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A malicious actor often relies on security vulnerabilities of IT systems to launch a cyber 

attack. Most cloud services are supported by an orchestration of large and complex systems which 

are prone to vulnerabilities, making threat assessment very challenging. In this research, I 

developed formal and practical ontology-based techniques that enable automated evaluation of a 

cloud system's security threats. I use an architecture for threat assessment of cloud systems that 

leverages a dynamically generated ontology knowledge base. I created an ontology model and 

represented the components of a cloud system. These ontologies are designed for a set of domains 

that covers some cloud's aspects and information technology products' cyber threat data. The inputs 

to our architecture are the configurations of cloud assets and components specification (which 

encompass the desired assessment procedures) and the outputs are actionable threat assessment 

results. The focus of this work is on ways of enumerating, assessing, and mitigating emerging 

cyber security threats. A research toolkit system has been developed to evaluate our architecture. 

We expect our techniques to be leveraged by any cloud provider or consumer in closing the gap 

of identifying and remediating known or impending security threats facing their cloud's assets. 
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CHAPTER 1

INTRODUCTION

The cloud computing [72] model has enabled a wide range of technologies and services

that have a significant impact on our society. The cloud delivery model using the internet

exposes technologies and services to a large attack surface [117, 80, 15, 51, 70] which in-

evitably is exploited by malicious actors motivated to mount various campaigns on the cloud

ecosystem and its adopters.

A report by the Cloud Security Alliance (CSA) organization [24] titled “The Treach-

erous 12 - Cloud Computing Top Threats in 2016” [49], lists: data breaches; weak identity,

credential and access management; insecure application program interfaces (APIs); system

and application vulnerabilities; account hijacking; malicious insiders; advanced persistent

threats (APTs); data loss; insufficient due diligence; abuse and nefarious use of cloud ser-

vices; denial of service; and shared technology issues as the most significant security issues

in the cloud. This report among others [47, 48] by CSA have these same threats to cloud

security in common. The “System and Application Vulnerabilities; and Shared Technology”

threats, in particular, have a significant implication for cloud systems which are used to

orchestrate various cloud services that are in turn consumed by users from various entities.

There are many communities and industry and research initiatives that are addressing

current security issues in information technology (IT) products (systems, applications) with

public disclosure of security information and data feeds (common vulnerabilities, weaknesses,

and configurations [76, 77, 82]). These approaches have been adopted by some security

vendors and organization teams aiming to mitigate some of the threats arising from the

exploitation of weaknesses in IT products. Most of these security solutions have not been

successful enough to mitigate and protect cloud assets, primarily because of the scale and

complexity of the cloud computing model (its architecture, deployment, and operational

choices).

In this work, we propose a viable solution to an open security problem of threats
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to cloud computing. We use ontologies as the foundation for our techniques to enumerate,

assess, and mitigate the threats to cloud systems. One of the core features of ontologies

is the powerful modeling capability that enables representation of the knowledge body of

cloud computing systems and cyber threat data domains. Ontologies are computational

artifacts which are machine readable and can be associated with formal meanings. By using

a semantic query language (e.g., SPARQL [101]) and a reasoner (e.g., HermiT [43]), we can

automatically ascertain some facts about cloud systems and their security postures. This, in

turn, allows us to build several frameworks for assessing the threats facing any given cloud

system.

Our work thus far has resulted in these original key peer-reviewed papers:

• VULCAN: Vulnerability Assessment Framework for Cloud Computing [92].

• A Methodology for Ranking Cloud System Vulnerabilities [93].

• NEMESIS: Automated Architecture for Threat Modeling and Risk Assessment for

Cloud Computing [91].

• Predicting Unknown Vulnerabilities using Software Metrics and Maturity Models

[90].

• OPTIMUS: A Framework of Vulnerabilities, Attacks, Defenses, and SLA Ontologies

[17].

Our research also resulted in the following prototype software packages:

• IKAWAFARM : a tool for designing scalable ontologies and their semantic knowledge

graphs (including their semantic query APIs) for cybersecurity threat data and cloud

computing domains (See Chapter 3).

• LEGOS : a tool to collect various telemetry data of a computer host (i.e., phys-

ical/virtual/container machine) and store them into a designated semantic graph

database (i.e., AllegroGraph [59]) instances (See Chapter 3).

• VULCAN : a tool for our VULCAN [92] contribution work which provides an on-

demand vulnerability assessment web application (See Chapter 4).

• HUMMING : a semantic natural language processing Chatbot that augments Vulcan-
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Application to provide vulnerability information to users (See Chapter 4).

• NEMESIS : a tool for our NEMESIS [91] contribution work offered as a web appli-

cation (See Chapter 5).

• SWEEP : a tool to automate the process of software complexity metrics generation

and analysis for any given IT software product along with its vulnerability history

timeline, for building a machine learning model to predict the number of unknown

vulnerabilities associated with the product (See Chapter 4).

• PREDICTION : a tool that offers a web service to predict the unknown number of

vulnerabilities in a software product (See Chapter 4).

• COCKATOO : an integrated toolchain offered as a service to assess and mitigate

threats facing any computing system (See Chapter 6). This tool creates a workflow

based on user needs and invokes previously mentioned tools.

We are able to manage a cloud system’s complexity using our ontology design ap-

proach, which is based on our understanding of cloud computing in terms of its model

definition, architecture, and deployment. A similar approach to modeling the cyber threat

data domain enables us to overlay the cloud system’s ontology and assess its vulnerabilities

systematically. Our techniques enable us to model any given cloud system deployment in

terms of known or unknown vulnerabilities and threat types enabled by these vulnerabilities.

This enables us to estimate the overall cloud system’s risk posture using both qualitative and

quantitative approaches. By leveraging cyber threat intelligence, the estimated risk can be

computed and used in managing mitigation strategies based on cost and severity of specific

threats. Our tools are used to provide recommendations to mitigate specific threat types

proactively.

The rest of the dissertation is presented as follows. In Chapter 2, we present the most

salient related works pertinent to our study. Chapter 3 presents our ontologies for describing

IT systems and for capturing cyber security vulnerabilities. In Chapters 4 and 5, we present

our approach for vulnerability assessment and threat management. Chapter 6 presents our

custom built COCKATOO system, which is a toolchain that integrates all our contributions.
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We present our concluding remarks and future work in Chapter 7.
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CHAPTER 2

RELATED WORKS

In this chapter, we present key related works that leverage ontological foundations to

address important cybersecurity problems.

Miguel-Angel et al. [114] have conducted a literature survey to highlight some of

the recent works in regards to what extent ontologies are useful for addressing various in-

formation security problems. In this work, the authors organized the surveyed papers into

these categories: security requirement engineering, reference ontologies, specification and

matching of security policies and access control, vulnerability analysis, attack detection, in-

formation extraction, and preparation for machine learning. This study aimed to identify

different ways security-themed ontologies have been proposed and demonstrated as useful

tools, and to open dialogue towards the value and role that ontologies offer in the information

security field. Then, the authors point out that ontology population and the value of using

ontology-based reasoning capabilities over existing formalisms or databases are some of the

main issues that need to be addressed and studied further to strengthen the application and

maturity of security ontologies. In chapter 3, we present our contribution work in details

that address some of the challenges of ontology population and reasoning at scale.

Syed et al. [116] created a Unified Cybersecurity Ontology (UCO) to support informa-

tion integration from a variety of cybersecurity standards, and to support cyber situational

awareness in cybersecurity systems. UCO ontology design principles share similarities with

our created ontology artifacts (See Chapter 3) for the cyber and cloud domains in terms of

the choice of ontology languages (RDF [102], and OWL [100]) and data-feed sources (e.g.,

NVD [85], STIX [88], etc.) to generate a rich semantic knowledge base to support various

use cases. Similar to the authors’ UCO ontology use cases that revolve around vulnera-

bility information associated with IT products and their vendors, we developed automated

ontology-based tools (See Chapter 6) to address these use cases and more in detail by ab-

stracting from a user the underlying semantic queries and reasoning to answer any question
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that a given user may have in regards to their IT system’s security posture. Also, our original

VULCAN [92] ontologies predate UCO.

Iannacone et al. [53] developed an ontology (called “STUCCO”) for a cybersecurity

knowledge graph database. In this work, the authors presented how their ontology addresses

a number of challenges that current security professionals face vis-à-vis the large volume of

threat data (including their diverse data-feed sources, and lack of interoperability in between

these sources). This work shares with our contribution, the same philosophy of designing a

custom ontology to represent a domain of interest (cybersecurity) with a use case in mind,

and generating a knowledge graph database to provide ground truths to automated systems

that address a number of security problems that are hard to perform manually.

Takahashi et al. [118] proposed an ontological approach to cybersecurity in cloud

computing to address the need for security best practices within the cloud domain. They

created an ontology for cybersecurity operational information that enables understanding of

security challenges that need to be addressed within the cloud domain. We have proposed

novel ontology-based solutions to address some of the cybersecurity needs listed in this

work [118] such as cloud resources mapping to an underlying technology stack and the

interdependencies between cloud services, and acquisition of cyber risk, countermeasures,

and assets knowledge bases. For instance, in Chapter 3 and Chapter 6, we present our

ontology models for the cloud and cyber domains, and tools built to generate cyber threat

data and cloud system ontology knowledge bases to manage and assess vulnerability-based

threats facing any given organization cloud computing IT assets.

Steele’s [115] work on ontological vulnerability assessment shows that taking an on-

tological approach results in improved identification of complex vulnerabilities. In our work,

we are able to query and reason on our ontology knowledge bases (generated by our IKAWA-

FARM tool, See Section 3.4.1) to find known vulnerabilities and discover unknown ones for

a given target system.

Guo et al. [52] present an ontology-based approach to model security vulnerabilities

listed in Common Vulnerabilities and Exposures (CVE), providing machine-understandable
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CVE vulnerability knowledge and reusable security vulnerabilities interoperability. Their

efforts to form a well-structured ontology which includes concepts, concept taxonomies,

relationships, properties, axioms, and constraints allowed us to extend their work into our

ontology models’ definition.

The Ontology for Vulnerability Management (OVM) [120] captures important con-

cepts and relations for describing vulnerabilities in the context of software and system se-

curity. Their implementation of an ontology in Web Ontology Language - Description Lan-

guage (OWL-DL) uses Protege [37]. This task can become time-consuming when looking

at manually instantiating the ontology from a big data source like NVD [85]. To overcome

this challenge, we generated our cyber threat data ontology knowledge bases (OKBs) using

custom Python scripts to extract relevant data from the NVD data feed and populate our

ontology model automatically (See Section 3.3). Our generated OKBs allow us to find and

assess vulnerabilities in cloud systems.

Wang et al. [121] proposed an ontology-based approach to analyze and assess the

security posture for software products. Given a knowledge base of security vulnerability

information, a user can query and retrieve currently known vulnerabilities of a given target

software product. In our work, we are able to find known vulnerabilities in a given software

product by querying our generated cyber threat data ontology knowledge base. Also, we

leverage ontology-based reasoning techniques to discover new vulnerabilities for the given

software product through inferences from a generated cyber threat data OKB, and a user’s

deployed IT system’s knowledge base.

The state-of-the-art automatic ontology generation [14] defines its life cycle as a pro-

cess composed of Extraction (acquire information needed to generate the ontology), Analysis

(focus on the matching of retrieved information and/or alignment of two or more existing

ontologies, depending on the use case), Generation (generate the Ontology), Validation (au-

thenticate whether the generated ontology is correct or not), and Evolution (adapt to the

ontology changes). In our work, we designed and implemented an algorithm that allows us

to automate ontology knowledge base generation and population from multiple sources of
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vulnerability data-feeds (See Section 3.3) and checked for their consistency using the HermiT

reasoner [43]. In addition, we designed a toolkit to maintain our ontology knowledge bases

(See Section 3.4.1).

Meunier’s [73] work presents a survey of currently known attempts to classify vul-

nerabilities and attacks. It illustrates how the traditional classifications fail to come up

with one unified classification schema of all vulnerabilities and attacks. A recommended

solution to this problem is to use an ontology for vulnerabilities conceptualization. A well-

defined ontology model is capable of representing all kinds of vulnerabilities regardless of

which subcategories they belong to. Our custom ontology model proves that the recom-

mended approach is useful when developing a vulnerability analysis assessment framework

(See Section 4.2).

Attack graphs depict ways in which an adversary exploits system vulnerabilities to

achieve a desired state [108]. Sheyner et al. proposed a tool useful for generating and

analyzing attack graphs. In our work, we rely on our generated ontology knowledge bases

as sources for the ground truth to discover known vulnerabilities that affect a given target

system, then initialize the attack graph generation for it (See Section 4.3).

The metrics we use (See Section 4.3) to model a given IT system’s found vulnera-

bilities are based on the Common Vulnerability Scoring System (CVSS) [36] and Weighted

mean [123]. The combination of CVSS and weighted mean metrics allow us to generate

a collective metric system for multiple vulnerabilities that build on the discovered attack

paths. In Wang et al. [122] work on attack graph-based probabilistic security metrics assigns

probabilities to each attack path’s nodes and using their defined algorithm they are able to

compute the cumulative probabilities to reach the attack end goal. However, finding prob-

abilities for each attack path node is a challenge [109] since each vulnerability associated

with a node is an individual entity and having it correlate with others is not applicable.

To address this challenge, we introduced weighted mean to the given attack path so that

a user can provide some additional information that will give more context to our ranking

algorithm 2; that will compute the resulting attack paths efficiently while conserving each
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attack node’s metrics.

Yonghee et al. [113] attempted to understand whether there is a correlation between

software complexity measure and security, primarily focusing on the JavaScript Engine in

the Mozilla application framework. They show a weak correlation, primarily because of the

small number of features used. In our study (See Section 4.4), we expanded on the number

of software metrics and used product releases to obtain higher correlations to reported vul-

nerabilities. Our unknown vulnerability predictive model (See Section 4.4.2.2) works well

when there is a large number of product releases, and the product has a mature user base.

Other prior works have explored various software properties to serve as indicators of

vulnerabilities where they used techniques such as software complexity and developer activ-

ity metrics [111][110][18]. Then using these software metrics coupled with some empirical

models, there are works [112][6][4][5] that have proposed solutions towards representing and

predicting trends in software vulnerabilities. Our research work (See Section 4.4) has some

key concepts similar to these prior works, but we extend the scope regarding automatic data

analysis and vulnerability prediction.

Donevski et al. [28] work on analyzing virtual machine security threats that might

arise due to a multi-tenant architecture with a given cloud environment. The proposed

approach revolved around discovering new vulnerabilities for different networking configura-

tions within the cloud network controller using a third-party security assessing tool. Though

this work’s approach to performing threat modeling is limited, it points out a critical threat

variant of new vulnerabilities that arise from the composition of shared technologies within

a cloud setting. In our proposed NEMESIS architecture (See Chapter 5), we show how these

new types of vulnerabilities come into the picture, and how we perform a detailed threat

modeling for each found vulnerability, and how all found vulnerabilities impact the threat

level of any given cloud setting.

Amartya et al. [106] work on “Off-line Risk Assessment of Cloud Service Provider”

have in common with our proposed architecture (See Chapter 5) in terms of their method-

ology of assessing threats present in a client’s application/cloud service using the STRIDE
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model [62]. Our approach automates the threat modeling methodology of using the EoP card

game [23] based STRIDE model, instead of manually generating threat types as has tradi-

tionally been done as in the Amartya et al. [106] approach. In addition, our risk assessment

approach within the NEMESIS architecture is automated.

In Fenz [34], [35] and Settas et al. [107] works have two main components in common

with our proposed NEMESIS architecture (See Chapter 5) such as the use of an ontological

approach and Bayesian network key building blocks towards various security assessment

works. Additional ontological security related works by Fenz et al. that motivated us to

build our NEMESIS’s risk assessment model are:

• Ontology-based generation of IT-security metrics [33]; here we use various mea-

surements generated from NEMESIS’s Vulcan and Threat modeling subroutines to

compute and produce useful metrics regarding the status of a given cloud’s assets

such as: “Threat type’s severity average score”, and ”Unpatched critical vulnera-

bilities” metrics for any given cloud system.

• Ontology and Bayesian-based threat probability determination [119], which we mod-

ified for the cloud setting and automated it into our NEMESIS’s threat ranking

subroutine; and

• Security ontology: Simulating threats to corporate assets [30]; here we perform a

thorough threat modeling task and generate all possible threat types for all discov-

ered vulnerabilities for any given cloud system.

Farris et al. [32] work on VULCON presents a system for vulnerability prioritization,

mitigation, and management. This work focuses on designing a vulnerability scoring system

that takes into account the context information about the nature of the vulnerability, critical-

ity of the impacted service, and the workforce available within a given organization to patch

the vulnerabilities in a timely manner. This scoring system is useful to prioritize vulnera-

bilities and minimize vulnerability exposure of the IT organization’s systems. In our work,

we took a different approach that builds a scoring system (implemented within our COCK-

ATOO system, See Chapter 6) to prioritize vulnerabilities that affect a given organization’s
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IT system based on the threat probability of exploitation of any found vulnerability-based

threat instance. Also, based on a user’s need, we can implement the VULCON scoring sys-

tem in our COCKATOO solution (since many building blocks of VULCON system are built

and offered within our COCKATOO system).

Noel et al. [87] work on CyGraph present a graph-based analytics and visualization

solution for cybersecurity. The CyGraph approach to prioritizing a given organization’s IT

system’s exposed vulnerabilities is similar to our work on COCKATOO’s NEMESIS tool

(See Figure 6.23). We prioritize found vulnerabilities that affect the given organization’s IT

assets (e.g., cloud system) by threat modeling all vulnerability-based threat type’s instances

(using a STRIDE model [62]), and for each modeled threat type instance, assess its threat

probability of exploitation using an ontology and Bayesian model. Then, a user can explore

NEMESIS tool recommendations on how to mitigate each threat instance. The recommen-

dations revolve around suggesting to the user alternate IT system configurations that will

minimize any perceived risk, and also a prioritized list of vulnerabilities to patch (which will

close the exposed threat type instance). Also, our COCKATOO system (See Chapter 6) acts

as an analytic platform powered by ontology knowledge bases. At the moment, contextual

graphs generated by the COCKATOO tools can be visualized using offline tools such as

Protege [37] and Gruff [60]. We can also use an approach similar to CyGraph to visualize

important findings on-demand within our COCKATOO dashboard.
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CHAPTER 3

ONTOLOGY ENGINEERING APPROACH

3.1. Overview

An ontology is a formal, explicit specification of a shared conceptualization [50].

Ontology specifies a set of representation primitives that allow us to model a domain of

knowledge. By selecting a suitable ontology language, we can explicitly represent any given

field by designing one or multiple ontologies to describe the intended application use. These

ontologies should capture the concepts, attributes, and relationships that are presumed to

exist in the modeled domain, along with their formal semantics. These ontologies can then

be instantiated to generate knowledge bases of the modeled system of interest. Since the

generated ontology knowledge bases (OKBs) are machine-readable, there are applications

(e.g., querying services, intelligent agents, etc.) that can leverage them. Also, the created

ontologies and generated OKBs can be reused and extended for other uses.

Ontological engineering refers to the “set of activities that concern the ontology de-

velopment process, the ontology life cycle, the methods and methodologies for building on-

tologies, and the tool suites and languages that support them” [45]. In this chapter, we

present the ontology engineering approach we used to design, create and instantiate various

ontologies of interest that serve as the pillars of this dissertation. We utilize:

• Web Ontology Language (OWL 2) [100], and Resource Description Framework

(RDF 1.1, & RDFS 1.1) [102, 103] as our ontology languages.

• Protege [81] as our ontology editor.

• SPARQL [101] as our query language.

• AllegroGraph [1] as our semantic graph database to create and instantiate our on-

tologies. The database can be used to query the ontology and reason about the

generated ontology knowledge bases (OKBs).

• Gruff [60] as our graph-based Triple-Store browser for AllegroGraph.

We engineer our ontologies to model cyber threat data and cloud computing systems.
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For the cyber threat data, we design our ontologies to represent knowledge about various

areas that touch this domain such as vulnerabilities, exploits, mitigation, and cyber threat

intelligence information. As for the cloud computing system domain, we explore the cloud

computing system’s assets where we design our ontologies to represent the knowledge about

all participating IT assets’ configuration. We combine the ontologies from both of our do-

mains (cyber threat data and cloud computing systems) of interest to produce dynamically

complex representations of information. These ontologies enable us to generate ontology

knowledge bases that can be leveraged for performing various tasks (e.g., querying, and

reasoning) to understand cyber threats and approaches to mitigate them.

3.2. Ontologies Design

We take a modular approach to create our ontologies for both cloud computing system

and cyber threat data domains. The objective is to build self-contained ontologies that

enable reuse and connections across our modeled domains. We start our modeling process

with what we know about our domains and maintain openness for future extensions that

will incorporate new knowledge and richer semantics during the ontology’s lifecycle.

3.2.1. Cloud Computing System – Domain

Cloud computing is a “model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with min-

imal management effort or service provider interaction” [72]. A cloud can be orchestrated

in three service models, namely, Software as a Service (SaaS), Platform as a Service (PaaS),

and Infrastructure as a Service (IaaS) and be deployed as a Private, Public, Community, or

Hybrid cloud. Any cloud deployment system is supported by a variety of technologies and a

set of guidelines to govern and maintain it.

In this study, we pay particular attention to the cloud computing system fabric for a

cloud provider who is designing, building and maintaining the cloud system to a consumer

of the offered services. In this regard, our ontology design revolves around representing
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how different information technology (IT) products are used to support cloud deployment

and service orchestration. We design and create a “cloud system” ontology to capture the

knowledge about IT products, and how these IT products are utilized in the deployment and

orchestration.

As shown in Fig. 3.1, our cloud system ontology relies on the standard cloud comput-

ing model definition and its supporting technology specifications [72, 95]. At a high level, we

want to represent the knowledge about cloud computing in terms of its participating cloud

actors (provider, consumer, auditor, carrier and broker), cloud deployment models (pub-

lic, private, hybrid, and community), cloud orchestration models (IaaS, PaaS, and SaaS),

consumer cloud applications, and the core cloud fabric (its supporting cloud system) as rep-

resented by their respective classes (concepts) shown in the Fig. 3.1. Our IKAWAFARM

tool implementation (introduced in Section 3.4.1) contains a complete ontology definition of

our cloud system ontology.

