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Abstract 
NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation 

utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); 

eigenvalue adjoint; external fixed-source steady-state; or external fixed-source or eigenvalue 

initiated transient problems. The code name NESTLE originates from the multi-problem solution 

capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The 

eigenvalue problem allows criticality searches to be completed, and the external fixed-source 

steady-state problem can search to achieve a specified power level. Transient problems model 

delayed neutrons via precursor groups. Several core properties can be input as time dependent. 

Two or four energy groups can be utilized, with all energy groups being thermal groups 

(i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. 

Three, two and one dimensional models can be utilized with various symmetries. The non-linear 

iterative strategy associated with the NEM method is employed. An advantage of the non-linear 

iterative strategy is that NESTLE can be utilized to solve either the nodal or Finite Difference 

Method representation of the few-group neutron diffusion equation. 

Thermal-hyraulic feedback is modelled employing a Homogenous Equilibrium Mixture 

(HEM) model, allowing two-phase flow to be treated. However, only the continuity and energy 

equations for the coolant are solved, implying a constant pressure treatment. The slip is assumed 

to be one in the HEM model. A lumped parameter model is employed to determine the fuel 

temperature. Decay heat groups are used to model decay heat. 

The thermal conditions predicted by the thermal-hyraulic model of the core are used to 

correct cross-sections for temperature and density effects. Cross-sections are parameterized by 

color, control rod state (Le. in or out) and burnup, allowing fuel depletion to be modelled. Either a 

macroscopic or microscopic model may be employed. All cross-sections are expressed in terms of 

a Taylor’s series expansion in coolant density, coolant temperature, effective fuel temperature, 
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and soluble poison number density. 

Memory management is accomplished utilizing a container array to facilitate efficient 

memory allocation. In this manner various problems with different dimensionality can be 

executed without code re-compilation. To facilitate the understanding of coding, procedures are 

used extensively and an electronic dictionary program, NESTLE.DICT has been created to define 

the meaning of code variables. 

... 
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I Introduction 

NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation 

utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); 

eigenvalue adjoint; external fixed-source steady-state; or external fixed-source or eigenvalue 

initiated transient problems. The code name NESTLE originates from the multi-problem solution 

capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The 

eigenvalue problem allows criticality searches to be completed on one of the following variables: 

soluble boron, coolant inlet temperature, control rod position or core power level. The external 

fixed-source steady-state problem can also search on these same parameters, now in regard to 

achieving a specified power level. 

Two or four energy groups can be utilized, with all groups being thermal groups (Le. 

upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, 

two and one dimensional models can be utilized. Various core symmetry options are available, 

including quarter, half and full core for Cartesian geometry and one-sixth, one-third and full core 

for Hexagonal geometry. Zero flux, non-reentrant current, reflective and cyclic boundary 

conditions are treated 

The few-group neutron diffusion equation is spatially discretized utilizing the Nodal 

Expansion Method (NEM). Quartic or quadratic polynomial expansions for the transverse 

integrated fluxes are employed for Cartesian or Hexagonal geometries, respectively. Transverse 

leakage terms are represented by a quadratic polynomial or constant for Cartesian or Hexagonal 

geometry, respectively. Discontinuity Factors (DFs) are utilized to correct for homogenization 

errors. Transient problems utilize a user specified number of delayed neutron precursor groups. 

Time dependent inputs include coolant inlet temperature and flow; soluble poison concentration, 

and control banks’ positions. Time discretization is done in a fully implicit manner utilizing a 

first-order difference operator for the diffusion equation. The precursor equations are analytically 
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solved assuming the fission rate behaves linearly over a time-step. 

Independent of problem type, an outer-inner iterative strategy is employed to solve the 

resulting matrix system. Outer iterations can employ Chebyshev acceleration and lhe Fixed 

Source Scaling Technique to accelerate convergence. Inner iterations employ either color line or 

point SOR iteration schemes, dependent upon problem geometry. Values of the energy group 

dependent optimum relaxation parameter and the number of inner iterations per outer iteration to 

achieve a specified relative error reduction are determined a priori. The non-linear iterative 

strategy associated with the NEM method is utilized. This has advantages in regard to reducing 

FLOP count and memory size requirements versus the more conventional linear iterative strategy 

utilized in the surface response formulation. In addition, by electing to not update the coupling 

coefficients in the nonlinear iterative strategy, the Finite Difference Method (FDM) 

representation, utilizing the box scheme, of the few-group neutron diffusion equation results. The 

implication is that NESTLE can be utilized to solve either the nodal or FDM representation of the 

few-group neutron diffusion equation. 

Thermal-hydraulic feedback is modelled employing a Homogenous Equilibrium Mixture 

(HEM) model, allowing two-phase flow to be treated. However, only the continuity and energy 

equations for the coolant are solved, implying a constant pressure treatment. The slip is assumed 

to be one in the HEM model. The fuel temperature is determined utilizing a lumped parameter 

model. The SETS method is used for the temporal treatment to overcome the material Courant 

limit on numerical stability. A conventional staggered mesh formulation is used in spatially 

discretizing the fluid’s equations. Flow is assumed to be parallel to the axial direction within a 

closed channel. A user specified number of decay heat groups are used to model decay heat. 

Direct deposition in the coolant of fission energy is accounted for. Equation of State information 

is provided via polynomials, whose coefficients are provided as input. It should be recognized that 

the thermal-hydraulic model was developed with a pin-cell geometry as its basis. Adoption to 
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other geometries, such as appear in gas-cooled reactors, would likely require some source code 

modifications. 

The thermal conditions predicted by the thermal-hydraulic model of the core are used to 

correct cross-sections for temperature and density effects. Cross-sections are parameterized by 

color, control rod state (ie. in or out) and burnup, implying fuel burnup modelling capabilities 

exist. Either a macroscopic or microscopic fuel depletion model may be employed. A Predictor- 

Corrector formulation is used to solve the depletion equations. With the election of the 

microscopic option, depletion equations for the U234 through U236 and U238 through Pu242 

depletion chains, two lumped fission product groups, and a simple burnable poison are solved and 

used in conjunction with burnup dependent microscopic cross-sections to construct the 

macroscopic cross-sections. The I-Xe and Pm-Sm chains are also modelled, with various options 

to determine their number densities (ie.  equilibrium, transient, peak Sm-no Xe, no Sm nor Xe, or 

frozen). All cross-sections are characterized in terms of a Taylor’s series expansion in coolant 

density, coolant temperature, effective fuel temperature, and soluble poison number density. 

Taylor’s series terms utilized (e.g. linear or quadratic in coolant density) are specified via input. 

Output edits include predicted values of the key core attributes, such as power, flux, 

temperatures, isotopic number densities and burnup spatial distributions, in addition to 

documenting key input options and convergence behavior parameters. The output information is 

biased towards the sort of information a nuclear designer of a power reactor requires. A restart file 

is written, allowing restart for branch cases, re-initiation of core depletion, continuation of 

iterations towards a tighter convergence, or re-initiation of a transient. 

Memory management is accomplished via a container array. Code determined container 

array pointers are used to facilitate problem specific memory allocation (e.g. trading off of spatial 

and energy detail within a fixed total memory size). 
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I1 Theoretical Foundations 

II.1 Nodal Model - Cartesian Geometry 

II.1.a Eigenvalue Problem 
The following section describes the standard NEM formulation for the solution of the 

three-dimensional, Cartesian geometry, multi-group, eigenvalue neutron diffusion equation [ 1,2]. 

The principal characteristics of the polynomial nodal method are its quartic expansions of the 

one-dimensional transverse-integrated flux and quadratic leakage model for the transverse 

leakage. 

Consider the general form of the steady-state multi-group neutron diffusion equation, 

written in standard form and with the group constants (Le. properly weighted cross-sections and 

discontinuity factors) already available from a lattice physics calculation for g = 1,2, ..., (3 

where the dependence of each quantity on the spatial coordinate ? has been suppressed, and, 

- - diffusion coefficient [cm] Dg 

neutron flux [ ~ m - ~ s e c - ~ ]  - - 

- - total macroscopic cross section [cm-l] 

=m - - group-to-group scattering cross section [cm-'] 

xs = fission neutrons yield 

k 

')g 

= 

= 

multiplication factor (ie. critical eigenvalue) 

average number of neutrons created per fission 

= macroscopic fission cross section [ern-'] 

As with most modem nodal methods, we begin by intergrating the multi-group neutron 
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diffusion equation over a material-centered spatial node which has homogenized properties. For 

Cartesian geometry we rewrite Eqn. (1) for the arbitrary spatial node I ,  

where,g E (1, G) , and 

(?) (x, y, z) E 9 = AxAyAz E Volume of node E 

For simplicity, in cases where redundant equations exist in all three directions, the 

illustrating equations will be only given in the x-direction. Using Fick's Law, which in the x- 

direction can be expressed as, 

where, 

j i x  (F) = x-component of the net neutron current 

allows Eqn.(2) to be rewritten as: 
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Integration of Eqn. (4) over the volume of node I generates a local neutron balance equation in 

terms of the face-averaged net currents and the node volume average flux. 

where, assuming node E is centered around the coordinate's origin, the volume integrated 

quantities are defined below: 

A x' A y' A z' 
2 2 2 
- - -  

-1 1 
@g = I I @: (;) dxdydz Node volume average flux 

A x' A y' A z' 
2 2 2 

-- -- -- 

A x' A y' A 2' - - -  
- 2  2 2 

Q: (F) dxdydz Node volume average source -1 1 
Q g = -  rrl I 

A x' A y' A z' 
2 2 2 
- - -  

1 -1 1 -1 -1 
[Lgx = -I ( J g x + - J g x - )  = - - 

A x  A x  
A x' A y' A z' 
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where, 

Ax' zxf = Average x-directed net current on node faces k - 2 

Eqn. (5) is known as the nodal balance equation. Now for the neutron diffusion equation 

written in this form, in order to obtain the spatial neutron flux distribution, one must devise some 

relationship between the node average flux and the face-averaged net (surface) currents. It is the 

equations used to compute the surface currents in Eqn. (5) which distinguish one nodal 

formulation from another. In NEM, the widely used method of transverse-integration is used, 

where the three-dimensional diffusion equation is integrated over the two directions transverse to 

each axis. This generates three one-dimensional equations, one for each direction in Cartesian 

coordinates, of the following form, 

where, 

a jLy (;) dydz I Average y-direction transverse leakage 1 
aY 

L;&C) = -1 j 
A z1 A $  

2 2 
-- -- 

and, 
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A Y' - 
2 

1 
Z i Z ( X )  = - j 

' y l  A,,' 

A z' 
2 
- 

1 2 j' (P) dzdy = Average z-direction transverse leakage aZ gz 
A z' 

In NEM, the one-dimensional averaged flux that appears in Eqn. (6),  is expanded as a 

general polynomial, 

N 

n = l  

where 6' is the node average flux, implying for Eqn. (7) to be true that fn (XI must be chosen 
g 

such that the basis functions satisfy 

A d  
2 
- 

j fn ( x )  c l ~  = o for n = 1, ..., N 
A X I  

2 
-- 

Note that for quartic NEM, the method used in NESTLE, the summation extends to N = 4. The 

first four basis functions in NEM can be expressed as follows [ 13, 

fl f2 f3 f4 - 
X x 2 1  x 3 1  x x 4 3  x 2 1  

(-1; 3(-1 --; (-1 --(-I ;  (-1 -lo'-' +E 
A x' A XI A XI A x1 A X I  A xi  

which can be shown to also satisfy the following, 

Ax' 
fn(+,) = O for n = 3,4 

(9) 

At this point it is appropriate to consider the elementary concept of accounting for the total 

number of equations and that of unknowns. For a three-dimensional Cartesian geometry, the node 
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average and N expansion coefficients in each direction appear per node per energy group, 

implying a total of 3N+1 equations are required. The nodal balance equation, Eqn. (5),  provides 

one equation, where now Eqns. (3) and (7) are used to eliminate face-averaged net currents from 

this equation. Surface current and flux continuity provide 6 more equations per node per energy 

group. So for N=2, there would be an equal number of equations and unknowns without any 

further development. However, for N= 4, two additional unknowns are introduced for each 

direction per node per energy group. This is addressed by using a weighted residual scheme [3] 

applied to Eqn. (6), which in essence provides the additional equations (referred to as the moment 

equations) needed, 

where the two weighting functions for n = 1,2 are chosen to be the same as the basic functions, 

namely on(x) =f,(x), as those used in the one-dimensional flux expansion'. Here, the first and 

second (actually linear combination of zeroth and second) moments of the flux, source, and 

leakage for each group g are defined by, 

The first term in Eqn. (11) is evaluated by using Eqns. (3) and (7) and the definition of the 

expansion coefficients, and completing the integration (Le. inner product) analytically. 

One last point which needs to be addressed before Eqn. (11) can be solved are the 

transverse leakage terms appearing on the right hand side. Their spatial dependency is unknown, 

1. This constitutes a moments weighting scheme; if one uses w,(x) = fn+2(z) for n = 1,2 it is known as Galer- 
kin weighting. Numerical experiments favor moments weighting 
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so their "shape" must be approximated. The most popular approximation in NEM is the quadratic 

transverse leakage approximation. For example, the x-direction spatial dependence of the y- 

direction transverse leakage is approximated by, 

where LL is the average y-directed leakage in node I, and the coefficients pk,, and pkyz can be 

expressed in terms of average y-directed leakages of the two nearest-neighbor nodes along the x- 

direction (i.e. nodes E-1 and Z+1) so as to preserve the node average leakages of these three nodes. 

