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Abstract: In this paper, we are concerned with optimality conditions and duality results for nondifferentiable multi-
objective fractional programming problems. Parametric necessary optimality conditions are established for such vector
optimization problems in which each component of the involved functions is locally Lipschitz. Further, under the intro-
duced concept of nondifferentiable (b,Ψ,Φ, ρ) -univexity, the parametric sufficient optimality conditions are established
for a new class of nonconvex multiobjective fractional programming problems. Furthermore, for the considered multi-
objective fractional programming problem, its parametric vector dual problem in the sense of Schaible is defined. Then
several duality theorems are also established under (b,Ψ,Φ, ρ) -univexity hypotheses.
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1. Introduction
In recent years, multiobjective fractional programming problems have received much attention by many authors
due to the fact that in many operations research problems the objective functions are quotients of two functions.
Therefore, many authors established necessary optimality conditions and employed the conditions to search for
optimal solutions as well as duality theorems for such vector optimization problems in the recent past (see,
for example, [1, 2, 5, 6, 8–10, 12, 16, 18, 20–22, 25–31, 33, 35, 37–40, 42–44]). This is a consequence of the
fact that multiobjective fractional programming problems have been applied in various fields in different types
of objective functions with different constraints including portfolio selection, stock cutting, game theory, and
numerous decision problems in management science.

Recently, optimality conditions and duality for nonsmooth multiobjective fractional programs have been
studied under various kinds of generalized convexity notions. In [27], Liu established the Kuhn–Tucker necessary
and sufficient optimality conditions for an efficient optimum of multiobjective fractional programming problems
containing (F, ρ) -convex functions and duality results for the defined Bector-type dual problem. Kuk et al. [21]
established generalized Karush–Kuhn–Tucker necessary and sufficient optimality conditions and derived duality
theorems for nonsmooth multiobjective fractional programming problems containing V -ρ -invex functions. In
[37], Soleimani-damaneh, using the properties of limiting subdifferential vectors and a separation theorem in
convex analysis, derived some necessary and sufficient optimality conditions for the considered nonsmooth frac-
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tional multiple objective problems. In [20], under the introduced concept of a nearly invex function for locally
Lipschitz vector-valued functions, Kim et al. derived generalized sufficient optimality conditions and proved
weak and strong duality theorems for the multiobjective fractional optimization problem involving nearly in-
vex functions. Kim [18] introduced the concept of generalized invexity for a fractional function and then he
proved the sufficient optimality conditions and several duality results for the considered nonsmooth multiobjec-
tive fractional programming problems involving locally Lipschitz functions. Under the introduced generalized
(F, θ, ρ, d) -convexity notion, Liu and Feng [28] derived optimality conditions and duality results for a class of
nonsmooth multiobjective fractional programming problems. In [33], Nobakhtian considered nonsmooth mul-
tiobjective fractional programming problems with mixed constraints and established the optimality conditions
and several mixed duality results under various generalized invexity assumptions. Mishra and Upadhyay [30] es-
tablished necessary and sufficient conditions for a feasible solution to be efficient in a nonsmooth multiobjective
fractional programming problem involving η -pseudolinear functions. They also showed the equivalence between
efficiency and proper efficiency under certain boundedness condition and proved various duality results for the
corresponding Mond–Weir subgradient type dual problem also under η -pseudolinearity hypotheses. Lai and
Ho [22] studied a subdifferentiable multiobjective fractional programming and established sufficient optimality
conditions and parametric duality results under exponential V -r -invexity hypotheses. For a bibliography of
fractional programming, see Stancu-Minasian [38].

In the paper, we shall establish parametric necessary optimality conditions for the considered nonsmooth
multiobjective fractional programming problem with both inequality and equality constraints in which each
component of the involved functions is a locally Lipschitz function. Further, we introduce a new concept of
generalized convexity, that is, the definition of nondifferentiable (b,Ψ,Φ, ρ) -univexity, which contains many
concepts of generalized convexity previously defined in the literature. Then we prove parametric sufficient
optimality conditions for a new class of multiobjective fractional programming problems in which the involved
functions are (b,Ψ,Φ, ρ) -univex (not necessarily with respect to the same b , Ψ and b). Furthermore, for
the considered nonsmooth multiobjective fractional programming problem, we also define its parametric vector
dual problem in the sense of Schaible. Then, also under nondifferentiable (b,Ψ,Φ, ρ) -univexity hypotheses, we
prove several duality results between the primal nonsmooth multiobjective fractional programming problem and
its parametric Schaible dual problem. In particular, it does not seem that the optimality and duality results
have been established previously in the literature for such a large class of nonconvex multiobjective fractional
problems with locally Lipschitz functions.

2. Preliminaries
In this section, we provide some definitions and some results that we shall use in the sequel.

The following convention for equalities and inequalities will be used in the paper.

For any vectors x = (x1, x2, ..., xn)
T , y = (y1, y2, ..., yn)

T in Rn , we define:

(i) x = y if and only if xi = yi for all i = 1, 2, ..., n ;

(ii) x > y if and only if xi > yi for all i = 1, 2, ..., n ;

(iii) x ≧ y if and only if xi ≧ yi for all i = 1, 2, ..., n ;

(iv) x ≥ y if and only if x ≧ y and x ̸= y.
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Throughout this section, X is a nonempty subset of Rn and u is an arbitrary given point of X .
A function f : Rn → R is locally Lipschitz at a point u ∈ Rn if there exist scalars K > 0 and ε > 0

such that the following inequality |f (y)− f(z)| ≦ K ∥y − z∥ holds for all y , z ∈ u+ εB , where B signifies the
open unit ball in Rn , so that u+ εB is the open ball of radius ε about u .

Definition 1 [13] The Clarke generalized directional derivative of a locally Lipschitz function f : X → R at
u ∈ X in the direction v ∈ Rn , denoted f 0 (u; v) , is given by

f 0(u; v) = lim sup
y→u
θ↓0

f (y + θv)− f(y)

θ
.

Definition 2 [13] The Clarke generalized gradient of a locally Lipschitz function f : X → R at u ∈ X , denoted
∂f (u) , is defined as follows:

∂f (u) =
{
ξ ∈ Rn : f 0(u; v) ≧ ⟨ξ, v⟩ for all v ∈ Rn

}
.

Lemma 3 [13] Let f : X → R be a locally Lipschitz function on X and let u be an arbitrary point of X and
λ ∈ R . Then

∂ (λf) (u) = λ∂f (u) .

Proposition 4 [13] Let fi : X → R , i = 1, ..., k , be locally Lipschitz functions on X and let u be an arbitrary
point of X . Then

∂

(
k∑

i=1

fi

)
(u) ⊆

k∑
i=1

∂fi (u) .

Equality holds in the above relation if all but at most one of the functions fi are strictly differentiable at u .

Corollary 5 [13] For any scalars λi , one has

∂

(
k∑

i=1

λifi

)
(u) ⊆

k∑
i=1

λi∂fi (u) ,

and equality holds if all but at most one of the fi are strictly differentiable at u .

Definition 6 [7] A function f : Rn → R is said to be superlinear on R if

i) f(x+ y) ≧ f(x) + f (y) , ∀x, y ∈ Rn ,

ii) f (λx) = λf (x) , ∀x ∈ Rn , ∀λ ∈ R , λ ≧ 0 .

We now introduce a new concept of generalized convexity, that is, we give the definition of a nondiffer-
entiable vector-valued (b,Ψ,Φ, ρ) -univex function. The introduced concept of a nondifferentiable (b,Ψ,Φ, ρ) -
univexity in the vectorial case generalizes the definition of an univex function given by Bector et al. [7] for a
differentiable scalar optimization problem and the definition of a nondifferentiable (Φ, ρ) -invex vector-valued
function introduced by Antczak [3].
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Definition 7 Let f : Rn → Rp be a vector-valued function such that each its component fi , i = 1, .., p ,
be a locally Lipschitz function, and x ∈ Rn be given. If there exist functions Ψ = (Ψ1, ...,Ψp) : R → Rp ,
b = (b1, ..., bp) : Rn × Rn → Rp

+ , Φ : Rn × Rn × Rn × R → R , and ρ = (ρ1, ..., ρp) ∈ Rp such that, for all
x ∈ Rn , Φ(x, x; (·, ·)) is convex, Φ(x, x; (0, a)) ≧ 0 for all a ∈ R+ , such that the inequalities

bi(x, x)Ψi(fi(x)− fi(x)) ≧ Φ(x, x; (ξi, ρi)) (>), i = 1, .., p, (1)

hold for any ξi ∈ ∂fi(x) and all x ∈ Rn , (x ̸= x), then f is said to be (strictly) (b,Ψ,Φ, ρ)-univex at x on
Rn . If inequalities (1) is satisfied at each x ∈ Rn , then f is said to be (strictly) (b,Ψ,Φ, ρ)-univex on Rn . If
inequalities (1) is satisfied for all x ∈ X , where X is a nonempty set of Rn , then f is said to be (strictly)
(b,Ψ,Φ, ρ)-univex at x ∈ X on X . Each function fi , i = 1, .., p , satisfying (1) is said to be locally Lipschitz
(strictly) (bi,Ψi,Φ, ρi)-univex at x on Rn .