The Cpe parent class as shown in Fig. 3.1 is based on the Common Platform Enu-

meration (CPE) standard and its IT product dictionary. CPE is a structured naming scheme

for information technology systems, software, and packages [83]. We designed this ontology

to model the existing knowledge found in the CPE standard (including naming scheme, IT

product dictionary, etc.), which allows us to represent any IT product type of interest (“a:

application”, “o: operating system”, and “h: hardware”) of interest that play a vital role in

a given cloud ecosystem or traditional IT infrastructure.

For instance, let us consider the Ubuntu 14.04 operating system which is an example

of an IT product (Ubuntu server distribution plays a critical role in most popular cloud

deployments and services orchestration). Our Cpe class (including its sub-classes) allows us

to represent what we know about Ubuntu 14.04 by utilizing the existing CPE dictionary as

follows:

• We can instantiate the CpeItem class with one or more attributes (e.g., “cpe:

2.3:o:canonical:ubuntu linux:14.04 :*:*:*:lts:*:*:*”)

• The above CpeItem class instance has other attributes that extend it using a CPE
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Figure 3.1. Cloud Computing System Ontology

well-formed name (WFN) specification (e.g., “vendor: canonical ”, “product:

Ubuntu Linux ”, “version: 14.04 ”, etc.)

Our ontologies enable us to instantiate our Cpe class or any other one with the

information we currently have (which is sufficient to make correct assertions), and can always

be updated with additional information in the future (in our above example, we can later

specify any other attribute to represent an Ubuntu 14.04 Cpe instance, for example, with

the details about the target hardware). The Cpe class is designed to facilitate populating

class instances automatically (as discussed in Section 3.3) or instantiated manually for IT

products with no CPE dictionary entries [83]).

Another key class “CloudSystem” of our ontology focuses on the cloud system

fabric. This class acts as the parent class to three key concepts (ITProduct, Host, and
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Network) to represent an active cloud system based on a specific deployment model, orches-

trated services and running cloud applications. For instance, the ITProduct class models

all individual technologies (application, hardware, and OS) and their inter-dependencies

that are part of any given cloud system. Each ITProduct’ instance is linked (directly or via

inferences) to other key classes such as:

• CpeItem class to represent the given IT product using CPE format, which enables

us to infer additional information such as related IT products based on the shared

CPE attributes including IT product’s vendor, version, and target hardware. This

can be linked with the Cyber Threat Data ontology described in section 3.2.2.

• Host class representing information about the where the ITProduct instance is

installed.

• Network class to represents which Network the given ITProduct instance resides

in.

• Service class to represent the orchestrated Service instance which depends on the

given ITProduct/Host/Network instance(s), and

• CloudApp class to represent the set of deployed CloudApp instances (each with

the ITProduct class instances on which it depends on).

3.2.1.1. A Look into the HOST Class of Our Cloud System Ontology

In this section, we take a look into the Host class shown in Fig. 3.1 to represent the

information about a Host instance (i.e., physical/virtual/container machine) that plays a key

role in a cloud deployment. We designed a minimal ontology to represent information about

one such generic host instance executing Ubuntu/Debian OS as an example to support vari-

ous cloud system deployments (i.e., “Linux Server[69]”, “Lamp Stack[20]”, “Kubernetes[12]”,

and “OpenStack[94]”).

Our Host ontology is shown in Fig. 3.2 and integrates seamlessly with the cloud com-

puting system ontology seamlessly. The key information that we represent in this ontology

includes information about the host such as:
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Figure 3.2. Generic - Host Ontology

• The hostname, executing operating system, and IPs of each host in the deployment

cluster.

• All software packages installed on each host and the details of their dependencies.

We define three relationship predicates hasCpeItem, hasPkgeNameRelatedCpeItem,

and hasPkgeRelatedCpeItem:

– hasCpeItem links a given package installed on the considered host to its CPE

instance allowing us to discover vulnerabilities associated with this item

– hasPkgeNameRelatedCpeItem enable us to link a package to all CPE instances

that share the same Product name.

– hasPkgeRelatedCpeItem enable us to link a package to all CPE instances that

share the same Product name but Versions that are higher or equal to the

current installed package’s version.

CPE instance predicates (i.e., Vendor, Product, and Version) are illustrated in our
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cyber threat data ontology shown in Fig. 3.4. The three predicates play a key role in our

threat assessment and mitigation techniques which are described in Chapters 4 and 5, since

they allow us to link the cyber threat ontology with the cloud system ontology.

We should note that our cloud computing system ontology can be extended to rep-

resent other aspects of the cloud model. In Section 3.3, we present our approach towards

populating our cloud system domain-specific ontology along with some use cases using an

OpenStack [95] private cloud deployment.

3.2.2. Cyber Threat Data – Domain

IT products have been shown to be vulnerability prone [85]. As described in the

previous Section 3.2.1, IT products are used to orchestrate complex IT systems such as

cloud model deployments. Assessing the vulnerability of a cloud system becomes challenging

because of the numerous products involved in the system and product dependencies. In this

section, we present our cyber threat data ontology for capturing vulnerability information

about IT products so that this information can be linked with the IT system ontology

already presented. Our ontology can be populated using several publicly available databases

including:

• National Vulnerability Database (NVD) [85] data-feeds

• Offensive Security Exploit Database Archive (Exploit-DB) [104] database

• Structured Threat Information eXpression (STIX) [88] data-feeds

Cyber threat data ontology is shown in Fig. 3.3 and consists of the following classes

at the highest level of abstraction.

• Nvd to represent IT products’ known vulnerability details across many aspects,

where each IT product is represented in a CPE format as captured by our Cpe

class which also exists in our cloud system ontology. Thus the two ontologies can

be linked.

• ExploitDB to represent known IT products’ vulnerabilities proof of concept ex-

ploits details.
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• VendorStatement to represent published security patch information for known

vulnerabilities captured by the Nvd class).

Our ontology can be extended to support other relevant structured or unstructured

data, for example: Malware Attribute Enumeration and Characterization (MAEC) [79],

Common Vulnerability Reporting Framework (CVRF) [54], and Common Attack Pattern

Enumeration and Classification (CAPEC) [75].

Figure 3.3. Cyber Threat Data Ontology

Our cyber threat data ontology is explicitly designed to model structured data sources

that are embodied within the super classes (Vulnerability, Attack, and Mitigation). The

ontology can be populated automatically with latest information available from a variety of

databases as stated previously [85, 104]. We can also model unstructured cyber threat

information using the STIX language [88].

STIX ontology is shown in Fig. 3.5. As of now, only a few classes (ExploitTarget,

Observable, and TTP) have support for standard expression languages and their rel-

evant cyber threat data sources (Common Attack Pattern Enumeration and Classifica-

tion(CAPEC) [75], Malware Attribute Enumeration and Characterization (MAEC) [79],

Cyber Observable eXpression (CybOX) [78], Common Vulnerabilities and Exposures (CVE)
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Figure 3.4. Extended - Cyber Threat Data Ontology

[76], Common Vulnerability Reporting Framework (CVRF) [54], Common Weakness Enu-

meration (CWE) [77], and Common Configuration Enumeration (CCE) [82]) while the rest

rely on the users and community best practices to instantiate them. This ontology is de-

signed to allow anyone interested in collecting and delivering raw or vetted cyber threat

information to meet specific threat intelligence collection requirement while making use of

the STIX language.

Within the STIX ontology, we only illustrate the high-level concepts (or classes) spec-

ified within the STIX language and their interactions. This representation approach allows

anyone to define each concept/class (defining the data properties and logical constraints for

each of the STIX class) using their preferred best practices or supported standard cyber

threat expression languages or vocabularies.

Note that all of our instantiated ontologies along with their respective annotations

are described in detail within our COCKATOO toolchain (See Chapter 6).
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Figure 3.5. STIX Ontology

3.3. Instantiating Ontologies

In this section, we present our approach to populating specific instances of our on-

tologies (See. Figures 3.1, 3.2, and 3.3) to model cloud computing systems and cyber threats

associated with them.

We take a generic approach to instantiate our ontologies using AllegroGraph [1] as

our back-end data store and analytic platform to perform various querying and reasoning

tasks on any generated ontology knowledge base (OKBs) using its REST API. We selected

AllegroGraph based on its semantic graph database features that fit well with our ontology

engineering requirements.

We start by setting up an AllegroGraph (AG) server and its Python client bundles on

an Ubuntu 16.04 Linux machine for our experimental environment. Since we have already

designed our domain-specific ontologies using the Protege editor [81], we merely re-create
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them in Python programs that write them using the RDFS data model (compatible with

our selected back-end triple store), while preserving all the semantics specified during our

ontologies design phase. A naive approach to creating and populating our designed ontologies

on the AllegroGraph database is outlined in Algorithm 1.

Algorithm 1: Ontology Knowledge Base (OKB) Generator Algorithm

okbGen(): . A generic OKB generator

Set up AllegroGraph global parameters

Create or access a repository . To act as a back-end AllegroGraph container

Establish a connection object to the created repository

for Each of designed ontology do

Create resources for all of defined classes along with their semantics

For each class, create all of its necessary predicates resources and their semantics

Add these resources to the repository using the connection object

if Any of defined class can be populated automatically then

Parse the relevant data source feed(s)

Define a method to align the parsed data and create statements out of them

Add these statements to the repository using the connection object

else

Define a method to receive relevant data manually

Create statements out of the received data

Add these statements to the repository using the connection object

end

end

if there are no more classes to be populated then

Close the connection object

Shut down the repository access

else

Return the connection object

end
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The implementation of our ontology knowledge base generator Algorithm 1 is straight-

forward, as long as one

• Understands ontology modeling using RDF 1.1 [102], RDFS [103] and AllegroGraph

supported semantics (RDFS and OWL predicates) [59].

• Programming in Python 2.7 (also any other programming language supported by

AllegroGraph REST API can be used).

The full implementation of our Algorithm 1, along with all the generated ontology

knowledge bases are provided within our COCKATOO toolchain (See Chapter 6). Within

the COCKATOO toolchain, we leverage “IKAWAFARM” and “LEGOS” tools to generate

the knowledge bases pertinent to a cloud system deployment and cyber threat data feeds.

In the next subsections, we provide additional details relevant to our example IT systems.

3.3.1. OpenStack Based Cloud System – OKB

In this section, we present one of the open-source cloud projects (OpenStack) that

enables an IaaS cloud model deployment which can be customized to support other orches-

tration models (PaaS, & SaaS) as an example instance of our ontologies. OpenStack is “a

cloud operating system that controls large pools of compute, storage, and networking re-

sources in a datacenter, and managed through a dashboard that gives administrators control

while empowering their users to provision resources through a web interface” [95].

We selected OpenStack as our running example for this work since it is an open-source

software system and its flexible architecture that is similar to those that are found in most

public and private cloud deployments. Here we illustrate how we create a knowledge base

for the OpenStack deployment using our ontologies. We extend base classes and populate

the classes of the basic cloud computing system ontology (See. Fig. 3.1) using the generic

host ontology (See. Fig. 3.2).

Fig. 3.6, 3.7, and 3.9 (or Fig. 3.8) show examples of our OpenStack deployments

captured via our cloud computing system and generic host ontology models. In this study,

we partially represented the knowledge involved in deploying a basic OpenStack (i.e., Newton
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Figure 3.6. OpenStack Deployment - Hosts Ontology Knowledge Base

release [94, 2]) powered private cloud with an IaaS offering in one large Virtual machine,

running a number of LXD [68] containers.

The generated OpenStack ontology knowledge base (OKB) is stored in an Allegro-

Graph repository with these characteristics:

• 10 classes (e.g., Host, ITProduct, Service, etc.)

• 13 predicates (e.g., firstOrderDependency, serviceDependency, hasServiceName, in-

stalledOn, etc.)

• 17293 statements (e.g., “lvm2, installedOn, juju-df7b65-15”, etc.)

This OpenStack cloud system OKB represents the details about various IT products

that are included in deploying OpenStack core services [96] on this private or public cloud

[2] such as:

• Identity Service – provides a single point of integration for managing authentication,

authorization, and a catalog of services
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Figure 3.7. OpenStack Deployment - Hosts Ontology Knowledge Base – Sample

• Image Service – enables users to discover, register, and retrieve virtual machine

images

• Compute Service – is used to host and manage cloud computing systems

• Networking service – allows you to create and attach interface devices managed by

other OpenStack services to networks

• Dashboard – is a web interface that enables cloud administrators and users to man-

age various OpenStack resources and services

• Block Storage service – provides block storage devices to guest instances

The knowledge base of this OpenStack (including subsequent releases) cloud system

serves as a source of cloud configurations (based on leveraged IT products to deploy a proof

of concept IaaS powered private cloud) to be used as a running example throughout this

dissertation.

With the example shown in Fig. 3.9 (or Fig. 3.8) exported as an RDF/XML file (i.e.,

queens.xml) will enable us to illustrate our proposed techniques (presented in the next chap-
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Figure 3.8. OpenStack-Netwon Release – Cloud System Ontology Knowl-

edge Base

ters 4 - 6) for assessing and mitigating threats facing the example OpenStack deployment.

3.3.1.1. Other Complex System Deployment Examples – OKBs

In this section, we will use additional examples of some popular products and system.

As shown for OpenStack deployment (Sec. 3.3.1), we can use our generic host ontology model

to represent the knowledge information used to deploy systems like: “Linux Server [69]”,

“Lamp Stack [20]”, and “Kubernetes [12]”. The resulting host knowledge graphs exported

in the RDF/XML files of these systems can be used as inputs to other tools presented in

later chapters for assessing and mitigating security threats associated with these products.

We illustrate the following system deployments examples for:

• Ubuntu Server deployment in one simple LXD [68] Container machine (See Fig. 3.10

and Fig. 3.11).
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Figure 3.9. OpenStack-Queens Release – Cloud System Ontology Knowl-

edge Base

• Lamp Stack deployment as one simple Virtual machine, running an Ubuntu server

(See Fig. 3.12 and Fig. 3.13).

• Kubernetes deployment in one large Virtual machine, running a number of LXD

[68] containers (See Fig. 3.14 and Fig. 3.15).

In summary, the host ontology model enables us to represent knowledge about IT

products that support any cloud system deployment. Fig. 3.16 shows the number of triples/statements

(semantically linked data) about our example systems. From the number of generated triples,

we observed that complex systems contain a lot of information (i.e., number of installed pack-

ages) compared to small-scale system deployments.

The large volume of captured information and the complexity of our studied sys-

tems illustrate the applicability and value of using ontologies to represent information in a

machine-readable and semantically defined format for various post-processing tasks. In our
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Figure 3.10. Ubuntu Server Deployment - Host Ontology Knowledge Base

case, we use the generated knowledge bases as inputs to our other security analysis tools

(presented in later chapters).

One can also use a tool such as Gruff [60] to visually build semantic queries to explore

the represented knowledge. For example, Fig. 3.17 shows a simple graphical query that allows

us to explore the generated host ontology knowledge bases. Using the graphical query shown

in Fig. 3.17 we can explore a sample of the generated knowledge graph of our OpenStack

deployment from Fig. 3.6 to a simpler version of it in Fig. 3.7 (“Limit” parameter can be

adjusted to a desired number of triples to visualize, e.g., Limit=400).

3.3.2. Cyber Threat Data – OKB

The main goal of our work is to capture cyber threat information available in various

data feeds using an ontology as described previously. Here we instantiate our ontology using

existing source feeds (NVD [85], and ExploitDB [104]). However, our ontology can be easily

extended to use data from other sources.
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Figure 3.11. Ubuntu Server Deployment - Host Ontology Knowledge Base

– Sample

Fig. 3.18 and Fig. 3.19 show sample graphs that represent a small set of the generated

ontology knowledge base for the cyber threat data domain.

The current generated example cyber threat data OKB is stored in an AllegroGraph

repository with these characteristics:

• 11 classes (e.g., Vulnerability, Nvd, CpeItem, etc.)

• 58 predicates (e.g., isAffectedBy, hasCvssAccessVector, hasVulnCwe, etc.)

• 13 millions unique statements (e.g., “CVE-2016-6662, hasCvssAccessVector, NET-

WORK”, etc.)

To broaden our cyber threat data source feeds, we have also integrated one third-

party data feed from the McAfee Threat Landscape Dashboard (TLD) [71]. The TLD

service highlights the recent top 10 threats observed in critical categories, Threats, Exploit

Kits, Campaigns, Ransomware, and Vulnerabilities.
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Figure 3.12. Lamp Stack Deployment - Host Ontology Knowledge Base

Figure 3.13. Lamp Stack Deployment - Host Ontology Knowledge Base – Sample
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Figure 3.14. Kubernetes Deployment - Host Ontology Knowledge Base

Fig. 3.20 illustrates a high-level view of how we are leveraging the McAfee TLD

service. We represent the TLD data feed by defining classes to model each threat category

conceptually and instances for the top 10 categories. The TLD service uses the Vulnerability

identifier as the anchor for other cyber threats. This approach is similar to our core ontology

design as shown in our Cyber Threat Data ontology (See Fig. 3.3) and seamlessly integrates

with our STIX ontology (See Fig. 3.5).

Using our ontology knowledge base generator Algorithm 1, we extracted information

from McAfee’s TLD service, and populated a TLD ontology model, and stored the generated

ontology knowledge base (OKB) graph in our back-end AllegroGraph repository which can be

queried in a standalone fashion or via a federated query using our IKAWAFARM querying

API (See Section 3.4.1). The generated TLD OKB is shown in Fig. 3.21, Fig. 3.22, &

Fig. 3.23.

• Since our Cyber Threat Data OKB has information about all currently published

and known vulnerabilities, for any query that matches a vulnerability identifier
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Figure 3.15. Kubernetes Deployment - Host Ontology Knowledge Base – Sample

we can infer additional threat information from the TLD OKB and return richer

contextual results.

• For resources within the TLD OKB that are limited in expressivity, our Cyber

Threat Data OKB can now provide missing links.

• We plan to continue enriching our Cyber Threat Data OKB with other applicable

publicly available threat data feeds using our ontological approach.

With these generated ontology knowledge bases, there is a wide range of real-world

applications that can be designed using them. In sections 3.4 and 3.5, we present our tools

and some basic query operations that can be used to maintain, access or infer information

from our ontology knowledge bases (OKBs).
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Figure 3.16. Statistic Summary of Our Studied and Deployed Systems’s -

Auto Generated Host Ontology Knowledge Bases

Figure 3.17. Host Ontology Knowledge Base - Graphical SPARQL Query

Example
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Figure 3.18. Cyber Threat Data Ontology Knowledge Base – Sample

Figure 3.19. Cyber Threat Data Ontology Knowledge Base
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Figure 3.20. McAfee TLD Ontology – High Level View

Figure 3.21. McAfee TLD Ontology Knowledge Base – Vulnerabilities In-

stances View
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Figure 3.22. McAfee TLD Ontology Knowledge Base – Sample View

Figure 3.23. McAfee TLD Ontology Knowledge Base – Extended View
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3.4. Tools for Ontology Engineering

3.4.1. IKAWAFARM

Our ontological engineering approach is captured within a self-contained tool known

as “IKAWAFARM” which is included within our COCKATOO toolchain (See Chapter 6).

IKAWAFARM permits the creation of scalable ontologies and knowledge bases for

cybersecurity threat data and cloud computing domains. It is implemented in Python which

can be imported into any Python-based application or system. It provides the following

features implemented as modules or standalone applications:

• Ontology design artifacts developed using Protege and AllegroGraph REST API.

• Implementation of our ontology knowledge base generator Algorithm 1.

• Automatic ontology knowledge bases (OKBs) generation for our cyber threat data

and cloud system domains.

• API to semantically query the generated OKBs.

• Automation support for collecting various data feeds, setting up a development

environment and subsequent interoperability with other toolkits that are a result of

this research work.

The IKAWAFARM querying API module implements three types of methods that

produce relevant RDF triple/statement results based on:

(1) SPARQL queries that explore one or more OKB classes or predicates.

(2) SPARQL queries that perform a direct/indirect match of one or more statements

based on user-provided inputs

(3) SPARQL queries with inference support that uses AllegroGraph RDFS++ reasoner

Each of our IKAWAFARM’s method implements SPARQL queries ranging from sim-

ple to advanced form that is supported within the SPARQL 1.1 Query Language [101] to

compute relevant results. Some examples of the IKAWAFARM querying API are presented

in Section 3.5.
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3.4.2. LEGOS

LEGOS is a tool to collect various telemetry data for a computer system using an

ontology model (i.e., Fig. 3.2).

A preview of the LEGOS web application prototype is shown in Fig. 6.7. LEGOS

uses the IKAWAFARM tool as a background service (See Section 3.4.1) and provides a

user-friendly web application via three possible choices:

• Manual – A guided web interface that enables users to manually provide the config-

urations of the IT products that are installed on their hosts. LEGOS then produces

an ontology knowledge base of the user-provided assets.

• Agent – A self-contained Python package that runs on the deployed cloud hosts

and LEGOS automatically build an ontology knowledge base of all identified assets.

• Agentless – A web-based interface that collects minimal network-based details

from a user about their cloud system and LEGOS attempts to build an ontology

knowledge base of exploitable assets.

LEGOS outputs an ontology knowledge base RDF/XML file that can be used to

gain visibility (i.e., using Protege [81] or Gruff [60]) into ones deployed cloud system. The

other primary use of the LEGOS tool is to standardize a format for collecting information

about the cloud system configurations needed by our other tools like “VULCAN” [92] &

“NEMESIS” [91] for vulnerability and threat assessment tasks (these tools are described in

Chapters 4 and 5).

3.5. Basic Query Operations on Our Ontology Knowledge Bases

Through the back-end AllegroGraph database Web View (AGWebView) [58] or REST

API, each generated OKB can be accessed or updated. AllegroGraph has several features

that enable us to perform various operations on our OKBs. Some of the functionalities (also

integrated within our IKAWAFARM toolkit (See Section 3.4.1)) are listed below:

• Browsing available repositories (i.e., Cloud System and Cyber Threat Data OKBs)

• Issuing SPARQL and Prolog queries
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• Capturing a query as a web URL for embedding in applications

• Activating RDFS++ reasoning on a repository

• Setting up free-text indexing for a repository

Some IKAWAFARM querying API examples are listed below.

