonprop-
ertiesthatgoodfeaturesetsarepresumedto have, suchas



orthogonalityandhigh informationcontent.This is known
asthefilter approach(John,Kohavi, & Phleger, 1994). Al-
though it canberelatively fast,thefilter approachmaypro-
ducedisappointing results,becauseit ignorescompletely
theinduction algorithm.

An alternative to preprocessingthedatais thewrapper ap-
proach. Thekey ideais to considertheinduction algorithm
asa blackbox thatcanbeusedby a heuristic searchalgo-
rithm to evaluateeachcandidatefeature subset(John, Ko-
havi, & Phleger, 1994). Thefeaturesubsetwith thehigher
evaluation is selectedasthefinal setonwhichto runthein-
ducer, which thenshould betestedondatanot usedduring
thesearch.

Numeroussearchalgorithmshave beenusedto searchfor
featuresubsets(Jain& Zongker, 1997). Geneticalgorithms
areusually reported to deliver good results,but thereare
exceptions wheresimpler(andfaster)algorithms resultin
higher accuracieson particulardatasets(Jain& Zongker,
1997)

Applying GAs to thefeature selectionproblem is straight-
forward: the chromosomesof the individualscontain one
bit for eachfeature, and the value of the bit determines
whetherthe featurewill beusedin the classification.Us-
ing thewrapper approach,theindividualsareevaluatedby
trainingtheclassifiersusingthefeaturesubsetindicatedby
the chromosomeandusing the resultingaccuracy to cal-
culatethefitness.SiedleckiandSklansky (1989) werethe
first to describetheapplication of GAs in thisway.

GAs have beenusedto searchfor feature subsetsin con-
junction with several classificationmethods suchasneu-
ral networks (Brill et al., 1990; Brotherton & Simpson,
1995), decisiontrees(Bala et al., 1996), k-nearestneigh-
bors (Kelly & Davis, 1991; Punchet al., 1993; Raymer
et al., 1997), rules (Vafaie & Jong, 1993), and Naive
Bayes(Inzaet al., 1999).

Besidesselectingfeaturesubsets,GAscanextractnew fea-
turesby searchingfor a vectorof numeric coefficientsthat
is usedto transform linearly theoriginal features(Kelly &
Davis, 1991; Punchet al., 1993). In this case,a valueof
zeroin the transformationvectoris equivalent to avoiding
thefeature. Raymeret al. (1997) andRaymeret al. (2000)
combinedthelineartransformationwith explicit featurese-
lection flags in the chromosomes,andreportedan advan-
tageover thepuretransformationmethod.

As far aswe could tell, only onemodel-building EA has
beenusedpreviously to selectfeature subsets.Inza et al.
(1999)andInzaetal. (2001) presentedexperimentswith an
algorithm thatlearnsaBayesiannetwork to model promis-
ing solutions. Inza et al. (2001) reported that the model-
building algorithm found subsetsthatresultin betteraccu-
raciesthansimpleGAs andtwo sequentialfeatureselec-

tion algorithms. Their algorithm is similar to oneincluded
in ourstudy, andwe usesomeof thesamedatasets.

3 METHODS

This sectiondescribes thealgorithms andthedatausedin
thisstudyaswell asthemethod usedto evaluatethefitness.

3.1 ALGORITHMS AND DATA SETS

The simple geneticalgorithm in this study usesbinary
strings,binary(pairwise)tournamentselectionwithout re-
placement, one-point crossover, andbit-wise point muta-
tion. SimpleGAs suchasthis have beenusedsuccessfully
in many applications. However, it haslongbeenrecognized
that the problem-independentcrossover operatorsusedin
simple GAs can disrupt groups of relatedvariables and
prevent the algorithm from reachingthe global optimum,
unlessexponentially-sizedpopulationsareused(Thierens
(1999) givesagooddescriptionof this problem).