Remark 8 Note that the definition of a nondifferentiable (b,Ψ,Φ, ρ)-univex vector-valued function generalizes
and extends many other generalized convexity notions previously defined in the literature. Indeed, from Definition
7, there are the following special cases:

i) If Φ(x, x, (ξi, ρi)) = ξTi (x− x) , Ψi (a) ≡ a and b (x, x) ≡ 1 for all x, x ∈ Rn , then we obtain the
definition of a (nondifferentiable) convex function.

ii) If Φ(x, x, (ξi, ρi)) = ξTi (x− x) and Ψi (a) ≡ a , then we obtain the definition of a (nondifferentiable)
b-convex function.

iii) If Φ(x, x, (ξi, ρi)) = ξTi η (x, x) for a certain mapping η : Rn × Rn → Rn , Ψi (a) ≡ a and b (x, x) ≡ 1

for all x, x ∈ Rn , then we obtain the definition of a (locally Lipschitz) invex function (with respect to the
function η ) (see Reiland [36] in a nonsmooth scalar case and Kim and Schaible [19] and Lee [23] in the
vectorial case).

iv) If Φ(x, x, (ξi, ρi)) = ξTi η (x, x) for a certain mapping η : Rn×Rn → Rn , then the definition of (b,Ψ,Φ, ρ)-
univexity reduces to the definition of a (locally Lipschitz) univex function (with respect to the function η )
(see Bector et al. [7] in a differentiable scalar case).

v) If Φ(x, x, (ξi, ρi)) = ξTi η (x, x) , Ψi (a) ≡ a , and η : Rn × Rn → Rn , then we obtain the definition of a
nondifferentiable b-invex function (with respect to the function η ) (see Li et al. [24]).

vi) If Φ(x, x, (ξi, ρi)) = ξTi (x− x) + ρi ∥x− x∥2 , Ψi (a) ≡ a and b (x, x) ≡ 1 for all x, x ∈ Rn , then
(b,Ψ,Φ, ρ)-univexity reduces to the definition of a nonsmooth ρ-convex function defined by Vial [41] in
the scalar case (see also Zalmai [43] in a nondifferentiable case).

vii) If Φ(x, x, (ξi, ρi)) = ξTi η (x, x) + ρi ∥θ (x, x)∥2 , Ψi (a) ≡ a and b (x, x) ≡ 1 for all x, x ∈ Rn , η :

Rn ×Rn → Rn , θ : Rn ×Rn → Rn , θ (x, x) ̸= 0 , whenever x ̸= x , then (b,Ψi,Φ, ρ)-univexity reduces to
the definition of a nonsmooth ρ-invex function (with respect to η and θ ), in the scalar case introduced by
Jeyakumar [17] (see also Craven [14], Ahmad [1], and Suneja and Lalitha [40] in the vectorial case).
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viii) If Φ(x, x, (ξi, ρi)) = ξTi η (x, x) + ρi ∥x− x∥2 for all x, x ∈ Rn , η : Rn ×Rn → Rn , then the definition of
a (b,Ψ,Φ, ρ)-univex function reduces to the definition of a nonsmooth ρ-univex function (with respect to
η and θ ) (see, for example, Mishra [29]).

ix) If Φ(x, x, (ξi, ρi)) = F (x, x, ξi) , where F (x, x, ·) is a sublinear functional on Rn , Ψi (a) ≡ a and
b (x, x) ≡ 1 for all x, x ∈ Rn , then the definition of (b,Ψ,Φ, ρ)-univexity reduces to the definition of
F -convexity introduced by Hanson and Mond [15] in the scalar case.

x) If Φ(x, x, (ξi, ρi)) = F (x, x, ξi)+ ρid
2 (x, x) , where F (x, x, ·) is a sublinear functional on Rn , Ψi (a) ≡ a

and b (x, x) ≡ 1 for all x, x ∈ Rn , then the definition of (b,Ψ,Φ, ρ)-univexity reduces to the definition of
(F, ρ)-convexity considered by Mukherjee and Rao [32] in a scalar case, and Liu [27] and Craven [14] in
the vectorial case.

xi) If Φ(x, x, (ξi, ρi)) = α (x, x) ξTi η (x, x) , where η : Rn × Rn → Rn , α : Rn × Rn → R+\{0} , α (x, x) =

1
b(x,x) , Ψi (a) ≡ a , then (b,Ψ,Φ, ρ)-univexity reduces to the definition of a nonsmooth α-invex function

(with respect to η ) introduced by Mishra et al. [31].

xii) If Φ(x, x, (ξi, ρi)) = α (x, x) ξTi η (x, x) , where η : Rn × Rn → Rn , α : Rn × Rn → R+\{0} , α (x, x) =

1
b(x,x) , then (b,Ψ,Φ, ρ)-univexity reduces to the definition of a nonsmooth α-univex function (with respect

to η and θ ) introduced by Jayswal et al. [16].

xiii) If Φ(x, x, (ξi, ρi)) = F (x, x, ξi)+ρid
2 (x, x) , where F (x, x, ·) is a sublinear functional on Rn , Ψi (a) ≡ a ,

and d : X×X → R , then (b,Ψ,Φ, ρ)-univexity notion reduces to (b, F, ρ)-convexity, in the smooth vectorial
case introduced by Pandian [34].

xiv) If Ψi (a) ≡ a and b (x, x) ≡ 1 for all x, x ∈ Rn , then we obtain the definition of a locally Lipschitz
(Φ, ρ)-invex function (see Antczak and Stasiak [4] in a scalar case, and Antczak [3] in a nondifferentiable
vectorial case).

In the paper, consider the following multiobjective fractional programming problem:

V -minimize φ(x) :=
(

f1(x)
q1(x)

, ..., fk(x)
qk(x)

)
subject to gj(x) ≦ 0, j ∈ J = {1, ...m} ,

hs (x) = 0, s ∈ S = {1, ..., p} ,

x ∈ X,

(MFP)

where fi : X → R, qi : X → R, i ∈ I = {1, ..., k} , gj : X → R , j ∈ J , hs : X → R , s ∈ S , are
locally Lipschitz functions on a nonempty open convex set X ⊂ Rn and, moreover, fi(x) ≧ 0 , qi (x) > 0 ,
i ∈ I , for all x ∈ X . Let D := {x ∈ X : gj(x) ≦ 0, j ∈ J , hs (x) = 0, s ∈ S, fi(x) ≧ 0, qi (x) > 0, i ∈ I}
(assumed to be nonempty) denote the set of all feasible solutions in the considered nonsmooth multiobjective
fractional programming problem (MFP). We also denote by J(x) the set of active constraints at x ∈ D , that
is, J(x) = {j ∈ J : gj(x) = 0} .

2129



ANTCZAK and VERMA/Turk J Math

For such multicriterion optimization problems as the considered multiobjective fractional programming
problem (MFP), the optimal solution is defined in terms of a (weak) Pareto solution ((weakly) efficient solution)
in the following sense:

Definition 9 A feasible point x is said to be a weak Pareto solution (weakly efficient solution, weak minimum)
for (MFP) if and only if there exists no x ∈ D such that φ(x) < φ(x) .

Definition 10 A feasible point x is said to be a Pareto solution (efficient solution) for (MFP) if and only if
there exists no x ∈ D such that φ(x) ≤ φ(x) .