Figure 3.24. Sample of Statements with HasCveSummary as a Predicate

• A call to method “predicateStatements(param)” with predicate “hasCveSummary”

as input parameter, will output all statements that match the predicate name as

shown in Fig. 3.24 (which can be limited to a given number, since several thou-

sand statements/triples match this query). This sample output was captured via

the AllegroGraph WebView [58] interface for illustration purposes. Each state-

ment/triple represents a vulnerability identifier as its subject linking the given pred-

icate “hasCveSummary”, with the object of a string literal that contains the actual

vulnerability description summary. Our ontology representation approach relies on

existing, or user-provided data feeds, in this case, NVD [85] repository for vul-

nerability details, therefore the similarities in our predicates naming scheme and

instances auto-population discussed in the previous section 3.3.

• A call to method “classStatementsOn(param)” with reasoning support and predicate

“class” as input parameter, for instance, will explore any of our generated OKBs
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(i.e., Cyber Threat Data) and return the main classes instances/statements (i.e.,

CpeItem, Nvd, VendorStatement, ExploitDB, etc.) that were observed during the

ontology knowledge base (OKB) generation. In addition, among the returned re-

sults, it includes other instances/statements (i.e., Cpe, Vulnerability, CyberThreat-

Data) that were inferred via the predicate “rdfs:subClassOf ” whereas for example,

Vulnerability is a super class of Nvd class as shown in Fig. 3.3.

• A call to method “allDependenciesItProductsRec(param)” with the name of an in-

stalled package on one of the cloud system host servers (i.e., “python3.5 ”) as the

input parameter, will return names of all packages that “python3.5” depends on,

traversing the packages recursively.

• A call to method “cpeItemStrFinderProdVer(param1, param2)” will return all matched

CpeItem class instances/statements, that match param1 and param2 which have a

subject that has two objects (param1, param2). For example if these parameters are

predicates “hasCpeItemProduct & hasCpeItemVersion”, and param1 equals “mysql”

and param2 equals to “5.5.52 ”, the method will return the “cpe:/a:oracle:mysql:5.5.52 ”

CpeItem instance.

• A call to method “cveIdSeeker(param)” will return the vulnerability identification

that affects a given input parameter (where param refers to any IT product in CPE

format). For instance “cpe:/a:openldap:openldap:2.4.34 ” will return these vulnera-

bility identifiers “CVE-2013-4449, CVE-2014-97-13, and CVE-2015-1545 ”.

• A call to method “servicesAndHostsMapper()” makes one call to method “classState-

mentsResources(param)” and another to method “hostsFinderGivenServiceName(param)”

for cloud service and hosts details. It returns a dictionary object of names of

orchestrated services within the cloud system environment along with their re-

spective host(s) that manages them (i.e., service:host [“nova”:“juju-df7b65-12”,

“keystone”:“juju-df7b65-8”, “glance”:“juju-df7b65-12”, etc].).

• An example of a slightly more complex method “indexer()” provided within our

IKAWAFARM API module computes a simple index graph shown in Fig. 3.25.
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This method leverages a few other methods to connect our two generated OKBs for

the Cyber and Cloud domains, showing all the vulnerabilities of services along with

known exploits and any mitigation (or patch) information for each vulnerability.

A more detailed set of examples for our querying API methods is provided in a tutorial

supplied within our IKAWAFARM toolkit. In addition, within our COCKATOO toolchain,

we offer custom graphical query files that can be loaded into a Gruff [60] instance to allow

an analyst to visually explore and gain insight into any of our generated ontology knowledge

bases.

Figure 3.25. Indexed Graph – OpenStack Queens Release
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CHAPTER 4

ONTOLOGICAL BASED VULNERABILITY ASSESSMENT

4.1. Overview

In Chapter 3, we presented our motivation and ontology engineering approach for

modeling cloud computing and cyber threat data domains. In this chapter, we build on our

ontology foundation to present our techniques to assess and rank a cloud computing system’s

vulnerabilities and predict the number of unknown vulnerabilities in software products.

The next sections (4.2, 4.3, and 4.4) cover our proposed techniques, which have

resulted in these peer-reviewed publications and software packages:

• VULCAN : Vulnerability assessment framework for cloud computing [92]

• VULCAN Application: On-demand vulnerability assessment web application

• A methodology for ranking cloud system vulnerabilities [93]

• Predicting unknown vulnerabilities using software metrics and maturity models [90]

• SWEEP Tool : Automate the process of software complexity metrics generation and

analysis for any given software product along with its vulnerability history timeline

• PREDICTION Tool : A web service to predict the number of unknown vulnerabili-

ties in software products

4.2. Framework to Assess Cloud System Vulnerabilities∗

All cloud entities (e.g., orchestrated services, consumer’s applications, and provider’s

infrastructure) are exposed to a range of threats from the exploitation of known security

vulnerabilities contained in the IT products on which they directly or indirectly depend on.

Dependence on shared technologies by cloud services is expected because cloud providers

leverage existing solutions to meet customer requirements with Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), or other types of services

∗Section 4.2 is reproduced from P. Kamongi, S. Kotikela, K. Kavi, M. Gomathisankaran, and A. Sing-
hal, “VULCAN: Vulnerability Assessment Framework for Cloud Computing,” Proceedings of the Seventh
International Conference on Software Security and Reliability (SERE) 2013, Washington, D.C., USA, 18-20
June 2013, with permission from IEEE.
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offered by the cloud provider or a third party. This makes the security assessment process

very complicated because we need to analyze all the components that are supporting a given

service. Yet each cloud actor (e.g., consumer and provider) must be able to ensure the

security of their managed cloud system supporting their service(s) offering.

For a given scenario that leverages the cloud fabric, we want to be able to answer

these questions for the cloud provider as well as the cloud consumer:

• I have developed and deployed a new cloud product as a service. What is the vulner-

ability status of its components (during the deployment or operational/maintenance

phase)?

• I want to move a deployment or a legacy software application and host it in a

new cloud environment. Is there a way to adjust our vulnerability management

processes?

• I have designed and deployed a private cloud for my organization. Are there any

known or unknown vulnerabilities that may be exploited and exposes our systems

and services?

• I am considering adopting a third party software into our production system. Can

I find out about vulnerabilities in the software?

• Can I get a daily vulnerability assessment report of our entire deployed cloud sys-

tem?

To address these essential questions, we developed a framework to assess and manage

cloud system vulnerabilities. The codename for our framework is VULCAN. The various

components comprising VULCAN [92] are illustrated in Fig. 4.1.

The VULCAN architecture leverages these components in a unified fashion:

• IT Products’ vulnerability data feeds

• Vulnerability ontology knowledge bases

• Cloud system classifiers

• Vulnerability-based indexing techniques

• Vulnerability index knowledge bases
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Figure 4.1. VULCAN Architecture

• Vulnerability assessment report generator

• Semantic natural language processing

VULCAN components are supported with our middleware and binding scripts which

in turn enables us to perform the vulnerability assessment of a given cloud (i.e., Fig. 3.9).

By leveraging the VULCAN framework, we achieve:

(1) IT Product vulnerabilities modeling

(2) Automated assessment of vulnerabilities for any cloud computing system

(3) Discovery of new vulnerabilities from known ones

(4) Software security penetration helper tool

(5) Cloud specific vulnerability management platform

In the next Section 4.2.1, we present our VULCAN architectural design in detail.

4.2.1. VULCAN – Architecture

VULCAN uses an ontology-based approach for creating a vulnerability-centric rich

cyber threat data knowledge base (See Section 3.2). For assessing vulnerabilities in a specific

domain, like cloud computing, we model that domain so that it can seamlessly integrate with
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the cyber threat data domain (e.g., information technology (IT) products’ vulnerabilities).

The modeled domains can be instantiated with relevant data sources and generate a knowl-

edge graph (ontology knowledge base). This knowledge graph can, in turn, be queried and

reasoned about the IT system to address various vulnerability issues.

4.2.1.1. IT Products’ Vulnerability Data Feeds – NVD

The National Vulnerability Database (NVD) [85] is a SCAP [86] compliant vulnerabil-

ity database. The NVD database collects vulnerability information from various interrelated

vulnerability databases like CVE [76], CWE [77], CPE [83], CVSS [36], and compiles the

information into a single database. A unique identifier, CVE or Common Vulnerability Enu-

meration, tags every entry in the NVD database. This identifier is used to map relevant

information for each reported vulnerability along with details found in any of the databases

mentioned above. A typical vulnerability entry in the NVD database has the vulnerabil-

ity identifier, description of the vulnerability, list of software systems and their versions in

which this vulnerability is found, and a vulnerability severity score (CVSS) collected from

appropriate vulnerability databases. These vulnerability databases are industry standard

databases maintained by NIST. Volunteers across the industry contribute to the vulnera-

bility information found in these databases. The SCAP compliance of the NVD database

makes it easy to interoperate with other security tools and automate security assessment.

The VULCAN framework uses NVD as the source to populate vulnerability information into

the cyber threat data ontology knowledge base (presented in Section 3.2.2).

In addition to NVD data feeds (Vulnerability information and Vendors statements),

we collect exploits code data feed from Exploit-DB [104] which enables us to find out if any

of the NVD published vulnerabilities have publicly known proof of concept exploits.

4.2.1.2. Vulnerability Ontology Knowledge Bases

The Vulnerability ontology knowledge base (OKB) is the ontological database of vul-

nerability information from the NVD database that is semantically linked with other infor-

mation such as mitigation techniques (vendor provided patches) and exploit codes (various
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Exploit Databases). The Vulnerability OKB is presented in the previous Chapter 3 (See

Section 3.3).

4.2.1.3. Cloud System Classifiers

System Classifiers are dynamic inputs provided to the Indexer module, which will

create vulnerability classes using a back-end cyber threat data ontology knowledge base.

An example classification includes various vendors in the cloud computing domain

and different software or hardware components in each service level of cloud computing

services. As shown in Fig. 4.1, cloud computing domains are classified as IaaS, PaaS, or

SaaS subdomains. In each of these subdomains, we will include software and hardware

components found in cloud computing vendor systems like the Xen hypervisor in the IaaS

sub-domain, Google App Engine in the PaaS sub-domain and Salesforce CRM in the SaaS

sub-domain. We provide the system classifiers to various levels of detail depending on the

interest of the user. The indexer takes these system classifiers as input and recursively crawls

through the cyber threat data ontology knowledge base and creates an index. The index

consists of vulnerabilities grouped according to the system classifiers provided. The changes

in software or hardware in any domain or from any vendor would require updating the system

classifiers and re-indexing the ontology knowledge base.

In the previous Chapter (Section 3.2.1), we presented our cloud system modeling

approach which can be instantiated to define and create a cloud system classifier for any

public/hybrid/private cloud deployment. We developed a helper tool named “LEGOS” (See

Section 3.4.2) which enables any cloud actor to bootstrap a representation model of their

deployed system. LEGOS generates an ontology knowledge base (OKB) that captures all

participating components of the user deployed cloud system (i.e., host software and hardware

stack across the entire deployment). This LEGOS generated OKB can be directly fed to the

Indexer module for vulnerability classification and indexing.
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4.2.1.4. Vulnerability Based Indexing Techniques

The indexer is the software responsible for crawling through the cyber threat data

ontology knowledge base to create an index. This index will, in turn, be used by the SNLP

(Semantic Natural Language Processor) module to search the ontology knowledge base in

response to a user query. The indexer is re-executed every time the ontology knowledge base

or system classifiers change. The indexer identifies all the vulnerabilities that are related to

the set of software or hardware components listed in the system classifiers and groups them

accordingly in the index.

The Indexer module implements various indexing schemes for different usages (e.g.,

Vulnerability assessment, Threat modeling, and Risk estimation). For instance, the VUL-

CAN Web Application (described in Section 4.2.2.4) leverages the Indexer to satisfy different

levels of vulnerability indexing. The currently supported levels of the vulnerability indexing

capabilities are listed below.

• Level 1 : Indexes identifiers of any known vulnerability, exploit, and patch for each

given IT asset

• Level 2 : Indexes identifiers of any known vulnerability for all related products for

each given IT asset

• Level 3 : Extends the Level 1 indexing technique to provide all key information for

each indexed identifier

• Level 4 : Extends the Level 3 indexing technique to include related products that

have a newer release version for each indexed IT asset

• Level 5: Extends the Level 1 indexing technique to provide all the information that

the above indexing levels do provide

In this study, we mainly use Indexes Level 1-3 for vulnerability assessment tasks and

Level 3-4 indexes for threat modeling and risk assessment of a cloud system. Level 5 indexes

are used for answering user’s question about the security posture of their IT systems.
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4.2.1.5. Vulnerability Index Knowledge Bases

The Vulnerability Index is the list of all vulnerabilities (encoded as triples) grouped

into the categories provided by the system classifiers. These groups are called as “Vulnera-

bility Classes”. Vulnerability classes will assist users in searching for vulnerabilities within

a specific domain or sub-domain.

An abstracted index example is shown in Fig. 4.1. The Cloud computing class is at

the top level. It has a subclass called PaaS, and the PaaS class has Xen hypervisor as its

subclass. In the Xen class, we have the list of vulnerabilities extracted by the indexer from

the cyber threat data ontology knowledge base.

Another index example is of a deployed OpenStack cloud system that is shown in

Fig. 3.25. Fig. 3.25 illustrates the cloud definition model with a focus on an OpenStack

system deployment instance. It shows all orchestrated services and their hosts’ dependencies.

For each deployed host, the index shows a sample of installed applications including their

Common Platform Enumeration (CPE) representation. In addition, for each IT product

(i.e., application), the index shows information about the found vulnerabilities that affect

them, and for each vulnerability, information about its exploit and mitigation is represented

as well. The index example illustrated in Fig. 3.25 contains plenty of information needed to

answer questions about the security posture of the assessed OpenStack deployment.

Each indexing technique described in Section 4.2.1.4 will generate vulnerability classes

that augment the cloud system classifier ontology knowledge base of the cloud system under

evaluation. In turn, each indexing technique will produce a custom vulnerability indexed

knowledge graph (ontology knowledge base). This vulnerability indexed OKB will be used as

input for other components of the VULCAN framework to perform vulnerability assessment

tasks.

4.2.1.6. Vulnerability Assessment Report Generator

Vulnerability Assessment Report (VAR) generation leverages a Vulnerability Indexed

OKB as the source of vulnerability information and the specific components of the assessed

cloud system that are affected. The VAR generator can be invoked via the VULCAN Web
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Application (See Section 4.2.2.4) to render a vulnerability assessment report to inform the

cloud actor. This contains information regarding the vulnerability status of the cloud system

along with actionable insights on which IT product needs their attention.

4.2.1.7. Semantic Natural Language Processing (SNLP)

The Semantic Natural Language Processor (Illustrated in Fig. 4.2) enables users and

our automated software agents (i.e., web applications and chatbots) to search and reason

about vulnerabilities. It includes various sub-components which are capable of pattern

matching, keyword search, and reason over properties and relationships of the classes in

the ontology knowledge bases. SNLP takes input from a user or a software agent and tries

to interpret what the user is asking, and returns a list of vulnerabilities for the requested

product or class. SNLP is capable of looking up vulnerabilities for the requested product

and listing vulnerabilities in a particular class or product across various vendors. It also can

reason and list vulnerabilities for the technology or framework used in the user’s application

stack and system deployments.

User
(Natural Language)

Dialogue Agent
(Interactive User 

Interface)

Input

Reasoning Tasks
(Reasons with the 

Ontology Knowledge 
Base) Auto Generated

Feedback

Relevant Results Keyword Searching
(Information Retrieval 
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Keyword Searching
(Information Retrieval 

Approach)

Keywords

Auto Generated
Feedback

<< N-Gram feed

Figure 4.2. VULCAN – Semantic Natural Language Processor (SNLP)

4.2.1.8. Other Components

In previous subsections, the main components and modules of VULCAN were pre-

sented. The remaining components of the VULCAN architecture shown in Fig. 4.1 are the
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customizable features that permit testing of Cloud Systems. The Vulnerability List is gener-

ated from the SNLP component after processing natural language queries. Also, the Attack

Database is an independent source of attack modules – Metasploit [98] in the current im-

plementation. These attacks can be used to test if a system contains a specific vulnerability

and if the attack is successful or not.

In subsection 4.2.2, we present the implementation of VULCAN architecture compo-

nents and integration of these components in the VULCAN Web Application. We use the

VULCAN Application, and some use cases to demonstrate the capabilities of the VULCAN

framework.

4.2.2. VULCAN - Implementation

Python is used to implement the VULCAN framework since Python is portable across

computing platforms. VULCAN components are modular in the sense that they can be

changed or replaced with new modules without affecting other components. This also allowed

us to build components separately and integrate them in the VULCAN framework (in a sense

adopting agile software development practice). One or more components can be invoked from

the VULCAN Web Application (based on the workflow among the components).

The “IT Products’ vulnerability data feeds” and “Vulnerability ontology knowledge

bases” components of VULCAN are implemented using our “IKAWAFARM ” tool (presented

in Chapter 3, Section 3.4.1).

The “Cloud system classifiers” component is implemented using the “LEGOS” tool

(presented in Chapter 3, Section 3.4.2).

4.2.2.1. Vulnerability Based Indexing Techniques

The “Vulnerability based indexing techniques” component is implemented within our

VULCAN Python project. As previously presented, our VULCAN framework offers various

vulnerability indexing types to satisfy different needs.

Within our VULCAN Python project, we implemented each vulnerability index type

as a Python module which can be called from any Python application. Each vulnerability
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index module leverages our backend cyber threat data ontology knowledge bases via an API

that is maintained by our IKAWAFARM tool.

The execution of any vulnerability index type when given an input use case (i.e., a

deployed “cloud system - ontology knowledge base” generated by our LEGOS tool), will out-

put a matching “Vulnerability index knowledge base” and will be stored within our backend

semantic graph database as a repository container. This Vulnerability Index knowledge base

output can then be exported as an “RDF/XML” file automatically or via the user prompt

for post analysis tasks using our VULCAN web application or a compatible visualization

tool (i.e., gruff [60], protege [81]).

4.2.2.2. Vulnerability Assessment Report Generator

The “Vulnerability assessment report generator” component is implemented and inte-

grated within our VULCAN Web Application. We used the Django framework [38] templat-

ing feature for generating a vulnerability assessment report (VAR) template. The template

is made of these key table of contents views:

• Executive Summary – provides a brief summary of known vulnerabilities that affect

the assessed IT system (e.g., “Deployed cloud system”) in terms of the number of

affected hosts, installed software systems on each host and the severity of the found

vulnerabilities (e.g., how many vulnerabilities have publicly known exploits and how

many can be exploited via a network attack vector).

• Asset View – enables the user to explore each affected application/os/hardware/host(s)

of the assessed IT system. For instance, by navigating through a host pivot point,

a list of assessed host identifiers will be presented where each host identifier enables

the user to view all affected software products (e.g., Operating Systems, Applica-

tions, and Packages), then by selecting a given product, the web view will expand

to provide details about all found vulnerabilities.

• Vulnerability View – provides an explorable list of discovered vulnerability identifiers

in CVE format [76]. For each vulnerability identifier, the user can view the complete

details on that particular vulnerability, along with associated references to threat
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data feeds (e.g., NVD) and subsequently to how that particular vulnerability can

be exploited, mitigated or patched.

• Exploit view – provides a list of identified publicly known exploit identifiers (from

Exploit-DB [104]) that can be leveraged to exploit some of the known vulnerabilities

that affect the assessed IT system. At present we are limiting our sources to very

few exploit databases and thus are limited to the number of known exploits.

• Mitigation View – provides a list of known public fixes to mitigate some of the found

vulnerabilities. We are limited by the publicly known information or information

made available by the vendor in this connection.

• Visualization View – provide simple Gruff [60] graphical queries that an analyst can

use to explore and infer insights from the VULCAN generated vulnerability index

ontology knowledge base for the assessed IT system.

• Next Steps – provides some recommendations to take based on the vulnerability

assessment findings

In response to user tasks for generating different vulnerability index (VI) knowledge

graphs and reports, the VULCAN application agent will invoke custom APIs to find all the

relevant information from the vulnerability index and populates the VULCAN-App tem-

plates so that this user can navigate and explore the contents of each report.

4.2.2.3. Semantic Natural Language Processing

The “Semantic natural language processing” component is implemented and inte-

grated within our VULCAN Web Application via the Query window where a user can ini-

tiate a chatbot session. At present, we have implemented some common scenarios of user

queries and tested the responses.

We have also implemented some components/modules to drive real-life use cases,

where our VULCAN framework can address common routine tasks that a security analyst

may encounter on a daily basis.
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4.2.2.4. VULCAN Web Application

We designed and implemented a prototype “VULCAN Web Application” to demon-

strate various use cases of our Vulcan framework. The primary VULCAN-app user interface

is shown in Fig. 6.9. The application features are divided into three columns in the window:

Assess, Report, and Query.

• The Assess category of the application empowers the user to:

– Generate an ontology knowledge base (OKB) of their deployed cloud system

using our LEGOS tool

– Task VULCAN-App to index the user provided OKB (or generated using LE-

GOS) of their system (choices for different levels of vulnerability indexing are

presented to the user during the process)

– Schedule the vulnerability indexing task periodically since our back-end cyber

threat data ontology knowledge base will evolve on a regular basis based on

updates to the threat data feeds

• The Report category of the application enables the user to:

– Upload a previously generated vulnerability index ontology knowledge base of a

target system (VULCAN-App has a command-line interface that offers features

similar to the web interface)

– Select one of the vulnerability indexes generated from the “Assess” category

– Render and explore a vulnerability assessment report on-demand by selecting

the tasked vulnerability index ontology knowledge base

• The Query category of the application enables the user to:

– Initiate a chatbot session which uses a conversation agent that can understand

and interpret user-generated vulnerability assessment reports

– Ask a question in English to converse with the chatbot

– Define a daily workflow for users to maintain the security postures of their

systems.