The quadratic expansion coefficients can be shown to be given by, 

- ' + I  -1 ' = g'(A x') [ ( L g  -Lg) ( A  x ' + 2 A  x ' - ' ) ( A  x ' + A  x'-') + (Z:r-&l) ( A  x ' + 2 A  x'+*) ( A  x ' + A  XI'.')] (13) Pgr1 

1 2 - 1 + 1  - 1  - 1 -  1 
pby2 = g l ( A x )  [ (Lgy  -Lgy) ( A d + A d - ' )  + (Lgy  ( A x ' + A ~ ' + ~ ) ]  

where, 

g' = [ ( A d + A x l f 1 )  ( A d + A x ' - ' )  ( A d - '  + .Ax '+Ax'+ ' ) ] -~  
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II.1.b Non-Linear Iterative Strategy 
The most common manner of solving the matrix system associated with NEM is the 

response-matrix formulation. To minimize computer run time and memory requirements, and to 

facilitate the capability to solve either the NEM or Finite Difference Method (FDM) formulation, 

the non-linear iterative strategy is employed in NESTLE. This technique was developed by Smith 

[4, 5 ,  61 and successfully implemented into the Studsvik QPANDA and SIMULATE code 

packages. The documentation available on this technique is scarce, but it turns out to be rather 

simplistic and almost trivial to implement in a FDM code which utilizes the box-scheme (i.e. 

material-centered). 

The basic idea is applicable to the standard FDM solution algorithm of the multi-group 

diffusion equation. Solving the FDM based equation utilizing an outer-inner iterative strategy, 

every A N ,  outer iterations (where A N, is somewhat arbitrary but can be optimized) the so-called 

“two-node problem” calculation (a spatially-decoupled NEM calculation spanning two adjoining 

nodes) is performed for every interface (for all nodes and in all directions) to provide an improved 

estimate of the net surface current at that particular interface. Subsequently, the NEM estimated 

net surface currents are used to update (i.e. change) the original FDM diffusion coupling 

coefficients. Outer iterations of the FDM based equation are than continued utilizing the updated 

FDM coupling coefficients for A N, outer iterations. The entire process is then repeated. This 

procedure of updating the FDM couplings is a convergent technique which progressively forces 

the FDM equation to yield the higher-order NEM predicted values of the net surface currents 

while satisfying the nodal balance Eqn. ( 5 ) ,  thus yielding the NEM results for the node-average 

flux and fundamental mode eigenvalue. The advantages of this technique come in many forms; 

the storage requirements are minimal because the two-node problem arrays are re-usable 

(disposable) at each interface, the rate of convergence is nearly comparable to that of the base 

FDM algorithm being used, the number of iteratively determined unknowns is reduced by a factor 
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of 6 (node flux vs. partial surface current), and the simplicity of the algorithm and ease of 

implementation, compared to any other nodal technique, is far superior. 

The two-node problem produces an 8G X 8G linear system of equations which can be 

constructed by applying the standard NEM relations to two adjoining nodes. For s.implicity, 

consider two arbitrary adjoining nodes in the x-direction. Denote these notes as I and Z+I : 

X 

Substitution of the one-dimensional expansion, EquaLm (7), ..lto Fic ; law j.tlds 

expressions for the average x-direction net surface currents at the left(-) and right(+) interfaces of 

node I ,  

Now, assume the node average flux, criticality constant, and all transverse direction terms 

are known from a previous iteration; then, the total number of unknowns associated with the x- 

direction two node problem is 8G, which corresponds to the 4 expansion coefficients/group/node 

(x) G groups (x) two nodes. The 8G constraint equations are obtained as follows. We begin with 

the substitution of Eqn. (16) into the nodal balance equation for node I, to yield the zeroth moment 

constraints (G equationshode), 

G 
1 -1  

Qsg4sf 
-D; 1 -1 1 -[ 1 - 1  
I [ 6aix, + :air4] = --L -TLg, -A, (Pg + 
A x  A$ g y  A z  g ' f g  

A similar substitution into the moment-weighted equation, Equation (1 l), yields the first and 

second moment constraints (2G equationshode), 
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Similar equations can be written for node Z+1, producing a total of 6G equations. The 

continuity of net surface current constraints at the interface (G equations) are obtained by using 

Equation (16) at the adjoining interface of the two nodes, 

Last, the continuity (or discontinuity) of surface-averaged flux constraints (G equations) 

are obtained by equating the surface-averaged fluxes of the two adjoining nodes by using 

Equation (7), 

where dixi and d i z i  are the Discontinuity Factors (DFs) obtained from lattice physics 

calculations. Do note that continuity conditions are never imposed on the outside surfaces of the 

two-node problem, since the two-node problem is deliberately formulated to be spatially 

decoupled. Continuity is assured in the formulation of the FDM based equations. 

Equations (7) through (21) constitute the 8G system of equations needed to be solved at 

each interface. This matrix system, after taking advantage of its reducability and by noting that 

the even-moment expansion coefficients don’t change whether the node is on the left or right of a 

two-node problem, can be reduced to smaller systems which can be solved quite efficiently [”I. 

The following table illustrates this more efficient arrangement of unknowns for the case of G=2. 
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Equation 

0th Moment 
0th Moment 
2nd Moment 
2nd Moment 
0th Moment 
0th Moment 
2nd Moment 
2nd Moment 
1st Moment 
1st Moment 
1st Moment 
1 s t Moment 
Cur Con 
Cur Con 
Fix Dis 
Flx Dis 

Table 1: Non zero entries in the 16 by 16 two-node NEM problem 

% w i a b c d e f g h i j k l m n o p  
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

1 
1 
1 
1 

1+ 1 
I+ 1 
I+ 1 
I+ 1 

1 
1 

I+ 1 
I+ 1 

i 

X X 

X X 

x x x x  
x x x x  

x x  
x x  
X 

X 

UNKNOWN 

I 

j 
k 
I 

m 
n 
0 

P 

NODE GROUP I EXP. COEF.* 
1 1 2 
1 2 2 
1 1 4 
1 2 4 

1+ 1 1 2 
I+ 1 2 2 
I+ 1 1 4 
l+ I 2 4 

1 1 1 
1 2 1 
1 1 3 
1 2 3 

I+ 1 1 1 
I+ 1 2 1 
I+ 1 1 3 
I+ 1 2 3 

*Refers to order of polynomial that transverse 

integrated flux expansion coefficient is associated with 

In NESTLE, the two-node problems are solved by utilizing the analytic solution to the 8G X 8G 

matrix system. This was accomplished by employing symbolic manipulator software to produce 

the FORTRAN code segment used in NESTLE. This approach is computationally more: efficient 
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than utilizing a direct matrix solver (e.g. LU decomposition); however, it limits the values of G to 

those directly programmed for. Also note that on boundaries special treatments of the two-node 

problems are required. Depending upon the specified boundary condition (BC), one-node 

problems may originate (e.g. zero flux BC), or on interior axis geometry unfolding may be 

required to create a two-node problem (e.g. cyclic BC). 

Solutions of the two-node problems provide NEM evaluated values of the currents on all 

surfaces for specified values of the node average fluxes [recall they were assumed known in 

solving the two-node problems]. To correct the FDM based expression for the surface current, the 

following approach is utilized. The coupling coefficient update to the FDM equation can be 

implemented by simply expressing the FDM net surface current at the x+ face of node Z as 

follows, 

2 2 

1 FDM is The first term on the RHS is the normal FDM approximation for a box scheme, where DiX + 

the actual FDM diffusion coupling coefficient between nodes I and Z+1, 

The second term on the RHS represents the nonlinear NEM correction applied to the FDM 

scheme. The (+) sign between the flux values in the second term of Equation (22) is purposely 

there to improve the convergence behavior of the nonlinear iterative method [8]. Note that if 

- 1, NEM 
Dgx+  is zero, which it initially is in NESTLE'S implementation, then Equation (22) 

corresponds to the standard FDM definition of the net surface current. This is the basis for the 

FDM option within NESTLE, where now two-node problem solves and coupling coeffi.-' ,ients 
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- 1, NEM updates are never completed. The value of D,, is determined by setting Equation (22) equal 

to the NEM two-node predicted surface current value, using the associated node ave:rage flux 

values in Equation (22) and solving for this quantity. 

Summarizing, to apply a NEM update after AN, outer iterations of the FDM routine, one 

solves the two-node problem at a given interface, then (with the expansion coefficients known for 

that interface) one calculates the NEM estimate of the net surface current using Equation (16) 

- 1, NEM Finally, one equates this result to Equation (22), and solves for the value of D, + 

used in the subsequent set of FDM iterations. 

which will be 
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II.2 Outer-Inner Solution Method for FDM Equations 
The only large matrix that requires solution for the non-linear iterative method is the FDM 

representation of the multi-group diffusion equation. Much work has been done on formulating, 

understanding and implementing the iterative solution of this large, sparse matrix system. 

NESTLE takes advantage of this wealth of knowledge in its iterative solution implementation, 

utilizing an outer-inner iterative strategy. 

The “Outer-Inner Method” refers to outer iterations to update the fission source term and 

inner iteration to approximately solve the resulting fixed source problem. The outer iterations 

correspond to a “Power Method.” This method can be applied to both Fixed Source Problems 

PSP] and the Associated Eigenvalue Problem [AEVP]. Shortly it will be shown that both the 

fixed source steady-state and transient problems are representable as FSP in NESTLE’S 

formulation. Although the AEVP involves additional calculations for the eigenvalue, basically the 

iteration schemes for both problems are similar. We will discuss the AEVP first. 

Returning to Equation (5 ) ,  the FDM representation of this equation in three-dimensional 

Cartesian geometry within homogenous mode E can be expressed as follows: 

l‘= 1 

where the non-zero values of the coupling coefficients { C: ”} are obtained via Equations(22) 

and (23) and L denotes the total number of nodes. Substituting in the definitions for A; and 

into Equation (24) and rearranging terms we obtain 

This equation can be written in terms of matrix notation spanning the spatial domain as 
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- 
where the "bar" over the node average flux value now denotes a column vector. Matrix 2, has a 

seven-banded matrix structure for three-dimensional Cartesian geometry. In turn, the C; (L X L) 

matrix systems expressed by Equation (26) can be collected to write the following single (GL X 

GL) matrix system. 

- 
The matrix 2 is block lower triangular in structure for that portion applicable to the fast groups. 

The outer-inner iteration process is summarized as follows: For the AEVP specified by 

Equation (27), given an arbitrary initial vector $(O), the outer iterations generate successive 

estimates for the flux vector $ by the process 

where how the criticality constant (Le. eigenvalue) is updated will be discussed later. The iterative 

matrix associated with the outer iterations is 

- - z - 1 z  
Q = A  F 

- 
The properties of the iterative matrix e has a significant role in determining the convergence rate 

of the power iterations [9, lo]. 

- 
In solving Equation (28), advantage is taken of the structure of the A matrix. For the fast 

groups, solving from low to high energy group number results in energy group decoupling. This 

implies that we may solve a system of linear equations of the form 
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where, 

v p -  1) (31) 
- -(4) 

g’ fg’ g’ 
R ’ f R  

For the thermal groups, NESTLE assumes the group fluxes for all other thermal groups 

except the one being updated are known. This produces energy group decoupling, allowing 

Equation (30) to be utilized. So called “scattering” iterations are then completed after all thermal 

groups’ fluxes are updated. Stationary acceleration is employed to accelerate convergence of the 

scattering iterations. 

II.2.a Inner Iteration Acceleration 
To solve Equation (30) we introduce the inner iterations. In this work we employ a Multi- 

Color Point or Line SOR Method, depending upon problem geometry, for the inner iterations. 

Specifically, a Red-Black Point or Line SOR method is used in NESTLE for two or three- 

dimensional Cartesian geometry, respectively. For one-dimensional Cartesian geometry, a direct 

matrix solve is utilized since the group-wise A matrix is triangular allowing employment of 

Gaussian elimination. 

Mathematically, this approach is a multi-spliting method and can be expressed as follows. 

$ = 8 $,, where vector qP spans nodes of color “p” 

= (m) p - 1 -  = ( m + l )  P 
- ( m + l )  = .;I[- 
$P f u r  p = 1,2, ..., P (32) s+ c c p p r $ p f  

+ c CfJP’$P’ ] 
p ’ =  1 p ’ = p + l  

where, 

- - - - 
A = 6 A,, and non-square matrix AP equals rows of A that span nodes of color “p” 
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P 

P’*P 

and 

Note that the group g and outer iteration count (9) indices have been suppressed for clarity in the 
- 

above equations. The matrix Bp is square and has either a diagonal structure for the point scheme 

or block diagonal structure composed of tridiagonal blocks for the line scheme. This implies that 

=-1 
the action of Bp indicated in Equations (32) is simple to evaluate. A total of ANI inner iterations 

per outer iterations are completed, this value determined such that the specified relative error 

reduction from the Oh iterative error for the inner iterations is achieved. 

To a priori determine the value of the optimum relaxation parameter, o and AN, [which 

are energy group dependent but dependence notation has been surpressed], it is assumed that the 

iterative matrix associated with this inner iterative method is symmetrizable. This is not true since 

the NEM corrections to the FDM coupling coefficients invalidate symmetry; however, these 

corrections have been found to be relatively small so the symmetrizable assumption is acceptable. 

Making this assumption, we can express o in terns of the spectral radius of the associated Guass- 

Seidel iteration matrix, p ( L  
XG-S 

) , as follows, 

2 o =  
1 +  [ l -p(LG-s) ]1’2  

(35) 

=G-S =SOR 
Clearly L = L (0) with o = 1 . Therefore, calculation of the spectral radius of the 

associated Guass-Seidel iterative matrix is the heart of this procedure. The following summarizes 

the details of the computational procedure used in NESTLE to obtain an estimate of the value of 

o, which is based upon the DIF3D methodology [lo]. These steps are completed for each energy 
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Step 1. Starting with an arbitrary non-negative initial guess vector X ' O ) ,  complete at least ten 

Gauss-Seidel iterations in solving the following equation. 

step 2. Following each iteration with m >lo, estimate the upper and lower bounds of the spectral 

radii using the following equations. 
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Compute the corresponding relaxation factors given by 

Step 3. Terminate iteration when either 

or rn equals a specified upper limit [10,11]. The optimum factor o is then set to dm). This 

test forces tighter convergence of o when p (LG-S ) is close to unity to ensure the required 

numerical accuracy is achieved. 