3. Optimality

In this section, for the considered nonsmooth multiobjective fractional programming problem (MFP), we prove
various sufficient optimality conditions under a variety of (b,Ψ,Φ, ρ) -univexity hypotheses.

In order to prove the parametric necessary optimality conditions for the considered multiobjective frac-
tional programming problem (MFP), we use the parametric approach which is based on the method introduced
by Crouzeix et al. [11] for minimax fractional programming problems (see also [6]). Then, for the consid-
ered multiobjective fractional programming problem (MFP), we define the associated parametric nonfractional
multiobjective programming problem in the parameter v as follows:

V -minimize (f1(x)− v1q1 (x) , ..., fk(x)− vkqk (x))

subject to gj(x) ≦ 0, j ∈ J = {1, ...m} ,

hs (x) = 0, s ∈ S = {1, ..., p} ,

x ∈ X.

(MP)

For the auxiliary multiobjective programming problem (MP) defined above, the following result is true:

Lemma 11 Let x ∈ D be a weak Pareto solution of the considered multiobjective fractional programming
problem (MFP). Then x is also a weak Pareto solution in the nonfractional multiobjective programming problem

(MP) with vi = φi(x) , that is, vi =
fi(x)
qi(x)

, i ∈ I .

Theorem 12 (Parametric necessary optimality conditions). Let x ∈ D be a weak Pareto solution of the
considered multiobjective fractional programming problem (MFP) with v = φ(x) and the suitable constraint
qualification (for example, the generalized Slater constraint qualification) be satisfied at x . Then there exist
λ ∈ Rk , µ ∈ Rm , and ω ∈ Rp such that

0 ∈
k∑

i=1

λi∂ (fi(x)− viqi(x)) +

m∑
j=1

µj∂gj(x) +

p∑
s=1

ωs∂hs(x), (2)

µjgj(x) = 0, j ∈ J, (3)

λi ≥ 0, i ∈ I,
k∑

i=1

λi = 1, µj ≧ 0, j ∈ J. (4)
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Proof Let x ∈ D be a weak Pareto solution of the considered multiobjective fractional programming problem
(MFP). Hence, by Lemma 11, x is also a weak Pareto solution of the associated parametric nonfractional
multiobjective programming problem (MP). Further, by Theorem 2.1 [3], there exist Lagrange multipliers
λ ∈ Rk , µ ∈ Rm and ω ∈ Rp such that the above conditions (2)–(4) are fulfilled. This completes the proof of
this theorem. 2

The following result follows directly from Theorem 12.

Corollary 13 (Parametric necessary optimality conditions). Let x ∈ D be a weak Pareto solution in the
considered multiobjective fractional programming problem (MFP) with v = φ(x) and the suitable constraint
qualification (for example, the generalized Slater constraint qualification) be satisfied at x . Then there exist
λ ∈ Rk , µ ∈ Rm , and ω ∈ Rp such that

0 ∈
k∑

i=1

λi (∂fi(x)− vi∂qi(x)) +

m∑
j=1

µj∂gj(x) +

p∑
s=1

ωs∂hs(x), (5)

µjgj(x) = 0, j ∈ J, (6)

λi ≥ 0, i ∈ I,
k∑

i=1

λi = 1, µj ≧ 0, j ∈ J. (7)

Proof Let x ∈ D be a weak Pareto solution in the considered multiobjective fractional programming problem
(MFP). Hence, there exist λ ∈ Rk , µ ∈ Rm , and ω ∈ Rp such that the parametric necessary optimality
conditions (2)–(4) are fulfilled at x . Therefore, it is sufficient to prove that the condition (5) follows from (2).
Indeed, by Lemma 3 and Proposition 4, it follows that ∂ (fi(x)− viqi(x)) ⊆ ∂fi(x) − vi∂qi(x) , i ∈ I . This
completes the proof of this corollary. 2

Theorem 14 Let x ∈ D , v = φ(x) and the parametric necessary optimality be satisfied at x with Lagrange
multipliers λ ∈ Rk , µ ∈ Rm , ω ∈ Rp . Further, assume that either one of the following two sets of hypotheses
is satisfied:

A) a) for each i = 1, ..., k , fi (·)− viqi (·) is (bi,Ψi,Φ, ρi)-univex at x on D and a < 0 =⇒ Ψi(a) < 0 ;

b) for each j ∈ J (x) , gj (·) is (bgj ,Ψgj ,Φ, ρgj )-univex at x on D and a ≦ 0 =⇒ Ψgj (a) ≦ 0 ;

c) for each s ∈ S+ (x) := {s ∈ S : ω > 0} , hs (·) is (bhs ,Ψhs ,Φ, ρ
+
hs
)-univex at x on D and (Ψhs(0) = 0

or a ≦ 0 =⇒ Ψhs(a) ≦ 0) ;

d) for each s ∈ S− (x) := {s ∈ S : ω < 0} , −hs (·) is (bhs ,Ψhs ,Φ, ρ
−
hs
)-univex at x on D and

(Ψhs
(0) = 0 or a ≦ 0 =⇒ Ψhs

(a) ≦ 0) ;

e)
∑k

i=1 λiρi +
∑

j∈J(x) µjρgj +
∑

s∈S+(x) ωsρ
+
hs

−
∑

s∈S−(x) ωsρ
−
hs

≧ 0 .

B) a) for each i = 1, ..., k , fi (·) is (bi,Ψi,Φ, ρfi)-univex at x on D and −qi (·) are (bi,Ψi,Φ, ρi)-univex
at x on D , Ψi is a superlinear function and a < 0 =⇒ Ψi(a) < 0 ;
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b) for each j ∈ J (x) , gj (·) is (bgj ,Ψgj ,Φ, ρgj )-univex at x on D and a ≦ 0 =⇒ Ψgj (a) ≦ 0 ;

c) for each s ∈ S+ (x) , hs (·) is (bhs
,Ψhs

,Φ, ρ+hs
)-univex at x on D and (Ψhs

(0) = 0 or
a ≦ 0 =⇒ Ψhs

(a) ≦ 0) ;

d) for each s ∈ S− (x) , −hs (·) is (bhs
,Ψhs

,Φ, ρ−hs
)-univex at x on D and (Ψhs

(0) = 0 or
a ≦ 0 =⇒ Ψhs

(a) ≦ 0) ;

e)
∑k

i=1 λi (ρfi + viρqi) +
∑

j∈J(x) µjρgj +
∑

s∈S+(x) ωsρ
+
hs

−
∑

s∈S−(x) ωsρ
−
hs

≧ 0 .

Then x is a weak Pareto solution of the considered nonsmooth multiobjective fractional programming
problem (MFP).

Proof We now establish this theorem under hypothesis A). Suppose, contrary to the result, that x is not a
weak Pareto optimal solution of the problem (MFP). Then, by Definition 9, there exists x̃ ∈ D such that

φ (x̃) < φ (x) . (8)

Hence, by the definition of φ and v = φ(x) , (8) implies

fi(x̃)− viqi(x̃) < fi(x)− viqi(x), i ∈ I. (9)

By hypothesis a), each function fi (·) − viqi (·) , i ∈ I , is locally Lipschitz (bi,Ψi,Φ, ρi) -univex at x on D .
Thus, by Definition 7, it follows that the inequalities

bi (x̃, x)Ψi (fi(x̃)− viqi(x̃)− (fi(x)− viqi(x))) ≧ Φ(x̃, x, (ξi, ρi)) , i ∈ I, (10)

hold for any ξi ∈ ∂ (fi − viqi) (x) , i ∈ I , respectively. Hence, by bi (x̃, x) > 0 , i ∈ I , and hypothesis a),
inequalities (10) imply, respectively,

Φ(x̃, x, (ξi, ρi)) < 0, i ∈ I. (11)

Multiplying each inequality (11) by the corresponding Lagrange multiplier λi and then adding both sides of
the resulting inequalities, we get that the inequality

k∑
i=1

λiΦ(x̃, x, (ξi, ρi)) < 0 (12)

holds for any ξi ∈ ∂ (fi − viqi) (x) , i ∈ I . By x̃ ∈ D and x ∈ D , it follows that

gj (x̃)− gj(x) ≦ 0, j ∈ J (x) .