We implemented the VULCAN web application using third-party software packages
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including:

• Django web framework [38]

• Bootstrap framework [21]

• Protege: an ontology editor and framework for building intelligent systems [81]

• AllegroGraph semantic graph database [1]

• Gruff: a graphical triple-store browser for AllegroGraph [60]

Also, we developed various other tools needed for VULCAN that include (as

reported in the previous chapter) :

– LEGOS tool

– IKAWAFARM tool

– Vulnerability indexing modules

– Vulnerability assessment report generator

– Vulnerability information chatbot

The original publication on the VULCAN Framework [92] described the goals of VUL-

CAN without complete implementation of various components. We now have a prototype

implementation of VULCAN as well as other systems in our COCKATOO toolchain (See

Chapter 6).

4.2.3. VULCAN - Evaluation

To test the VULCAN framework, we evaluated several IT systems. Here we illustrate

how VULCAN is tested on an OpenStack cloud deployment (See Section 3.3.1).

We deployed OpenStack powered private cloud systems using the Conjure-up [2] and

OpenStack-Ansible [97] orchestration tools. An overview of one of our deployed OpenStack

cloud systems is shown in Fig. 3.9 (or Fig. 3.8). Fig. 3.9 was generated using the Protege [81]

editor activated with the ontology knowledge base of the deployed OpenStack cloud system,

which in turn was generated by our LEGOS tool (See Section 3.4.2). A LEGOS agent was

installed in each of the containers that were bootstrapped on the OpenStack system and col-

lected telemetry data for the container including information on all software systems running
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in the container. The telemetry data is collected automatically and stored in an Allegro-

Graph [1] database repository. This information can be stored locally where the VULCAN

application is running or on a remote system. The generated AllegroGraph repository can

be accessed via an API or exported as an XML/RDF file for post-processing tasks (like

visualizations shown in Fig. 3.9 or fed to the VULCAN Web Application for vulnerability

assessment).

The main achievement of the VULCAN framework is automation and the scalability

of vulnerability assessment.

For our case study of the OpenStack cloud system, we tackled the first challenge of

modeling and representing the deployed system using LEGOS agents which alleviated the

manual work of inputting information about each software system running in each container.

The second challenge we addressed is the automatic vulnerability assessment of the

deployed OpenStack.

• We load the LEGOS generated OKB of the deployed OpenStack system into the

VULCAN Web Application (or Command line interface) as shown in Fig. 4.3. Then,

we select and task the given cloud system classifier OKB for vulnerability indexing.

• Different vulnerability indexing techniques are presented, and the user can select

which one best suits their vulnerability assessment level (Level 1-5). Then, a back-

ground process will invoke the Indexer module that will crawl the entire Cyber

Threat Data ontology knowledge base and generate a vulnerability index knowledge

graph (which will become available within the VULCAN web application dashboard

once the indexing process is complete). Fig. 4.4 shows different vulnerability indexes

(with Vulnerability Index – Level 3, aka. “Index Vulcan” highlighted) generated for

the selected cloud system OKB.

• Table 4.1 shows a comparison of different statistics generated for each of the sup-

ported vulnerability indexing levels (1-4) (See Section 4.2.1.4) for the given Open-

Stack OKB generated by our LEGOS tool which contained 30153 triples representing

information regarding all the deployed IT assets, hosts and installed software pack-
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ages. Note that the Vulnerability Index Level 5 statistics are not shown since they

are costly to generate for a large-scale deployment such as the OpenStack studied

here. We recommend that a Level 5 index be used for smaller systems or a single

host. We also recognize the limitation of our indexing capability since we rely on a

few open-source data feeds for our Vulnerability, Exploit, and Mitigation informa-

tion to populate our Cyber Threat Data ontology. However, our framework can be

extended to include additional sources of information.

• The user can then explore the vulnerability indexes generated and select which one to

use for the vulnerability assessment report generation. For instance, Fig. 4.5 shows

an on-the-fly rendered vulnerability report when the “Level 3” vulnerability index

is selected. The user can navigate this report to view different levels of details on

vulnerabilities. Fig. 4.6 shows the executive summary for the example OpenStack

deployment discussed above. Other reports generated are shown in Fig. 4.7 to

Fig. 4.15.

• The user can also elect to use the SNLP-based Chatbot feature within the VULCAN

web application to find answers to the vulnerability status of their deployed cloud

system. Figures 4.16, 4.17, and 4.18 show a simple chatbot user interaction. Ad-

vanced features of the VULCAN Web Application include the support of scheduled

vulnerability indexing and user-defined routines via the chatbot.

Beyond the VULCAN web application, VULCAN framework has other applications.

In subsequent Sections 4.3 and 4.4, we present two examples of our work that leverage

VULCAN framework as the source of semantically linked vulnerability information:

• A methodology for ranking cloud system vulnerabilities [93]

• Predicting unknown vulnerabilities using software metrics and maturity models

(Viz., SWEEP and PREDICTION modules) [90]
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Figure 4.3. VULCAN Web Application - OpenStack:Newton Legos Gener-

ated OKB Input

Vulnerability Index (VI) #Triples #Vulnerabilities #Exploits #Mitigations

VI-Level1 (aka. Default) 30388 68 3 0

VI-Level2 (aka. Sweep) 38044 308 0 0

VI-Level3 (aka. Vulcan) 37603 68 3 0

VI-Level4 (aka. Nemesis) 63969 242 7 13

VI-Level5 (aka. Cockatoo) N/A N/A N/A N/A

Table 4.1. VULCAN Web Application - OpenStack:Newton Vulnerability

Indexes OKBs Comparison
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Figure 4.4. VULCAN Web Application - OpenStack:Newton Generated

Vulnerability Indexes OKBs

Figure 4.5. VULCAN Web Application - OpenStack:Newton Vulnerability

Assessment Report using a Generated Vulnerability Index Level 3 OKB
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Figure 4.6. VULCAN Web Application - OpenStack:Newton Executive

Summary View

Figure 4.7. VULCAN Web Application - OpenStack:Newton Assets View
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Figure 4.8. VULCAN Web Application - OpenStack:Newton Vulnerable In-

stalled Packages per Host

Figure 4.9. VULCAN Web Application - OpenStack:Newton Found Vulner-

ability for a Selected Installed Package
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Figure 4.10. VULCAN Web Application - OpenStack:Newton Selected Vul-

nerability Identifier Details

Figure 4.11. VULCAN Web Application - OpenStack:Newton Vulnerability

View – Sample
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Figure 4.12. VULCAN Web Application - OpenStack:Newton Selected Vul-

nerability Identifier Details

Figure 4.13. VULCAN Web Application - OpenStack:Newton Exploit View
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Figure 4.14. VULCAN Web Application - OpenStack:Newton Selected Ex-

ploit Identifier Details

Figure 4.15. VULCAN Web Application - OpenStack:Newton Selected Vul-

nerability Identifier Details
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Figure 4.16. VULCAN Web Application - OpenStack:Newton Chatbot First

User Interaction

Figure 4.17. VULCAN Web Application - OpenStack:Newton Chatbot

Sample Answer to a User Query

Figure 4.18. VULCAN Web Application - OpenStack:Newton Chatbot

Sample Answer to a User Query
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4.3. Ranking Cloud System Vulnerabilities†

In this Section, we present how to rank vulnerabilities so that security risks can be

quantified. Some of this work was previously published [93] and builds upon our VULCAN

foundation presented in the previous Section 4.2.

4.3.1. Overview

There have been numerous reports in the media [125], [27], [31], [57] that many finan-

cial institutions have been victims of devastating security attacks on their online services.

Most of the successful attacks were based on known system vulnerabilities that were not

proactively addressed. Some vulnerabilities may have appeared to pose a negligible security

threat, or the organization made a trade-off in their security management.

There have been many approaches explored for addressing the challenges of managing

security risks. Prioritizing management, understanding risks associated with different types

of vulnerabilities, and tolerance to different types of attacks allows an organization to trade-

off risks and costs [65]. Security risks need to be quantified to understand the acceptable level

of risk to tolerate, or the level of trust that can be associated with the security management

processes. Cloud service providers must ensure that their systems meet a specified level of

security (i.e., SSLA: Security Service Level Agreement). Maintaining such SSLAs is becoming

more difficult as new security attacks based on both known and yet unreported vulnerabilities

continue to emerge.

We propose an approach to track and quantitatively analyze security risks associated

with a system. We use the Common Vulnerability Scoring Systems (CVSS) for quantifying a

vulnerability and attack graphs to assess the security risks of the target system. We extend

the CVSS metrics to create an aggregate measure for systems with multiple vulnerabilities

across multiple components of the system (hardware, software, and networks). The aggregate

measure relies on attack graphs that show dependencies among the vulnerabilities that lead

†Section 4.3 is reproduced from P. Kamongi, S. Kotikela, M. Gomathisankaran, and K. Kavi, “A Method-
ology for Ranking Cloud System Vulnerabilities,” Proceedings of the Fourth International Conference on
Computing Communication and Networking Technologies (ICCCNT) 2013, Namakkal, Tamil Nadu, India,
4-6 July 2013, with permission from IEEE.
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to specific types of attacks. An organization can define different priorities for different types

of attacks based on their business models.

Our model is illustrated in Fig. 4.19. The model starts with a vulnerability discovery

process (powered by the VULCAN Framework shown in Fig. 4.1) for a cloud application

(or a system) and produces a rank ordered list of vulnerabilities and a rank ordered list of

security threat types.

Such information can be used for:

(1) Security Auditing

(2) Risk Assessment and Risk Management

(3) Vulnerability Management

(4) Cyber Security Automation

(5) Cloud Computing Security

In the subsequent Section 4.3.2 to Section 4.3.4, we will provide the background

pertinent to this work and then present our model for risk quantification.

Figure 4.19. Vulnerabilities Ranking Methodology
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4.3.2. Background

4.3.2.1. On-Fly Authentication Application

The On the-Fly Authentication Application is a prototype (shown in Fig. 4.20) hosted

on Amazon Web Service (AWS) [11]. We used the Amazon Elastic Compute Cloud (EC2) [9]

service, which allowed us to deploy and run an Amazon instance that supports our applica-

tion. The application is made of two components, the client and server side. The client side

provides a webpage form (an example is shown in Fig. 4.20) that asks the user to provide:

(1) The direct Uniform Resource Locator (URL) of the file that needs to be

authenticated (e.g., https://www.openssl.org/source/openssl-1.0.2n.tar.gz)

(2) The Hash Value of the file that needs to be authenticated

(e.g., 0ca2957869206de193603eca6d89f532f61680b1)

(3) The Hash Function to be used on the file to be

authenticated (e.g., SHA1)

The user then submits the form to be processed on our server side. The server end

receives the user inputs and performs the following:

(1) In a sandbox environment, the server downloads the file.

(2) Using the provided hash function (e.g., “SHA1”), the server computes the hash

value for the file.

(3) The server compares the new hash value to the user provided hash value and returns

a confirmation message if the hash values match (or denial message if they do not

match). An example is shown in Fig. 4.22.

Throughout this work, we use this application to illustrate how we could use our

proposed security metrics to rank assessed vulnerabilities.

4.3.2.2. Amazon Elastic Compute Cloud (EC2)

Amazon’s Elastic Compute Cloud (EC2) is a web service that provides compute

capacity that can be scaled to meet user needs [9]. It is provisioned from Amazon Machine

Images (AMI) [10] where an AMI is a special type of pre-configured operating system and
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Figure 4.20. On-the-Fly Authentication Application – User Interface

virtual application software which is used to create a virtual machine (instance) within the

EC2 [9].

Our Amazon EC2 instance includes a Linux kernel, AWS tools and repository access

to multiple versions of IT products such as MySQL, PostgreSQL, Python, Ruby, and Tomcat.

On top of these, we installed the Apache HTTP Server (“httpd”) for running any web services

on the EC2 instance. The web server is reachable on ports 80 (HTTP) and 443 (HTTPS)

over TCP. We allow SSH access (TCP port 22) from any source. These rules are defined as

part of the security groups [8] setting (firewall configuration).

4.3.3. Our Approach for Security Risk Quantification

4.3.3.1. Attack Graph Generation

(1) Specifications: In our approach to producing security metrics that assess our

cloud application introduced in Section 4.3.2.1, we need to understand the system
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Figure 4.21. On-the-Fly Authentication Application – Example

Figure 4.22. On-the-Fly Authentication Application – Example Evaluation

as viewed by an attacker or by the internal organization. We can use tools such as

security scanners to determine what an attacker can see. We use the Nessus [105]
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scanner to obtain our target application network description and any available vul-

nerability information. In addition, we add the security vulnerability data obtained

from our VULCAN tool described previously to enhance the knowledge for assessing

security risks. Our model can be more accurate if additional and specific knowledge

about the system being assessed is provided (for example how components are con-

figured, if patches are in place, and other information can be collected by tools such

as LEGOS described in Chapter 3). To illustrate our model, we currently assume

a simple network description with vulnerability information acquired by the Nessus

scanner.

(2) Modeling: The information collected allows us to create a baseline for our attack

graph generation. We utilize one of the currently adopted approaches such as the

Buchi automaton and SPIN model checker to verify if the information acquired thus

far are correct and complete; otherwise, correct the information before generating

attack graphs [109].

(3) Generation: Once the baseline for the attack graph is collected, we use our scripts

to generate attack graphs. We can use any known methods for generating attack

graphs (for example the works presented in [109] or [99]). We can use [99] for gen-

erating attack graphs and add the Common Vulnerability Scoring System (CVSS)

metrics with the graphs to obtain risk scores associated with the system.

(4) Analysis: The generated attack graph defines all possible paths that an attacker

can take to achieve specific goals (for example, obtain authorized access to a system).

This approach is straightforward to assess when faced with a couple of possible at-

tack paths. What if the attack graph contains a multitude of possible attack paths?

To answer this problem, we explored all currently known analysis techniques such

as the use of a Probability Scenario Graph (PSG) as described in Oleg’s work [109].

Also, some other related techniques have been devised to reduce the number of at-

tack paths to a number of more likely ones that cause an imminent threat. Our

contribution in this work is based on two algorithms crafted to use the concepts of
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security metrics to determine the system or application tolerance level in a quanti-

fied representation. We also provide security analysts with the means to prioritize

attack paths using our ranking methodology.

4.3.3.2. Common Vulnerability Scoring System (CVSS)

CVSS is a vulnerability scoring system designed to provide an open and standardized

method for rating IT vulnerabilities [36]. CVSS helps organizations prioritize responses to

security vulnerabilities by communicating the base, temporal and environmental properties

of a vulnerability.

We add a Weighted Average Mean metric to the CVSS, which allows us to rank

attack paths generated as described in the previous section (Section 4.3.3.1). Our approach

contains two parts. The Ranking Algorithm implements the first part (See Algorithm 2)

and the second part is a graphical user interface (labeled Dynamic Input Specification, See

Algorithm 3) that receives weights that define the significance of different attack paths as

perceived by the user (Algorithm 3 feeds weights to Algorithm 2).

Below are some examples illustrating the dynamic input formats that are supported:

• First example is an attack vector, e.g., “AV:L/AC:M/Au:N/C:N/I:P/A:C”. In this

example, a vulnerability has base metric values of “Access Vector:Low, Access Com-

plexity:Medium, Authentication:None, Confidentiality Impact:None, Integrity Im-

pact:Partial, and Availability Impact: Complete”.

• Second example is the Weighted Average Mean input, e.g., “BM:0.25/TM:0.25/EM:0.5”.

In this case, a vulnerability has assigned Weights for groups of “Base Metric:0.25,

Temporal Metric:0.25, and Environmental Metric:0.5”. Here we observe that the

sum of the weights equals one.

4.3.4. Example Workflow

An overview of how our proposed approach works is illustrated in Fig. 4.19.

• We have developed a web application on Amazon EC2 (presented in Section 4.3.2.1).
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Algorithm 2: Ranking Using CVSS metrics

Require: An attack graph G with CVE-ID assigned on each node

for The given attack graph G do

Create a list L of all attack paths from G

Display a menu of CVSS metric classes along with their subclasses

Prompt the user for dynamic inputs (DI)

for Each attack path in L do

Extract CVE-IDs from the attack path

Map CVE-IDs to their reported CVSS metrics that matches the user DI

Initialize a custom data type L’ with the current attack path entry details

Calculate the overall Weighted Average Mean and add it to L’

end

Sort L’

end

Return top-ranked attack paths from L’

Ensure: A ranked list of attack paths based on the user dynamic inputs

• Using the application IP address, we gather information using the Nessus [105]

scanning tool.

• We have conducted Web App Tests and an External Network Scan on our applica-

tion.

• Web App Tests are used to discover known and unknown vulnerabilities in web

applications.

• External Network Scan is used to scan externally facing hosts.

• In the External Network Scan, all 65535 ports and known web application vulnera-

bilities are exercised.

• From the information collected, we identify specific vulnerabilities and add addi-

tional vulnerability information using VULCAN, which uses the system specifica-

tions obtained from the scanner.

• The specifications plus the vulnerability information collected above are fed to the
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Algorithm 3: User Dynamic Input Specifications

Require: Metrics

• CVSS Metric Groups

(1) Base Metric (BM)

– Access Vector (AV)

– Access Complexity (AC)

– Authentication (AU)

– Confidentiality Impact (C)

– Integrity Impact (I)

– Availability Impact (A)

(2) Temporal Metric (TM)

– Exploitability (E)

– Remediation Level (RL)

– Report Confidence (RC)

(3) Environmental Metric (EM)

– Collateral Damage Potential (CDP)

– Target Distribution (TD)

– Security Requirements (CR, IR, AR)

• Weighted Average Mean (0 - 1)

– Default values:

∗ Low (0.25)

∗ Medium (0.5)

∗ High (0.75)

∗ Not defined (0)

∗ Top priority (1)

attack graph generation tool to create all possible attack paths that may be used

by an attacker.
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• Output from the above step is a complete attack graph. Using our algorithms

presented in Section 4.3.3.2, we then extrapolate all possible attack paths.

• Additional inputs are then requested from the user to prioritize and generate attack

paths using our ranking algorithm 2.

4.3.5. Summary

In [93], we extended our previous work on VULCAN [92], a Vulnerability Assessment

Framework for Cloud Computing. In VULCAN, we modeled security vulnerabilities and

defined a vulnerability ontology that classifies them. We then developed an automated pro-

cess to instantiate our ontology using the data provided by NVD [85] which resulted into

our ontology knowledge base (OKB). Using this OKB, we can study and assess security

vulnerabilities of individual components or subsystems of a cloud computing system. We

achieve this complete assessment via VULCAN components, such as Semantic Natural Lan-

guage Process (SNLP), and modules like System Classifiers and Indexer (see Figuree 4.1 for

illustration.)

In addition, we have a method for ranking vulnerabilities. We conceptualize cloud

system vulnerabilities as nodes in an attack path that can be used by an attacker. We

generate an attack graph to represent all possible attack paths. We can then assign a risk

score using the CVSS metric for each vulnerability, and probability models to aggregate the

overall risk associated with the attack graph.

4.4. Prediction Model for Unknown Vulnerabilities‡

In this Section 4.4, we present our approach to predicting yet undiscovered vulner-

abilities using software metrics and software maturity models. Some of these results were

previously published in [90]. This work builds on our VULCAN framework that was pre-

sented in Section 4.2.

‡Section 4.4 is reproduced from P. Kamongi, K. Kavi, and M. Gomathisankaran, “Predicting Unknown
Vulnerabilities using Software Metrics and Maturity Models,” Proceedings of the Eleventh International Con-
ference on Software Engineering Advances (ICSEA) 2016, Rome, Italy, August 21-25, 2016, with permission
from the International Academy, Research and Industry Association (IARIA).
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4.4.1. Overview

Any software product that is in production goes through a series of changes through-

out its lifecycle as a result of feature changes or bug fixes among other factors. As a software

product matures, it has been shown that it is vulnerability-prone and that its security vul-

nerabilities do get discovered throughout its maturation. For the last decade or so, we have

seen a trend of security vulnerabilities in software products being disclosed on a regular basis

[85]. This observed trend calls for increased security awareness and demands new approaches

to stay ahead of security threats from yet unknown or disclosed vulnerabilities.

Security vulnerabilities that are discovered and leveraged by malicious actors before

the software provider becomes aware of them and fixes them are known as zero-day (0day)

vulnerabilities. The worrisome nature of 0day vulnerabilities is due to the endless number of

approaches that a malicious actor might employ to attack a software product. The security

community and software product vendors sponsor bug bounty initiatives in an attempt to

stay ahead of such zero-day attacks, but discovering software bugs or vulnerabilities before a

malicious attacker discovers them is a challenge. This requires assessing the software using

tools that analyze the design, implementation, and usage. Some examples include static

code analysis and dynamic analysis of binaries. However, these techniques may not discover

all software bugs and vulnerabilities. Our approach relies on historical approaches to predict

hidden or latent software bugs based on the complexity of software. In addition, we rely

on measuring how a software product matures with new releases that are supposed to fix

detected bugs or vulnerabilities. However, the fixes themselves may introduce new bugs or

vulnerabilities. The measure of software maturity captures these aspects.

An estimation of the potential number of undetected or unreported security vulnera-

bilities is useful because it may lead to proactive strategies for protecting IT assets. In this

work, we want to address the following types of questions:

• To what extent do software complexity metrics correlate with the number of vul-

nerabilities disclosed for a software product?

• Can a set of software metrics (including complexity metrics) predict the number of
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vulnerabilities contained in a software product?

Previous research has attempted to predict software error (or bug) incidences using

software change history [46]. Software metrics have also been used to predict vulnerability

prone codes in software [18]. Other techniques have been used to study the trend of vul-

nerabilities in software products [16, 126]. In this study, we explore the correlation between

software change history and maturity with the number of vulnerabilities each software release

may contain and subsequently discovered.

For this purpose, we created the following:

• SWEEP: a toolkit that automates software complexity metrics generation and

analysis (our prototype web application is illustrated in Fig. 6.20).