One approach to identify and exploit the relationships
among variables is to estimatethe joint distribution of the
individualsthat survive selectionandusethis distribution
to generatenew individuals.Thecomplexity of themodels
hasincreasedover time asthemethodsof building models
from datamature and more powerful computers become
available.Interestedreaderscanconsultthereviewsby Pe-
likan etal. (1999) andLarrãnagaet al. (1999).

The simplestmodel-building EA that wasusedin the ex-
periments reported hereis the compact GA (Harik, Lobo,
& Goldberg, 1998). This algorithmassumesthat thevari-
ables (bits) that representthe problem are independent,
and therefore it modelsthe population with a product of
Bernoulli distributions.Thecompact GA receivesits name
from the compact way it representsthe population: the
cGAusesavector� of lengthequalto theproblem’slength,�
. Eachelementof � containstheprobability thata sample

will take the value1. If theBernoulli trial is not success-
ful the samplewill be0. All positions of � areinitialized
to 0.5 to simulatethe usualuniform random initialization
of simpleGAs. New individualsareobtainedby sampling
consecutively from eachpositionof � and concatenating
thevaluesobtained. Theprobabilitiesvector is updatedby
comparing thefitnessof two individualsobtained from it.
For each���	��

����������� � , if thefittest individual hasa 1 in
the 
 -th position, ��� is increasedby ����� , where � is the
sizeof the virtual population that the userwantsto simu-
late. Likewise, if the fittest individual hasa 0 in the 
 -th
position,� � is decreasedby ����� . ThecGA iteratesuntil all
positionsin � � containeitherzeroor one.

The PBIL (Baluja, 1994) and the UMDA (Mühlenbein,
1998) areotherexamplesof algorithmsthatuseunivariate



models andoperateon binaryalphabets. They differ from
thecGA in themethodto updatetheprobabilitiesvector.

Theextendedcompact GA (Harik, 1999) usesaproduct of
marginal distributionsonapartitionof thevariables.In this
model, subsetsof variablescanbemodeledjointly, andthe
subsetsareconsideredindependent of othersubsets.For-
mally, themodelis ��������� "!#� � , where$ is thenumber
of subsetsin thepartitionof variablesand � � represents the
distribution of the % -th subset.Thedistribution of a subset
with 
 members is storedin a tablewith � �'& � entries.
Theproblemconsistsonfindingapartitionthatmodelsthe
populationcorrectly. Harik (1999)proposedagreedy algo-
rithm that initially supposesthatall variablesareindepen-
dent. Themodel searchtries to merge all pairsof subsets
andchoosesthemerger thatminimizesa complexity mea-
surebasedon information theory. The searchcontinues
until no further subsetscanbe merged. In contrast to the
cGA, theecGAhasanexplicit population thatis evaluated
andsubjectto selectionat eachiterationof thealgorithm.
Thealgorithm builds themodel considering only thoseso-
lutionsthatsurvive selection.Thepopulation is initialized
randomly, andnew individuals aregenerated by sampling
consecutively from the $ subsetdistributions.

TheBayesianOptimizationAlgorithm (Pelikan,Goldberg,
& Cant́u-Paz, 1999) models the selectedindividuals us-
ing a Bayesiannetwork, which canrepresent dependence
relationsamongarbitrary number of variables. Indepen-
dently, Etxeberria andLarrañaga(1999) andMühlenbein
and Mahnig (1999) introducedsimilar algorithms. The
BOA usesagreedysearchto optimizetheBayesianDirich-
let metric, a measureof how well the network represents
thedata(theBOA coulduseothermetrics).Theuserspec-
ifies themaximum number of incoming edgesto any node
of the network. This number corresponds to the highest
degreeof interactionassumedamongthe variables of the
problem. As the ECGA, the BOA builds the modelcon-
sideringonly the solutionsthat survived selection. New
individuals aregenerated by samplingfrom the network.
ThemaindifferencebetweentheecGAandtheBOA is the
model thatthey useto representthesurvivors.

Figure1 illustratesthedifferentmodels usedby theecGA
andtheBOA. TheecGAcannotrepresentindividual rela-
tionshipsamong thevariablesin a subset.