By hypothesis b), the above inequalities yield, respectively,

bgj (x̃, x)Ψgj

(
gj (x̃)− gj(x)

)
≦ 0, j ∈ J (x) . (13)

Since each function gj , j ∈ J (x) , is locally Lipschitz
(
bgj ,Ψgj ,Φ, ρgj

)
-univex at x on D , by Definition 7, it

follows that the inequalities

bgj (x̃, x)Ψgj

(
g
j
(x̃)− gj(x)

)
≧ Φ

(
x̃, x,

(
ζj , ρgj

))
, j ∈ J (x) , (14)
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hold for any ζj ∈ ∂gj (x) , j ∈ J (x) , respectively. Combining (13) and (14), we get, respectively,

Φ
(
x̃, x,

(
ζj , ρgj

))
≦ 0, j ∈ J (x) . (15)

Multiplying each inequality (15) by the corresponding Lagrange multiplier µj ≧ 0 , j ∈ J (x) , and then adding
both sides of the resulting inequalities, we get that the inequality

∑
j∈J(x)

µjΦ
(
x̃, x,

(
ζj , ρgj

))
≦ 0 (16)

holds for any ζj ∈ ∂gj (x) , j ∈ J (x) . Using again the feasibility of x̃ and x in the problem (MFP), we have

hs(x̃)− hs(x) = 0, s ∈ S.

By hypotheses c) and d), the above inequalities yield, respectively,

bhs
(x̃, x)Ψhs

(hs(x̃)− hs(x)) ≦ 0, s ∈ S+ (x) , (17)

bhs
(x̃, x)Ψhs

(−hs(x̃) + hs(x)) ≦ 0, s ∈ S− (x) . (18)

Since each function hs , s ∈ S+ (x) , is locally Lipschitz (bhs
,Ψhs

,Φ, ρ+hs
) -univex at x on D and each function

−hs , s ∈ S− (x) , is locally Lipschitz (bhs
,Ψhs

,Φ, ρ−hs
) -univex at x on D , by Definition 7, it follows that the

following inequalities

bhs (x̃, x)Ψhs (hs(x̃)− hs(x)) ≧ Φ
(
x̃, x,

(
ςs, ρ

+
hs

))
, s ∈ S+ (x) , (19)

bhs
(x̃, x)Ψhs

(−hs(x̃) + hs(x)) ≧ Φ
(
x̃, x,

(
−ςs, ρ

−
hs

))
, s ∈ S− (x) (20)

hold for any ςs ∈ ∂hs (x) , s ∈ S+ (x) and −ςs ∈ ∂ (−hs) (x) , s ∈ S− (x) , respectively. Combining (17) and
(18) , (19) and (20) we get, respectively,

Φ
(
x̃, x,

(
ςs, ρ

+
hs

))
≦ 0, s ∈ S+ (x) , (21)

Φ
(
x̃, x,

(
−ςs, ρ

−
hs

))
≦ 0, s ∈ S− (x) . (22)

Multiplying each inequality (21) by the corresponding Lagrange multiplier ωs > 0 , s ∈ S+ (x) , each inequality
(22) by −ωs > 0 , s ∈ S− (x) , and then adding both sides of the resulting inequalities, we get that the
inequalities ∑

s∈S+(x)

ωsΦ
(
x̃, x,

(
ςs, ρ

+
hs

))
≦ 0, (23)

∑
s∈S−(x)

(−ωs)Φ
(
x̃, x,

(
−ςs, ρ

−
hs

))
≦ 0 (24)
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hold for any ςs ∈ ∂hs (x) , s ∈ S+ (x) and −ςs ∈ ∂ (−hs) (x) , s ∈ S− (x) , respectively. Combining (12), (16),
(23), and (24), we have

k∑
i=1

λiΦ(x̃, x, (ξi, ρi)) +
∑

j∈J(x)

µjΦ
(
x̃, x,

(
ζj , ρgj

))
+ (25)

∑
s∈S+(x)

ωsΦ
(
x̃, x,

(
ςs, ρ

+
hs

))
+

∑
s∈S−(x)

(−ωs)Φ
(
x̃, x,

(
−ςs, ρ

−
hs

))
< 0.

Let us denote by

A =

k∑
i=1

λi +

m∑
j=1

µj +

p∑
s=1

ωs, (26)

αi =
λi

A
, i ∈ I, (27)

βj =
µj

A
, j ∈ J , (28)

γ+
s =

ωs

A
, s ∈ S+ (x) , (29)

γ−
s =

−ωs

A
, s ∈ S− (x) . (30)

Then, by the Karush–Kuhn–Tucker necessary optimality condition (4), it follows that α := (α1, ..., αk) ≥ 0 ,
0 ≦ αi ≦ 1 , i ∈ I , and at least one αi > 0 , βj =

(
β1, ..., βm

)
≧ 0 , 0 ≦ βj ≦ 1 , j ∈ J , 0 ≦ γ+

s ≦ 1 , s ∈ S+ (x) ,

0 ≦ γ−
s ≦ 1 , s ∈ S− (x) , A > 0 , and, moreover,

∑k
i=1 αi +

∑m
j=1 βj +

∑
s∈S+(x) γ

+
s +

∑
s∈S−(x) γ

−
s = 1 . Using

(26)–(30) in (25), we get
k∑

i=1

αiΦ(x̃, x, (ξi, ρfi)) +
∑

j∈J(x)

βjΦ
(
x̃, x,

(
ζj , ρgj

))
+ (31)

∑
s∈S+(x)

γ+
s Φ
(
x̃, x,

(
ςs, ρ

+
hs

))
+

∑
s∈S−(x)

γ−
s Φ
(
x̃, x,

(
−ςs, ρ

−
hs

))
< 0.

By Definition 7, it follows that Φ(x̃, x, ·) is a convex function on Rn+1 . Thus, by the definition of convexity,
(31) yields

Φ

x̃, x,

 k∑
i=1

αiξi +
∑

j∈J(x)

βjζj +
∑

s∈S+(x)

γ+
s ςs +

∑
s∈S−(x)

γ−
s (−ςs) ,

k∑
i=1

αiρi +
∑

j∈J(x)

βjρgj +
∑

s∈S+(x)

γ+
s ρ

+
hs

+
∑

s∈S−(x)

γ−
s ρ

−
hs

 < 0.
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Using (26)–(30) in the above inequality, we get

Φ

x̃, x,
1

A

 k∑
i=1

λiξi +
∑

j∈J(x)

µjζj +
∑

s∈S+(x)∪S−(x)

ωsςs , (32)

k∑
i=1

λiρi +
∑

j∈J(x)

µjρgj +
∑

s∈S+(x)

ωsρ
+
hs

−
∑

s∈S−(x)

ωsρ
−
hs

 < 0.

Taking into account the Lagrange multipliers µj = 0 , j /∈ J (x) , ωs = 0 , s /∈ S+ (x)∪S− (x) , (32) implies that
the inequality

Φ

x̃, x,
1

A

 k∑
i=1

λiξi +

m∑
j=1

µjζj +

p∑
s=1

ωsςs ,

k∑
i=1

λiρi +
∑

j∈J(x)

µjρgj +
∑

s∈S+(x)

ωsρ
+
hs

−
∑

s∈S−(x)

ωsρ
−
hs

 < 0

holds for any ξi ∈ ∂ (fi − viqi) (x) , i ∈ I , ζj ∈ ∂gj (x) , j ∈ J , ςs ∈ ∂hs (x) , s ∈ S . Hence, by the Karush–
Kuhn–Tucker necessary optimality condition (2), we have

Φ

x̃, x,
1

A

0 ,
k∑

i=1

λiρi +
∑

j∈J(x)

µjρgj +
∑

s∈S+(x)

ωsρ
+
hs

−
∑

s∈S−(x)

ωsρ
−
hs

 < 0. (33)

By hypothesis d), it follows that
∑k

i=1 λiρi +
∑

j∈J(x) µjρgj +
∑

s∈S+(x) ωsρ
+
hs

−
∑

s∈S−(x) ωsρ
−
hs

≧ 0 . Thus,
by Definition 7, the following inequality

Φ

x̃, x,
1

A

0 ,
k∑

i=1

λiρi +
∑

j∈J(x)

µjρgj +
∑

s∈S+(x)

ωsρ
+
hs

−
∑

s∈S−(x)

ωsρ
−
hs

 ≧ 0

holds, contradicting (33). This means that x is a weak Pareto solution of the problem (MFP) and completes
the proof of this theorem under hypothesis A).

