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We present a new approach for field-scale nonlinear management of

, groundwater remediation. First, an artificial neural network (ANN) is trained to
predict the ,outcome of a groundwater transport simulation. Then a genetic algorithm

(GA) searches through possible pumping realizations, evaluating the fitness of each

with a prediction from the trained ANN. Traditional approaches rely on optimization

algorithms requiring sequential calls of the groundwater transport simulation 1-6. Our
approach processes the transport simulations in parallel and "recycles" the knowledge

base of these simulations7, 8, greatly reducing the computational and real-time burden,

often the primary impediment to developing field-scale management models. We

present results from a Superfund site suggesting that such management techniques can

reduce cleanup costs by over a hundred million dollars.

Consider a hypothetical remediation example parallelism 15,16, with the GA, developed in
drawn from field data of volatile organic analogy to natural selection and genetics 17,18
compounds (VOCs) at a well-characterized (Figure 2). An ANN is not programmed; rather,
S_,r_erfund site (Figure la). A pump-and-treat it learns from training examples developed by the
remediation is optimized using a 2-D numerical GFTC. Once trained, the ANN predicts the
groundwater flow and transport code (GFTC) to success of new pumping realizations generated
forecast the effectiveness of different pumping by the GA. The GA incorporates the predicted
scenarios. The 28 potential well locations were success into the search procedures, which create
chosen by trial and error as one pumping scenario new generations of pumping realizations. This
that could contain the plume within its current design strategy may also be useful with other
boundaries. Let us now ask the management optimization problems requiring a
questions: 1) what subset of these 28 locations computationally intensive model for objective
would minimize remediation costs and still evaluation.

contain the plume, and 2) what do we give up in A set of 325 pumping realizations was run on
terms of total contaminant mass extracted over the GFTC to develop training patterns to meet
the period of remediation? three objectives: 1) contain the plume within a

• The trained ANN can evaluate 2,000 pumping fence of downgradient monitor wells (regulatory
realizations per second, while the GFTC assesses constraint), 2) maximize the total mass of solute
only one in 2 hours on a SUN SPARCstation II. In extracted over the 50 years of remediation (mass),

" this 28-well example, trained ANNs evaluated and 3) minimize cost (cost). The cost function
over 4 million pumping realizations. The top included calculations of facilities, piping,
three realizations (Figure lb) cost between $37 operating, and water treatment costs. The costs of
and $42 million over 50 years of remediation, as pumping and injection wells were differentiated.
compared with $155 million for using ali 28 wells. The cost of treated groundwater pumped to the

In a somewhat different approach from the surface was averaged between the different
majority of ANN optimization applications 13,14, treatment protocols to be about 0.25 cent per liter.
our approach combines A NN technology, An ANN was trained for each of the three
inspired by neurobiological theories of massive objectives 0f remediation. The supervised learning
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FiEure 1: Volatile organic compound (VOC) distribution and GA-ANN optimization results.
(a) VOC concentration contours are shown for the approximately square-mile Lawrence Livermore

• National Laboratory (LLNL) site and hydraulically downgradient vicinity near Livermore, Calif. 9-11.
Also shown are 28 potential remediation well locations with 23 pumping (triangles), 5 injection
(squares), and 12 monitoring (crosses) locations. The maximum well capacities were determi_';ed from

' lithology and long-term pumping tests in existing wells that were close to the well locations. Several
locations had existing wells that had already been tested. The 2-D hybrid finite-element/finite-
difference transport code, SUTRA 12, was used to solve the governing equations for confined areal
groundwater flow and areal solute transport. In brief, the flow boundaries are no-flow fault zones to
the northeast and southeast, with flux boundaries directly east and more distantly downgradient to the
west. Several influent and effluent streams, several municipal and irrigation wells, and constant
annual recharge from rainfall are included. Four hydraulic conductivity values represent four main
hydrogeologlc units, with a typical value being 3 m/day. A steady flow model was originally calibrated
to the pieziometric surface, which has had fairly constant topology over time. The time over which the
remediation occurs is 50 years. (b) The most optimal pumping scenarios found after evaluation of over
4 million scenarios. Contours show VOC concentrations remaining after 50 years of remediation.
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algorithm of backpropagation was used to train site is paired with information on the second
the ANN. The conjugate gradient method 19 and string after the site and vice versa. The somewhat

weight-elimination procedures 20 were used to controversial mutation operator is encouraged on
speed convergence and improve performance, the theory that reproduction and crossover may
respectively. The highest performing ANNs' lose some valuable genetic material. In this
ability to predict unseen patterns was 0.99 or better simple GA, mutation was defined as a random
for ali objectives (Table 1). alteration of a variable in a string and was used

Once trained, the three ANNs were linked to sparingly. The use of a GA had several

a GA. A population of 239 pumping realizations advantages. First, the search began from a
was cycled through 20,000 generations of the GA population of parameter realizations, not from a

using the three basic operators: 1) reproduction, single realization. Second, GAs use probabilistic
2) crossover., and 3) mutation (Table 2). The rules, not deterministic rules, to perturb the

reproduction operator ranks parameter strings realizations. Third, the objective function
according to their objective function values. It is information is used directly, rather than