• A methodology for using the SWEEP toolkit to generate a dataset for a software

product automatically. The dataset produced contains information on all releases

of a software product along with the relevant software metrics (metrics that have

been known to correlate with software bugs and vulnerabilities) and the number of

reported vulnerabilities for each release in a timeline fashion (forming the basis for

tracking the maturity of the product with new releases).

• A web service that uses a machine learning regression analysis to correlate the data

set collected by the SWEEP toolkit with the number of vulnerabilities associated

with the specific release of the software (our PREDICTION prototype web applica-

tion is illustrated in Fig. 6.21).

4.4.2. Our Predictive Methodology

In this section, we present our model for predicting the number of vulnerabilities in

an IT Product.

4.4.2.1. Data Collections

For this study, we have devised a generic and automated approach for collecting

required data on a software product using the source code for the product across all known

versions. The specific data collected is related to well-known software metrics that have
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been used to measure the complexity of a software product that are known to correlate with

software bugs. In addition, we collect the number of security vulnerabilities reported with

each release of the software.

For the IT software product under consideration, we start by collecting details about

the product’s releases (with an identifying name), the number of releases and the number of

vulnerabilities already reported. We analyze the source code of each released version of the

product and collect various software metrics for source codes of each version. The collected

data is stored in a dataset file as comma-separated values (CSV). The following describes

the process of collecting data.

(1) Select the IT Product to analyze.

(2) Download all releases of this IT product’s source code for each version.

(3) For each release, represent it using a Common Platform Enumeration (CPE) [83]

format as its unique identifier for cataloging the product version and its data into

our datasets.

(4) For each release, discover all reported vulnerabilities using VULCAN indexing schemes

(See. Section 4.2.1.5) or IKAWAFARM API (See. Section 3.4.1).

(5) Analyze the source code for each version and obtain software complexity metrics

using available tools such as Understand [64].

Our SWEEP toolkit automates all the steps described.

4.4.2.2. Predictive Model

The research question we originally proposed was whether we could predict the num-

ber of undisclosed vulnerabilities for any given software product. We base our solution on

the data that can be collected for this software product using our SWEEP toolkit as dis-

cussed in the previous Section 4.4.2.1. Once a dataset is generated for the software product

of interest, we use a machine learning regression classifier to build a model that can predict

the number of vulnerabilities contained in a specific release of the software under evaluation.

The accuracy of prediction depends on the amount of data, since the more data we
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Figure 4.23. Predictive Model - Framework

can use during the training of the machine learning model, the more accurate the prediction

will be. In our testing environment, we collected 124 software metrics on each version of

the software. The specific metrics are those that have been shown to correlate well with

vulnerabilities associated with the software. We used different regression techniques to find

one that best fits our needs. We chose Microsoft Azure – Machine Learning Studio [13] for

this purpose. Azure Machine Learning Studio provides many easy-to-use building blocks for

developing a predictive solution.

Some specific aspects that drive our predictive model are our choices for the regression

classifier module and feature scoring method. In Section 4.4.3, we provide details on these
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choices and how they strengthen the prediction for a given IT product.

4.4.2.3. Prediction Workflow

Our approach to predicting the number of unknown vulnerabilities for any given

software product follow this workflow:

• Start by generating a dataset for the given IT Product as illustrated in Section 4.4.2.1.

• Using the above dataset, build and test a predictive experiment within Azure ML

Studio as illustrated in Section 4.4.2.2. Once the above predictive experiment has

completed successfully, a trained model and web service will be produced.

• Using a subset of the dataset that was reserved for validation, ensure that the trained

model is scoring well against this validation data.

• Expose a middleware application which leverages the above predictive web service

to receive input data as illustrated in Fig. 4.23. Return the predicted number

of vulnerabilities associated with a software release along with other associated

metadata such as the prediction accuracy and error rates.

• We can now perform dynamic prediction for any of this IT Product’s releases by

passing the release version source code details for data collection. Using the gen-

erated data as input to the above middleware application, we get the predicted

number of vulnerabilities for the given software product release.

The predicted number can then be interpreted with two views: one for the overall

accumulated number of vulnerabilities and the other view for the unknown number of vul-

nerabilities (which can be easily computed by subtracting the known vulnerabilities from the

predicted ones and taking into consideration the prediction error rate). Since predicted vul-

nerabilities cannot be classified based on the potential types of threats resulting from their

exploitation, we separate them from known vulnerabilities which can be classified based on

the threat types they expose. This allows us to show a separate security threat risk score

for known and hidden vulnerabilities.
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4.4.3. Experimental Study and Evaluation

In this section, we show how we validated our risk scoring model using an open source

software OpenSSL [40].

4.4.3.1. Use Case: OpenSSL – Software Product

The discovery of the OpenSSL’s Heartbleed bug [84] in 2014 revealed that this

vulnerability remained unknown for a couple of years before it was discovered. Heartbleed

and other similar types of vulnerabilities serve as the motivation for our research concerning

the prediction of hidden vulnerabilities.

To validate our model, we examined different open source software products but

selected OpenSSL [40] because of the critical role it plays in Transport Layer Security

(TLS) and Secure Sockets Layer (SSL) protocols. Besides, many other software products

rely on OpenSSL (since it is commercial grade and open source) to build new software and

services. Thus vulnerabilities, discovered and hidden, will impact many software systems and

services. One additional reason is the existence of several versions and releases of OpenSSL,

providing more data and longer history to train our prediction models (particularly our

maturity model). However, we believe that our model can be used to predict the number of

vulnerabilities associated with any new release of a software product, provided source code

for all releases of the software is available, as well as information about vulnerabilities with

each release.

4.4.3.2. OpenSSL – Dataset Generation

We downloaded and analyzed 154 released OpenSSL versions, with versions 0.9.x,

1.0.0, 1.0.1, 1.0.2, 1.1.0, and fips [40]. We use a directory/path to all OpenSSL versions’

source code (uncompressed/compressed) as input to our SWEEP toolkit. SWEEP will

analyze the source code of each version and collect software metrics as detailed in the previous

section of this chapter.

This OpenSSL dataset includes 154 metrics for each OpenSSL version. Some of the

metrics included are described below.
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• CPE-Name representing each analyzed OpenSSL release (e.g., cpe:/a:openssl:openssl:1.0.0f ).

• Year-xxxx representing the number of disclosed vulnerabilities in the year xxxx

(where xxxx ranges from 1999, the first year when NVD [85] shows vulnerability

data, until the current year).

• #CVEIDs representing the number of known vulnerabilities (e.g., 50 is the total

number of disclosed vulnerabilities for the above CPE instance example).

• Understand-Metric-1, ..., Understand-Metric-n representing all computed software

metrics measured by the Understand tool [64] (e.g., the above CPE instance has a

SumCyclomatic value of 43479, and other metrics data are provided accordingly).

4.4.3.3. OpenSSL – Predictive Experiment

Consider tracking product releases (minor and major) and vulnerabilities detected for

the OpenSSL product shown in Fig. 4.24. One of the observed trends in terms of the number

of vulnerabilities detected across these releases can be seen in Fig. 4.24, Fig. 4.25. They show

a decreasing number of vulnerabilities with major new releases, indicating software maturity

with fewer bugs and vulnerabilities.

We predict a similar behavior with other IT products since this trend reflects a be-

havior similar to software maturity or improved quality over time. Here we see the maturity

of OpenSSL in terms of the number of reported vulnerabilities over time. We also make

the following preliminary observations from the data collected so far, along with this small

sample illustrated in Fig. 4.24 and 4.25.

• The history of reported vulnerabilities has shown a decreasing trend throughout

each IT Product’s minor releases (e.g., OpenSSL:1.0.1.:a, b, c, ..., j) in terms of

the number of vulnerabilities, with a few exceptions for some limited distribution

versions (see Fig. 4.25).

• The average number of reported vulnerabilities spiked with a major new release of

OpenSSL following a large number of minor releases (this can be seen in Fig. 4.24).

• The newly discovered vulnerability in a current IT product release is likely con-

tained in previous releases because the releases share some common technologies
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Figure 4.24. OpenSSL Releases vs. Disclosed Number of Vulnerabilities

(and common vulnerabilities).

• The straight line in Fig. 4.25 reflects the mean root square (R2) value (coefficient of

determination) which appears to be above 0.5 when using Linear, Polynomial and

Exponential trend estimations. However, while using logarithmic and power trends,

the R2 value was less than 0.5. This hints that there is value in knowing how the

data can be used to predict the number of vulnerabilities, although we need a more

carefully designed approach to correlate the data with vulnerabilities.
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Figure 4.25. OpenSSL:1.0.1 – Minor Releases Linear Trend

To improve our model and produce a higher coefficient of determination with the

prediction of the number of vulnerabilities, we considered all the features of the vulnerability

details and generated source code metrics to build a predictive model using machine learning

techniques as presented in previous sections. Using Azure ML Studio [13], we built our

predictive experiment as illustrated in Fig. 4.23.

The first step is understanding the nature of the training dataset which requires pre-
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processing the data to remove noise or outliers and selecting the most significant features

that lead to highly confident predictions. Azure ML Studio offers the necessary tools to

facilitate these pre-processing tasks such as Project Columns and Filter-Based Feature Se-

lection. For the Filter Based Feature Selection module, we used the Pearson correlation

feature scoring method for identifying the most significant features from the data sets. For

our data sets, this process selected 25 metrics. The next step is deciding how many data sets

to use for training the machine learning model, and how many data sets to use for validating

the trained model. In Azure, this is achieved by using the Split module. We chose a 50-50

split for training and validating the model.

We found that regression-based models are well suited for our purpose. We explored

all available Azure ML Studio’s [13] machine learning regression models and determined that

a Boosted Decision Tree Regression [61] is the best for our predictions. By following the easy-

to-use predictive framework illustrated in Fig. 4.23, we trained and scored our chosen model

using the generated OpenSSL dataset (from the previous section) targeting the #CVEIDs

feature name (as presented in Section 4.4.3.2). Table 4.2 includes the results obtained from

our model. We present a detailed discussion of our results in Section 4.4.3.6.

Table 4.3 shows a comparison of the number of reported vulnerabilities and the num-

ber of predicted vulnerabilities for some OpenSSL releases used for the training experiment

(these results validate the model using training data sets). The difference between predicted

and known vulnerabilities can be explained in part using the Mean Absolute Error with the

prediction as shown in Table 4.2. In addition, it is not clear that the particular release has all

vulnerabilities reported or if additional vulnerabilities could be detected in the future (if the

release is still used in the public domain). To be on the conservative side we use the Mean

Absolute Error to predict an upper bound on the total number of vulnerabilities contained

in a given software product release.

4.4.3.4. OpenSSL – Predictive Model Validation

In Table 4.4, we present a comparison of the OpenSSL releases used to evaluate and

validate the scored predictive model. These results tell us how well our model is able to
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Number of

Desired Features

Mean

Absolute Error

Relative

Absolute Error

Coefficient of

Determination

5 7.995 0.618 0.597

10 3.341 0.258 0.927

15 3.347 0.258 0.926

25 3.780 0.292 0.917

40 3.985 0.308 0.912

65 3.851 0.297 0.916

80 3.597 0.278 0.918

95 3.597 0.278 0.918

Table 4.2. Using our Labeled OpenSSL Dataset to Evaluate its Boosted

Decision Tree Regression Model

OpenSSL Releases
Known

#Vulnerabilities

Predicted

#Vulnerabilities

cpe:/a:openssl:openssl:0.9.8s 22 17.139

cpe:/a:openssl:openssl:1.0.1f 53 41.747

cpe:/a:openssl:openssl:0.9.7g 35 30.823

cpe:/a:openssl:openssl:1.0.1g 52 43.777

cpe:/a:openssl:openssl:0.9.6m 30 37.448

Table 4.3. Sample of Scored OpenSSL Instances

score against our validation dataset.

• Mean Absolute Error : 2.927

• Root Mean Squared Error : 4.068

• Relative Absolute Error : 0.203

• Relative Squared Error :0.059
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• Coefficient of Determination :0.940

OpenSSL Releases
Known

#Vulnerabilities

Predicted

#Vulnerabilities

cpe:/a:openssl:openssl:1.0.1a 60 52.498

cpe:/a:openssl:openssl:1.0.0h 46 46.815

cpe:/a:openssl:openssl:0.9.8m 34 33.867

cpe:/a:openssl:openssl:1.0.2c 15 15.729

cpe:/a:openssl:openssl:1.0.2d 14 11.526

Table 4.4. Sample of OpenSSL Instances for Validation

4.4.3.5. OpenSSL – Prediction of Unknown Vulnerabilities

Transforming the previously built predictive model for OpenSSL into a web service

endpoint is straightforward. In Table 4.5, we show some examples of the predicted number

of vulnerabilities for some versions of OpenSSL releases that are currently used. These

OpenSSL instances have no reported vulnerabilities. Therefore, the predicted number reflects

the unknown number of vulnerabilities that may be discovered in the future.

4.4.3.6. Discussions

In Table 4.2, we presented results from our machine learning model (Boosted Decision

Tree Regression) for predicting vulnerabilities in OpenSSL software product releases. The

following preliminary observations can be made from these results.

• The OpenSSL dataset fits well with the selected machine learning technique, yielding

a high coefficient of determination above 0.5 (which is better than a random guess).

• The OpenSSL predictive model scoring shows a positive correlation between the

known vulnerabilities (#CVEIDs) and predicted ones (Scored Labels), which can be

viewed via the scatter plot generated within the Azure ML Studio workspace. This

validates our hypotheses that we can predict the number of vulnerabilities contained

in an IT Product using software metrics and vulnerability disclosure history.
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OpenSSL

Instances

Known

#Vulnerabilities

Predicted

#Vulnerabilities

openssl-1.0.0:beta1 0 11.054

openssl-1.0.0:beta2 0 11.054

openssl-1.0.2:beta1 0 11.667

openssl-1.0.2:beta2 0 11.667

openssl-1.1.0:pre2 0 8.641

openssl-engine:0.9.6m 0 11.148

openssl-fips:2.0.9 0 11.148

openssl:0.9.8zd 0 5.489

openssl:1.0.0t 0 8.843

Table 4.5. OpenSSL’s Versions – Predicted Number of Vulnerabilities

• The coefficient of determination of the model we scored is at the lowest when the

desired number of features is set to 5. By taking a close look at the automatically

selected five features (Year-2010 to Year-2014), it reveals that these features are

primarily related to the vulnerability discloser history, and thus based on software

maturity.

• The coefficient of determination is improved and reaches its highest when the desired

number of features is increased from 5 to 10 or higher value. This improvement in

the prediction accuracy is a result of our feature selector capabilities used to identify

additional features that measure software complexity based on the source code (such

as CountLineCodeExe, Knots, CountPath, SumEssential, Cyclomatic number).

Table 4.5 contains results of our evaluation of the OpenSSL dataset for new or beta

instances (or releases) of the product with no reported vulnerabilities thus far. It should

be noted that these two OpenSSL instances (openssl-1.0.2:beta1 and openssl-1.0.2:beta2 )

have very similar source code bases. Therefore we predict that both versions will likely

contain the same number of vulnerabilities. These vulnerabilities should be viewed as the
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potential number of vulnerabilities that will probably be discovered in these products. This

information can be used to plan for defensive mechanisms to mitigate security risks from the

unknown vulnerabilities.

4.4.3.7. Recommended Proactive Strategies

Ideally one should be able to implement countermeasures to patch or mitigate risks

from known vulnerabilities. Many IT organizations plan for such mechanisms [56, 55]. How-

ever, the rate at which new vulnerabilities are being detected and reported is making it

difficult to maintain up-to-date lists of patches and other countermeasures. Moreover, as we

have shown in this work, IT products very likely contain unknown or yet to be discovered

vulnerabilities. Thus, it is necessary to explore additional (beyond patching) defensive mea-

sures to increase our confidence in IT products. We include some recommendations in this

regard.

• Any unknown pattern or behavior observed for an IT Product being assessed via

security penetration testing approaches or monitored via deployed security infras-

tructures can serve as an indicator that zero-day (or undiscovered) vulnerabilities

may be present or being exploited in the IT product of interest. The predicted num-

ber of vulnerabilities should be used as a guideline for maintaining vigilance and for

keeping the process of penetration testing and observing any abnormal behaviors.

• We also recommend exploring various software rejuvenation techniques in an at-

tempt to mitigate some malware that may be exploiting hidden or unknown vulner-

abilities before taking a foothold in the product. It has been shown that software

rejuvenation [67] can minimize security risks due to malware. It has also been shown

how the cost of rejuvenation can be used to plan the frequency of rejuvenation sched-

ules.

4.4.4. Summary

We have presented our novel approach for predicting the number of unknown vulner-

abilities in a given IT Product. We have shown how to generate a dataset that represents
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product maturity in terms of source-code base growth and vulnerability disclosure history.

We have shown how to use such a dataset and develop a ML model that results in accurate

predictions. We used the Azure cloud-based machine learning framework for this purpose.

We validated our approach using the OpenSSL IT product. We plan to test this approach

with other open source products with a long history of new releases.

Our approach for analyzing the source code of a given IT Product and leveraging

its vulnerability disclosure history toward building a predictive model serves as a basis for

building other solutions. A possible extension to our model is to categorize the predicted

number of vulnerabilities into threat types (i.e., STRIDE [62]) using some inherent IT prod-

uct properties along with some actionable threat intelligence and, in turn, propose relevant

mitigation techniques to counter these vulnerabilities and threats.

The other aspect of our work that we plan to extend is the ability to design and train

our predictive model in a generic way that would allow IT products that may need different

machine learning and training approaches. We plan to group IT products into categories

(for example, based on the functionalities provided by them), identify representative features

of products that belong to a category and design an approach for predicting vulnerabilities

across a broad set of products. Finally, we plan to expand on the IT product features to

enhance our prediction accuracies using security threat intelligence reports, inherent vulner-

abilities associated with different programming languages and development platforms.

In the following Chapter 5, we present the NEMESIS architecture which leverages

all the work presented thus far, along with novel techniques for threat modeling and risk

assessment for cloud systems.
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CHAPTER 5

ONTOLOGICAL BASED THREAT MANAGEMENT∗

In this Chapter, we present an automated threat modeling and risk assessment ap-

proach. The description here is based on our previously published work [91]. This work

leverages the techniques presented in Chapters 3 & 4.

5.1. Overview

Cloud computing is defined as the delivery of on-demand computing resources, ev-

erything from applications to data centers over the Internet on a pay-for-use basis [19]. The

design principle revolves around a custom or an open source cloud operating system that is

in charge to control and provision requested resources throughout the data center(s). Cloud

computing services can be classified as Infrastructure as a Service (IaaS), Platform as a

Service (PaaS) and Software as a Service (SaaS). For example, the OpenStack [95] cloud

operating system enables developers to design a cloud computing deployment either as a

Public, Private or Hybrid cloud and support computing services. It is critical to ensure that

cloud computing services can be protected against security threats.

To protect against attacks, the administrator must perform a regular security assess-

ment of the systems by looking for known vulnerabilities and known attacks. This task can

be very complex both because cloud computing systems are complex and also because they

rely on many shared technologies and third-party software products. According to Cloud

Security Alliance (CSA) Cloud Computing Top Threats in a 2013 report [7], “shared technol-

ogy vulnerabilities” was ranked among the top threats facing cloud computing ecosystems.

Shared technology vulnerabilities have implications since a compromise of any of these tech-

nologies such as a hypervisor, a shared platform component, or an application, comprises all

customers that share the technology [7]. It has been shown that cloud computing threats

∗Chapter 5 is reproduced from P. Kamongi, M. Gomathisankaran, and K. Kavi, “Nemesis: Auto-
mated Architecture for Threat Modeling and Risk Assessment for Cloud Computing,” In: ASE Big-
Data/SocialInformatics/PASSAT/BioMedCom 2014 Conference, ISBN: 978-1-62561-003-4, Harvard Univer-
sity, December 14-16, 2014, with permission from the Academy of Science and Engineering (ASE).
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are influenced by different agents, where some are the result of inherent vulnerabilities found

in shared technologies used, and others come to life due to the composition of services of

shared technologies.

Confidentiality, integrity, availability, consistency, control, and audit are the most

critical aspects of cloud assets that must be protected [39]. When assessing security threats,

it is useful to ask questions like:

• How can an attacker change the authentication data?

• What is the impact if an attacker can read the user profile data?

• What happens if access is denied to the user profile database?

Using this analogy for thinking about threats, there exist threat models like STRIDE

[62] that help us understand the types of attacks and consequences of such attacks. As

we described in the previous chapter, our VULCAN application (See Chapter 4) can be

used to evaluate all known vulnerabilities that affect the Cloud system of interest, including

all components and shared technologies, as well as determine if there are known attacks

exploiting these vulnerabilities and if there are vendor-provided patches to mitigate the

security risks.

In addition to understanding what vulnerabilities plague the system, understanding

threat risks associated with these vulnerabilities, the types of attacks that are enabled by the

vulnerabilities and an overall risk score for the system helps prioritize mitigation actions and

budgets. This is the motivation for our NEMESIS framework that provides for an automated

tool that ranks vulnerabilities based on the types of threats they can lead to and the severity

of the vulnerabilities to compute an overall risk value.

5.2. Background

5.2.1. Threat Modeling

Given an adversary threat model which assumes that an attacker is highly capable and

well motivated, it is necessary to understand the goals of an attacker and the consequences

of attacks that reflects our threat models. For our purpose, we will use Microsoft’s STRIDE
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threat model [62]. The different threat types included in the model are listed below.

• Spoofing Identity (S). An example of identity spoofing is to obtain access using

someone else’s authentication information, such as username and password.

• Tampering with data (T). Data tampering involves the malicious modifications of

data. Examples include unauthorized changes made to data, such as database

records, as the data is transferred between computers via an open network.

• Repudiation (R). Repudiation threats are associated with actions that cannot be

verified by others or when a user denies performing certain actions, and there is no

way of countering the denials. Nonrepudiation refers to the ability of a system to

counter repudiation threats. For example, a user who purchases an item might have

to sign for the item upon receipt. The vendor can then use the signed receipt as

evidence that the user did receive the package.

• Information Disclosure (I). Information disclosure refers to threats that can expose

information to individuals who are not authorized to such information.

• Denial of Service (D). Denial of service (DoS) attacks deny access to services to

authorized users, for example, by making a Web server temporarily unavailable or

unusable.