The proof of the theorem under hypothesis B) is similar. Namely, the parametric necessary optimality
conditions (5)–(7) should be used in place of the parametric necessary optimality conditions (2)–(4), which have
been used in the proof of this theorem under hypothesis A). 2

Under stronger hypotheses imposed on the objective functions, the following result is true:

Theorem 15 Let x ∈ D , v = φ(x) and the Karush–Kuhn–Tucker necessary optimality be satisfied at x with
Lagrange multipliers λ ∈ Rk , µ ∈ Rm , ω ∈ Rp . Further, assume that either one of the following two sets of
hypotheses are fulfilled:

A) a) for each i = 1, ..., k , fi (·)−viqi (·) is strictly (bi,Ψi,Φ, ρi)-univex at x on D and a ≦ 0 =⇒ Ψi(a) ≦
0 ;
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b) for each j ∈ J (x) , gj (·) is (bgj ,Ψgj ,Φ, ρgj )-univex at x on D and a ≦ 0 =⇒ Ψgj (a) ≦ 0 ;

c) for each s ∈ S+ (x) , hs (·) is (bhs ,Ψhs ,Φ, ρ
+
hs
)-univex at x on D and (Ψhs(0) = 0 or a ≦ 0

=⇒ Ψhs(a) ≦ 0) ;

d) for each s ∈ S− (x) , −hs (·) is (bhs
,Ψhs

,Φ, ρ−hs
)-univex at x on D and (Ψhs

(0) = 0 or a ≦ 0

=⇒ Ψhs(a) ≦ 0) ;

e)
∑k

i=1 λiρi +
∑

j∈J(x) µjρgj +
∑

s∈S+(x) ωsρ
+
hs

−
∑

s∈S−(x) ωsρ
−
hs

≧ 0 .

B) a) for each i = 1, ..., k , fi (·) is strictly (bi,Ψi,Φ, ρi)-univex at x on D and −qi (·) is strictly
(bi,Ψi,Φ, ρi)-univex at x on D , Ψi is a superlinear function and a ≦ 0 =⇒ Ψi(a) ≦ 0 ;

b) for each j ∈ J (x) , gj (·) is (bgj ,Ψgj ,Φ, ρgj )-univex at x on D and a ≦ 0 =⇒ Ψgj (a) ≦ 0 ;

c) for each s ∈ S+ (x) , hs (·) is (bhs ,Ψhs ,Φ, ρ
+
hs
)-univex at x on D and (Ψhs(0) = 0 or a ≦ 0

=⇒ Ψhs
(a) ≦ 0) ;

d) for each s ∈ S− (x) , −hs (·) is (bhs ,Ψhs ,Φ, ρ
−
hs
)-univex at x on D and (Ψhs(0) = 0 or a ≦ 0

=⇒ Ψhs(a) ≦ 0) ;

e)
∑k

i=1 λi (ρfi + viρqi) +
∑

j∈J(x) µjρgj +
∑

s∈S+(x) ωsρ
+
hs

−
∑

s∈S−(x) ωsρ
−
hs

≧ 0 .

Then x is a Pareto solution of the considered nonsmooth multiobjective fractional programming problem
(MFP).

4. Parametric duality

Now, for the considered nonsmooth fractional multiobjective programming problem (MFP), we consider a vector
dual problem (SD) in the sense of Schaible as follows:

Maximize v = (v1, ..., vk) (34)

subject to 0 ∈
k∑

i=1

λi∂ (fi(y)− viqi(y)) +

m∑
j=1

µj∂gj(y) +

p∑
s=1

ωs∂hs(y) (35)

fi (y)− viqi (y) ≧ 0, i = 1, ..., k, (SD) (36)

µjgj(u) ≧ 0, j = 1, ...,m, (37)

ωshs(y) ≧ 0, s = 1, ..., p, (38)

y ∈ X, λi ≧ 0, i = 1, ..., k,
k∑

i=1

λi = 1, µj ≧ 0, j = 1, ...,m. (39)

Let Γ denote the set of all feasible solutions in the problem (SD), that is, the set of (y, v, λ, µ, ω) verifying
the constraints (35)–(39). Further, we denote by Ω the set Ω = {y ∈ X : (y, v, λ, µ, ω) ∈ Γ} and, for y ∈ Ω ,
J(y) = {j ∈ J : gj(y) = 0} .
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Theorem 16 (Weak duality). Let x and (y, v, λ, µ, ω) be feasible solutions of the problems (MFP) and (SD),
respectively. Further, assume that one of the following two sets of hypotheses is satisfied:

A) a) for each i = 1, ..., k , fi (·)− viqi (·) is (bi,Ψi,Φ, ρi)-univex at y on D∪Ω and a < 0 =⇒ Ψi(a) < 0 ;

b) for each j ∈ J (y) , gj (·) is (bgj ,Ψgj ,Φ, ρgj )-univex at y on D ∪ Ω and a ≦ 0 =⇒ Ψgj (a) ≦ 0 ;

c) for each s ∈ S+ (y) , hs (·) is (bhs
,Ψhs

,Φ, ρ+hs
)-univex at y on D∪Ω , Ψhs

is a positively homogeneous
function and a ≦ 0 =⇒ Ψhs

(a) ≦ 0 ;

d) for each s ∈ S− (y) , −hs (·) is (bhs
,Ψhs

,Φ, ρ−hs
)-univex at y on D ∪ Ω , Ψhs

is a positively
homogeneous function and a ≦ 0 =⇒ Ψhs

(a) ≦ 0 ;

e)
∑k

i=1 λiρi +
∑

j∈J(y) µjρgj +
∑

s∈S+(y) ωsρ
+
hs

−
∑

s∈S−(y) ωsρ
−
hs

≧ 0 .

B) a) for each i = 1, ..., k , fi (·) is (bi,Ψi,Φ, ρfi)-univex at y on D ∪ Ω and −qi (·) are (bi,Ψi,Φ, ρqi)-
univex at y on D ∪ Ω , Ψi is a superlinear function and a < 0 =⇒ Ψi(a) < 0 ;

b) for each j ∈ J (y) , gj (·) is (bgj ,Ψgj ,Φ, ρgj )-univex at y on D ∪ Ω and a ≦ 0 =⇒ Ψgj (a) ≦ 0 ;

c) for each s ∈ S+ (y) , hs (·) is (bhs ,Ψhs ,Φ, ρ
+
hs
)-univex at y on D∪Ω , Ψhs is a positively homogeneous

function and a ≦ 0 =⇒ Ψhs(a) ≦ 0 ;

d) for each s ∈ S− (y) , −hs (·) is (bhs
,Ψhs

,Φ, ρ−hs
)-univex at y on D ∪ Ω , Ψhs

is a positively
homogeneous function and a ≦ 0 =⇒ Ψhs

(a) ≦ 0 ;

e)
∑k

i=1 λi (ρfi + viρqi) +
∑

j∈J(y) µjρgj +
∑

s∈S+(y) ωsρ
+
hs

−
∑

s∈S−(y) ωsρ
−
hs

≧ 0 .

Then
φ (x) ≮ v.

Proof We prove this theorem under hypothesis A).
By means of contradiction, suppose that there exist x ∈ D and (y, v, λ, µ, ω) ∈ Γ such that

φ (x) < v. (40)

Thus, by the definition of the function φ , (40) implies

fi(x)− viqi(x) < 0, i = 1, ..., k.