' called the fitness function in analogy to the derivatives or other secondary descriptors.
Darwinian survival of the fittest. Parameter Our results show that having all 28 wells on

strings are analogous to chromosomes or string for 50 years will prevent plume migration to the
creatures, with the objective function as the west of LLNL and reduce on-site contamination
arbiter of survival 18. The crossover operator at a cost of $155 million. However, the three most
determines how the string creatures pair for optimal scenarios of the 4 million examined

mating and where they crossover. The crossover would also contain the plume with little
site between two mated strings becomes the point difference in mass removal (Figure lb).
at which information on the first string before the



Table 1. ANN training and testing performance. Architecture represents the structure of the problem
as presented to the ANN. An architecture of 29-7-1 allows the network to caFture more nonlinearity, if
any is present in the input data, than one of 29-2-1. When compared to the predictive accuracy of
standard linear regression equations, the network performed equivalently to the regression technique
on the most linear objective (#3) and outperformed it on the two less linear objectives (#1 and #2).
Number of Function Evaluations indicates how long the network is allowed to refine its weights to
reflect idiosyncracies in the training input. Note the possibility of overfitting, i.e., training memorizes
noise in the training set, resulting in lower testing performance. Training Accuracy is the correlation
between the ANN's and the GFTC's prediction of each objective function for the 275 patterns used to

• train the ANNs. Generalization Accuracy is the same correlation for 50 test pattern_ new to the ANNs.

Number of Function Training Generalization
Architecture Evaluations Accuracy Accuracy

ANN #1: Regulatory Constraint
29-7-1 1000 0.969 0.999 a
29-7-1 5000 0.989 0.982
29-2-1 1000 0.905 0.859
29-2-1 5000 0.972 0.902

ANN #2: Total Mass _.. Solute Extracted

29-7-1 10(30 0.935 0.995 a
29-7-1 5000 0.960 0.856
29-2-1 1000 0.861 0.939
29-2-1 5000 0.932 0.725

ANN #3: Cost of Remediation

29-7-1 1000 0.997 0.999
29-7-1 5000 0.999 0.997
29-2-1 1000 0.999 0.999
29-2-1 5000 0.999 0.999 a

alndicates which ANN was linked to the GA.

Our earlier work on a 20-weil, single-objective training of the ANNs took approximately five
remediation example showed that the GA-ANN minutes, and the GA-ANN ran through four
approach could solve the problem for an million scenarios in three days. Even budgeting
investment in GFTC calls comparable to one run for many training and testing experiments, the
of a traditional steepest-descent search7, 8. The GA-ANN computational burden for this problem
advantages were that, in the GA-ANN approach, would be on the order of two weeks.
the GFTC calls could be run in parallel on Although GA-ANN management methodol-

different machines, and results could be reused ogy is in its infancy, it can be a robust and flexible
for different management formulations. For the tool to aid decision-making in groundwater re-
28-well multiple-objective remediation, it is mediation. The advantages of our approach are

impractical to duplicate this comparison with particularly promising for field-scale applications.
traditional methods. Approximately 3(K)M00 This approach begins and ends with the classical
sequential calls to the GFTC, totaiing 160(O1800 basis of groundwater transport prediction, the
CPU hours, would be needed for one run. Even if GFTC. However, harnessing of the abilities of the
ali convergence parameters had been perfectly GA and ANN allows several million pumping
set, several such runs would be required to avoid patterns to be examined with the same computa-.
entrapment in local minima, thus resulting in tional burden that traditional steepest-descent
several months of computational time. In optimization algorithms would use to evaluate
contrast, the GA-ANN approach, with access to several hundred pumping patterns. This renders
10 machines, could complete the training-testing heretofore intractable field-scale applications
GFTC investment in three days. The actual practical.
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Table 2. GA population generation. The table shows the transfer of information from one

" generation to the next according to the GA, with a mating example for pattern #1. The fitness
parameter for the GA generations was a linear combination of three objectives: 1) whether

the plume had been constrained behind selected monitor wells (value of I or 0), 2) the
normalized and scaled (0.1 to 0.9) mass of solute that was removed over the 50 years of

remediation, and 3) one r xinus the normalized and scaled (again 0.1 to 0.9) value of the cost of

remediation over the 50 years. A mating example between geilerations 2 and 3 is shown for

the first pattern of the population of 239. Pattern #1 made it into the mating pool apd
• randomly drew pattern #110 as a mate to crossover _.ter the fifth digit site, resulting in two

new patte._ns in generaiaon 3.

Current Generation

Pumping Prob. of Regulatory Measure
No. Pattern of pumping (generation = 2) param, selection constraint Mass Cost offitne_

#I 1 1 1 1 II 1 1 I001 I000011 1 1 1 I II 10b 0.29 0.024 1 0.296 0.646 1.943

Total fitness of population 81.75

Mating Pool After Reproduction

Random mate Random crossover site_

#1 1111111110011000011111111100 110 5

Crossover Operator

Parentl #1 11111
11110011000011111111100

Parent 2 #110 11000
10011111011111111111000

Childl 1111110011111011111111111000

Child2 1100011110011000011111111100

New Generation
|

No. Pat_ of pumping (generation = 3) Pumping parameter

. #I IIIIII0011111011111111111000 0.21

#2 II00011110011000011111111100 0.39
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