• Elevation of Privilege (E). In this type of threat, an unprivileged user gains priv-

ileged access and thereby has sufficient permissions to compromise or destroy the

entire system. Elevation of privilege threats include those situations in which an

attacker has effectively penetrated system defenses and become part of the trusted

or privileged users.

Table 5.1 offers some simple and general ways of mitigating these threats [22]. In

section 5.3, we show how we classify each vulnerability into the threat types in the STRIDE

model.
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Threat Type Mitigation Technique

Spoofing Identity

Authentication

Protect secrets

Do not store secrets

Tampering with Data

Authorization

Hashes

Message Authentication Codes

Digital signatures

Tamper-resistant protocol

Repudiation

Digital signatures

Timestamps

Audit trails

Information disclosure

Authorization

Privacy-enhanced protocols

Encryption

Protect secrets

Do not store secrets

Denial of service

Authentication

Authorization

Filtering

Throttling

Quality of service

Elevation of privilege Run with least privilege

Table 5.1. STRIDE Mitigation Techniques

5.2.2. Risk Assessment

Quantitative and qualitative risk assessment is a critical task that involves weighting

accumulated measurements into a value that can be used by all concerned Cloud actors
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(providers and users). Some real-time and offline risk assessment models such as DREAD

[89] and Fenz’s [34] work on using Bayesian models for assigning risk probabilities to vul-

nerabilities have been proposed. We extend Fenz’s approach to provide a quantitative risk

value for the entire Cloud computing system.

The advantage of using Bayesian threat probability determination [34] is that it gives

the risk manager a methodology to determine the threat probability in a formal way. The

methodology is illustrated in Figure 5.2 and each building block has its calculation schema

fully documented. In addition to the Bayesian probability model, we rely on our vulnerability

ontologies that define relationships and dependencies among the vulnerabilities, as well as

known attacks and availability of mitigations (or patches).

Our model can be easily adapted to change how the risk probabilities are assigned

based on how an organization views the different types of STRIDE threats. Moreover, the

model can use both known and predicted vulnerabilities (calculated using our prediction

models described in the previous chapter) to provide risk probabilities due to known and

unknown vulnerabilities. Finally, in addition to providing a risk probability assessment for

a given computing system, we evaluate alternate configurations for each component of the

system and identify possible component configurations (or software release versions) that

reduce the overall risk probabilities. The next section describes how our tool automates the

process of calculating security threat risk probabilities.

5.3. Architecture

5.3.1. Design

Our NEMESIS architecture design is illustrated in Figure 5.1. Threat models and a

vulnerability assessment framework are the main pillars of our architecture. We have devised

two implementations for assessing cloud computing assets. To find a rich amount of security

analytics auto-generated by our two implementations (Threat Probability Estimator and

Threat Classification), we built four lightweight middleware applications (Risk Estimator,

Severity Ranking Engine, Exploitable Vulnerabilities Generator and Suggested Configura-

tions Generator). For a given cloud configuration, these applications produce aggregated
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risk indicators, severity ranking of threat types, exploitable vulnerabilities evaluations (i.e.,

vulnerabilities that have known attacks), and suggested new configurations to reduce overall

risk probabilities.

In this section, we describe the incorporation of the models and framework and their

implementation into NEMESIS and present a high-level view of our middleware applications

algorithm designs.

Our NEMESIS architecture will require the cloud assets’ configuration details for

performing threat modeling and risk analysis tasks. The supported formats of cloud config-

uration details with our architecture are either contained within an ontology knowledge base

file generated by our LEGOS tool (presented in Chapter 3, Section 3.4.2) or manually built

by the customer and fed through a web portal.

Figure 5.1. NEMESIS - Architecture
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5.3.1.1. VULCAN Framework

The VULCAN Framework [92] (presented in Chapter 4, Section 4.2) plays a significant

role in our architecture, as a source of security information used to generate various analytics.

The Ontology Knowledge Bases (OKBs) generated by VULCAN (backend IKAWAFARM

tool presented in Section 3.4.1) contain rich information about the vulnerabilities, attacks,

and defenses associated with IT products.

NEMESIS uses the VULCAN OKBs to identify relevant information about the IT

assets contained in the cloud system under evaluation. For each entity we want to see if

there exists:

• Any vulnerability; if found return the vulnerability identifier, description, and sever-

ity ranking (e.g., NVD [85] CVSS severity score)

• Any attack; if found, return the exploit identifier and description

• Any defense; if found, return the mitigation identifier and recommendation state-

ment from the vendor

5.3.1.2. STRIDE Threat Model

At present we use the STRIDE model for classifying security threats [62]. We au-

tomatically classify vulnerabilities into one of the STRIDE attacks that are possible when

the vulnerability is exposed. The classification scheme automates STRIDE’s Elevation of

Privilege (EoP) card game [23]; where the EoP card game helps clarify the details of threat

modeling and examines possible threats to software and computer systems. This approach

is usually achieved manually by challenging other developers to assign STRIDE threat types

relevant to the target system. However, we automated the classification using the Algorithm

4 below.

5.3.1.3. Bayesian Threat Probability Model

For the given cloud configurations, one approach to managing all threat types that

could be found and classified into different threat types is to rank the vulnerabilities and

threats based on their prevalence and severity risk score. It is also possible to rank the
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Algorithm 4: Threat Classification

Data: Cloud Configuration’s Entities

Result: Threat Types per each Entity - Vulnerability Pair

for Entity in Cloud Configuration do

Invoke Nemesis’s Vulcan Framework instance and pass the Entity name

return Relevant found Vulnerabilities details

for Each Found Vulnerability do

Perform A Similarity Test to all EoP Threat Types descriptions call, with

Entity’s Vulnerability Description as a parameter

return Threat Types’s Similarity Scores

Perform A Classification Task, with Threat Types’s Similarity Scores as a

parameter

return Threat type that best suit the given Cloud’s Entity - Vulnerability Pair

end

end

threats based on their significance to a specific IT installation or business model. We realize

this by using a probability model to estimate the risk probability with each vulnerability

and the threat type it exposes the system to, and aggregate these individual probabilities

into a single value using our Bayesian-based algorithm described below.

We use Fenz’s Bayesian model [34] in Figure 5.2. We adapted this model for our pur-

pose as described in Algorithm 5 using the Bayesian Network Structure, and equations are

shown in Figures 5.2 and 5.3 with a few extensions to accommodate our cloud’s threat ranking

needs. For example, the variables equations are grouped into Threat Variable, Intermedi-

ate Vulnerability Variable, Vulnerability Variable, Attacker Variable, Control Combination

Variable, and Control Variable, and each has some dependency on the others.

5.3.1.4. Nemesis’s Lightweight Applications

• Risk Estimator application high-level design is detailed via Algorithm 6

• Severity Ranking Engine application high-level design is detailed via Algorithm 7

97



Threat ST1Ti 
Probability PPST1Ti

Threat STnTi 
Probability PPSTnTi

….

Threat Ti 
Probability PPTi

ok
bs
:g
iv
es
R
is
eT
o

Threat Ti 
Probability PPTi

Vulnerabilities VSTi 
Exploitation Probability  

PPVSTi

Threat PTnTi 
Probability PPPTnTi

Threat PT1Ti 
Probability PPPT1Ti

Vulnerability V1 
Exploitation Probability  

PPV1

Vulnerability Vn 
Exploitation Probability  

PPVn

Control 
Implementation 

Effectiveness CE1

Control 
Implementation 

Effectiveness CEn

Control 
Combination 
Effectiveness 

CCEvi

Vulnerability Vi 
Exploitation 

Probability PPVi

Attacker Capability 
ACVi

Attacker Motivation 
AMVi

Attacker 
Effectiveness AEVi

Threat Ti  
A Priori Probability 

APTi

V
WPPVSTi

WPPPTnTi

WPPPT1Ti

WPPVn

WPPV1

WCE1 WCEn

WCCEVi

WPPVi

WACVi

WAMVi

WAEVi

WAPTi

okbs:leverages

okbs:canB
eC
onsequenceO

f

ok
bs
:im

pl
em

en
te
dB
y

ok
bs
:C
ou
nt
er
M
ea
su
re
dB
y

Figure 5.2. Utilizing OKBs for the Bayesian Threat Probability Determination

• Exploitable Vulnerabilities Generator application high-level design is detailed via

Algorithm 8, and

• Suggested Configurations Generator application high-level design is detailed via

Algorithm 9

5.3.2. Implementation

We have designed and implemented a prototype tool for the NEMESIS architecture.

Our NEMESIS tool can be used as a standalone command line or as a web application. A

preview of the NEMESIS architecture web application is shown in Fig. 6.23.

The NEMESIS tool user interface shown in Fig. 6.23 reflects its architecture de-

sign (See Fig. 5.1). The NEMESIS web application leverages LEGOS (See Fig. 6.7) and

VULCAN (See Fig. 6.9) tools as its direct input to automate the collection of given cloud
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Figure 5.3. Equations for an Ontology Based and Bayesian Threat Proba-

bility Determination – Approach

system configurations for assessment and the generation of a vulnerability-index (using our

cyber threat data ontology knowledge base presented in Chapter 3, Section 3.3.2) for threat

modeling tasks. Once all “Input” details are provided to NEMESIS, one can then start ex-

ploring the results generated automatically, and tailored to the user-provided cloud system

configurations via the “Threat Modeling” and “Risk Assessment” navigation portals.

The NEMESIS web application is capable of assessing multiple cloud systems, and

by default, the recently provided input details will be automatically modeled, and its threat

assessment details can be explored via their relevant portals such as:

• Threat Modeling

– Exploitable Vulnerabilities : List of vulnerabilities that have at least one publicly

known exploit that affects the assessed cloud system.

– Ranked Threat Types : STRIDE based threat types (or threats using a STIX
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like classification illustrated in Fig. 3.5) list ordered by the severity of each

threat type based on the prevalence of vulnerabilities of the given threat type

and severity of the vulnerabilities.

– Threat Mitigation: A detailed course of action to mitigate each identified threat

type instance.

– Validate: A guided service to help a user track the mitigation plan of the

NEMESIS identified threats.

• Risk Assessment

– Risk Score: An aggregated quantitative risk score for all identified threats.

– Recommendations : Alternate cloud system configurations with a reduced per-

ceived risk value.

– Risk Assessment Report : A summary report similar to one rendered by the

VULCAN web application shown in Fig. 4.5) of all key insights found by

NEMESIS for the given cloud system for assessment.

The NEMESIS architecture is implemented as a Python project, where we have im-

plemented each of our algorithms as Python modules, along with necessary middleware

programs and frameworks to provide an execution environment for our tool. Similar to our

VULCAN web application, we have implemented the NEMESIS web application using some

third-party software including:

• Django web framework [38]

• Bootstrap framework [21]

• Protege: an ontology editor and framework for building intelligent systems [81]

• AllegroGraph semantic graph database [1]

• Gruff: a grapher-based triple-store browser for AllegroGraph [60]
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Algorithm 5: Threat Probability Estimator

Data: Cloud Configuration’s Entities and OKBs graphs

Result: A list of Threat Probabilities Values for all given Cloud’s entities

for Entity in Cloud Configuration do

Invoke Nemesis’s Vulcan Framework instance and pass the Entity name and

relevant OKB graph

return Relevant found Vulnerabilities identifiers

for Each Vulnerability identifier do

Invoke controlVariable subroutine, with This Vulnerability identifier and

relevant OKB graph as a parameter

return A qualitative scale of this control for the given vulnerability, its

description and a binary value of wether this control is active

Invoke ControlCombVariable subroutine, with controlVariable outputs and

other variant’s similar data of This Vulnerability Identifier as parameters

return A qualitative scale and its quantitative value

Invoke AttackerVariable subroutine, with This Vulnerability identifier and

relevant OKB graph as parameters

return A qualitative scale and found Exploit Description

Invoke vulnerabilityVariable subroutine, with ControlCombVariable and

AttackerVariable outputs as parameters

return A quantitative scale

Append each Vulnerability identifier’s vulnerabilityVariable output into a list

end

Invoke intermediateVulnerabilityVariable subroutine, with A list of

vulnerabilityVariable outputs as parameters

return A quantitative scale

Invoke ThreatVariable subroutine, with intermediateVulnerabilityVariable outputs

and a list of aPriori Threat Probabilities Values as parameters

return A quantitative scale

Append each Vulnerability identifier’s ThreatVariable output into a list
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Algorithm 6: Risk Estimator

Data: A list of Threat Probability Values for all given Cloud’s entities and their

weights

Result: Aggregated Risk Indicator

for Input Data do

Invoke an Aggregator subroutine and pass the Input Data as parameters

return Aggregated Quantitative Scale

end

Algorithm 7: Severity Ranking Engine

Data: Cloud Configuration’s Entities and OKBs graphs

Result: Threat Types Severity Ranks

for Entity in Cloud Configuration do

Invoke Nemesis’s Vulcan Framework instance and pass the Entity name and

relevant OKB graph

return Relevant found Vulnerabilities identifiers

for Each Vulnerability identifier do

Invoke Threat Classification module, with This Vulnerability identifier and

relevant OKB graph as a parameter

return Perceived Entity - Vulnerability’s Threat Type

Invoke SeverityScore subroutine, with This Vulnerability Identifier as

parameters

return A quantitative severity score

Append the found severity scores per each vulnerability into a list of threat

type class lists

end

end

for Lists of severity scores of threat type classes do

Compute a new list of average severity scores for threat type classes and return it

end
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Algorithm 8: Exploitable Vulnerabilities Generator

Data: Cloud Configuration’s Entities and OKBs graphs

Result: Exploitable Vulnerabilities Evaluations

for Input Data do

Invoke Nemesis’s Vulcan Framework instance and pass the Entity name and

Vulnerability OKB graph

return Counts of relevant found vulnerabilities, their identifiers and

Active/Passive state binary value

for Each vulnerability identifiers do

Invoke Nemesis’s Vulcan Framework instance and pass the Entity name and

Attack OKB graph

return Count of found Exploits

Append this Exploits Count into a list

end

end

for All counted list’s values do

Compute their sum with respect to their targeted vulnerabilities and return the

Exploitable Vulnerabilities Evaluations

end
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Algorithm 9: Suggested Configurations Generator

Data: Cloud Configuration’s Entities and OKBs graphs

Result: Suggested Configurations to Reduce Perceived Risk

for Input Data do

Invoke Nemesis’s Threat Probability and Risk Estimator module and pass the

Input Data

return Aggregated Risk Indicator for this Cloud Configuration Profile and store

this result for future comparison

Invoke An Evaluator module and pass the Current Cloud Configuration Profile

return All other alternative Cloud Configuration Profiles made of pre and post

releases of the first Profile’s entities

for Each generated Cloud’s Profile do

Compute its Aggregated Risk Indicator and store it

end

Perform A systematic ranking of each Cloud Configuration Profile and its Risk

Indicator

return The best optimal profile with a lower risk indicator and suggest it

end
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5.4. Experiments and Evaluations

5.4.1. Experiments

To validate and evaluate our NEMESIS [91] approach for risk quantification, we

have designed a cloud environment and deployed its services using an OpenStack [95] cloud

operating system. For this OpenStack deployment, we used DevStack [41] and deployed one

of the OpenStack version [42].

Our simple OpenStack deployment system is live with nova-compute, cinderv2-volumev2,

novav3-computev3, s3-s3, glance-image, heat-cloudformation, cinder-volume, ec2-ec2, heat-

orchestration, and keystone-identity services to power OpenStack’s Compute and Orchestra-

tion projects. For example, we can leverage Glance and Nova services if we want to deploy

any flavored instance running on the Ubuntu, Fedora, Centos, RedHat, or Windows operat-

ing system. Also, for various cloud applications, we can leverage the Heat service which in

turn relies on other services.

On a Dell PowerEdge T620 server with 24 cores and 64 GB of RAM and 2TB of

storage, running Ubuntu:* and using VirtualBox:* [63], we created an Ubuntu:* virtual

machine for OpenStack-DevStack single node deployment powered with 10 CPUs, 40 GB

of RAM and 400 GB of storage. Upon successful OpenStack deployment, the QEMU:*

hypervisor is used to support the compute services.

Via the OpenStack dashboard, we can instantiate a number of instances such as

Ubuntu:*, Fedora:*, and Centos:* via the Compute project and some stacks via the Orches-

tration project using open-source based heat-templates [95] such as Word Press Native, Chef

Server and Nova Instance With Cinder Volume Native.

A sample look at some IT products (* taken randomly from a pool of various releases

of products that meet our experiment criteria) that are used to support our cloud infrastruc-

ture and services are shown in Table 5.2 which are in turn used to evaluate our NEMESIS

architecture.
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IT Products Description

Ubuntu:12.04 - Host and Guest VM OS

VirtualBox:3.2 - Virtualization Product

Grizzly 2013.1.1 - Cloud OS

Ubuntu:12.10 - Cloud image OS

Fedora:17 - Cloud image OS

Centos:6 - Cloud image OS

WordPress:3.0.3 - Web Software

MySql:5.5.29 - RDBMS

RabbitMQ:3.3.5 - AMQP

Qemu:1.3.0 - Hypervisor

Table 5.2. Our Sample Cloud Configuration

5.4.2. Evaluations

In this section, we present our findings given the sample of cloud configurations shown

in Table 5.2 that is fed to our NEMESIS tool.

5.4.2.1. Risk Estimator Application

The given cloud configuration that is shown in Table 5.2 is evaluated via this ap-

plication, and the tool estimates the aggregated risk as 31.93% of severity. This score is

based on our Bayesian model described in Section 5.3, and is based on the severity of each

vulnerability, the existence of known attacks and known patches: thus this score indicates

an aggregated probability of potential security attacks.

5.4.2.2. Severity Ranking Engine Application

For a threat focused security approach, the given cloud configuration that is shown in

Table 5.2 is ranked based on the application design principle illustrated in Algorithm 7. For

instance, Spoofing is the most severe threat facing this cloud configuration, and Information

Disclosure is the least severe.
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Threat Types Severity Rank (0-10)

Spoofing 4.01

Tampering 1.97

Repudiation 1.23

Information Disclosure 0.86

Denial of Service 3.28

Elevation of Privilege 1.13

Table 5.3. Threat Types - Severity Rank Evaluations

5.4.2.3. Exploitable Vulnerabilities Generator Application

For the given cloud configuration shown in Table 5.2, this application produces the

exploitable vulnerabilities metric for each cloud configuration entity as illustrated in Table

5.4. In this case, two cloud entities stand out where Fedora:17 has a value of 1 and Word-

Press:3.0.3 has a value of 4. These scores are high and indicate the need for an immediate

action leading to patching of these software systems. A score of 0 indicates that there are

no known attacks at this time, but these software systems still contain vulnerabilities.

5.4.2.4. Suggested Configurations Generator Application

Our tool then explores several possible configurations (using alternate versions of the

different software systems) and selects a configuration that results in a lowered overall risk

score. For the system at hand (shown in Table 5.2), our tool recommended an alternate

configuration shown in Table 5.5, and the aggregated risk with this suggested configuration

is 25.88%.

5.4.2.5. Challenges

While our NEMESIS system is based on sound models and can provide useful infor-

mation on estimated or perceived security risks, we identify the following limitations with

the current implementation of NEMESIS.
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IT Product
Vulnerabilities

Count

Exploitable

Vulnerabilities

Metric

Ubuntu:12.04 97 0

Virtualbox:3.2 2 0

Grizzly:2013.1.1 1 0

Ubuntu:12.10 87 0

Fedora:17 10 1

Centos:6 7 0

Wordpress:3.0.3 32 4

MySql:5.5.29 48 0

Rabbitmq:3.3.5 0 0

Qemu:1.3.0 8 0

Table 5.4. Exploitable Vulnerabilities Metric Evaluations

• The information used by NEMESIS (via VULCAN) is based on known vulnera-

bilities, attacks, and defenses that are provided by open-source communities, and

often, the information is not presented in a standardized format, making automated

extraction of the information difficult.

• There is a wealth of information on vulnerabilities, but the information on counter-

measures is very limited and often not available in open sources (requiring one to

consult vendors for such information).

• In finding alternate configurations, we rely on version numbering schemes. However,

there is a lack of consistency in the version numbers, and sometimes vendors change

the numbering scheme for newer releases, making it difficult to differentiate between

older and newer versions of software systems.
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IT Products
Pre- and Post-

Releases Count

Ubuntu:13.04 22

Virtualbox:4.0.20 75

Grizzly:2013.1.4 8

Ubuntu:13.04 22

Fedora:18 15

Centos:6 1

Wordpress:3.7 121

MySql:6.0.10-bzr 366

Rabbitmq:3.3.5 0

Qemu:2.0.0 78

Table 5.5. Alternative Recommended Cloud Configuration

5.5. Summary

In this work, we have proposed and implemented NEMESIS, a novel automated risk

assessment architecture for cloud systems. Our proposed architecture design principle re-

volves around collecting measurements about what type of known vulnerabilities exist for

the given Cloud’s assets; how they can be exploited and how they can be mitigated; then

using them toward the generation of a set of customized outputs such as: Aggregated risk

estimated value, Exploitable vulnerabilities metric evaluations, Threat types - severity rank

evaluations, and New recommended Cloud Configurations with a lower perceived risk along

with a detailed summary of relevant NEMESIS evaluation data.

Our approach to assessing the risk of cloud systems leverages sound mathematical

models powered by evolving cyber threat data, and auto-generated vulnerability-indexes

ontology knowledge bases (generated by our IKAWAFARM and VULCAN tools presented

in Sections 3.4.1 and 4.2). The NEMESIS architecture is designed to be scalable to support
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real-life IT systems. Its components can be interchanged or extended to support new use

cases. For instance, NEMESIS can be extended to include vulnerability information of the

assessed IT systems using our predictive models which assess the complexity and maturity

of a software product and predict the number of unknown vulnerabilities that are yet to

be found and disclosed (See Section 4.4)) to update the IT system’s estimated security risk

dynamically. Also, NEMESIS can be used to estimate the exploitation risk of a given cloud

system’s ranked vulnerability findings based on a probabilistic attack graph model (See

Section 4.3).