Then the constraint (36) gives

fi(x)− viqi(x) < fi (y)− viqi (y) , i = 1, ..., k. (41)

By hypothesis a), (41) yields

bi (x, y)Ψi (fi(x)− viqi(x)− (fi (y)− viqi (y))) < 0, i = 1, ..., k. (42)

Hence, by Definition 7, inequalities (42) imply that the following inequalities

Φ(x, y, (ξi, ρi)) < 0, i = 1, ..., k (43)
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hold for each ξi ∈ ∂ (fi (y)− viqi (y)) , i = 1, ..., k . Since λi ≧ 0 ,
∑k

i=1 λi = 1 , inequalities (43) imply

k∑
i=1

λiΦ(x, y, (ξi, ρi)) < 0. (44)

By x ∈ D and (y, v, λ, µ, ω) ∈ Γ , we have that gj(x) ≦ gj (u) , j ∈ J (y) . Using hypothesis b), by (44) and
Definition 7, we have

bgj (x, y)Ψgj (gj(x)− gj (y)) ≦ 0, j ∈ J (y) . (45)

Using Definition 7 again, by (45), we obtain that the inequalities

Φ
(
x, y,

(
ζj , ρgj

))
≤ 0, j ∈ J (y)

hold for each ζj ∈ ∂gj (y) , j ∈ J (y) . Since µj ≧ 0 , j ∈ J , the above inequalities yield

∑
j∈J(y)

µjΦ
(
x, y,

(
ζj , ρgj

))
≦ 0. (46)

Since, by hypotheses c) and d), each function hs , s ∈ S+ (y) , is locally Lipschitz (bhs ,Ψhs ,Φ, ρ
+
hs
) -univex at y

on D ∪ Ω and each function −hs , s ∈ S− (y) , is locally Lipschitz (bhs ,Ψhs ,Φ, ρ
−
hs
) -univex at y on D ∪ Ω , by

Definition 7, the following inequalities

bhs
(x, y)Ψhs

(hs(x)− hs(y)) ≧ Φ
(
x, y,

(
ςs, ρ

+
hs

))
, s ∈ S+ (y) , (47)

bhs
(x, y)Ψhs

(−hs(x) + hs(y)) ≧ Φ
(
x, y,

(
−ςs, ρ

−
hs

))
, s ∈ S− (y) (48)

hold for any ςs ∈ ∂hs (y) , s ∈ S+ (y) and −ςs ∈ ∂ (−hs) (y) , s ∈ S− (y) , respectively. Multiplying each
inequality (47) by the corresponding Lagrange multiplier ωs > 0 , s ∈ S+ (y) , and each inequality (48) by
−ωs > 0 , s ∈ S− (y) , respectively, we obtain

bhs
(x, y)ωsΨhs

(hs(x)− hs(y)) ≧ ωsΦ
(
x, y,

(
ςs, ρ

+
hs

))
, s ∈ S+ (y) , (49)

−bhs (x, y)ωsΨhs (−hs(x) + hs(y)) ≧ −ωsΦ
(
x, y,

(
−ςs, ρ

−
hs

))
, s ∈ S− (y) (50)

Since each Ψhs
, s ∈ S+ (y)∪S− (y) is a positively homogeneous function (see Definition 6 ii)), inequalities (49)

and (50) yield, respectively,

bhs
(x, y)Ψhs

(ωshs(x)− ωshs(y)) ≧ ωsΦ
(
x, y,

(
ςs, ρ

+
hs

))
, s ∈ S+ (y) , (51)

bhs
(x, y)ωsΨhs

(ωshs(x)− ωshs(y)) ≧ −ωsΦ
(
x, y,

(
−ςs, ρ

−
hs

))
, s ∈ S− (y) . (52)

By x ∈ D and (y, v, λ, µ, ω) ∈ Ω , we have

ωshs(x)− ωshs(y) ≦ 0, s ∈ S. (53)
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By hypotheses c) and d), (53) gives

bhs (x, y)Ψhs (ωshs(x)− ωshs(y)) ≦ 0, s ∈ S. (54)

Combining (51), (52), and (54) we get, respectively,

ωsΦ
(
x, y,

(
ςs, ρ

+
hs

))
≦ 0, s ∈ S+ (y) , (55)

−ωsΦ
(
x, y,

(
−ςs, ρ

−
hs

))
≦ 0, s ∈ S− (y) . (56)

Thus, (55) and (56) yield that the inequalities∑
s∈S+(y)

ωsΦ
(
x, y,

(
ςs, ρ

+
hs

))
≦ 0, (57)

∑
s∈S−(y)

(−ωs)Φ
(
x, y,

(
−ςs, ρ

−
hs

))
≦ 0 (58)

hold for any ςs ∈ ∂hs (y) , s ∈ S+ (y) and −ςs ∈ ∂ (−hs) (y) , s ∈ S− (y) , respectively. Combining (44), (46),
(57), and (58), we get

k∑
i=1

λiΦ(x, y, (ξi, ρi)) +
∑

j∈J(y)

µjΦ
(
x, y,

(
ζj , ρgj

))
+ (59)

∑
s∈S+(y)

ωsΦ
(
x, y,

(
ςs, ρ

+
hs

))
+

∑
s∈S−(y)

(−ωs)Φ
(
x, y,

(
−ςs, ρ

−
hs

))
< 0.

Let us denote by

A =

k∑
i=1

λi +

m∑
j=1

µj +

p∑
s=1

ωs, (60)

αi =
λi

A
, i ∈ I, (61)

βj =
µj

A
, j ∈ J , (62)

γ+
s =

ωs

A
, s ∈ S+ (y) , (63)

γ−
s =

−ωs

A
, s ∈ S− (y) . (64)

Then, by x ∈ D and (y, v, λ, µ, ω) ∈ Γ , we have that α := (α1, ..., αk) ≥ 0 , 0 ≦ αi ≦ 1 , i ∈ I , but at least one
αi > 0 , βj = (β1, ..., βm) ≧ 0 , 0 ≦ βj ≦ 1 , j ∈ J , 0 ≦ γ+

s ≦ 1 , s ∈ S+ (y) , 0 ≦ γ−
s ≦ 1 , s ∈ S− (y) , A > 0 ,

and, moreover,
∑k

i=1 αi +
∑m

j=1 βj +
∑

s∈S+(y) γ
+
s +

∑
s∈S−(y) γ

−
s = 1 . Using (60)–(64) in (59), we get

k∑
i=1

αiΦ(x, y, (ξi, ρi)) +
∑

j∈J(y)

βjΦ
(
x, y,

(
ζj , ρgj

))
+
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∑
s∈S+(y)

γ+
s Φ

(
x, y,

(
ςs, ρ

+
hs

))
+

∑
s∈S−(y)

γ−
s Φ

(
x, y,

(
−ςs, ρ

−
hs

))
< 0.

By Definition 7, we have that Φ(x, y, ·) is a convex function on Rn+1 . Thus, by the definition of convexity, the
above inequality gives

Φ

x, y,

 k∑
i=1

αiξi +
∑

j∈J(y)

βjζj +
∑

s∈S+(y)

γ+
s ςs +

∑
s∈S−(y)

γ−
s (−ςs) , (65)

k∑
i=1

αiρi +
∑

j∈J(y)

βjρgj +
∑

s∈S+(y)

γ+
s ρ+hs

+
∑

s∈S−(y)

γ−
s ρ−hs

 < 0.

Using (60)–(64) in (65), we obtain

Φ

x, y,
1

A

 k∑
i=1

λiξi +
∑

j∈J(y)

µjζj +
∑

s∈S+(y)∪S−(y)

ωsςs , (66)

k∑
i=1

λiρi +
∑

j∈J(y)

µjρgj +
∑

s∈S+(y)

ωsρ
+
hs

−
∑

s∈S−(y)

ωsρ
−
hs

 < 0.

If we take the Lagrange multipliers µj = 0 , j /∈ J (y) , ωs = 0 , s /∈ S+ (y) ∪ S− (y) in (66), then we have that
the following inequality

Φ

x, y,
1

A

 k∑
i=1

λiξi +

m∑
j=1

µjζj +

p∑
s=1

ωsςs ,

k∑
i=1

λiρi +
∑

j∈J(y)

µjρgj +
∑

s∈S+(y)

ωsρ
+
hs

−
∑

s∈S−(y)

ωsρ
−
hs

 < 0

holds for any ξi ∈ ∂ (fi − viqi) (y) , i ∈ I , ζj ∈ ∂gj (y) , j ∈ J , ςs ∈ ∂hs (y) , s ∈ S . Hence, by the first
constraint in the problem (SD), we have

Φ

x, y,
1

A

0,
k∑

i=1

λiρi +
∑

j∈J(y)

µjρgj +
∑

s∈S+(y)

ωsρ
+
hs

−
∑

s∈S−(y)

ωsρ
−
hs

 < 0. (67)

By hypothesis e), we have that
∑k

i=1 λiρfi +
∑

j∈J(y) µjρgj +
∑

s∈S+(y) ωsρ
+
hs

−
∑

s∈S−(y) ωsρ
−
hs

≧ 0 . Thus, by
Definition 7, the following inequality

Φ

x, y,
1

A

0,

k∑
i=1

λiρi +
∑

j∈J(y)