Step 4. Determine the number of inner iterations required for each outer iteration AN, ,  such that 
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the value of ANI satisfies the following equation: 

where 

and ein denotes the desired relative error reduction from the initial iteration to the end of 

Alv,-th iteration. It is suggested that a very small number for not be used since it may 

force excessive inner iterations [ 101. 

The advantages of these accelerations strategies are clear. The automated determination of 

the optimum overrelaxation factors relieves users of the burden of the trial and error manner of 

specifying optimum parameters for a large class of reactor models. In addition, substantial 

computational time can be saved since the need to check the convergence of inner iterations has 

been removed by using a fixed number of predetermined inner iterations for each energy group. 

The outer iterations defined by Equation (28) are slow to converge, since the dominance 

ratio of the iterative matrix, Equation (29), is close to one. Two complementary acceleration 

techniques are utilized in NESTLE to accelerate the outer iterations of the AEVP. 
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II.2.b Outer Iteration Acceleration 

The outer iterations for the AEVP are accelerated by using linear combinatioiis of the 

previous iterative vectors as now described. The Chebyshev polynomials are used to obtain the 

best linear combinations when there is no knowledge of higher eigenvalues [12]. The method 

implemented is the Chebyshev Semi-Iterative method [9,10,11,13]. In this method, l'h e error 

vector associated with the acceleration method is expressed in terms of a linear combination of 

the error vectors of the underlying interactive method. Acceleration of the iteration is achLieved by 

minimizing the error vector by appropriate selection of the expansion coefficients, which is 

determined to be those associated with Chebyshev polynomials. Further details, of the 

mathematical background of this method can be found in the related references [9,10]. 

- 
Since the rate of convergence in the AEVP is dependent on the dominance ratio CT (e) , 

the Chebyshev acceleration method detailed in Refs. [9,10,11,13] can therefore be applied to 

iterations, 

- 
provided that a suitable estimate of CT (e) is obtained. NESTLE follows the DIF3D approach to 

solve the AEVP in which we accelerate the fission source v [ 131, where is defined as 

The accelerated iterative procedure can then be expressed as follows: 

where 
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and 

y = cosh -’ (- 2 - 1) 

c5 <e> 
n* = outer iteration index where acceleration begins 

and p denotes the successive fission source iterations employed ( p  2 1 ) within a Chebyshev 

- - 
cycle ( i e .  since last updating the estimate of CT (a) ). Note the dominance ratio CT (e) needs to be 

estimated in order for the scheme to work. This is accomplished using the procedure implemented 

in DIF3D [ 101 as now outlined. 

- 
Since an accurate estimate of CT (e) is not known when the outer iterations are 

commenced, a “boot-strap” process is required. By performing a limited number of power 

iterations, a reasonable initial estimate of CT (e) is obtained. Only when all but the first overtone 
- 

- 
mode are essentially damped out, high-order cycles based on accurate estimates of o (e) are 

utilized [ 10,141. More precisely, the algorithm can be described in terms of four basic steps: 

Step 1. A minimum of three power iterations are performed initially. The first Chebyshev 
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* acceleration cycle is begun on outer iteration (n + l), where (n* + 1) is the smallest 

integer such that n* 2 3 for which the dominance ratio estimate, 6 satisfies the following 

criterion: 

0.4 I6 I 1.0 

where 

= ( n ' - I )  
- Y  -(n*) - q ( n  ) R =  

- 
Step 2. Using 6 as the dominance ratio estimate for CJ (e) , the accelerated iterative sequence 

given by Equations (38) and (39) is carried out for iterations (n* + p )  with p 2 1. At first 

low degree polynomials are applied repeatedly with estimates of the dominance ratio 

being updated continuously according to 

-1 6 cosh 
2 6' = -cosh ( 

where 
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Cp - ( y ) = Chebyshev polynomial of degree ( p  - 1 ) 
-1  = cash [ ( p -  1 )  cash y ] , y >  1 

The polynomials are at least of degree 3 and are terminated when the error reduction 

factor E,,., - is greater than the theoretical error reduction factor: 

The theoretical error reduction factor is the error reduction which would have been 
- 

achieved if 6 were equal to cs (e) , the true dominance ratio. If - is greater than 

this, the acceleration cycle has not been as effective as it should have been, so a new cycle 

is started using the updated dominance ratio estimate, 6’. 
- 

Step 3. After the estimates for CJ (e) have converged higher degree polynomials are applied. 

Step 4. The outer iterations are terminated at outer iteration n if the following three criteria are 

met: 
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where ck, cy, and are input parameters. 

It should be noted that a modification to this basic scheme is made in the actual 

implementation in NESTLE of the Chebyshev polynomial acceleration. Due to various thermal- 

hydraulic feedback effects, to be discussed later, the coefficient matrices 2 and F in Equation 

(27) are changed whenever such effects are accounted for in the system. That is, since feedback 

effects change cross sections and are dependent upon the flux solution, our matrix problem is truly 

non-linear since 2 and 7 depend upon the flux solution. Since the non-linearity is weak., one can 

guess a flux solution, determine the feedback effects and appropriately modify 2 and F, and 

- - 

- - 

- - 

solve for the flux. This updated flux solution can then be used to reinitiate the cycle until both the 

- - 
feedback and flux solutions converge. One way to handle these effects is to update the 2 and F 
matrices after complete termination of the outer iteration process. This approach has a clear 

disadvantage in that it requires large computational time to obtain converged so1ui:ions for 

feedbacks and flux. An alternate approach is to update the coefficient matrix for feedback effects 

during the Chebyshev acceleration process. In doing so, a substantial reduction in computation 

time can be realized. The latter approach can be justified by observing that the feedback effects 

are relatively small perturbations to the original system from a reactor physics point of view and 
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hence, the entire Chebyshev acceleration scheme is not jeopardized. This modified scheme is 

incorporated in our work in such a manner that the matrices are updated just before a new 

Chebyshev polynomial acceleration cycle begins. The same approach is taken in regard to 

updating the NEM corrections to the coupling coefficients. Figure (1) summarizes the overall 

nested iterative solution strategy used within the NESTLE code. This strategy has been 

demonstrated to be efficient and robust. 

NEM Non-Linear Iterations 

Thermal-Hydraulic Feedback Iterations 

FDM Outer Iterations 

FDM Scattering Iterations 

FDM Inner Iterations 

Figure 1: Overview of NESTLE nested iterative solution strategy 
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II.3 Steady-State Fixed-Source Problem 
Real reactors utilize fixed neutron sources to facilitate start-ups and assure high enough 

count rates for nuclear instrumentation used for control and protection. We refer to the zum.lysis of 

this situation as a Fixed Source Problem [FSP]. Mathematically, the multi-group diffusion 

equation for a steady-state FSP is as follows, 

G G 

where ? dependence has been surpressed and Sext8 denotes the external neutron source 

This equation can be solved utilizing nearly exactly the same method as uti1ize:d for the 

AEVP, except now Sex* appears on the RHS in the NEM equations associated with the AEVP. 
8 

This applies to both the FDM equation and two-node problem equations. The biggest difference 

in the solution of the FSP versus AEVP originates because the FSP does not involve determining 

the fundamental eigenvector. This impacts the outer iterations of the FDM equations in the 

following manner. For the AEVP, the rate of convergence of the Power Method is determined by 

the dominance ratio of the outer iterative matrix, CJ (e) ; by contrast, for the FSP thle rate of 
- 

- - 
convergence is determined by the spectral radius, p (a), where note that, p (a) = keff The 

implication for the Chebyshev Semi-Iterative method is whenever oca) appeared in the 

- 
governing equations, it should be replaced by p (e) . The other implication is that the FSP versus 

- - 
AEVP outer iterations will converge much slower since CJ (e) < p (e) = keff = 1 for problems 

of interest. A special implementation of the Coarse Mesh Rebalance method, as now described, is 

utilized for the FSP to accelerate convergence. 
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II3.a Fixed-Source Scaling Factor Method 
- 

When the FSP is near-critical (i.e. p (a) approaches unity), convergence rates even with 

Chebyshev acceleration are unacceptably slow. This convergence is slow even when the iterative 

flux shape is correct but the magnitude is in error. To accelerate convergence of the flux 

magnitude, a global coarse mesh rebalance [12] is proposed. Application of a single scaling prior 

to the start of a new Chebyshev acceleration cycle sometimes can significantly reduce the 

required number of outer iterations. This reduction is achieved by an approximate procedure that 

attempts to scale the current iterative flux vector to the exact flux vector. 

For steady-state the FDM based matrix equation analogous to Equation (27) is 

- -  (;i-F)$ = sex, 
Now assume that the 8 outer iterative estimate of the flux has the correct shape but is off only in 

magnitude by a factor of c(q) from the exact solution, i.e. 

Then it follows that an improved q& iterate is given by 

or in terms of the fission source 

T ( 4 )  
where Y is the Chebyshev accelerated fission source. The fixed source scaling factor, c(q) is 

defined so as to preserve neutron balance in an integral sense. Utilizing Galarkin weighting 

defines c(q) as follows 
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This method does differ from the fundamental mode contamination adjustment approach used in 

DIF3D [ 101. 

The dependence on the scale factor of the matrix operators indicated in Equaition (45) 

originates because of thermal-hydraulic (T-H) feedback, implying the solution of Equation (45) 

for c(@ involves a non-linear root search. Difficulty in this search originates because the Equation 

(45) RHS has a singularity, which is addressed as follows. It is known that when the reactor is 

close to critical, the flux can be approximated by the AEVP flux. This implies that the Equation 

(45) RHS can be approximated as 

where h, is the eigenvalue (i.e. h, = kef$ Since the second bracketed term varies much slower 

than the first bracketed term as c(q) varies for a near critical system, the second term is treated as 

constant. We next assume that h, (c ('I ) varies linearly with c(@. 

The values of ho (c1(") and h, (c:')) are obtained by explicitly evaluating the Equation 

(45) RHS for the two scale factor values and using the resulting values in Equation (46) to solve 

for h, values. Substituting Equation (47) into Equation (46), and using this equation as the RHS 

of Equation (45) produces a quadratic equation in terms of c(q), with one root denoted c,!') being 

the desired value. For a steady-state problem the following steps are completed to implement the 

just noted procedure: 

- - 
Step 1: Calculate Oth outer iterative operator estimates A0 and Fo, based upon flux = qC0) flux 

used in T-H feedback calculations and accounting for external parameters (e.g. control rod 
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position). 

step 2: Solve the FSP iteratively for a fixed number of outer iterations (4) . 
- - 

step 3: Set ciq) = 1 and calculate the following: operator estimates AI and F1 by repeating 

Step 1 using flux = (Step 2) flux, Equation (45) RHS, and h, ( ~ 1 " ) )  . 

step 4: Set c jq )  = (Step 3 Equation (45) RHS) and calculate the following: operator estimates 

- - 
2 2  and F 2  by repeating Step 1 using flux = ci4) x Step 2 flux, Equation (45) RHS, and 

- - 
Step 5: Solve quadratic equation for ciq) and calculate operator estimates A3 and F3 by 

repeating step 1 using flux = ckq) x step 2 flux. 

This basic process is repeated every so many outer iterations as specified by user input. 

The just noted method scales energy groups equally, thus it does not account for the 

energy spectrum shift that occurs as a result of T-H feedback. This is important in water reactors 

due to the dependance of moderating power on water density. This effect can be approximately 

accounted for as follows: Assume that leakage can be approximated by a D,Bi treatment and the 

Prompt Jump approximation can be used to estimate the flux energy spectrum shift. The values of 

B i  are spatially dependent and obtained from the current estimate of the flux distribution and 

prior to the scale factor impact on cross-sections via T-H feedback (ie. after Step 2). Specifically 

for a two-group problem, suppressing spatial dependance notation, we obtain 

Now an improved estimate for the flux ratio can be obtained as follows, where cross-section 
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values now reflect the scale factor via T-H feedback (ie. during Steps 3-5). 

We are now free to set either or Q2 to the Step 2 flux value, and using Equation (49) solve for 

the other group flux. NESTLE selects in its implementation and solves for @2 . T:he above 

method can be generalized to a multi-group formulation and is done so in the :NESTLE 

implementation for the case G=4. 

The scaling process can be very effective in obtaining the correct flux magnitude. This 

avoids a serious problem associated with FSP type problems, which is particularly troubling when 

the initial guess of the flux is higher than the converged value (Le. approaches from above). 

However, when the reactor is very close to critical, the scaling process may break down. This is 
- - 

because with high neutron multiplication, and F$ are nearly equal and are much larger than 

- -  - -  - 
S,,, which implies that to get an accurate estimate of (2 - F )  @ a very accurate estimate of the 

shape of 6 is required. 
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II.3.b Nodal Model - Hexagonal Geometry 

II.3.c Eigenvalue Problem 

Utilization of NEh4 for Hexagonal (Hex) geometry introduces several complications not 

encountered for Cartesian geometry, originating because the surfaces of the Hex do not all align 

with the Cartesian axis. This can be seen in Figure (2). 

V 

2 
Z h  
T 

U 

1 
Jsh t_ X 

Figure 2: Hex geometry dimensions and axis orientation. 

R.D. Lawrence addressed these difficulties in implementing the Hex NEM option in DIF3D [ 151. 