In the next Chapter 6, we present our novel system called COCKATOO. COCKATOO

is a holistic suite of IT system security tools for threat assessment and mitigation. The

COCKATOO system places the NEMESIS architecture at its center stage, including all of

NEMESIS dependency and extension tools (LEGOS, IKAWAFARM, VULCAN, SWEEP,

and PREDICTION) presented in the previous Chapters 3, and 4.
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CHAPTER 6

COCKATOO SYSTEM

6.1. Overview

Organizations and individuals are falling prey to targeted cyber-attacks that result

in damaging consequences such as data breaches, loss of revenues, services disruption, and

accounts take-over.

More users can prevent or mitigate most cyber attacks. However, we know that

Information Technology (IT) products (i.e., hardware, software, and applications) are vul-

nerability prone and can get compromised by malicious actors.

Currently, there are over 100K publicly known vulnerabilities that affect various com-

puting/information systems. These vulnerabilities are reported and published within the

National Vulnerability Database (NVD) [85]. Hundreds of new vulnerabilities are being re-

ported weekly and added to the NVD. This alarming rate of new vulnerabilities that affect

IT products poses a real challenge to an organization and individuals who may not even be

aware of these vulnerabilities that could lead to serious attacks.

In this work, we have created COCKATOO, a novel holistic system that empow-

ers organizations and individuals with the tools to assess and mitigate vulnerability-based

threats. COCKATOO is an ontology-based suite of security tools for assessing and miti-

gating threats to IT systems. COCKATOO relies on a knowledge-base which can represent

security vulnerability information about an instance of an IT system. This permits reasoning

about threats faced by the IT system and offers actionable mitigation approaches.

COCKATOO system leverages a number of our previous works presented in Chap-

ters 3, 4, & 5. In this Chapter, I present how these previous works are integrated into a

single framework called COCKATOO.

• IKAWAFARM is a tool for designing scalable ontologies and their semantic knowl-

edge graphs (including their semantic query APIs) for cybersecurity threat data and

cloud computing domains. Within IKAWAFARM, we have defined vulnerability on-
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tologies (and populated them), which are then used by our VULCAN tool which

performs vulnerability assessment tasks for IT systems. In addition, IKAWAFARM

enables us to define other ontologies for a given specific application.

• LEGOS is a tool that collects telemetry data of a computing host (i.e., phys-

ical/virtual/container machine) and stores them in a designated semantic graph

database.

• VULCAN [92] provides an on-demand vulnerability assessment web application.

• HUMMING is a semantic natural language processing Chatbot that works with

VULCAN to provide semantically rich responses to user queries.

• NEMESIS [91] provides an on-demand threat assessment and mitigation web ap-

plication.

• SWEEP automates the process of software complexity metrics generation and anal-

ysis for any given IT software product and its vulnerability history. Its output is

used for building a machine learning model to predict hidden or yet unknown vul-

nerabilities.

• PREDICTION tool uses the data gathered by SWEEP to predict hidden vulner-

ability and to implement our previously published models [90].

The rest of this chapter is presented as follows: In Sections 6.2-6.3, we present our

COCKATOO toolkit’s architecture and implementation. In Sections 6.4, we present our

COCKATOO system’s evaluation. We then present our COCKATOO system discussion

and concluding remarks in Section 6.5.

6.2. Architecture

COCKATOO is a knowledge base system driven by ontologies for describing security

vulnerabilities of IT systems.

Vulnerability-based attacks on an IT system can lead to damaging consequence for

individual users and organization. Assessing these types of threats can be challenging because

most IT products (e.g., softwares, services, etc.) are complex (leveraging a stack of other

softwares/services dependencies), where any vulnerability in the one product can open doors
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to malicious actors, which can cripple not only that product but all products that depend

on it.

The goal of COCKATOO system is to empower novices, experienced users, and teams

by using a set of tools to assess the security posture of their assets including ways to miti-

gate vulnerability-based threats. Components of COCKATOO tools have been introduced

in Section 6.1. Figure 6.1 illustrates the COCKATOO tools’ dependency upon their rela-

tionship with other tools. In this section, we present the architectural design of each of our

COCKATOO system’s tools.

Figure 6.1. COCKATOO Tools Dependency Graph

The IKAWAFARM tool is at the core of our COCKATOO system. Its architectural

design is set around these goals:

• Modeling and representing cybersecurity and cloud computing domains using an

ontological approach.

• Designing and exposing a semantic API to query and reason about the generated

ontology knowledge bases (OKBs).

• Providing an execution environment to maintain IKAWAFARM’s ontology knowl-
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Figure 6.2. COCKATOO System Workflow

edge bases, and to power other COCKATOO’s tools and services. Figure 6.1 shows

how all COCKATOO’s tools depend on the IKAWAFARM tool directly or indirectly

through other tools.

In the scheme of the COCKATOO system, the IKAWAFARM tool sits in the back-

ground as shown in Figure 6.2 and supports extensible, evolving ontologies and knowledge

bases reflecting the latest cyber threat data bases for cloud computing systems.

The LEGOS tool is a critical component of the COCKATOO system as it captures

the details of an IT system’s components. Its goals are:

• To leverage a pre-defined ontology model for the cloud computing domain (generated

by the IKAWAFARM tool) to automate the knowledge base generation for any

given deployed IT system (e.g., cloud system deployment).

• Automation is at the core of this tool. The LEGOS interface provides end-users

various features to assist them in representing their IT system’s assets (which could

be vulnerable to exploitation by a motivated malicious actor).

VULCAN is at the center of the COCKATOO system. Its architectural design is
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set around these goals:

• To leverage the LEGOS tool to create an ontology knowledge base (OKB) of a

given IT system for vulnerability assessment tasks.

• To provide an interface that enables end-users to task VULCAN to index the

modeled IT system.

• To allow the indexing task to extend the given IT system’s OKB with informa-

tion about which assets are vulnerable to exploitation, including all discovered vul-

nerability details (e.g., vulnerability information, vulnerability-exploit details, and

vulnerability-patch details).

• To leverage the IKAWAFARM tool as the source of ground truth about the mod-

eled and represented cyber threat data-feeds.

• To provide an interface to end-users to render a vulnerability assessment report

using a generated IT system vulnerability index.

The HUMMING tool augments the capability of the VULCAN tool towards as-

sisting end-users to gain insights into the security posture of their assessed IT system(s). Its

architectural design is set around these goals:

• To provide a dialogue based interface to interact with end-users.

• Using natural language processing, to interpret user-provided questions in natural

language (e.g., English) and forwards its output to a back-end semantic querying

and reasoning service.

• To leverage ontology knowledge bases generated by our VULCAN and LEGOS

tools as ground truths when providing answers to user’s questions.

The NEMESIS tool automates the tasks of modeling threats and risk assessment of

a given organization IT system. Its architectural design is set around these goals:

• Leverage VULCAN tool and its dependency tools (see Figure 6.1) towards acquir-

ing a vulnerability index knowledge base for a given organization’ IT system.

• Using a cached or rendered on-fly vulnerability index of the given IT system, provide

interfaces for various threat modeling and risk assessment tasks.
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• Render a summary report of key findings of the assessed assets, in terms of the

estimated threat probability/risk that each threat exposes the assessed IT system to

a motivated malicious actor, along with recommendations to mitigate the perceived

risk.

The SWEEP tool automates the process of building a rich dataset that captures

various software metrics that give insight into how a given software product has matured

and where it currently stands. Its architectural design is set around these goals:

• To provide an interface to obtain the source codes of all releases of a given software

product, and automate the software complexity metrics generation using a back-end

tool called Understand [64].

• For the generated software complexity metrics, provide an interface to automate

their analysis and extend them by querying the back-end knowledge bases of our

IKAWAFARM tool to obtain vulnerability history of the product releases.

• To provide an interface that facilitates the datasets generation for each studied

software product. Each generated dataset includes a number of features about a

given software product’s software complexity metrics and maturity in terms of its

vulnerability history timeline (this data is fed to our Prediction tool).

PREDICTION is a machine learning tool for predicting the unknown number of

vulnerabilities in a given software product. Its architectural design is set around these goals:

• To leverage the SWEEP tool to generate machine learning datasets for the training

and inferencing tasks.

• To provide an interface to train a suitable regression machine learning model to

predict the unknown number of vulnerabilities in a given software product.

• To provide an interface for inferencing, where a user can provide a new or current

software release metrics (auto-generated by our SWEEP tool) and select the pre-

viously trained model and infer (prediction task) the number of yet to be found

vulnerabilities.
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• To provide an interface that enables users to load pre-trained machine learning

models for various inferencing tasks.

In the next Section 6.3, we describe implementation details of these tools.

6.3. Implementation

The COCKATOO system is implemented as a web system which features a gallery

of tools offering on-demand services. Each of COCKATOO’s tool (IKAWAFARM, LE-

GOS, VULCAN, HUMMING, NEMESIS, SWEEP, and PREDICTION) is implemented as

a Python package (including some third-party packages when applicable as illustrated in

Figure 6.4) and exposed to end-users via a web portal shown in Figure 6.3. Also, each of

COCKATOO tools can be launched from the main web portal as a standalone web appli-

cation (See Figure 6.5) or as a customized service offering or as one of the features of the

analytic dashboard interface.

Figure 6.3. COCKATOO System – Web Portal

In Chapters 3, 4, and 5, each of COCKATOO tools is presented individually. In this

Chapter, we focus on presenting how these tools interact with each other within COCKATOO
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Figure 6.4. COCKATOO System – Technology Stack Sample

Figure 6.5. COCKATOO Tools – Gallery Preview
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system as a holistic solution to the problem of vulnerability-based threats that affect any IT

system.

The COCKATOO system comprises two views, the front-end (web portal and its

tools web applications) and back-end (execution environment and background processing for

all its tools). Each of COCKATOO tools is implemented to meet their architectural goals

described in the previous Section 6.2.

The IKAWAFARM tool as part of COCKATOO system runs as a background ser-

vice. It is implemented in Python to leverage a Python API of AllegroGraph [1] (our chosen

semantic graph database, which supports RDF, RDFS, OWL ontology languages, and pro-

vides a reasoner) to generate and store the ontology artifacts of our modeled domains (cyber

threat data and cloud computing). In addition, IKAWAFARM automates the collection of

relevant data-feeds (e.g., NVD [85], and Exploit-DB [104]) and extracts the information and

populates our defined ontology artifacts using our Algorithm 1 while leveraging a number of

AllegroGraph instances (running in the background and self-managed) as its back-end datas-

tores. Then, IKAWAFARM implements a number of methods to build a rich semantic API to

enable other COCKATOO tools (e.g., VULCAN) to query relevant data from the generated

cyber threat ontology knowledge bases. Then, the COCKATOO system implements an ex-

ecution environment of IKAWAFARM and administration tools to maintain IKAWAFARM

evolving ontology knowledge bases, functionalities, and integration with other COCKATOO

tools.

The LEGOS tool as part of COCKATOO system runs as a standalone application

offered through COCKATOO web portal. Also, LEGOS has a command line utility that

enables it to run as a managed software agent. LEGOS is also implemented in Python. It is

implemented to be able to query an operating system (for a given computing host) to collect

telemetry data (e.g., deployed services, installed applications and their dependencies) and

store them in a back-end datastore (AllegroGraph [1] instances) for post-processing tasks.

It leverages a generic ontology model from IKAWAFARM ontology artifacts to model and

represent a deployed IT system (e.g., a deployed private cloud system). More specifically, the
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LEGOS tool is in charge of providing standardized data formats to model and represent a

given IT system for later security threat assessment tasks by other COCKATOO tools (e.g.,

VULCAN), and analytics engine provided within the COCKATOO dashboard. Figure 6.7

shows LEGOS web application. LEGOS main web interface is divided into three features

“Manual, Agent, and Agentless”. LEGOS – Manual interface enables the user to supply their

IT system’s products information using a Common Platform Enumeration (CPE) [83] format

or to input partial information that they know about their IT system, then the LEGOS

tool will construct a profile of those inputs and generates an ontology representation of the

given IT assets. LEGOS – Agent interface provides a software agent that runs on a given

computing host, and collect the telemetry data automatically using an ontology model, and

store them in a designated triple-store. LEGOS – Agentless interface prompts the user for

network-based information of the user’ deployed IT system, and remotely query the system,

and generate an ontology knowledge base about discovered IT assets and their configuration.

The VULCAN tool as a part of COCKATOO systems runs as a web application

offered via the COCKATOO main web portal. It relies on the LEGOS and IKAWAFARM

tools. It prompts the user to supply an ontology knowledge base of their IT system (generated

by the LEGOS tool) as an input. Then, VULCAN offers a web interface to users to task

their IT system for vulnerability indexing task (which is run as a background service). The

vulnerability indexing task queries the backend IKAWAFARM for known vulnerabilities,

exploits, and mitigation that are relevant to the user-supplied IT system data artifact; then

generates a vulnerability index ontology knowledge base (OKB) (different levels of indexing

are provided to the user during the process). This later vulnerability index OKB is then

made available to the main VULCAN application for vulnerability assessment tasks. The

user can then elect to view a vulnerability assessment report of their IT system by selecting

the vulnerability index generated for the tasked system. In addition, a user can elect to use

a chatbot service of VULCAN to interactively ask questions about their IT system security

posture in natural language (English).

The HUMMING tool as part of COCKATOO systems, runs as a web-based chat-
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bot service. It leverages the ontology knowledge bases generated by VULCAN to assess

questions about the security posture of the IT system assessed by our COCKATOO tools

(e.g., VULCAN, and NEMESIS). It also uses other ontology knowledge bases generated by

IKAWAFARM and LEGOS for answering general questions. The novel approach to the

chatbot implementation arises from using the ontology model concepts, properties, and re-

lationships for the modeled domains through semantic querying and reasoning about the

generated knowledge bases as a basis to answer users’ questions.

The NEMESIS tool as part of COCKATOO systems runs as a web application of-

fered via the COCKATOO main web portal. It leverages the VULCAN tool. It prompts

the user to supply a vulnerability index ontology knowledge base of their IT system gener-

ated by VULCAN as input. Then, NEMESIS uses this vulnerability-index for automated

threat modeling and risk assessment tasks. For each task, NEMESIS provides a user-friendly

web interface to the users so that they can render those assessments. For the threat mod-

eling tasks, a user can access threat information about their IT assets such as Exploitable

Vulnerabilities, Threat Types Classification, Ranked Threat Types, Threat Mitigation, and

Validation. For the risk assessments tasks, a user can access on-demand risk information

about their IT assets such as Risk score, Recommendations to mitigate the estimated risk,

and Risk Assessment Report. In the background, NEMESIS queries the backend IKAWA-

FARM ontology knowledge bases to determine the best alternate IT system configurations

to recommend to the user to lower risks.

The SWEEP tool as part of COCKATOO systems runs as a web application offered

via the COCKATOO main web portal. It automates the process of generating and analysis

of software complexity metrics and maturity for any software product. Through SWEEP

web interface, a user can create a project to be used as a repository of source code files

for all known releases of a software product under study (e.g., OpenSSL [40]). Then, the

user can task SWEEP to generate software complexity metrics for the created project. In

the background, SWEEP uses Understand [64] to generate complexity metrics for the given

software project. Then, SWEEP automatically forwards and makes available the generated
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complexity metrics for the selected project via the web portal. The user can select the gen-

erated complexity metrics for analysis. The SWEEP tool will query IKAWAFARM backend

ontology knowledge bases for vulnerability information for each software release and gener-

ates a vulnerability history timeline for the software project (its maturity). Then, SWEEP

analyzes both the software complexity metrics and maturity of the product and generates a

rich dataset in comma-separated values (CSV) format to be used by the PREDICTION tool

or for other post-processing tasks such as data analytics.

The PREDICTION tool as part of COCKATOO systems runs as a web application

offered via the COCKATOO main web portal. It is implemented as a web interface to assist

users in training a predictive model for later inferencing about the number of unknown

vulnerabilities in a given software product. The PREDICTION tool relies on the SWEEP

tool to assist the users in generating datasets of a given software product (all software releases

or some releases of interest) and then input them into the PREDICTION web portal for

machine learning training or inferencing tasks. For the machine learning training task, a

user selects their dataset of interest and select the target feature for prediction tasks (e.g.,

by default the tool identify the total number of vulnerability as the predictor feature), and

then, a background process is initiated for an automated machine learning experiment to

identify the best features from the given dataset and train a suitable learning model (for

example, a Gradient Boosting Regressor Ensemble [66] model). A trained model will be

evaluated and then saved for persistence and later usage. The user can select the trained

model, along with uploaded data for software releases (generated using SWEEP for a small

set of software releases of interest for prediction tasks) and initiate the inferencing task. The

PREDICTION tool automatically infers the number of unknown vulnerabilities that are yet

to be discovered in those targeted software releases and generates a report of those findings.

In addition, our PREDICTION tool enables the user to upload other machine learning

models for inferencing tasks. In some cases, software products which share a number of

similarities (e.g., choice of programming language, and service offering) can interchangeably

use the same machine learning models to predict the number of unknown vulnerabilities in
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Language Files Blank Comment Code

IPython Notebook 20 0 0 27544

Python 163 5869 4093 13457

Table 6.1. COCKATOO System – Python Codebase Distribution

a chosen software release with good confidence in the prediction.

All these discussed tools are embodied in our COCKATOO system. Our COCKA-

TOO system has been built on a general-purpose server (running a Linux operating system

distribution) with sufficient processing, networking and memory resources to power the sys-

tem. Table 6.1 shows a sample of our COCKATOO system codebase (of 3295 unique files);

it was generated using CLOC [3] tool and highlighted the amount of generated Python codes

(note that COCKATOO leveraged other programming languages for specific tasks, but their

contributed codebase is minimal). For the Python codebase (and other middleware tech-

nologies), there are several Python dependencies (See. Figure 6.4) packages and third-party

software leveraged for different functionality (e.g., data analytics, machine learning, caching,

background task/queue(s) processing, etc.).

Two direct verticals of COCKATOO system implementation extensions will revolve

around providing tailored services, and unified dashboard to track changes in the user’ IT

system (throughout its life-cycle) and how the user has been applying our threat mitigation

recommendations over time.

6.4. Evaluation

In this Section, we present our evaluation of COCKATOO system with a focus on

three use-cases illustrated in Figure 6.6 using some example of IT systems (shown in Ta-

ble 6.2).

6.4.1. IT Assets Inventory

An organization may be using any of the IT systems listed in Table 6.2 to achieve

core mission goals. At any given point in time, an organization must have a system in
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Figure 6.6. COCKATOO Tools – Use Cases

IT System Description

OpenStack A cloud OS that controls large pools of compute, storage, and networking resources throughout a datacenter

Django A high-level Python Web framework that encourages rapid development and clean, pragmatic design

Joomla A content management system (CMS) for publishing web content

Drupal A content management system (CMS) for publishing web content

LAMP A ”Linux, Apache, MySQL, and PHP” (aka. LAMP) generic software stack

WordPress A content management system (CMS) for publishing web content

Office A Microsoft Office productivity suite

OpenSSL A toolkit for the Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols

Table 6.2. Example of IT Systems

place that enables them to gain a clear understanding of the IT assets in their organization,

their configurations, and uses. Such systems should enable the organization to analyze and

implement actions to assure that their IT assets are protected against security threats and

are operating in a safe and secure state. This will ensure that they are not exposing their

critical information or being exploited by malicious actors to their peril.

Within our COCKATOO system, we have designed the LEGOS tool (See Figure 6.7)

to assist individuals and organizations in gaining visibility into their IT assets that could be
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exposed to attacks by a malicious and motivated actor.

Figure 6.7. COCKATOO – LEGOS Tool

For individual products like OpenSSL [40] and Office [74], using our LEGOS, we

can capture their representation using a standard model of representing IT products using

Common Platform Enumeration (CPE) [83] standard. In this case, if a given user knows

the product name and its version (e.g., “OpenSSL 1.1.0a”), then our LEGOS will con-

struct its CPE representation using IKAWAFARM ontology knowledge bases (which house

many instances of IT products represented in CPE format) and return its representation

as “cpe:/a:openssl:openssl:1.1.0a”. Similarly for the “Office 2016 ” product LEGOS will re-

turn “cpe:/a:microsoft:office:2016 ” as its representation. Then, LEGOS will export their

representation into a CSV file for vulnerability assessment tasks. A similar approach of

representing individual products using our LEGOS manual interface (See Figure 6.7) can be

done in case of a software stack like WordPress [124], see Table 6.3 for illustration. If a user

is already familiar with the CPE format, he/she can simply provide this information in CSV

format.

LEGOS tool has an agent feature (See Figure 6.7), which does alleviate manual

processing in representing a user’ IT system. Using the WordPress example, a user may

actually be running a WordPress powered site on a virtual machine instance locally or

in a public cloud. In this case, there are a number of other IT products that present

interdependencies for the WordPress software stack. To take into account their participation
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IT Product CPE Format

Apache 2.0.59 cpe:/a:apache:http server:2.0.59

PHP 5.2.3 cpe:/a:php:php:5.2.3

MySQL 5.0.37 cpe:/a:oracle:mysql:5.0.37

WordPress 2.2.2 cpe:/a:wordpress:wordpress:2.2.2

Table 6.3. LEGOS – Bitnami WordPress V0.9 Software Stack Example

Figure 6.8. LEGOS Agent – Datastore View of Auto-generated IT Systems

OKBs

in the overall assessment, our LEGOS agent query the operating system (e.g., Linux based

OS) for various telemetry data and represents them using our ontology model (See Figure

3.2) and automatically generate an ontology knowledge base of the entire IT system (in this

case, the WordPress deployment in a Virtual Machine). This WordPress-OKB will be used

to answer questions regarding the entire software stack and its vulnerability posture.