The classifier induced in the experimentswas a Naive
Bayes(NB). This classifierwaschosenfor its speedand
simplicity, but theevolutionarywrapper method is suitable
for any other supervised classifiers,as mentioned in the
previoussection. In theNB, theprobabilities for nominal
featureswereestimatedfromthedatausingmaximumlike-
lihood estimation(their observed frequenciesin the data)
and applying the Laplacecorrection. Numeric features
wereassumedto have a normal distribution. Missingval-

uesin thedatawereskipped.

The experiments used the C++ implementations of the
ecGA(Lobo& Harik, 1999)andtheBOA version1.0(Pe-
likan, 1999) that are distributed by their authors on the
web. ( The ecGA codehasa non-learning mode that em-
ulatesthecGA. ThesGAandNaiveBayesweredeveloped
in C++. All programswerecompiledwith g++version2.96
using-O2optimizationsandexecutedona Linux worksta-
tion with dual1.5GHzIntel Xeonprocessors(all programs
wereexecuted on a singleprocessor). For the ecGA and
theBOA codes,weusedtherandomnumbergeneratorsin-
cludedin their distributions, for everything elsewe useda
Mersenne Twister.

The first four datasetsusedin the experimentsareavail-
able in the UCI repository (Blake & Merz, 1998). The
datasetsarebriefly describedin table1. Random21 and
Redundant21are two artificial datasetswith 21 features
each. The target concept of thesetwo datasetsis to de-
fine whether the first nine featuresarecloserto (0,0,...,0)
or (9,9,...,9) in Euclidean distance.Thefeaturesweregen-
erateduniformly at random in therange[3,6]. All thefea-
turesin Random21arerandom,andthefirst,fifth, andninth
features arerepeatedfour timeseachin Redundant21.We
took thedefinitionof Redundant21from thepaperby Inza
et al. (1999).

3.2 MEASURING FITNESS

Sincewe areinterestedin classifiersthat generalizewell,
the fitnesscalculationsmustincludesomeestimateof the
generalizationof theNaiveBayesusingthecandidatesub-
sets. If enough dataareavailable,the generalizationmay
beestimatedby dividing thetrainingdatainto training and
testingsets.Thetraining setis usedto find theclasscondi-
tional probabilities,andtheaccuracy of the trainedclassi-
fier on thetestingsetis usedto calculatethefitness.

Unfortunately, the trainingdatasetsaresmall, so thepro-
cedure above maynot bepractical in our case.Instead,we
estimatethegeneralizationof thenetwork usingcrossvali-
dation. In 
 -fold crossvalidation, thedata ) is partitioned
randomly into 
 non-overlapping sets,) ( �*����� )+� . At each
iteration % (from 1 to 
 ), thenetwork is trainedwith )-,�) �
andtestedon ) � . Sincethedataarepartitionedrandomly,
it is likely thatrepeatedcrossvalidationexperimentsreturn
different results.Although therearewell-known methods
to dealwith “noisy” fitnessevaluationsin EAs (Miller &
Goldberg, 1996), we choseto limit the uncertainty in the
accuracy estimateby repeating10-fold crossvalidationex-
periments until thestandarddeviationof theaccuracy esti-
matedrops below 1% (or a maximum of five repetitions).
This heuristic wasproposedby Kohavi andJohn(1997) in.

Availableathttp://www-illigal.ge.uiuc.edu



(a) ecGA (b) BOA

Figure 1: Representationof themodelsusedin theecGAandtheBOA.

Domain Instances Classes Numeric Feat. Nominal Feat. Missing
Ionosphere 351 2 34 – N
Segmentation 2310 7 19 – N
Sick Euthyroid 3163 2 7 18 Y
SoybeanLarge 683 19 – 35 Y
Random21 2500 2 21 – N
Redundant21 2500 2 21 – N

Table1: Descriptionof thedatausedin theexperiments.Thelastcolumnindicatesif thedatahasmissingvalues.



their studyof wrapper methods for featureselection,and
wasadoptedby Inza et al. (1999). We usethe accuracy
estimateasourfitnessfunction.