NESTLE utilizes this earlier work, now adapting it for implementation within the context of the 

non-linear iterative method which facilitates utilization of a higher order transverse leakage 

treatment. 

The derivation of the governing equations for Hex-Z geometry follows the same general 

approach as for Cartesian geometry. Introducing the transverse directions u and v noted in Figure 

(2), the nodal balance equation over a Hex is given by 

where the E’s denote as before face-averaged net leakages. Let us first consider tAe  radial plane. 

By transverse-integration of the diffusion equation over z and y, the one-dimensional balance 
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equation in direction x is obtained. 

where &ys (x) denote the upper and lower boundaries of the Hex for a given x value; that is, 

1 h h  
y , ( x )  E- (h-1x1) for X E  [-?, 5 ]  Js 

jLx ( x )  denotes the transverse-integrated current in the x direction 

jkXy ( x ,  &ys ( x )  ) denotes the z-integrated, surface-normal components of the net current across the 

u and v directed surfaces 

A z' 
2 
- 

2 

and L' ( x ,  y )  denotes axial leakage defined by 
gz 

A I' 

2 

Two additional equations can be defined in a similar manner for the u and v directions. 

Note that these quantities are neither volume nor surface averaged, which differs from the earlier 

derivation for Cartesian coordinates. This difference arrises since taking the derivation of the 

surface-averaged x-directed current appearing in Eqn. (51) would involve derivatives of y ,  ( x )  , 

which introduces algebraic complexity as now discussed. 
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To solve Eqn. (5 1) using NEM the one-dimensional surface-averaged flux is expanded in 

terms of a polynomial expressed as indicated in Eqn. (7) with N=4. The expansion functions fn(x) 

for n = 1 and 2 are selected as before, indicated in Eqn. (9). However, due to the behavior of 

@ ( x )  with x, the functions fn(x) for n = 3 and 4 must be selected differently for Hex. To see this 
g x  

need, evaluate the transverse-integrated current in terms of the transverse-integrated flux, utilizing 

their definitions and Fick's Law to obtain 

where 

Now 

1 y , ' ( x )  = --sgn ( x )  J 
is discontinous at x = 0, the node's center-line perpendicular to the x-direction. Since the 

transverse-integrated current and flux must be continous everywhere, Eqn. (56) implies that the 

first derivation of the transverse-integrated flux must be discontinous at x = 0; in particular 

To capture this discontinuity and satisfy Eqns. (8) and (lo), the functions f,(x) for n = 3 and 4 are 

selected as follows. 
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f3 f4 
A . 

We again have a problem with five unknowns per node and group. Continuity of 

transverse-integrated current, discontinuity of surface-averaged flux, and the nodal balance 

equation provide three of the required five equations. The jump discontinuity condition given by 

Eqn. (59) provides an additional equation, which can be shown to produce [ 151 

where 

Assuming expressions for 0' ( x ,  ky, (s) ) in terms of node average flux and expansion 
g 

coefficients can be obtained, one then has five unknowns and four equations implying one 

additional equation is required. This is provided by a Weighted Residual Method, where the 

weight o1 (x) is defined as 

0 1  ( X I  = sgn ( X I  

Using this weight in a Weighted Residual Method in conjunction with the nodal balance: equation 

can be shown equivalent to preserving half-node nodal balance on each half of the Hex node. The 

Weighted Residual Method equation that results is 

where the following definitions have been introduced 

- 1  
LR,I 

38 



and 

-1 = jgu  ( - h / 2 )  +jLu ( h / 2 )  

Substitution of the polynomial expansion for the transverse integrated flux into Eqn. (65) gives 

-1 
@gxl and in terms of the expansion coefficients. 

To solve the above equations, we require expressions for ELx (0) and L:z+l in terms of 

the node average flux and expansion coefficients. As with Cartesian geometry, the transverse 

leakage in the z-direction will be approximated by a quadratic polynomial. Specifically, following 

Eqn. (12) one makes the following approximation 

where f i  ( x )  and f .  ( x )  are defined as previously for Cartesian geometry. 

To obtain the expression for Ebx (0) it can be shown that via a Taylor series expansion 

about y = 0 that 

where the y-directed leakage is defined as follows. 
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Using the “two-step” approximation (ie. assuming constant transverse leakage over each haif- 

node) produces 

for X E  [ - h / 2 , 0 )  

for x E (0, h/2 3 L ; y ( X )  = 

where 

Using this approximation and ignoring the O(h4) term in Eqn. (68) gives 

To complete the evaluation, expressions for L:y - and LiY + in terms of node average flux and 

expansion coefficients must be determined. This is done via manipulation of previously 

introduced equations and definitions resulting in the following expression, recalling Eqn. (61) 

a’ = E’ ( 0 )  = 26 h [L , ,+Lg , ]  - I  - 1  - - b g , ( h / 2 )  8 I + $ i x ( - h / 2 )  -2$J - I  
gx3 gx 189 1 21 

D, 
(75) 

Since the transverse integrated flux is a function of node average flux and expansion coe:fficients, 

Eqn. (75) involves only the unknowns being sought except for the leakage terms. 

To complete the formulation of the Hex problem, from Eqn. (56) one recognizes that 

(x, kys ( x )  ) at x = kh/2  in terms of the working unknowns is required to expressions for 
g x  

evaluate the surface currents. From Eqn. (56) the expression for the face-averaged transverse- 

integrated current can be obtained 
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Again an expression for E i x ( x )  in terms of the working unknowns is required, this time 

evaluated at x = zkh/ 2. Using the “two-step” approximation produces 

1 I L L  E;, (+h/2) = - - 1 8 ~ :  gYk (77) 

and substituting in the expression for Li,, gives the following results. 

1 h  - 1  - 1  - 1  
E i x ( h / 2 )  =--- { 1 7 u g , ( h / 2 )  - j g v ( - h / 2 ) ]  + 2 [ ; . i V ( h / 2 )  - j g u ( - h / 2 ) ] }  

285 1 

1 1 -- 1235 [179$: , (h/2)  +49$LX(-h/2)  -228$:] +-a‘ 130 gx3 

D8 

and 

(79) 
Ekx(-h/2)  = --- { 2 [;.tu ( h / 2 )  -jtv ( - h / 2 )  1 + 17 GiV (h12)  -j;, (-h/ 2 )  ] } 

285 1 

1 - I  1 - - [ 4 9 4 k  (h /  2 )  + 179$ix ( - h / 2 )  - 228Q.J + -a1 

D8 

1235 130 gx3 

By combining Eqn. (76) and either Eqn. (78) or (79) we obtain an expression for the 

surface-averaged transverse current in one direction in terms of currents in the other Hex 

directions. This does not succeed in eliminating current as an unknown as we desire. This can be 

addressed as follows: 

Since E i x  ( x )  at x = +h/2 are truly continous since the fluxes defining it via Eqn.(62) 

are continous, and the surface averaged transverse-integrated current is continous everywhere, 

Eqn.(76) implies that the flux derivative appearing in this equation must be discontinous at 

x = kh/ 2. Employing the above noted properties, the current continuity condition produces the 

following. 
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This expression for current is in terms of the expansion coefficients as desired. 

Utilizing Eqns. (50), (a), (75), (76) through (79) in the surface-averaged current 

continuity equation, surface-averaged flux discontinuity equation, and various auxiliary equations 

relating currents and leakages to flux, we arrive at 13 equations for the 13 unknowns per node per 

energy groups when considering the x, u, and v directions. Deferring the two-node problem 

formulation, the z-direction transverse integrated equations will be now developed. 

The z-direction transverse integrated equations development follows that for (3artesian 

geometry except for the transverse leakage terms in the radial plane. The transverse balance 

equation is given by 

where the radial plane transverse leakage is defined as 

This equation is solved assuming a quartic expansion for the transverse integrated flux as 

used in Cartesian geometry. The nodal balance (Eqn. (50)), first and second moment Weighted 

Residual, surface-averaged flux discontinuity, and surface-averaged current continuity e:quations 

provide the required number of equations. 

The moments of the radial plane transverse leakage that enter the Weighted Residual 

equations are evaluated utilizing the quadratic approximation to obtain the within node shape; that 

is 
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2 

and hence 

- 1  -1 -1 
L g x y  = LLX + L,, + L g v  

The expansion coefficients in Eqn. (83) are defined as before [see Eqns. (13)-(15)]. Since the 

derivation of the Weighted Balance equations is identical to that presented for Cartesian geometry 

except as noted above in regard to transverse leakages, the interested reader is referred to the 

earlier presentation. 
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2 

- 3h ' dzLixy ( z )  - 1  
L,, - y$ 

-A Z' 
2 
- 

and hence 

- 1  -1 -1 
L g x y  = L L X  + L,, + L g v  

The expansion coefficients in Eqn. (83) are defined as before [see Eqns. (13)-(15)]. Since the 

derivation of the Weighted Balance equations is identical to that presented for Cartesian geometry 

except as noted above in regard to transverse leakages, the interested reader is referred to the 

earlier presentation. 



II3.d Non-Linear Iterative Strategy 

For Hex-Z geometry, the non-linear iterative strategy is applied the same as for Cartesian 

geometry. For each surface of a node, a two-node problem is solved to obtain the NEM ]predicted 

surface-averaged current based upon the FDM flux solution utilizing corrected coupling 

coefficients. The corrected coupling coefficients are determined demanding that the FDM and 

NEM predicted currents agree. In the radial plane for Hex geometry, Equation (23) is modified to 

read as follows. 

Hex Directions (Example - x direction): 

Flux Discontinuity 

Current Continuity 

h -I+ I - 1 + 1  -(%) (17 & ( h / 2 )  - j fu(-h/2)  + jgu  ( h / 2 ) - j g v  ( - h / 2 ) ]  

+ 2 & ( h / 2 )  - j ; " ( - h / 2 )  + j ; : ' ( h / 2 )  - j ; : ' ( - h / 2 ) ]  ) 

Center Node Jump Condition 

Nodal Balance 
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Odd Moment Balance 

These equations are supplemented by the following auxiliary equation obtained from 

Equation( 80) 

7 ' 1 + 1  1 
(& ( 4 , 3 -  gx3)  + (2)  ( a ; x 4 + 3 a 3  

Do note that for the u and v directions, the following mappings of surface currents occur, which 

impacts the signs of the leakage terms on the RHS of the current continuity and odd moment 

balance equations: 

u direction: 
v direction: 

x + u, v + -x, u + -v 
x + v, u + -x, v + u 

Axial Direction: 

Flux Discontinuity 

Current Continuity 

Nodal Balance 

(93) 

(94) 

First Moment 
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Second Moment 

For the z-direction, the same matrix structure as for Cartesian geometry results allowing 

rearrangement of the associated two-node problem coefficient matrix to achieve reducibility. For 

the x, u, and v-directions, the two-node problem for two groups can be reduced from a 16 X 16 

matrix problem to four 2 X 2 matrix problems and one 8 X 8 matrix problem. For four giroups the 

32 X 32 matrix problem can be reduced to eight 2 X 2 matrix problems and one 16 X 16 matrix 

problem. The associated matrix problems are solved analytically to reduce floating point 

operations required. Having solved the two-node problems, the corrections to the coupling 

coefficients can be obtained as previously indicated in Equation (22). 
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II.4 Transient Problem 
Under transient conditions, both the multi-group diffusion equation and delayed neutron 

precursor equations must be solved. These equations, accounting for an external neutron source 

and utilizing six precursor groups, are given by (suppressing ? and t dependences for clarity): 

and 

where the notation is identical as before except as now noted. 

P 

neutron speed for energy group g 

fraction of prompt neutrons born into energy group g 

fraction of delayed neutrons for precursor group i born into 
energy group g 
neutron precursor concentration in precursor group i 

decay constant for precursor group i 

fraction of all fission neutrons emitted per fission in 
precursor group i 
total fraction of fission neutrons which are delayed 

Alternately, the 'eigenvalue initiated' transient equations can be obtained from Equations (98) and 

(99) by setting Sex, = 0 and by replacing vgXfg with (vsZfg) / k  everywhere. 
K 

The neutron kinetics equations, Equations (98) and (99), involve differentials in space and 

time. The time dependence is a difficult problem to treat in neutronics modeling due to the 

stiffness of the associated equations. The time constants range from very small, associated with 

prompt neutrons, to very long, associated with the longer lived precursors. NESTLE numerically 
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treats the temporal dependence in a manner that results in a FSP, which can be solved utilizing the 

methodology developed for the steady-state FSP. 

The first step in this conversion to a FSP is to discretize the time domain into discrete 

times {t}and to approximate the time derivative of the flux at time tn+l by a backward difference. 

This assures unconditional stability. Do note that spatial dependance notation has been and will 

continue to be suppressed in the equations. 

To develop an expression for the precursors’ concentrations at time &,+I in tenns of the 

flux @g ( f n  + 1 )  , Equation (99) is solved utilizing the Integrating Factor method over time: span [tn, 

fn+l] to obtain 

To solve the above integral, a functional form for the time dependent neutron fission source must 

be assumed over time span [t,, t,+l]. Consistent with the backward difference operator 

approximation for the time derivative of the flux, the fission source is assumed to vary linearly 

between time-steps, 

Incorporating this approximation into Equation ( 10 1) and rearranging terms, we obtain 

where 

48 



and 

Now substituting Equations (100) and (103) into Equation(98) one obtains 

where 

In Equation (106) all cross-sections are evaluated at time tn+l. Inspection of Equation (106) 

indicates it to be a FSP, with modified operators and source from the steady-state FSP. We refer to 

Equation (106) as the transient FSP. Hence the application of NEM to the transient FSP and the 

iterative solution of the resulting coupled equations can proceed exactly the same as for the 

steady-state FSP. As would be expected, the values of flux and adjusted FDM coupling 

coefficients at time t, + , for the Oth outer iterative step are based upon their values at time tn. 