µjρgj +
∑

s∈S+(y)

ωsρ
+
hs

−
∑

s∈S−(y)

ωsρ
−
hs

 ≧ 0

holds, contradicting (67). Thus, the proof of this theorem under hypothesis A) is completed.
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Proof of the theorem under hypothesis B) is similar to that under hypothesis A) and, therefore, it has
been omitted from the paper. 2

Under slightly stronger (b,Ψ,Φ, ρ) -univexity assumptions imposed on the objective function, the following
stronger result is true:

Theorem 17 (Weak duality). Let x and (y, v, λ, µ, ω) be feasible solutions for the problems (MFP) and (SD),
respectively. Further, assume that one of the following two sets of hypotheses is satisfied:

A) a) for each i = 1, ..., k , fi (·) − viqi (·) is strictly (bi,Ψi,Φ, ρi)-univex at y on D ∪ Ω and a ≦ 0 =⇒
Ψi(a) ≦ 0 ;

b) for each j ∈ J (y) , gj (·) is (bgj ,Ψgj ,Φ, ρgj )-univex at y on D ∪ Ω and a ≦ 0 =⇒ Ψgj (a) ≦ 0 ;

c) for each s ∈ S+ (y) , hs (·) is (bhs
,Ψhs

,Φ, ρ+hs
)-univex at y on D∪Ω , Ψhs

is a positively homogeneous
function and a ≦ 0 =⇒ Ψhs(a) ≦ 0 ;

d) for each s ∈ S− (y) , −hs (·) is (bhs
,Ψhs

,Φ, ρ−hs
)-univex at y on D ∪ Ω , Ψhs

is a positively
homogeneous function and a ≦ 0 =⇒ Ψhs

(a) ≦ 0 ;

e)
∑k

i=1 λiρi +
∑

j∈J(y) µjρgj +
∑

s∈S+(y) ωsρ
+
hs

−
∑

s∈S−(y) ωsρ
−
hs

≧ 0 .

B) a) for each i = 1, ..., k , fi (·) is strictly (bi,Ψi,Φ, ρfi)-univex at y on D ∪ Ω and −qi (·) is strictly
(bi,Ψi,Φ, ρqi)-univex at y on D ∪ Ω , Ψi is a superlinear function and a ≦ 0 =⇒ Ψi(a) ≦ 0 ;

b) for each j ∈ J (y) , gj (·) is (bgj ,Ψgj ,Φ, ρgj )-univex at y on D ∪ Ω and a ≦ 0 =⇒ Ψgj (a) ≦ 0 ;

c) for each s ∈ S+ (y) , hs (·) is (bhs
,Ψhs

,Φ, ρ+hs
)-univex at y on D∪Ω , Ψhs

is a positively homogeneous
function and a ≦ 0 =⇒ Ψhs

(a) ≦ 0 ;

d) for each s ∈ S− (y) , −hs (·) is (bhs
,Ψhs

,Φ, ρ−hs
)-univex at y on D ∪ Ω , Ψhs

is a positively
homogeneous function and a ≦ 0 =⇒ Ψhs

(a) ≦ 0 ;

e)
∑k

i=1 λi (ρfi + viρqi) +
∑

j∈J(y) µjρgj +
∑

s∈S+(y) ωsρ
+
hs

−
∑

s∈S−(y) ωsρ
−
hs

≧ 0 .

Then
φ (x) ≰ v.

Theorem 18 (Strong duality). Let x be a weak Pareto solution (Pareto solution) of the considered multiobjec-
tive fractional programming problem (MFP) and the generalized Slater constraint qualification be satisfied at x .
Then there exist Lagrange multipliers λ ∈ Rk , µ ∈ Rm, ω ∈ Rp and, moreover, ν ∈ Rk such that

(
x, v, λ, µ, ω

)
is feasible solution in (SD). If also all hypotheses of Theorem 16 (Theorem 17) hold, then

(
x, v, λ, µ, ω

)
is a

weakly efficient solution (efficient solution) of a maximum type for the problem (SD) and the corresponding
optimal values of (MFP) and (SD) are the same.

Proof By assumption, x ∈ D is a (weak) Pareto solution of the problem (MFP) with v = φ (x) and the
generalized Slater constraint qualification is satisfied at x . Hence, by Theorem 12, there exist λ ∈ Rk , µ ∈ Rm ,
and ω ∈ Rp such that

(
x, v, λ, µ, ω

)
is feasible in the problem (SD). Since

v = φ (x) ,
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using the weak duality theorem (Theorem 16 or Theorem 17), we conclude that
(
x, v, λ, µ, ω

)
is a weakly efficient

solution (efficient solution) of a maximum type for the problem (SD). Hence, the corresponding optimal values
in problems (MFP) and (SD) are the same. This completes the proof of this theorem. 2

Theorem 19 (Converse Duality). Let
(
x, v, λ, µ, ω

)
be a weakly efficient solution (efficient solution) of a

maximum type for the Schaible dual problem (SD) such that x ∈ D . Further, assume that one of the following
two sets of hypotheses is satisfied:

A) a) for each i = 1, ..., k , fi (·) − viqi (·) is (strictly) (bi,Ψi,Φ, ρi)-univex at x on D ∪ Ω , Ψi is a
superlinear function and a < 0 =⇒ Ψi(a) < 0

(
a ≦ 0 =⇒ Ψhj

(a) ≦ 0
)
;

b) for each j ∈ J (x) , gj (·) is (bgj ,Ψgj ,Φ, ρgj )-univex at x on D ∪ Ω and a ≦ 0 =⇒ Ψgj (a) ≦ 0 ;

c) for each s ∈ S+ (x) , hs (·) is (bhs
,Ψhs

,Φ, ρ+hs
)-univex at x on D∪Ω , Ψhs

is a positively homogeneous
function and a ≦ 0 =⇒ Ψhs(a) ≦ 0 ;

d) for each s ∈ S− (x) , −hs (·) is (bhs
,Ψhs

,Φ, ρ−hs
)-univex at x on D ∪ Ω , Ψhs

is a positively
homogeneous function and a ≦ 0 =⇒ Ψhs(a) ≦ 0 ;

e)
∑k

i=1 λiρi +
∑

j∈J(x) µjρgj +
∑

s∈S+(x) ωsρ
+
hs

−
∑

s∈S−(x) ωsρ
−
hs

≧ 0 .

B) a) for each i = 1, ..., k , fi (·) is (strictly) (bi,Ψi,Φ, ρfi)-univex at x on D∪Ω and −qi (·) is (strictly)
(bi,Ψi,Φ, ρqi)-univex at x on D ∪ Ω , Ψi is a superlinear function and a < 0 =⇒ Ψi(a) < 0(
a ≦ 0 =⇒ Ψhj (a) ≦ 0

)
;

b) for each j ∈ J (x) , gj (·) is (bgj ,Ψgj ,Φ, ρgj )-univex at x on D ∪ Ω and a ≦ 0 =⇒ Ψgj (a) ≦ 0 ;

c) for each s ∈ S+ (x) , hs (·) is (bhs
,Ψhs

,Φ, ρ+hs
)-univex at x on D∪Ω , Ψhs

is a positively homogeneous
function and a ≦ 0 =⇒ Ψhs

(a) ≦ 0 ;

d) for each s ∈ S− (x) , −hs (·) is (bhs
,Ψhs

,Φ, ρ−hs
)-univex at x on D ∪ Ω , Ψhs

is a positively
homogeneous function and a ≦ 0 =⇒ Ψhs

(a) ≦ 0 ;

e)
∑k

i=1 λi (ρfi + viρqi) +
∑

j∈J(x) µjρgj +
∑

s∈S+(x) ωsρ
+
hs

−
∑

s∈S−(x) ωsρ
−
hs

≧ 0 .

Then x is a weak Pareto solution (Pareto solution) of the considered nonsmooth multiobjective fractional
programming problem (MFP).