For really complex IT system deployment, where manual tracking of all assets is

infeasible (e.g., running an OpenStack OS [95]) or CMS system (e.g., Django [38], Drupal

[29] and so on), our LEGOS agent can assist in automatically bootstrapping an ontology

representation knowledge base that takes into consideration all participating hosts, and what
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IT System Triples

Ansible – OpenStack Queens 24,049

Bitnami – Django 1.11.14 2,137

Bitnami – Joomla 3.8.10 2,133

Bitnami – Drupal 8.5.5 2,137

Bitnami – Lamp 7.2.8 2,228

Bitnami – WordPress 4.9.7 2,141

Table 6.4. Number of Triples of Deployed IT Systems OKBs – Generated

by our LEGOS Agent

kind of applications and services running on them. Table 6.4 shows the number of semantic

facts (triples), our LEGOS was able to collect in representing these IT systems deployments

(Figure 6.8 shows a screenshot of AllegroGraph WebView [58] of some LEGOS generated

and stored IT systems OKBs).

Each of these IT systems deployment ontology knowledge bases (OKBs) generated

by LEGOS can be exported in any standard ontology file format such as RDF/XML and

can be used directly for visualization using tools like Protege [37] and Gruff [60] (See Figures

3.9, 3.6, and 3.7 for an example of a modeled and represented OpenStack [95] private cloud

system deployment). Also, our VULCAN tool can use these LEGOS generated OKBs as

inputs for vulnerability assessment tasks, and our HUMMING chatbot can enable users to

ask any question they may have about their IT systems’ security posture.

6.4.2. Vulnerability Assessment

Within our COCKATOO system, we can use the VULCAN tool (See Figure 6.9) for

vulnerability assessment of individual and deployed IT systems. Using examples shown in

Table 6.2, Figure 6.11 shows how a user can leverage LEGOS to generate ontology knowledge

bases (OKB) of each IT systems, and input them into VULCAN tool (via the “Assess” nav-

igation), then initiate Vulnerability indexing process. When it is finished, the user can then
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Figure 6.9. COCKATOO – VULCAN Tool

Figure 6.10. COCKATOO – HUMMING Tool

select the corresponding vulnerability index OKB of the IT system and render a vulnerability

assessment report (via the “Report” navigation).

Figure 6.12 shows an example of a such vulnerability report for our studied OpenStack

cloud deployment example. A user can start exploring the report by selecting a section of

128



Figure 6.11. VULCAN – Portal

interest:

• Executive Summary – See Figure 6.13 for an example.

• Asset View – See Figure 6.14 for an example.

• Vulnerability View – See Figure 6.15 for an example.

• Exploit view – See Figure 6.16 for an example.

• Mitigation View – See Figure 6.17 for an example.

• Visualization View – See Figure 6.18 for an example.

• Next Steps – Discusses how HUMMING and NEMESIS tools leverage VULCAN’s

vulnerability index ontology knowledge bases for their specialized functionalities.

For all of our VULCAN assessed IT systems, Table 6.5 presents the number of seman-
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Figure 6.12. VULCAN – OpenStack Vulnerability Assessment Report

Figure 6.13. OpenStack Vulnerability Assessment Report’s Executive Summary

tic facts that VULCAN tool generated after the vulnerability indexing (which includes se-

mantic information about each identified IT product exposure to vulnerability-based threats
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Figure 6.14. OpenStack Vulnerability Assessment Report’s Asset View

Figure 6.15. OpenStack Vulnerability Assessment Report’s Vulnerability View

131



Figure 6.16. OpenStack Vulnerability Assessment Report’s Exploit View

Figure 6.17. OpenStack Vulnerability Assessment Report’s Mitigation View
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Figure 6.18. OpenStack Vulnerability Assessment Report’s Visualization View

Vulnerability Index OKB Triples

Ansible: OpenStack Queens 123,825

Bitnami: Django 1.11.14 13,846

Bitnami: Joomla 3.8.10 14,149

Bitnami: Drupal 8.5.5 14,153

Bitnami: Lamp 7.2.8 14,786

Bitnami: WordPress 4.9.7 14,474

Office 2016 2,431

OpenSSL 1.1.0a 1,263

Table 6.5. IT Systems Vulnerability Index OKBs – Generated by VULCAN

in terms of known vulnerabilities, exploits, and mitigation). Each of the generated vulner-

ability indexes can be used to render vulnerability assessment reports using the VULCAN

tool’s Report feature. In addition, a user can launch our HUMMING chatbot (See Fig-

133



Figure 6.19. HUMMING – Dialogue Example

ure 6.10) for a dialogue based interaction (via the “Query” navigation) to ask questions

about the security posture of their IT system. Figure 6.19 shows an example of such a

dialogue between a user and our HUMMING chatbot while leveraging all VULCAN thus

generated vulnerability indexes.

Figure 6.20. COCKATOO – SWEEP Tool

For individual software products such as OpenSSL [40], our COCKATOO tools SWEEP

(See Figure 6.20) and PREDICTION (See Figure 6.21) can be used to study a given product

and provide a web service to predict the number of unknown vulnerabilities that are likely

to be discovered in that product’s new release. An example is illustrated in Figure 6.22 for
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Figure 6.21. COCKATOO – PREDICTION Tool

Figure 6.22. OpenSSL – Predictive Experiment Example

the latest OpenSSL product’s releases. These predictive findings can be used within our

NEMESIS tool to update the risk score estimation for a given IT system (e.g., OpenSSL

1.1.1 ).

These vulnerability index OKBs (illustrated in Figure 6.11) can then be loaded into

NEMESIS tool for various risk assessment tasks.
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Figure 6.23. COCKATOO – NEMESIS Tool

6.4.3. Risk Assessment

Within our COCKATOO system, we can use the NEMESIS tool (See Figure 6.23) to

model vulnerability-based threats facing any given IT system such as ones shown in Table 6.2

via the “Threat Modeling” navigation. In addition, for each identified threat instance, we

can use “Risk Assessment” feature of the NEMESIS tool to estimate its risk and provide

recommendations to minimize the risk.

Let us assume that there is an organization that has one of their services running

on a legacy system such as one of an old version of a WordPress stack shown in Table 6.3.

As an example, we use configurations shown in Table 6.3 (which are compatible with our

LEGOS supported IT assets data formats) to perform our NEMESIS assessments. As shown

in Figure 6.24, NEMESIS will prompt the user to upload the IT system configurations (See

Table 6.3) via a LEGOS interface or if the user has previously used our VULCAN tool, to

upload VULCAN-generated generated vulnerability-index ontology knowledge base (OKB).

Then NEMESIS will use the vulnerability-index OKB to begin the assessment. If the IT

system configurations provided via LEGOS are the only inputs available for assessment,
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Figure 6.24. NEMESIS Portal with a User Input of their IT System Vul-

nerability Index OKB

Figure 6.25. NEMESIS Threat Modeling – Key Findings for a WordPress Stack
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Figure 6.26. NEMESIS Risk Assessment – Key Findings for a WordPress Stack

then NEMESIS will initiate the vulnerability-index OKB generation using VULCAN API.

Figure 6.25 illustrates our NEMESIS automated threat modeling approach for the given IT

system (See Table 6.3) and shows key findings along assessment categories such as Exploitable

Vulnerabilities, Threat Types Classification, Ranked Threat Types, Threat Mitigation, and

Validation. Figure 6.26 shows NEMESIS’s risk assessment findings in terms of the risk

score that each modeled threat instances may expose the organization to. In addition, our

NEMESIS tool provides recommendations for each threat type category, for example “Denial

of Service” threat type with all its found 134 threat instances (See Figure 6.25), in terms of

what a user can do to minimize the estimated risk (e.g., patching the found vulnerabilities

or upgrading old IT products to newer versions).

The NEMESIS tool can evaluate any vulnerability-based threat that affects a large

IT system deployment such as ones shown in Table 6.2. For example, Figure 6.27 illustrates

some key findings from NEMESIS’s evaluation of all found vulnerability-based threats that

an example OpenStack deployment (See Figure 3.9) is exposed to, and its risk exposure.
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Figure 6.27. NEMESIS Evaluation – Key Findings for an OpenStack De-

ployment

6.5. Discussion and Summary

In our study, we have deployed and studied a number of IT systems including the

ones shown in Table 6.2. For each of our deployed and studied IT systems, we have run

tests and validated the functionalities of each of our COCKATOO tools in regards to their

architectural designs (See Section 6.2). Our COCKATOO system codebase is going to be

released (under GNU GPL license [44]) to allow researchers and security practitioner to

deploy it and replicate our analyses.

Each of COCKATOO tools has been implemented as a web application/service based

on our work presented in previous Chapters 3, 4, and 5. Adjustments were made in each of

COCKATOO tools to enable interoperability between all tools under COCKATOO system

umbrella. In addition, new techniques (presented in Section 6.3) were adapted to improve

the robustness and accuracy of NEMESIS, PREDICTION and other tools.

Within COCKATOO system, we have developed a suite of security tools that encodes
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(on an evolving basis) security experts knowledge and experiences into our ontology models

and orchestration frameworks. These ontology models when populated with relevant data

sources turns into semantically rich ontology knowledge bases (OKBs). These OKBs in

turns power our orchestration frameworks into a reliable and automated web application

and service offerings. These on-demand applications and services within the COCKATOO

system enable any user (e.g., a novice to an experienced security professional) to perform

threat assessment and mitigation for their IT systems, large or small.

The COCKATOO system currently has some limitations such as performance over-

head of some tools, limited data-feed sources for our evolving knowledge graph, and reliance

on some third-party commercial software products. For instance, some performance over-

heads are due to third-party software that we rely on to maintain our ontology models and

knowledge bases and to automate software complexity metrics generation. Another perfor-

mance overhead that is a result of our COCKATOO system codebase can be minimized

by optimizing the code with more efficient programming languages, as well as, parallelizing

tasks. The COCKATOO system already employs a number of performance tuning techniques

such as caching for our web stack, indexing for various semantic graph database processing

tasks, reliable and adaptable technology stack (See Figure 6.4). The main sources of cyber

threat data-feeds enable us to address important questions that revolve around vulnerability-

based threats to IT system. We plan to include a number of additional sources to extend our

ontology models so that we can represent information about IT systems’ misconfiguration

and misuse of security implications. Since most security attacks rely on a number of attack

vectors for successful security breaches, we plan to empower users with a holistic solution.

Also, we plan to complete the adoption of open-source technology solutions so that our

COCKATOO system can be freely available to all of our users that we had in mind when

designing it.

In this Chapter, we have presented our approach to how the COCKATOO system

is designed and implemented as a holistic suite of security tools. We have evaluated each

of COCKATOO tools using a sample of IT systems that we have studied and deployed.

140



Within the COCKATOO system, we are providing a robust solution that has the potential

to help individuals and organizations to stay ahead of any vulnerability-based threat that

their IT systems may be exposed to. The COCKATOO system related materials such as

tools’ codebase, white papers, and tools video demos are maintained within the University of

North Texas, Computer Science and Engineering – Computer Computer Systems Research

Lab (CSRL)” [26], and under the CSRL – COCKATOO project page [25].

In the next Chapter 7, we include concluding thoughts and plans for future expan-

sions.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, I have presented our research on the vulnerability-based threats

facing IT systems (e.g., cloud system deployment). Our research can help individuals and

organizations using IT systems stay ahead of known and unknown vulnerability-based threats

that may have a damaging impact on their core mission goals.

I have presented our ontological approach using state-of-the-art ontology engineering

techniques to build a cyber threat knowledge base, a working knowledge base of a user

deployed IT system, and link these knowledge bases for automated threat assessment and

mitigation tasks. Our cyber threat knowledge bases reflect publicly known information about

vulnerability, vulnerability-exploits, and vulnerability-mitigation information that affects IT

systems such as applications, hardware, and operating systems. The user-generated IT

system knowledge base is used by our automated systems to gain visibility into all user’s

exploitable IT assets.

I have presented my significant contributions in terms of the VULCAN, NEMESIS,

and COCKATOO systems. VULCAN captures all vulnerabilities, exploits, and mitigation

information associated with IT systems. The VULCAN system enables vulnerability assess-

ment of complex IT systems (e.g., cloud systems). I have presented our NEMESIS system

that categorizes and ranks threat types exposed by the vulnerabilities that exist in an IT sys-

tem. Also, NEMESIS uses a Bayesian model to quantify overall threat risks and recommends

alternate system configurations to reduce the perceived IT system’s risks. COCKATOO inte-

grates VULCAN, NEMESIS and other tools (IKAWAFARM, LEGOS, HUMMING, SWEEP,

and PREDICTION) into a holistic analysis environment. The COCKATOO system enables

novices or experienced users to evaluate the security posture of their deployed IT systems.

With this research work, we have provided a new understanding and solutions to the

problem of assessing and mitigating vulnerability-based threats that affect IT systems. Our

goal is to encourage new ideas that security researchers and practitioners can use to develop
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new solutions to help individuals and organizations protect their IT systems against targeted

threats.

We plan to advance the development of ontology-based solutions that are suitable for

industry setting and enabling end-users to have controls in assessing and taking a course of

action in regards to their IT systems security posture.

In Table 7.1, we present a summary of each of COCKATOO’s tools’ future extensions.

For instance,

• With the LEGOS tool, we plan to extend our IT system ontology model to repre-

sent a wide variety of security-related telemetry data from any computing device,

including configuration information so that vulnerability prone configurations can be

identified. Also, LEGOS can collect network and computer’s resources utilization

towards building a baseline for normal behaviors and enable other COCKATOO

tools to detect abnormal behaviors and correlate them with the assessed security

posture of an IT system regarding found vulnerabilities and threat types exposure.

• With the VULCAN tool, we plan to develop tools to better visualize vulnerabilities

and their relationships using 3D rendering of our ontology graphs (for example,

using Virtual Reality technologies). We will develop Virtual Reality applications

that enable exploration of the generated VULCAN ontology knowledge base that

captured a given user’s IT system vulnerability status, including information about

found vulnerabilities.

• With the SWEEP tool, we plan to explore computing software complexity mea-

sures from binary sources of software products when source code is not available.

Using the PREDICTION tool, we will focus on exploring security-specific software

complexity measures to gain insights into programs that could have hidden vulnera-

bilities (that are yet to be discovered), or that could have malicious codes (embedded

by motivated threat actors).
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COCKATOO – Tool Future Extension

IKAWAFARM

Extend our cyber threat data ontology to capture additional data sources and feeds (such as IoT

and hardware vulnerability databases). Incorporate STIX [88] in the IKAWAFARM toolkit to

capture cyber threat intelligence feeds from industry, community, and open-source

(e.g., social media sites, blogs, etc.) feeds. Expose a semantic API to our COCKATOO tools

to enable basic to complex queries on the newly collected and represented threat data feeds.

LEGOS

Extend our IT system ontology model to represent a wide variety of security-related telemetry

data from any computing device, including configuration information so that vulnerability prone

configurations can be identified.

VULCAN

Extend VULCAN to track IT systems through their lifetime.

Develop tools to better visualize vulnerabilities and their relationships using 3D rendering

of our ontology graphs (for example, using Virtual Reality technologies).

HUMMING
Develop more semantically meaningful chatbot dialogues relying on the feedback from

several conducted study cases.

NEMESIS
Explore context-dependent ways of assigning severity scores to vulnerabilities.

Use semantic word disambiguation and NLP to better classify vulnerabilities into threat types.

SWEEP
Explore computing software complexity measures from binary sources (when source code is not

available). Explore security-specific software complexity measures.

PREDICTION Further validate our prediction models for a wide variety of software products.

Table 7.1. COCKATOO Tools – Future Extensions
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[81] Mark A Musen, The protégé project: a look back and a look forward, AI matters 1

(2015), no. 4, 4–12.

[82] NIST, Common configuration enumeration (cce), https://nvd.nist.gov/cce/

index.cfm, October 2018.

[83] , Common platform enumeration (cpe), https://nvd.nist.gov/cpe.cfm, Oc-

tober 2018.

[84] , Cve-2014-0160 detail, https://web.nvd.nist.gov/view/vuln/detail?

vulnId=CVE-2014-0160, October 2018.

[85] , National vulnerability database (nvd), https://nvd.nist.gov, October 2018.

[86] , Security content automation protocol, https://csrc.nist.gov/projects/

security-content-automation-protocol/, October 2018.

[87] S Noel, E Harley, KH Tam, M Limiero, and M Share, Cygraph: graph-based analytics

and visualization for cybersecurity, Handbook of Statistics, vol. 35, Elsevier, 2016,

pp. 117–167.

[88] OASIS, Structured threat information expression (stix), https://stix.mitre.org,

October 2018.

151

http://cve.mitre.org
http://cwe.mitre.org
https://cybox.mitre.org
https://maec.mitre.org
https://maec.mitre.org
https://nvd.nist.gov/cce/index.cfm
https://nvd.nist.gov/cce/index.cfm
https://nvd.nist.gov/cpe.cfm
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://nvd.nist.gov
https://csrc.nist.gov/projects/security-content-automation-protocol/
https://csrc.nist.gov/projects/security-content-automation-protocol/
https://stix.mitre.org


[89] OWASP, Threat risk modeling, https://update-wiki.owasp.org/index.php/

Threat_Risk_Modeling#DREAD, October 2018.

[90] Kamongi Patrick, Kavi Krishna, and Gomathisankaran Mahadevan, Predicting un-

known vulnerabilities using software metrics and maturity models, The Eleventh Inter-

national Conference on Software Engineering Advances (ICSEA 2016), IARIA, August

2016.

[91] Kamongi Patrick, Gomathisankaran Mahadevan, and Krishna Kavi, Nemesis: Auto-

mated architecture for threat modeling and risk assessment for cloud computing, The

Sixth ASE International Conference on Privacy, Security, Risk and Trust (PASSAT),

ASE, December 2014.

[92] Kamongi Patrick, Kotikela Srujan, Kavi Krishna, Gomathisankaran Mahadevan, and

Singhal Anoop, Vulcan: Vulnerability assessment framework for cloud computing, Pro-

ceedings of The Seventh International Conference on Software Security and Reliability.

SERE (SSIRI) 2013, IEEE, June 2013, pp. 218–226.

[93] Kamongi Patrick, Kotikela Srujan, Gomathisankaran Mahadevan, and Kavi Krishna,

A methodology for ranking cloud system vulnerabilities, Proceedings of The Fourth

International Conference on Computing, Communication and Networking Technologies

(ICCCNT’13), 2013.

[94] OpenStack project, Newton, https://releases.openstack.org/newton, October

2018.

[95] , Openstack, https://www.openstack.org, October 2018.

[96] , Openstack core services, https://www.openstack.org/software/

project-navigator, October 2018.

[97] , Quickstart: Aio, https://docs.openstack.org/openstack-ansible/

latest/user/aio/quickstart.html, October 2018.

[98] Rapid7, Metasploit framework, https://metasploit.com, October 2018.

[99] Dark Reading, Nsa-funded cauldron tool goes commercial, https://www.

152

https://update-wiki.owasp.org/index.php/Threat_Risk_Modeling#DREAD
https://update-wiki.owasp.org/index.php/Threat_Risk_Modeling#DREAD
https://releases.openstack.org/newton
https://www.openstack.org
https://www.openstack.org/software/project-navigator
https://www.openstack.org/software/project-navigator
https://docs.openstack.org/openstack-ansible/latest/user/aio/quickstart.html
https://docs.openstack.org/openstack-ansible/latest/user/aio/quickstart.html
https://metasploit.com
https://www.darkreading.com/nsa-funded-cauldron-tool-goes-commercial/d/d-id/1131178
https://www.darkreading.com/nsa-funded-cauldron-tool-goes-commercial/d/d-id/1131178


darkreading.com/nsa-funded-cauldron-tool-goes-commercial/d/d-id/

1131178, October 2018.

[100] W3C Recommendation, Owl 2 web ontology language: Document overview, Tech. re-

port, W3C, December 2012.

[101] , Sparql 1.1 query language, Tech. report, W3C, March 2013.

[102] , Rdf 1.1 concepts and abstract syntax, Tech. report, W3C, February 2014.

[103] , Rdf schema 1.1, Tech. report, W3C, February 2014.

[104] Offensive Security, Offensive security’s exploit database archive, https://www.

exploit-db.com, October 2018.

[105] Tenable Network Security, Nessus vulnerability scanner, http://www.tenable.com/

products/nessus, October 2018.

[106] Amartya Sen and Sanjay Madria, Off-line risk assessment of cloud service provider,

International Workshop on Cloud Security Auditing (CSA 2014), IEEE, 2014.

[107] Dimitrios Settas, Antonio Cerone, and Stefan Fenz, Enhancing ontology-based antipat-

tern detection using bayesian networks, Expert Systems with Applications, vol. 39, 8

2012, pp. 9041–9053.

[108] O. Sheyner and J. Wing, Tools for generating and analyzing attack graphs, Formal

methods for components and objects, Springer, 2004, pp. 344–371.

[109] Oleg M Sheyner, Scenario graphs and attack graphs, Tech. report, CARNEGIE-

MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE, 2004.

[110] Yonghee Shin, Exploring complexity metrics as indicators of software vulnerability,

Proceedings of the 3rd International Doctoral Symposium on Empirical Software En-

gineering, Kaiserslautem, Germany, 2008, URL: http://www4.ncsu.edu/~yshin2/

papers/esem2008ds_shin.pdf (english).

[111] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A Osborne, Evaluating

complexity, code churn, and developer activity metrics as indicators of software vulner-

abilities, IEEE Transactions on Software Engineering, vol. 37, IEEE, 2011, pp. 772–787

(english).

153

https://www.darkreading.com/nsa-funded-cauldron-tool-goes-commercial/d/d-id/1131178
https://www.darkreading.com/nsa-funded-cauldron-tool-goes-commercial/d/d-id/1131178
https://www.darkreading.com/nsa-funded-cauldron-tool-goes-commercial/d/d-id/1131178
https://www.exploit-db.com
https://www.exploit-db.com
http://www.tenable.com/products/nessus
http://www.tenable.com/products/nessus
http://www4.ncsu.edu/~yshin2/papers/esem2008ds_shin.pdf
http://www4.ncsu.edu/~yshin2/papers/esem2008ds_shin.pdf


[112] Yonghee Shin and Laurie Williams, An empirical model to predict security vulnerabili-

ties using code complexity metrics, Proceedings of the Second ACM-IEEE international

symposium on Empirical software engineering and measurement, ACM, 2008, pp. 315–

317 (english).

[113] , Is complexity really the enemy of software security?, Proceedings of the 4th

ACM workshop on Quality of protection, ACM, 2008, pp. 47–50 (english).
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