If we proceed in this manner, in the two-node problems spatial moments of Seff8 (fn + 1) 

would appear. As Equation (107) indicates, seff, ( t ,  + i is dependent upon { 9, ( f,) } and 

{ Ci ( f,) } . The implication is that the expansion coefficients associated with the transverse 

integrated fluxes, obtained from solution of the two-node problems, at the previous time tn must 

be saved. The same is true for the precursor concentrations, which are treated like the flux for time 

dependent problems solved by NEM. This would substantially increase the computer memory 
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requirements. 

To overcome this difficulty, further approximations are required in formulating the two- 

node problems. Recognizing that the within node spatial dependence of sefi8 ( fn + 1 ) is associated 

with the contributions from the delay neutrons and the external neutron source, that the: external 

neutron source is assumed to be constant within a node, and that these contributions of neutrons 

are small, one would expect sefi8 (t,+ 1) within node spatial shape to have little impact on the 

solution. This justifies treating Sef18 ( tn + spatial dependence approximately. In NESTLE this 

approximate treatment is done in the same manner as for the transverse leakages; that is, using a 

quadratic polynomial as indicated in Equation (12). Now only node average values of the flux and 

precursor concentrations at time t, must be saved. The node average precursor values are solved 

for via back substitution using Equation (103) after the node average flux has been computed. 

This implementation does create one problem that must be addressed. Since different 

the solution of the steady-state FSF' and the spatial treatments are used at times t ,  and t ,  + 

transient FSP, now for steady-state conditions, will not agree. The practical consequenlce is that 

when one utilizes the steady-state FSP solution to determine initial conditions for the transient 

FSP, the flux will undergo a very mild transient with time even when the initial steady-state 

conditions are preserved. This annoyance can be avoided by regrouping terms in Equations (106) 

and (107) as follows. 
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i =  1 g’= 1 

Equation (108) is recognized to be identical to the steady-state FSP except for the replacement of 

SeXtI with the modified effective source S,. Under steady-state conditions, &jyg equals Sex[, 

since all the additional terms in Equation ( 1  10) cancel. This is true even for the moments of 

.., 
Seffg ( t ,  + 1) that appear in the two-node problems provided the within node spatial dependence is 

treated consistently for the variables appearing in Equation (110) at times tn and tn+l; in 

particular, when they are all treated by a quadratic polynomial as previously indicated by 

Equation (12) for the transverse leakages. The implication is that the transient FSP under steady- 

state conditions will produce the same solution as produced by the steady-state FSP. This 

approach has been implemented in NESTLE. 

Since the values of node average flux at time tn+l, the unknowns, now appear in the 

modified effective source, an iterative approach is required. This is easily accomplished within the 

context of the non-linear iterative method of solving the NEM equations. Recall when solving the 

two-node problems, node average fluxes are assumed known based upon the latest outer iterative 

values available for the FDM equation’s solution. For transient problems, this corresponds to 

node averaged flux values at time t,,+], which are precisely the values requires to evaluate the 

-, 

moments of Seff8 that appear in the two-node problems. This approach is utilized within NESTLE 

to assure the steady-state FSP solution does not “drift” when used as an initial condition in the 

transient FSP. 
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II.5 Adjoint Problem 

The adjoint solution to the few-group neutron diffusion equation for the eigenvalue 

problem is of interest. This follows since the adjoint flux can be used to estimate the effect on the 

reactivity of perturbations via the Raleigh quotient, derived from perturbation theory; and, can be 

used to estimate kinetics parameters utilizing point-reactor kinetics theory. For these reasons, the 

ability to solve for the adjoint flux of the eigenvalue problem has been incorporated into the 

NESTLE code. 

For the FDM solution, the development of the equations that need to be solved and their 

solution are straight forward. The matrix system that needs to be solved for the adjoint flux is 

obtained by transposing the matrices of the matrix system that is solved for the ‘forward’ flux. 

Since the matrices on a per energy group basis are symmetric in space, the only non-symmetric 

components occur because of energy group coupling originating from scattering and fission. The 

transpose of the matrices associated with fission and scattering are easily taken and the resulting 

matrix system solved. Since down-scatter now becomes up-scatter for the transposed scattering 

operator, one solves the few-group diffusion equation by sweeping from low to high energies (i.e. 

from high energy group number to low energy group number) in the outer iterations. Thermal 

scattering iterations are completed if up-scatter exists in the ‘forward’ problem. 

For the NEM solution, the situation is more complicated. Mathematically the adjoint 

solution we seek should not only include the group fluxes but also all the expansion coe:fficients 

for the transverse integrated fluxes. This implies that the matrices we should be transposing not 

only correspond to the nodal balance equations, but also include all the transverse integrated flux 

constraint equations. These matrices never really appear in the nonlinear NEM iterative method 

like they would in a more traditional surface current response NEM solution methodology. To 

overcome this incompatibility and to greatly simplify the adjoint flux solution for the NEM, it is 

assumed that the diffusion coupling correction coefficients that originate in the nonlinear NEM 
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iterative method do not change when the core is perturbed. When using the Raleigh quotient to 

estimate reactivity changes due to core perturbations, this implies that the resulting perturbations 

to the matrix operators do not include perturbations to the coupling correction coefficients. Since 

the coupling correction coefficients can be thought of as corrections to the normal FDM diffusion 

coupling coefficients, this approximation should be acceptable for many applications involving 

estimating core reactivity. 

Having made the above assumption, one need no longer be concerned with evaluating the 

adjoint, transverse integrated flux expansion coefficients, since they only couple to the flux 

solution through the coupling correction coefficients. Therefore, to obtain the adjoint flux for the 

NEM one follows exactly the same procedure as for the FDM, except that the coupling correction 

coefficients determine by the ‘forward’ solution appear in the matrix operator. Since these 

coupling correction coefficients make the spatial originated component of the matrices non- 

symmetric, this must be treated in addition to the non-symmetry in energy groups. This causes no 

practical problems within NESTLE, where now the transpose of the energy group dependent 

matrices that appear in the inner iterations are utilized. 

A final point needing discussion in regard to solving for the adjoint flux concerns the 

treatment of cross-section feedback corrections. In NESTLE all feedback effects due to thermal- 

hydraulics and the transient fission products are frozen at their ‘forward’ solution determined 

values. This implies that before an adjoint solution can be completed, a ‘forward’ solution needs 

to be completed to obtain the feedback corrected cross-section values. This is done automatically 

by NESTLE when the adjoint solution option is selected. 

To facilitate subsequent utilization of the adjoint flux solution, NESTLE contains the 

option to write out to a user specified file its values as a function of spatial node and energy group. 

In this manner other computer codes can utilize this file as input to evaluate, for example, the 

core’s reactivity response to perturbations employing the Raleigh quotient. 
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II.6 Cross-Section Model 
NESTLE has the option of utilizing a macroscopic or microscopic cross-section model. 

The macroscopic model determines the macroscopic cross-sections used in the diffision equation 

solver by characterizing them as a function of the following: node burnup; color (where color 

refers to the initial composition of the material within the node), rod in or out, coolant density, 

coolant temperature, effective fuel temperature, and soluble poison concentration. The only 

isotopic number densities calculated are for the I-Xe and Pm-Sm transient fission products. When 

used in conjunction with microscopic cross-sections, these isotopes' effects can be directly 

accounted for. The microscopic cross-section model also determines the isotopic number densities 

for the U234-U236 and U238-Pu242 fuel chains, two lumped fission product groups, and. a single 

isotope depletable burnable poison. The relative advantages of both approaches are reduced 

computational resources and increased accuracy for the macroscopic and microscopic models, 

respectively. We now discuss the macroscopic model, to be followed by a discussion of the 

microscopic mode. 

II.6.a Macroscopic Model 
The macroscopic model represents macroscopic cross-section for a given fuel color, 

burnup and rod insertion as a Taylor series expansion in terms of coolant density., coolant 

temperature, effective fuel temperature and soluble poison number density as follows 

(suppressing fuel color, burnup and rod insertion notation): 
2 3 

where 

macroscopic cross-section for reaction type x anld energy 
group g without transient fission products corrected to local 
conditions 
expansion coefficients 
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AP, = P,- P, ( 0) 

AT,  = Tc-T,  ( 0) 

= change in coolant density (g/cm3) from reference condition 

change in coolant temperature ( O F )  from reference condition = 

A K f  = Kfl- ,/Tg) = charge in square root of effective fuel temperature (OF) from 
reference condition 

change in soluble poison number density ( ~ m - ~  x 
from reference condition. 

= (0) A N  SP = N s p - N s p  

The soluble poison number density change accounts for both soluble poison concentration (PPM) 

and coolant density (p,) changes. The effective fuel temperature is evaluated by 

= TC+ WC [ wpTF+ (1 - wp) TF - TC] 
TFcff Srf 

(112) 

where 

Wp = pellet weighting factor, which accounts for resonance flux depression in the 

interior of the pellet . 

core statistical weighting factor, that compensates for the lack of detail in the W, = 

spatial description of the core 

TF = volume average fuel pellet temperature (OF)  

surface average fuel pellet temperature (OF). - 

To obtain the macroscopic cross-section for node E free of transient fission products, one 

employs Equation (1 11) using the expansion coefficients for the fuel color of node I quadratically 

interpolated to the node I burnup, accounting for control rod effects as follows 

TFs,  - 

where f R o d d e d  is the fraction of node rodded. This treatment, for coarse axial meshing, produces 

the artificial behavior of control rod "cusping" when plotting integral rod worth versus insertion 

depth. Finally correcting for the transient fission products' effect on the absorption cross-section 
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we obtain 

where, 

with Nke and Nim denoting the Xe135 and Sm135 number densities for node 1. The Xe and Sm 

microscopic absorption cross-sections are represented and evaluated in exactly the same manner 

as the macroscopic cross-sections. As implied by the above equations, the reference conditions 

for the macroscopic cross-section input are xenon and samarium free. 

The following options exist in NESTLE in regard to establishing xenon and samarium 

number densities: equilibrium, transient, no xenon nor samarium, no xenon and transient 

samarium, and frozen at restart values. When the option requires, the number de:.zities are 

determined by solving the I ~ ~ ~ - x ~ ~ ~ ~  and Pm149-Sm149 chain depletion equations. The time- 

dependent depletion equations for the iodine-xenon chain are given by (again suppressing spatial 

dependence) 

where subscripts I and Xe denote I'35 and XeI3', respectively, and 
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(117) 

(118) 

steady-state 



for the Promethium-Samarium depletion chain. Note that the equilibrium isotopic number 

densities and flux are coupled. This is addressed by updating the number densities and 

subsequently cross-sections during the outer iteration process associated with solving the multi- 

group diffusion equation for either the eigenvalue problem or steady-state FSP. 

For the transient solutions, forward differencing over the time-step produces 

r G  1 

r G 1 

r 

where A? is the time-step associated with transient fission product conditions. In general, it is 

selected smaller and larger than the time-steps used in the core depletion and neutron kinetics 

solutions, respectively. 

II.6.b Microscopic Model 
The microscopic model only differs from the macroscopic model in that the number 

densities of the U234-U236 and U238-Pu242 fuel chains, two lumped fission product groups, and a 

simple burnable poison are explicitly calculated and used to determine the macroscopic cross- 
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sections. This implies that the macroscopic cross-section for node I is determined from 

where 

5 F  

macroscopic cross-section for the background (Bk) isotopes (i.e. without 

isotopes in set sF) 
set of fissile and fertile isotopes, lumped fission products and simple 

burnable poison (i.e. U234-U236 and U238-Pu242 chains, two lumped fission 

product groups, and simple burnable poison) 

As before, the macroscopic and microscopic cross-sections appearing on the RHS of Equation 

(127) are determined by interpolating expansion coefficients for the fuel color of node I to the 

node I bumup and using the results in Equation (1 1 1). 

The computational effort associated with the microscopic cross-section model is 

associated with evaluating node dependent microscopic cross-sections and solving the isotopic 

depletion equations, which can be expressed for the fuel isotopes in general form as follows 

& q ( t )  dt = p f ( t ) N f : - l  ( t )  - d f ( t ) N i ( t )  (128) 

where 

h. 
1 -  1 

or 
= production coefficient 
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G 

g = l  
di ( t )  = Li+ of ( t )$L ( t )  = destructioncoefficient 

ag 

Do note that Plutonium isotopic production is assumed to occur instantaneously upon 

neutron capture. Equation (128) is solved utilizing the Integrating Factor Technique, assuming the 

cross-sections constant at the end of time-step values and flux constant, set equal to either the 

beginning of time-step value (PREDICTOR option) or time-step averaged value (PREIXCTOR- 

CORRECTOR option) producing 

When using the PREDICTOR-CORRECTOR option, the time-step averaged flux value: is given 

1 <+;>,+ = 2 (4); (t,) + 0; (t,+ 1) 1 

The end of time-step value of the flux appearing in this equation is periodically updated during the 

flux iterations, resolving the depletion equations for new number densities and subsequently 

updating cross-sections each time this occurs. The periodicity of updates is specified via code 

input. For the fissile and fertile chains and simple burnable poison, the integral on the: RHS of 

Equation (129) can be analytically evaluated, since the solutions { N,f ( t )  } are composed of 

linear combinations of exponentials. The analytic solutions of Equation (129) have been 

determined and used in NESTLE. Ref. [ 161 provides further details on the analytic solutions. 

Two lumped fission products are used to model all fission products except I-Xe and Pm- 

Sm. Their pseudo number densities are determined by solving the associated pseudo depletion 

equations. In terms of Equation (128) notation, the lumped fission products production coefficient 

is given by 
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G 

g = 1  

where fLFj is the fission yield for Lumped Fission (LF) productj. Destruction is assumed to not 

exist. 