Eventhough crossvalidationis expensive computationally,
thecostwasnot prohibitive in our case,sincethedatasets
wererelatively smallandtheNB classifieris very efficient.
If larger datasetsor other inducerswereused,we would
have to dealwith theuncertainty in theevaluationby other
means,suchas increasing slightly the population size (to
compensatefor thenoisein theevaluation) or by sampling
thetrainingdata.We defera discussionof possibleperfor-
manceimprovementsuntil thefinal section.

Our fitnessmeasuredoes not include any termto biasthe
searchtoward small feature subsets.However, the algo-
rithms found small subsets,andwith somedatathe algo-
rithmsconsistentlyfoundthesmallestsubsetsthatdescribe
the target concepts. This suggeststhat the datasetscon-
tainedirrelevant or redundantfeaturesthat decreasedthe
accuracy of theNaiveBayes.

4 EXPERIMENT S

The simple GA useda population with 100 individuals,
one-point crossoverwith probability 1.0,andmutationwith
probability 1/

�
, where

�
wasthelengthof thechromosomes

that correspondsto the total number of features in each
problem. Promisingsolutionswereselectedwith pairwise
binarytournamentswithout replacement.Theexperiments
wereterminatedafter50 generations,althoughwe did not
observe muchimprovements after10–20 generations.

The cGA, ecGA, and the BOA useda population with
1000individuals. Larger populationswerechosenbecause
thesealgorithms may needlarge samplesto estimatecor-
rectly the parameters of their models of promisingsolu-
tions. Thesealgorithmswereterminatedaftera maximum
of 50 generations. The remainder of the parametersused
werethe defaultsprovided in their distributions: thecGA
andecGAusedtournamentsamong 16individuals,andthe
BOA usedtruncation selectionwith a thresholdof 50%.

Toevaluatethegeneralizationaccuracy of thefeatureselec-
tion methods,weused5 iterationsof 2-foldcrossvalidation
(5x2cv). In eachiteration, thedatawererandomly divided
in halves.Onehalf wasinput to thefeatureselectionalgo-
rithms. Thefinal featuresubsetfound in eachexperiment
wasusedto train a final NB classifier(usingthe training
data),which wasthentestedon theotherhalf of thedata.
The accuracy resultspresented in table2 are the average
andstandard deviationsof thetentests.

To determine if the differencesamong the algorithms are
statistically significant, we useda combined F test pro-
posedby Alpaydin (1999). Let �0/2143� denotethe difference

in theaccuracy ratesof two classifiersin fold 5 of the % -th
iterationof 5x2 cv, 6�7��89�:/ ( 3�<; ��/�=43�?> �@� denotethemean,

and A =� �?89��/ ( 3� & 6� > = ; 82��/�=�3� & 6� > = thevariance,then

B �
CED�� ( C =1  (

F ��/G143�IH =
� C D�� ( A =�

is approximately F distributed with 10 and 5 degreesof
freedom, andwe rejectthenull hypothesisthat thetwo al-
gorithms have the sameerror ratewith 0.95confidenceifBKJML �GN L (Alpaydin, 1999). Caremustbetakento ensure
thatall thealgorithmsusethesametrainingandtestingdata
in thetwo foldsof thefivecrossvalidationexperiments.

Table2 hastheaverage accuraciesobtained. Thebestob-
served result in the tableis highlightedin bold type, and
thoseresultsthataccording to thecombinedF testaresig-
nificantly different from the bestare marked with a bul-
let ( O ). There aretwo immediateobservations thatwe can
make from the results. First, the featureselectionalgo-
rithmsresultin agreatimprovement in accuracy over using
a NB with all thefeatures.However, this difference is not
alwayssignificant(SoybeanLarge, Random21). Second,
all the feature selectionalgorithms result in similar accu-
racy values. Thereis not a singlestatisticallysignificant
differencein thesedatasets.