Proof Proof of this theorem follows directly from weak duality (Theorem 16). 2

Theorem 20 (Strict Converse Duality). Let x be a weak Pareto solution of the considered nonsmooth
multiobjective fractional programming problem (MFP),

(
y, v, λ, µ, ω

)
be a weakly efficient solution of a maximum

type for the Schaible dual problem (SD) and the generalized Slater constraint qualification be satisfied at x .
Assume, furthermore, that one of the sets of hypotheses is fulfilled:

A) a) for each i = 1, ..., k , fi (·)−viqi (·) is strictly (bi,Ψi,Φ, ρi)-univex at y on D∪Ω , a ≦ 0 =⇒ Ψi(a) ≦
0 ;
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b) for each j ∈ J (y) , gj (·) is (bgj ,Ψgj ,Φ, ρgj )-univex at y on D ∪ Ω and a ≦ 0 =⇒ Ψgj (a) ≦ 0 ;

c) for each s ∈ S+ (y) , hs (·) is (bhs ,Ψhs ,Φ, ρ
+
hs
)-univex at y on D∪Ω , Ψhs is a positively homogeneous

function and a ≦ 0 =⇒ Ψhj
(a) ≦ 0 ;

d) for each s ∈ S− (y) , −hs (·) is (bhs
,Ψhs

,Φ, ρ−hs
)-univex at y on D ∪ Ω , Ψhs

is a positively
homogeneous function and a ≦ 0 =⇒ Ψhj

(a) ≦ 0 ;

e)
∑k

i=1 λiρfi +
∑

j∈J(y) µjρgj +
∑

s∈S+(y) ωsρ
+
hs

−
∑

s∈S−(y) ωsρ
−
hs

≧ 0 .

B) a) for each i = 1, ..., k , fi (·) and −qi (·) are strictly (bi,Ψi,Φ, ρi)-univex at x on D ∪ Ω , Ψi is a
superlinear function and a ≦ 0 =⇒ Ψi(a) ≦ 0 ;

b) for each j ∈ J (y) , gj (·) is (bgj ,Ψgj ,Φ, ρgj )-univex at y on D ∪ Ω and a ≦ 0 =⇒ Ψgj (a) ≦ 0 ;

c) for each s ∈ S+ (y) , hs (·) is (bhs
,Ψhs

,Φ, ρ+hs
)-univex at y on D∪Ω , Ψhs

is a positively homogeneous
function and a ≦ 0 =⇒ Ψhj

(a) ≦ 0 ;

d) for each s ∈ S− (y) , −hs (·) is (bhs
,Ψhs

,Φ, ρ−hs
)-univex at y on D ∪ Ω , Ψhs

is a positively
homogeneous function and a ≦ 0 =⇒ Ψhj (a) ≦ 0 ;

e)
∑k

i=1 λi (ρfi + viρqi) +
∑

j∈J(y) µjρgj +
∑

s∈S+(y) ωsρ
+
hs

−
∑

s∈S−(y) ωsρ
−
hs

≧ 0 .

Then x = y .

Proof We now prove the theorem under hypothesis A). Suppose that x ̸= y and exhibits a contradiction.
By

(
y, v, λ, µ, ω

)
∈ Γ , it follows that there exist ξi ∈ ∂ (fi − viqi) (y) , i ∈ I , ζj ∈ ∂gj (y) , j ∈ J , ςs ∈ ∂hs (y) ,

s ∈ S such that

0 ∈
k∑

i=1

λiξi +

m∑
j=1

µjζj +

p∑
s=1

ωsςs. (68)

Also by
(
y, v, λ, µ, ω

)
∈ Γ , we have

fi (y)− viqi (y) ≧ 0, i = 1, ..., k. (69)

By the strong duality (Theorem 18), it follows that

v = φ (x) .

This implies that
fi (x)− viqi (x) = 0, i = 1, ..., k. (70)

Combining (69) and (70), we obtain

fi (x)− viqi (x) ≦ fi (y)− viqi (y) , i = 1, ..., k.

By hypothesis a) and bi (x, y) > 0 , i = 1, ..., k , we have

bi (x, y)Ψi(fi (x)− viqi (x)− (fi (y)− viqi (y))) ≦ 0, i = 1, ..., k. (71)

2143



ANTCZAK and VERMA/Turk J Math

Using hypothesis a) again, by Definition 7, the following inequality

k∑
i=1

λiΦ(x, y, (ξi, ρi)) < 0 (72)

holds for any ξi ∈ ∂ (fi (y)− viqi (y)) , i = 1, ..., k . Using x ∈ D ,
(
y, v, λ, µ, ω

)
∈ Γ , bgj (x, y) > 0 , i = 1, ..., k ,

together with hypothesis b), we get that the inequality∑
j∈J(y)

µjΦ
(
x, y,

(
ζj , ρgj

))
≦ 0 (73)

holds for any ζj ∈ ∂gj (y) , j ∈ J (y) . Using hypotheses c) and d), by Definition 7, the inequalities

bhs (x, y)Ψhs (hs(x)− hs(y)) ≧ Φ
(
x, y,

(
ςs, ρ

+
hs

))
, s ∈ S+ (y) , (74)

bhs
(x, y)Ψhs

(−hs(x) + hs(y)) ≧ Φ
(
x, y,

(
−ςs, ρ

−
hs

))
, s ∈ S− (y) (75)

hold for any ςs ∈ ∂hs (y) , s ∈ S+ (y) and −ςs ∈ ∂ (−hs) (y) , s ∈ S− (y) , respectively. Multiplying (74) by
ωs , s ∈ S+ (y) , (75) by −ωs , s ∈ S− (y) and using the assumption that any Ψhs

, s ∈ S+ (y) ∪ S− (y) is a
homogeneous function, we get

bhs
(x, y)Ψhs

(ωshs(x)− ωshs(y)) ≧ ωsΦ
(
x, y,

(
ςs, ρ

+
hs

))
, s ∈ S+ (y) , (76)

bhs
(x, y)Ψhs

(ωshs(x)− ωshs(y)) ≧ ωsΦ
(
x, y,

(
−ςs, ρ

−
hs

))
, s ∈ S− (y) . (77)

By x ∈ D and
(
y, v, λ, µ, ω

)
∈ Γ , we have

ωshs(x)− ωshs(y) ≦ 0, s ∈ S. (78)

By hypotheses c) and d), (78) yields, respectively,

bhs
(x, y)Ψhs

(ωshs(x)− ωshs(y)) ≦ 0, s ∈ S+ (y) ∪ S− (y) . (79)

Combining (76), (77), and (79) and then adding the resulting inequalities, we get that the inequalities∑
s∈S+(y)

ωsΦ
(
x, y,

(
ςs, ρ

+
hs

))
≦ 0, (80)

∑
s∈S−(y)

(−ωs)Φ
(
x, y,

(
−ςs, ρ

−
hs

))
≦ 0 (81)

hold for any ςs ∈ ∂hs (y) , s ∈ S+ (y) and −ςs ∈ ∂ (−hs) (y) , s ∈ S− (y) , respectively. By (72), (73), (80), and
(81), we have that

k∑
i=1

λiΦ(x, y, (ξi, ρi)) +
∑

j∈J(y)

µjΦ
(
x, y,

(
ζj , ρgj

))
+
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∑
s∈S+(y)

ωsΦ
(
x, y,

(
ςs, ρ

+
hs

))
+

∑
s∈S−(y)

(−ωs)Φ
(
x, y,

(
−ςs, ρ

−
hs

))
< 0.

The rest of the proof of this theorem is similar to the proof of Theorem 16. The proof of this theorem under
hypothesis B) is similar and, therefore, it has been omitted from the paper. 2

5. Conclusion
In this paper, the class of nonconvex nondifferentiable multiobjective fractional programming problems in which
the involved functions are locally Lipschitz (b,Ψ,Φ, ρ) -univex has been considered. For such nonsmooth vector
optimization problems, the parametric optimality conditions and parametric duality results in the sense of
Schaible have been established under the introduced notion of nondifferentiable (b,Ψ,Φ, ρ) -univexity. Since the
concept of nondifferentiable (b,Ψ,Φ, ρ) -univexity contains several generalized convexities defined earlier in the
literature (see Remark 8), the optimality and duality results established in the present paper generalize and
extend similar results for multiobjective fractional programming problems presented in earlier works. It would
be interesting to generalize the optimality conditions and duality results established in the present paper for
nonconvex multiobjective fractional programming problems to other classes of fractional programming problems.
We shall investigate this question in subsequent papers.
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