II.7 Control Option Searches 
Various options exist in NESTLE to adjust a certain control parameter such that the core is 

made critical for the AEVP or achieves the desired specified core power level for the steady-state 

FSP. Either control rods' position, coolant inlet temperature or soluble poison concentration can 

be selected as the control parameter to adjust. For the AEVP, core power level can also be 

selected. NESTLE adjusts the selected control parameter by contrasting the desired eigenvalue 

(Le. &E = 1.0) or core power level with the current outer iterative predicted value. This data is 

used to develop a linear expression for the value of the desired core attribute as a function of the 

selected control parameter, from which a new estimate of the value of the selected control 

parameter to achieve the desired core attribute value can be estimated. This process is repeated 

every so many outer iterations until both the convergence criteria on achieving the desired core 

attribute value and neutronic solution are mutually satisfied. For slowly convergent FSP this 

approach may fail if the predicted core power level used in developing the linear expression is not 

adequately converged. 
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ij is 

where 

II.8 Hydrodynamic Model 
II.8.a Field Equations 

The hydrodynamic model used in NESTLE models single and two phase coolant flow up 

closed coolant channels. A Homogenous Equilibrium Mixture (HEM) model is employed, 

limiting model applicability to low quality fluids where slip does not occur. The system of 

equations which describe the average conditions within the flow channel are obtained from the 

mass continuity and energy conservation equations, assuming pressure to be constant. The 

constant pressure assumption removes the need to consider the momentum equation. In addition, 

an Equation of State is used to provide closure. 

The one-dimensional, mass continuity equation dong a specified channel for a radial node 

apg (z, ti a .. 
= --G$(z, t ) A g ( z )  

A $ ( z )  at aZ 
Similarly, the energy conservation equation assuming constant pressure is given by 

A l j  c ( z )  a (p$ (z ,  t )  Uz (z ,  t )  ) = -- a (G$ (z, t )  A$ (z) U$ (z ,  t )  ) az 
-P-( a G'b (" 'IA' ) + qy ( z ,  t )  Sg+ q z  ( z ,  t )  A: ( z )  

P g  ( 2 7 0  

pg = coolant density 

G z  = coolant mass velocity 

UF = coolant internal energy 

qg = 

q! = fuel rod surface heat flux into the coolant 

volumetric power density from heat deposited directly in the coolant 
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A$ = 

$ = 

P = coolant pressure 

total cross-sectional area for coolant flow within the node 

total fuel rod surface area per unit axial length within the node 

Note that the field equations contain only the single spatial variable z due to the assumption of a 

homogenous, closed channel. 

The heat flux qs is obtained using Newton’s Law of Cooling as follows 

q ! ( z , f >  = h;f(Z,f)  (T$(z,f) - & z m  

where 

?{ = coolant temperature 

T$ = lumped (i.e. radially averaged) fuel temperature 

h$f = effective heat transfer coefficient 

The effective heat transfer coefficient, hepis defined so as to provide the correct heat flux when 

the lumped versus surface fuel temperature is used in Newton’s Law. The coolant temperature Tc 

is evaluated in terms of coolant internal energy U, using an Equation of State. 

These two partial differential equations contain three unknowns: coolant mass velocity, 

coolant internal energy and coolant density; a third equation is required to form a closed system of 

equations. This third equation is provided by an Equation of State expressing coolant density as a 

function of coolant internal energy. For the steady-state analysis, the field equations are used 

setting the temporal derivative terms equal to zero. 

II.8.b Equation Discretization 

In general the field equations are integrated over the flow stream from 2-JD to 8G+JD. This 

axial spatial mesh defines the volume of a radial node 0, as shown in Figure 3, equivalent to the 
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neutronic node 1. This spatial discretization results in node centered values for the fluid properties 

pc and U ,  and node boundary values for the mass velocity GC 

Discretizing the mass continuity equation by integrating over the staggered mesh produces 

Now the Mean Value Theorem is used to approximate the time derivative term to obtain 

where the bar over a variable denotes a node average value. Note that the axial mesh has been 

selected such that A, is constant for z E [ zk - zk + and flC = A$Azk. The integ.ral of the 

spatial derivative term yields 
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Node 2+1 

Node I 

I RadialNode i j  

k + 3 t 2  = I i 312 
Z 

k i l l 2  = 1 i 112 
Z 

Zk- 112 1 - 112 = z  

Figure 3: Thermal-hydraulic mesh notation 
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- l , n + l  -1,n 
- P  1+112,n+l 1+112 - 1-1/2,n+l 1 1f2 = 0 

+ G C  A, G C  4- 
9 C P  A tn 

The energy conservation equation, Equation (133) is discretized in a similar manner by 

integrating along the flow stream to eliminate the spatial derivative, and a semi-implicit time 

treatment is employed. The convective term is linearized by using new time-step level mass 

velocity and past time-step level for the other parameters. Furthermore, the coolant density is 

assumed to be constant over the time-step interval. The result of this discretization scheme is 

- 
1 1+1 /2 ,n+ l  1+1/2 1+1/2,n-f11- > / 2 , n + l  1 1/2 1+1/2,n 

= - ( G c  A C  U C  U C  4- uc 
9 -1,n P + l  P 

CP c 

where the time averaged terms appear as a result of the central difference time advancement 

treatment and are defined as 

and 

Note the convective and work terms in the energy equation contains fluid property values 

at the node boundaries. However, as stated previously, the fluid property values are to be 

calculated as node averages. An intuitive approach would be to spatially average adjacent node 

average property values along the flow direction to obtain the node boundary values. However, it 
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has been found that a donor cell averaging technique is necessary for numerical stability [ 171. The 

donor cell average is defined for the coolant internal energy as 

U1-1/2,n = gc-l*n 
and C 

1 + 1 / 2 , n  = j$n 
UC 

and for the coolant density as 

I-1/2,n = -1-1,n 
PC 

1+1/2,n = - L n  
PC Pc and Pc 

for flow in the positive direction, the only modelling capability within NESTLE. 

To solve the two coupled discretized equations, the Equation of State for coolant density 

in terms of coolant internal energy is linearized as follows 

(143) 

This equation is then substituted into Equation (138) to solve for the coolant mass velocity in 

terms of coolant internal energy to produce 

Finally, the above equation is substituted into Equation (139) to produce an equation only in terms 

of coolant internal energy 

This equation is solved for #bn + at each radial node by sweeping in the direction of coolant 

flow. The following auxiliary relationships are used to evaluate terms appearing in the above 

equation: 
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-1, n J,J Coolant Volumetric Heat Source: &"V', = ( 1 - dF) qT 

where 

fiodded 

rF 

NkuelPins 

dF 

4 P  

- - wet fraction for the node when rodded 

fuel rod radius 

number of fuel pins within the node 

distribution fraction of energy 'directly deposited within the fuel 

total volumetric power density for heat deposited within the node. 

Having obtained values for the coolant internal energy at the new time-step, thie coolant 

densities are evaluated at the new time-step using an Equation of State for the liquid if coolant 

internal energy indicates sub-cooled conditions for the node. If bulk boiling is indicated,. the void 

fraction is first determined as follows (suppressing superscripts) 

where 

- saturated coolant liquid internal energy 

UC" - - saturated coolant vapor internal energy 

= saturated coolant liquid density 

- - saturated coolant vapor density 

uc, - 

PCL 

PC, 

from which the coolant density is determined as now indicated 
- 
Pc = Gcy+ (1  -G)Pc, 
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d& These same equations are utilized in determining introduced back in Equation (144). Having 
dUc 

evaluated the coolant density, Equation (138) is used to solve for the coolant mass velocity at the 

new time-step. 

The above approach is not unconditionally stable and must satisfy the Courant material 

limit due to the degree of semi-implicitness introduced in linearizing the equations. This stability 

limit for certain transients restricts the time-step sizes to values smaller than required to control 

truncation errors. The Stability-Enhancing Two-step (SETS) Method developed at LANL [ 181 is 

used to allow a Courant material limit violating treatment. Since this method was originally 

utilized within the context of the six-equation model used within the TRAC code, a slight 

modification of the SETS method is required for the current application. 

The stabilizing energy conservation equation used to solve for #tn + * is given by 

Do note the increased degree of implicitness of this equation. Estimates of the current time-step 

values are determined solving the previous introduced set of equations. Having stabilizing 

predicted values of coolant internal energy, they are then utilized to update the coolant density as 

noted before. Also, the coolant temperature is determined based upon coolant internal energy, 

using an Equation of State for sub-cooled fluid and the saturation temperature for saturated fluid. 

This approach has been shown to allow large time-steps without stability problems, as indicated 

by solving the transient equations at steady-state conditions and observing no drift. 

The SETS process is repeated as new estimates of the volumetric power density become 

available, associated with the iterative solution for the flux. To initiate the process, the volumetric 
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power densities at the new time-step are set equal to the old-time step values. This provides an 

initial estimate of the coolant and fuel conditions at the new time-step, used to correct cross- 

sections and commence the flux iterations. 

For the feedback correction of cross-sections with respect to coolant density, coolant 

temperature, and effective fuel temperature, all must be evaluated as node average: values. 

Likewise, the coolant temperature appearing in Newton’s Law requires node average values. 

Previously we stated that we are solving for node average values of coolant properties, so all 

would seem in order. However, thinking about the steady-state solution of the energy balance 

equation it becomes clear that coolant internal energy is really evaluated at node boundaries. In 

this sense donoring is done counter-flow from the node boundary value to the node average value. 

Therefore the node average coolant temperature is determined using an Equation of State based 

upon the average of the coolant internal energy at axial elevations k-I and k. The node average 

coolant density used to correct cross-sections follows a similar approach, now directly averaging 

densities. This subtlety becomes important for large axial meshing (e.g. 2D radial geometry). 

II.8.c Fuel Temperature Model 

The lumped (i.e. radially averaged) fuel temperature is obtained by utilizing a lumped 

parameter heat conduction model, in which a simple energy balance for each radial node is 

performed. This approach should be valid for transients where the fuel pin-wise radial profile of 

the fuel temperature stays close to the steady-state profile. The rate of energy change in each node, 

ignoring axial heat conduction, can be expressed as the difference between the node heat source 

i$ ( r ,  z ,  t )  and the energy lost due to heat transported radially: 

where r denotes the radial coordinate for an average pin in node ij and 

ug = fuel internal energy 
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pg = fueldensity 

qf = 

- - 

volumetric power density from heat deposited directly in the fuel 

heat flux within the fuel #f 

Using Fourier's Law of Thermal Conductivity expresses the heat flux within the fuel as 

&(r,z,  t )  = -&r, 2, t )  V J $ ( r ,  2, t )  (151) 

where k~ denotes the fuel's thermal conductivity. Substituting Equation (151) into Equation (150) 

produces 

The enthalpy is now expressed in terms of the fuel specific heat ( cp,) and temperature, density is 

assumed constant, and fuel specific heat is assumed slowly varying in time allowing Equation 

(152) to be rewritten as 

Integrating over the node I volume occupied by fuel, denoted, 

vi = $ x V  I (1 54) 

where fi indicates the fraction of node I occupied by fuel, applying the central difference time 

advancement scheme, and rearranging terms yields the final expression for the node average fuel 

temperature. 
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In obtaining Equation (155) the volume integral over the heat conduction term is conve:rted to a 

surface integral via Green's Theorem, and the resulting expression for the surface heat flux is 

evaluated using Newton's Law of Cooling given by Equation (134). Do note that the effective 

heat transfer coefficient is treated explicitly in both the coolant and fuel energy conservation 

equations. Also the he1 volumetric heat source that appears in Equation (153) has been replaced 

in Equation (155) using the following expression. 

GknflF = d d r  -1, n ( 156) 

Since only appears in the 'heat sink' term in Equation (155) and is a function of f k  (see 

Equation (154)), the value off: may be varied by fuel color to account for fuel density variations 

by color to overcome the input limitation of only inputting the core average fuel density. The 

depletion equations will also correctly reflect fuel density variations captured by the fue:l volume 

fraction. 

In addition to lumped fuel temperature, the surface fuel temperature is required to evaluate 

the effective fuel temperature used to correct cross-sections for Doppler broadening, as indicated 

in Equation (112). This is obtained by characterizing surface fuel temperature as a function of 

linear power density for a reference coolant temperature, TcRe,in terms of a polynornial. The 

spatially dependent linear power density is given by 

The surface fuel temperature is then determined using 

where fT (si ") denotes the polynomial function. 
S rf 

II.8.d Steady-State Model 
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For steady-state conditions, the governing equations used to solve for the coolant and fuel 

conditions are obtained by setting the temporal derivative to zero. When this is done in the 

coolant's mass continuity equation, Equation (132), it is seen that the product of coolant mass 

velocity and cross-sectional flow area must be constant up the flow channel. Also the concept of 

donoring no longer enters since node average coolant values only appeared because of the 

temporal derivative terms. These implications lead to the following discretized equations: 

Coolant Mass Continuity 

where subscript In denotes the inlet to radial node ij associated with node 1. 

Coolant Energy Conservation 

Fuel Energy Conservation 

Surface fuel temperature is evaluated as indicated for the transient conditions. These equations are 

iteratively solved as new estimates of the flux become available, providing new estimates of the 

surface heat flux and volumetric heat densities. During these iterations the effective heat transfer 

coefficient is also updated, producing consistent values for the effective heat transfer coefficient 

and lumped fuel temperature as now described. 

II.8.e Effective Heat Transfer Coefficient Evaluation 

For the lumped fuel temperature model to be utilized, the effective heat transfer coefficient 

must be evaluated. For steady-state conditions we can select the effective heat transfer coefficient 
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such that the correct values of the lumped fuel temperature result, these temperatures determined 

utilizing a more detailed fuel pellet model. This implies the following: 
- 
qFAF = he#F (?F- TcRe) (162) 

One can now solve for hefgiven values of TF and q~ for a fixed coolant temperature as :Follows. 