We mustbecareful not to take theresultsat facevalue and
conclude incorrectly that the cGA andthe ecGA find fea-
ture subsetsthat result in betteraccuraciesthanthe other
EAs,sincethedifferencesaresmallandnotsignificant.For
thesamereasons,wecannot disqualifytheBOA, whichdid
notscorehighestin any dataset,or any otheralgorithm.

Our resultsdisagreewith the conclusions of Inza et al.
(1999) andInzaet al. (2001), who found statisticallysig-
nificantdifferencesbetweentheaccuracy of theirEDA and
othergenetic andsequentialfeatureselectionmethods(us-
ing the samecombined F test). This disagreementmay
be dueto differencesin the algorithms or the experimen-
tal setup.Their EDA learnsa Bayesiannetwork from the
selectedindividualsusinga greedy searchthataddsedges
to thegraph thatmaximizetheBayesianInformationCrite-
rion; theBOA considers edgeadditions anddeletions and
attemptsto maximizeadifferentmeasureof model quality.
Another important differenceis that they stopped their al-
gorithms after not observing a (significant) improvement
over the previous generation, while we stoppedafter 50
generations. Iteratingthealgorithmlongercould resultin
overfitting the training data,but preliminary experiments
usingtheir stoppingcriterion do not show any significant
differences.

In termsof thesizeof thefinal featuresubsets,all thealgo-
rithmsfind similarly-sizedsubsets,whicharesubstantially
andsignificantly smallerthan the original set of features



(seetable3). It is interestingto notethatall theEAs were
ableto find subsetswith ninerelevant featuresfor theRe-
dundant21data(thesGA founda solutionwith 10 features
once).

The EDAs usedheretook considerably moretime to fin-
ish thanthesimpleGA, whichwasexpectedsincethesim-
ple GA useda smallerpopulationsize.= This observation,
alongwith theexperimentalresultsof accuracy andfeature
subsetsize,leadsusto recommendthesimpleGA over the
EDAs for featureselectionproblems.

5 CONCLUSIONS

This paper presented experiments with four evolution-
ary algorithms applied to the featureselectionproblem.
The experimentsconsidered a Naive Bayesclassifierand
public-domainandartificial datasets. With this dataand
classifierwe did not find evidence to support or rejectthe
useof the sophisticatedmodel-building EAs in this prob-
lem. However, if we take into account that thesimpleGA
wasmuchfasterthanthe otheralgorithms andfound fea-
ture subsetsof similar quality, we are inclined to recom-
mendthesGA over theotheralgorithms.

Therearenumerousopportunitiesto extendthiswork. The
resultsthat suggestthat model-building GAs are not ad-
vantageousfor featureselectionshould beexploredfurther
with additional datasetsandotherinduction algorithms. It
is not clearwhatcharacteristicsof thedataor theclassifier
would require anEDA to find featuresubsetsthat reliably
resultin highaccuracies.

Futurework shouldalsoexplore methods to improve the
computational efficiency of the algorithms to deal with
muchlarger datasets.In particular, subsampling thetrain-
ing setsandparallelizingthefitnessevaluationsseemlike
promising alternatives. In addition, futurework shouldex-
ploreefficient methods to dealwith thenoisyaccuracy es-
timates,insteadof usingtheexpensive multiple crossvali-
dationsthatwe employed. Previouswork (Miller & Gold-
berg, 1996) indicatesthatsmallincreasesof thepopulation
sizearesufficient to dealwith noisein the fitnessevalua-
tion.

P
We would expect the simpleGA to be ten timesfasterthan

the otheralgorithms,sinceits population wasten timessmaller.
However, the simpleGA wasusuallymorethanten timesfaster
thanthe rest. Someof this extra time canbe explainedbecause
the EDAs build a model every generation. Thereare also ran-
domvariationsin thenumberof crossvalidationsusedto estimate
the accuracy, which may accountfor somedeviation from our
expectations.
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