Note that h@ has been characterized as a function of TF since the fuel thermal conductrvity and 

gap closure, both functions of fuel temperature, are the main reasons why he8changes. This 

characterization is captured using a polynomial representation. 

For steady-state cdculations, an initial estimate of fuel temperature is obtained by 

characterizing it as a function of linear power density in terms of a polynomial. Given this initial 

lumped fuel temperature estimate, the effective heat transfer coefficient can be evaluated. Now 

Equation (161) can be used to calculate a new estimate of the lumped fuel temperature once the 

node average coolant temperature and volumetric heat density have been evaluated. As the flux 

solution is iterated, this sequence of calculations is repeated. The iteration of the thermal- 

hydraulic equations not only addresses feedback between its solution and the neutronic solution, 

but addresses the non-linearities in calculating the lumped fuel temperature due to effective heat 

transfer coefficient dependency on fuel temperature. 

For transient calculations, the same iterative sequence is employed; however, now the fuel 

specific heat is also updated due to fuel temperature dependency. In addition the surface heat flux, 

which appears in the transient coolant energy conservation equation, is also updated utilizing the 

updated effective heat transfer coefficient, coolant temperature and lumped fuel temperature in 

Newton’s Law. 

II.8.f Decay Heat Model 

When the reactor shuts down, the reactor power does not immediately drop to zero but 
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falls off rapidly according to a negative period, eventually determined by the half-life of the 

longest-lived delayed neutron group. Even then, the transuranics and fission products existing in 

the fuel continue to decay (p and y) at decreasing rates for long periods of time. The heat 

generated from isotopic decay of these isotopes following reactor shutdown is called decay heat. 

Although there are many isotopes involved in the complex decay chain, it is customary to fit a 

measured decay heat curve for a high burnup reactor with a series of decay heat groups. Thus, the 

model is analogous to the handling of delayed neutrons. 

Accounting for decay heat, the total volumetric heat density is given by 

g = 1  i =  1 

where 

El Di ( k  0 = concentration of decay heat group i 

- - disintegration rate (decay constant) [sec-'1 

fraction of the total fission energy appearing as decay heat for decay heat 

group i 

[(DW 

ai = total fraction of the fission energy appearing as decay heat 
i =  1 

The concentration of decay heat precursors can be expressed by the following differential 

equation. 

i = I, ..., (165) 
g = l  

To develop an expression for the decay heat precursor concentrations, a time-integrated 

expression is derived by integrating Equation (165) from f n  to This integration results in 



(suppressing ? dependence for clarity) 

To solve the above integral, a functional form for the time dependent neutron fission source 

density must be developed. Assume the fission source density is constant over the time interval 

?’ E [ t,, tn + at the past time-step value, Le. 

G G 

Incorporating this approximation into Equation (166) and rearranging terms we obtain th,e desired 

expression. 

In steady-state it is generally assumed that even the longest-lived group is in equilibrium. 

The steady-state concentration is calculated by setting the time derivative to zero in Equation 

(1 65) and solving for the precursor concentration producing, 

This equation is utilized to determine the initial conditions required for the transient solution. 
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IV User’s Guide 

The NESTLE code has been written with a view to minimizing the input preparation effort 

as much as possible. A brief description of the function of each subprogram in NESTLE is given 

in the Programmer’s Guide section along with the flow diagram of the code. By separating the 

type of input (e.g. cross section, geometry, or program control) into distinct input files, it is 

possible to setup widely varied problems with little input preparation effort. All input data except 

for restart files are on disk and in free format (except the alphanumeric strings). Thus quick 

editing is possible and comments to identify each input data can be attached to each data with a 

double blank between the input and comment. The alphanumeric string variables for file names 

generally have enough length (A40) so that file names can be assigned to them for later quick 

identification of the files. Due to the large amount of data written in the restart files, these files are 

written unformatted to save on storage and facilitate fast retrieval of the data by the code. 

The logical units assigned to each file, file name if not free to select, and the contents of 

the files are as follows. Users specify all “Free to Select” file names in the NESTLE.CNTL file, 

the exception being Unit 33 files which are specified in the Unit 3 file. 

&ogical Unit 

1 

2 

3 

4 

5 

9 

10 

33 

55 

rn 
I 

I 

I 

I 

I 

I 

0 

I 

0 

File Name 

NESTLE. CNTL 

Free to Select 

Free to Select 

Free to Select 

Free to SeIect 

Free to Select 

Free to Select 

Free to Select 

Free to Select 
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Contents 

Code Control Parameter Data 

Geometry Data 

Cross Section Data 

Kinetic Data 

Solution Method Control Data 

Restart Data-Read (Binary) 

Restart Data-Write (Binary) 

Cross Section Data (Optional) 

Hardcopy Output 



The following sections describe the input data required for each of the ASCI input files. If 

a fixed formatted read is involved, immediately after the variable name in parenthesis is 

indicated the applicable format. In addition, for lines of input that are contained within a DO loop 

or are only read if certain other input values have certain values, a FORTRAN style DO or IF' 

notation with indentation is employed. 
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IV.1 Code Control Parameter Data File 
(Unit 1 => “NESTLE.CNTL”) 

TITLE (A80) 

Title line to identify run in hardcopy output 

NBUSTEP 

Maximum of the number of burnup mask values input for the soluble poison concentration 

or (burnup steps+l). 

NBMAX 

Maximum number of control rod banks (groups) to be input. 

GEOM (A40) 

Geometry data file name (Unit 2) 

XSECT (A40) 

Cross section data file name (Unit 3) 

KINET (A40) 

Kinetic data file name (Unit 4) 
/ 

PERFM (A40) 

Solution method control file name (Unit 5 )  

RESTRT (A40) 

Restart file name [to read] (Unit 9) 

OUTPUT (A40) 

Hardcopy output file name (Unit 55) 

OUTADJ (A40) 

Unformatted output file name for adjoint solution (Unit 10) 

IADJ (A5) 

Adjoint option (“Y”/”N”) 
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ISAVEADJ (A5) 

Write adjoint solution to file OUTADJ (“Y”/”N) - (-45) 

Transient option (“Y’T’N) 

IRSTRT (A5) 

Restart option (“Y”/”N’) 

ITYPE (A5) 

Problem type 

Eigenvalue (“EVP”) 

Fixed-source (“FSP”) 

NXSEC (A5) 

Cross-section corrections to be applied (“Y”/”N’) 

IF (NXSEC.EQ.”Y”) THEN READ 

ASRCH (A5) 

CriticalityPower level search option (“Y”/”N’) 

IF (ASRCH.EQ.”Y”) THEN READ 

WHICH 

Parameter to search upon 

Power level (relative)= 1 

Soluble poison concentration (PPM)=2 

Coolant inlet temperature (OF)=3 

Lead (I.D.=highest value) control bank withdrawn (inches)=4 

IF(IYPE.EQ.”EVP’) THEN READ 

CKE-TARGET 

Target kff value to match in search 
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ENDIFEVP 

ENDIF ASRCH 

NFDBK (A5) 

Thermal-hydraulic feedback on (‘‘YPN) 

DE 

Xenon-samarium conditions 

No Xe and Sm=l 

Freeze Xe and Sm=2 

Equilibrium Xe and Sm=3 

No Xe and transient Sm=4 

Transient Xe and Sm=5 

ENDIF NXSEC 

ABUCKL (A5) 

Buckling correction option to be applied (T“/”N”) 

AVEBU( 1) 

Cycle average burnup at first burnup step (MWD/MTM) 

IBURN (A5) 

Depletion case (“Y”/”N’) 

IF IBURN=”Y” THEN READ 

NBU 

Number of burnup steps 

(DELBU(I),I=2,NBU+l) 

Burnup steps’ sizes (MWDMTM) 

ENDIF IBURN 

IF (NXSEC.EQ.”Y”) THEN READ 
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NPPMX 

Number of burnup steps that letdown soluble poison concentration provided ;It 

DO IBU=l,NPPMX 

BUPM(IPM),PPM(IPM) 

Cycle burnup (MWD/MTM) and soluble poison concentration (PPM) 

ENDDO IBU...Burnup step loop 

(ZB(IBK) ,IBK= 1 ,NBMAX) 

Control banks (group) axial withdrawal position (in) 

PRCNT 

Power level (% of full rated) 

ENDIF NXSEC 

AL3 (A5) 

Long input echo option (,‘Y”/”N’) 

NPC (A5) 

Long hardcopy output option(“Y”/”N”) 

IF (NPC.EQ.”Y ‘)THEN READ 

NOUTLONG 

Number of variables whose node values are to be output 

(AOUTLONG(N),N=l,NOUTLONG) (lO(A5,lX)) 

Names of variables whose node values are to be output 

PREL, FLUX, DCOOL, TCOOL, TFUEL, BU, 1135, XE135, PM149, SM1419, U234, 

U235, U236, U238, PU239, PU240, PU241, PU242, LFF’G1, LFPG2, BP, ADJFL 

ENDIF NPC 

CRTON (A5) 

CRT output option (“Y”/”N’) 
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DO IBU=l,NBU+l ... For each burnup step 

ISAVE(IBU) (A5) 

Write steady-state restart file ("Y"/"N') at burnup step IBU 

IF (ISAVE(IBU).EQ."Y") THEN READ 

OUT(IBU) (A40) 

Steady-state restart file name [to write] at burnup step IBU 

ENDIF ISAVE(IBU) 

ENDDO IBU...Burnup step loop 

ISASETR (A5) 

Write transient restart file ("Y"/"N') 

IF (ISAVETR.EQ."Y") THEN READ 

OUTTR (A40) 

Transient restart file name [to write]. This file is written at every time indicated by the 

kinetic file input variable TIMEPR(IT), that indicates times when output should be 

produced. Note transient restart file is overwritten each time to save space. 

ENDIF ISAVETR 
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IV.2 Geometry Data File 
(Unit 2 => “GEOM”) 

NSHAP (As) 

Node shape in radial plane 

Hexagonal (“HEXA”) 

Cartesian (“CAFtT”) 

IDRUN (A5) 

Core symmetry 

IF NSHAP=”HEXA” 

Full core (“FCORE”) 

One-third core (“TCOFW’) { 5 to 9 o’clock} 

One-sixth core (“SCORE”) { 5 to 7 o’clock} 

One-dimensional axial core (“AXIAL”) 

IF NSHAP=”CART” 

Full core (“FCOFW’) 

Half core (“HCORE”) { 3 to 9 o’clock} 

Quarter core (“QCORE”) { 3 to 6 o’clock} 

One-dimensional axial core (“AXIAL”) 

ENDIF NSHAP 

IF (NSHAP.EQ.”CART”) THEN READ 

NX,NY 

The x and y total mesh numbers applicable to initial homogenous material regions. 

NMULXY 

Number of mesh to create from each input x and y material mesh. 

ELSEIF (NSHAP.EQ.”HEXA”) THEN READ 

86 



NHR 

Number of radial rings of bundles (assemblies) surrounding center bundle. 

ENDIFNSHAP 

NZ 

The z total mesh number applicable to initial material regions. 

NMULZ 

Number of mesh to create from each input z material mesh. 

NFIGURE 

Number of different radial configurations (basic figures) of core materials over all elevation. 

LMO,LIPS,LIZU,LIZD 

Boundary conditions: Radial exterior, radial interior, z-up, z-down 

(reflective=O, zero flux= 1, non-reentrant=2, cyclic=3, not applicabled) 

For radial exterior, z-up and z-down boundaries, LIHO cannot equal 3. 

IF(NSHAP.EQ."CART1') THEN READ 

BPITCHX,BPITCHY 

Pitch for bundles (assemblies) in the x and y directions (in). 

NSUBX,NSUBY 

Number of different x and y material mesh sizes to utilize in numerical solution. 

(NSPACX(I),DDX(I),I=l,NSUBX) 

Number of consecutive x material mesh (NSPACX(1)) of constant x mesh size 

(DDX(1)) running from west to east. [Note the sum of NSPACX(1) must equal NX.] 

(NSPACY(J),DDY(J),J= 1 ,NSUBY) 

Number of consecutive y material mesh (NSPACY(J)) of constant y mesh size 

(DDY(J)) running from north to south. [Note the sum of NSPACY(J) must equal NY.] 

ELSEIF (NSHAP.EQ."HEXA") THEN READ 
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DELH 

Pitch of bundles (assemblies) (in) 

ENDIFNSHAP 

(See following section entitled GEOMETRY INPUT for detailed description of geometry input,.) 

DO IB=l,NFIGU RE... For each color figure 

NBASIC(D3) 

Basic figure I.D. (=1,2 ,...) 

DO IY=1, NY... For each y mesh 

(NCOL2DT(IX,IY,IB), IX=NXSTART(IY),NXEND(IY),NXSKIP) 

Core material colors defined for initial radial material mesh. 

ENDDO ... Y mesh loop 

ENNDO ... Color figure loop 

Blank Line 

DO IY=1, NY... For each y mesh 

(NROT2DT(IX,IY) ,IX=NXSTART(IY) ,NXEND( IY) ,NXS KIP) 

Mesh clockwise rotation of core material used to define surface ADFs for initial 

radial material mesh. 

(Cartesian: 0' = 0,90° = 1, 180' = 2,270' = 3) 

(Hexagonal: 0' = 0,60° = 1, 120' = 2, 180' = 3,240' = 4,300' = 5 )  

ENDDO ... Y mesh loop 

Blank Line 

DO IY=l,NY 

(NREF2DT(IX,IY) ,IX=NXSTART(IY),NXEND(IY),NXSKIP) 

Mesh diagonal axis reflection of core material used to define surface ADFs 

for initial radial material mesh. (No reflection = 0, 
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Reflection about NW to SE node diagonal of original orientation = 1) 

ENDDO ... Y mesh loop 

NSUBZ 

Number of different z material mesh sizes to utilize in numerical solution. 

(NSPACZ(K),DDZ(K),K=l ,NSUBZ) 

Number of consecutive z material mesh (NSPACZ(K)) of constant z mesh size (DDZ(K)) 

running from down to up. [Note the sum of NSPACZ(K) must equal NZ.] 

IZCOLS ,IZCOLE 

Starting and ending axial material mesh numbers for fuel. 

(NCOLZT(IZ),IZl ,NZ) 

Basic figure I.D. assigned to initial axial material mesh. 

Blank Line 

(NTOPZT(IZ),IZ=l ,NZ) 

Mesh axial reflection of core material used to define surface ADFs for initial 

axial material mesh. (Up and down surfaces' ADFs reversed) 

IF (NXSEC.EQ."Y") THEN READ 

Blank Line 

DO IY=l,NY. ..For each y mesh 

(LROD2DT(IX,IY) ,IX=NXSTART(IY) ,NXEND( IY) ,NXS KIP) 

Control bank (group) I.D. defined for radial material mesh. 

(Bank Present=l , 2, ..., NBACU, Bank Not Present=O) 

ENDDO ... Y mesh loop 

RODOFFSET 

Elevation above bottom of fuel when control bank fully inserted (in). 

ENDDO NXSEC 
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DO IY=l ,IVY... For each y mesh 

(LSEXT2DT(IX,IY),IX=NXSTART(IY),NXEM>(lY),NXSKIP) 

External source locations defined for radial material mesh 

(Source Present= 1, Source Not Presentd) 

ENDDO ... Y mesh loop 

Blank Line 

(LSEXTZT(IZ),IZ=l ,NNZ) 

External source locations defined for axial material mesh. 

(Source Present= 1, Source Not Present=O) 
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IV.2.a Geometry Input 
To simplify the input of geometric information, NESTLE utilizes a highly flexible and yet 

automated input approach. The required input is all provided on Unit 2 => “GEOM. Core shape 

( N S H A P )  can be either Cartesian-Z or Hexagonal-Z. Core symmetries (IDRUN) for Cartesian-Z 

include the following: full core, half core (3 to 9 o’clock), quarter core(3 to 6 o’clock), and one- 

dimensional axial core. Core symmetries (IDRUN) allowed for in Hexagonal-Z include the 

following: full core, one-third core (5 to 9 o’clock), one-sixth core (5 to 7 o’clock), and one- 

dimensional axial core. Figure (4) shows examples of radial material geometry figures for each of 

these geometries. If the number of axial mesh points is set to one and reflective boundary 

conditions are utilized on z-up and z-down surfaces, a two-dimensional model results. 

The number of homogenous material region mesh points input in conjunction with the 

above core shape and symmetry input is used to automatically determine the input expected for 

the geometry figures. For Cartesian-Z core shape the number of x (NX) and y (NY) material mesh 

dictates the Cartesian core layout and hence geometry figures. Figure (4) corresponds to (NX,NY) 

= (36,36), (36,lS) and (18,lS) for the full, half and quarter core problems, respectively. For 

Hexagonal-Z core shape the number of radial rings of bundles surrounding the central bundle 

(NHR) dictates the hexagonal core layout and hence geometry figures. Figure (4) corresponds to 

NHR = 10. Note in both these figures the ‘0’ entries in certain material mesh locations. This 

indicates to the NESTLE code the edge of the geometry to be analyzed where boundary 

conditions will be applied. It is required that every materia1 mesh that is created from the 

core shape, symmetry and material mesh number input have a value input for all geometry 

figure inputs. 

The material mesh sizes are determined based upon input. For the Hexagonal-Z core 

shape, the bundle pitch (DELH) uniquely specifies radial mesh size. Variable mesh sizes in the 

axial direction are allowed. For the Cartesian-Z core shape, variable mesh sizes in all directions 
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(ie. x, y and z) are allowed. Rather than requiring mesh sizes in each direction to be input for each 

mesh, mesh sizes are input separately for each direction with the span (NSPACX, NSPlICY and 

NSPACZ) and size (DDX, DDY and DDZ) of a fixed mesh size input over all spans (:NSVsX, 

NSUBY and NSUBZ). 

To facilitate mesh refinement for Cartesian-Z core shape only, from eveiy initial 

homogenous material mesh, refined numerical solution meshes can be generated in each direction 

(Le. x, y and z) each with the same properties as the original material mesh. Feedback and 

depletion effects will than be applied to the refined numerical solution mesh. This simplijfies input 

and is very convenient when running fine-mesh benchmarks using the FDM. The input variables 

NMULXY and NMULZ provide the required information to complete the mesh refinement. 

Boundary conditions are specified in terms of radial exterior, radial interior, z-up and z- 

down boundaries. The radial exterior and interior boundaries locations depend upon the core 
I 

shape and symmetry specified. For example, with Cartesian-Z core shape and quarter core 

symmetry the interior boundaries correspond to the north’ and west surfaces and the exterior 

boundaries correspond to the south and east surfaces. Reflective, zero current, non-reentrant 

current and cyclic boundary conditions are treated. The cyclic boundary condition may only be 

used on the radial interior boundaries. 

Cross-section (e.g. fuel) colors are input via geometry figures for each unique radial 

configuration (NCOL2DT) as shown in Figure (4). These radial material geometry fil, w e s  are 

than assigned to the axial material mesh via an axial mask (NCOLZT). A similar geometry figure 

input style is used for all input quantities that are spatially dependent. 

The final point to note with regard to geometry input concerns NESTLE’S usage of bundle 

pitch (i.e. BPITCHX and BPITCHY) for Cartesian-Z core shape. These variables are only used to 

determine the fuel bundle boundaries used in the control of output edits. Given the core shape and 

symmetry, mesh size and layout, and bundle pitch, NESTLE will automatically determine the 
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bundle boundaries, including the capability to recognize off-set bundles as encountered in C-E 

cores and quarter and half assemblies when symmetry does not correspond to full core. 
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0 0 0 0 2 2 2 2 1 7 7 8 8 5 5 3 3 4 4 3 3 5 5 8 8 7 7 1 2 2 2 2 0 0 0 0  
0 0 2 2 2 2 1 1 1 7 7 8 8 5 5 3 3 4 4 3 3 5 5 8 8 7 7 1 1 1 2 2 2 2 0 0  
0 0 2 2 2 2 1 7 7 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 7 7 1 2 2 2 2 0 0  
0 0 2 2 1 1 1 7 7 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 7 7 1 1 1 2 2 0 0  
0 0 2 2 1 7 7 8 8 5 5 3 3 5 5 3 3 6 6 3 3 5 5 3 3 5 5 8 8 7 7 1 2 2 0 0  
2 2 2 2 1 7 7 8 8 5 5 3 3 5 5 3 3 6 6 3 3 5 5 3 3 5 5 8 8 7 7 1 2 2 2 2  
2 2 2 2 1 7 7 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 7 7 1 2 2 2 2  
2 2 1 1 1 7 7 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 7 7 1 1 1 2 2  
2 2 1 7 7 9 9 3 3 5 5 3 3 5 5 3 3 6 6 3 3 5 5 3 3 5 5 3 3 9 9 7 7 1 2 2  
2 2 1 7 7 9 9 3 3 5 5 3 3 5 5 3 3 6 6 3 3 5 5 3 3 5 5 3 3 9 9 7 7 1 2 2  
2 2 1 7 7 3 3 4 4 3 3 6 6 3 3 6 6 3 3 6 6 3 3 6 6 3 3 4 4 3 3 7 7 1 2 2  
2 2 1 7 7 3 3 4 4 3 3 6 6 3 3 6 6 3 3 6 6 3 3 6 6 3 3 4 4 3 3 7 7 1 2 2  
2 2 1 7 7 9 9 3 3 5 5 3 3 5 5 3 3 6 6 3 3 5 5 3 3 5 5 3 3 9 9 7 7 1 2 2  
2 2 1 7 7 9 9 3 3 5 5 3 3 5 5 3 3 6 6 3 3 5 5 3 3 5 5 3 3 9 9 7 7 1 2 2  
2 2 1 1 1 7 7 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 7 7 1 1 1 2 2  
2 2 2 2 1 7 7 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 7 7 1 2 2 2 2  
2 2 2 2 1 7 7 8 8 5 5 3 3 5 5 3 3 6 6 3 3 5 5 3 3 5 5 8 8 7 7 1 2 2 2 2  
0 0 2 2 1 7 7 8 8 5 5 3 3 5 5 3 3 6 6 3 3 5 5 3 3 5 5 8 8 7 7 1 2 2 0 0  
0 0 2 2 1 1 1 7 7 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 7 7 1 1 1 2 2 0 0  
0 0 2 2 2 2 1 7 7 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 7 7 1 2 2 2 2 0 0  
0 0 2 2 2 2 1 1 1 7 7 8 8 5 5 3 3 4 4 3 3 5 5 8 8 7 7 1 1 1 2 2 2 2 0 0  
0 0 0 0 2 2 2 2 1 7 7 8 8 5 5 3 3 4 4 3 3 5 5 8 8 7 7 1 2 2 2 2 0 0 0 0  
0 0 0 0 2 2 2 2 1 1 1 7 7 7 7 9 9 3 3 9 9 7 7 7 7 1 1 1 2 2 2 2 0 0 0 0  
0 0 0 0 0 0 2 2 2 2 1 7 7 7 7 9 9 3 3 9 9 7 7 7 7 1 2 2 2 2 0 0 0 0 0 0  
0 0 0 0 0 0 2 2 2 2 1 1 1 1 1 7 7 7 7 7 7 1 1 1 1 1 2 2 2 2 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 2 2 2 2 2 2 1 7 7 7 7 7 7 1 2 2 2 2 2 2 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 ~ 0 0  

C a r t e s i a n - Z  Ful l  Core  

Figure 4: Radial material geometry figures for different 
core  g e o m e t r i e s  a n d  s y m m e t r i e s  
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2 2 1 7 7 3 3 4 4 3 3 6 6 3 3 6 6 3 3 6 6 3 3 6 6 3 3 4 4 3 3 7 7 1 2 2  
2 2 1 7 7 9 9 3 3 5 5 3 3 5 5 3 3 6 6 3 3 5 5 3 3 5 5 3 3 9 9 7 7 1 2 2  
2 2 1 7 7 9 9 3 3 5 5 3 3 5 5 3 3 6 6 3 3 5 5 3 3 5 5 3 3 9 9 7 7 1 2 2  
2 2 1 1 1 7 7 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 7 7 1 1 1 2 2  
2 2 2 2 1 7 7 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 7 7 1 2 2 2 2  
2 2 2 2 1 7 7 8 8 5 5 3 3 5 5 3 3 6 6 3 3 5 5 3 3 5 5 8 8 7 7 1 2 2 2 2  
0 0 2 2 1 7 7 8 8 5 5 3 3 5 5 3 3 6 6 3 3 5 5 3 3 5 5 8 8 7 7 1 2 2 0 0  
0 0 2 2 1 1 1 7 7 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 7 7 1 1 1 2 2 0 0  
0 0 2 2 2 2 1 7 7 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 7 7 1 2 2 2 2 0 0  
0 0 2 2 2 2 1 1 1 7 7 8 8 5 5 3 3 4 4 3 3 5 5 8 8 7 7 1 1 1 2 2 2 2 0 0  
0 0 0 0 2 2 2 2 1 7 7 8 8 5 5 3 3 4 4 3 3 5 5 8 8 7 7 1 2 2 2 2 0 0 0 0  
0 0 0 0 2 2 2 2 1 1 1 7 7 7 7 9 9 3 3 9 9 7 7 7 7 1 1 1 2 2 2 2 0 0 0 0  
0 0 0 0 0 0 2 2 2 2 1 7 7 7 7 9 9 3 3 9 9 7 7 7 7 1 2 2 2 2 0 0 0 0 0 0  
0 0 0 0 0 0 2 2 2 2 1 1 1 1 1 7 7 7 7 7 7 1 1 1 1 1 2 2 2 2 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 2 2 2 2 2 2 1 7 7 7 7 7 7 1 2 2 2 2 2 2 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0  

Cartes ian-Z Half  Core 

3 6 6 3 3 6 6 3 3 4 4 3 3 7 7 1 2 2  
6 3 3 5 5 3 3 5 5 3 3 9 9 7 7 1 2 2  
6 3 3 5 5 3 3 5 5 3 3 9 9 7 7 1 2 2  
3 5 5 3 3 5 5 3 3 5 5 7 7 1 1 1 2 2  
3 5 5 3 3 5 5 3 3 5 5 7 7 1 2 2 2 2  
6 3 3 5 5 3 3 5 5 8 8 7 7 1 2 2 2 2  
6 3 3 5 5 3 3 5 5 8 8 7 7 1 2 2 0 0  
3 5 5 3 3 5 5 3 3 7 7 1 1 1 2 2 0 0  
3 5 5 3 3 5 5 3 3 7 7 1 2 2 2 2 0 0  
4 3 3 5 5 8 8 7 7 1 1 1 2 2 2 2 0 0  
4 3 3 5 5 8 8 7 7 1 2 2 2 2 0 0 0 0  
3 9 9 7 7 7 7 1 1 1 2 2 2 2 0 0 0 0  
3 9 9 7 7 7 7 1 2 2 2 2 0 0 0 0 0 0  
7 7 7 1 1 1 1 1 2 2 2 2 0 0 0 0 0 0  
7 7 7 1 2 2 2 2 2 2 0 0 0 0 0 0 0 0  
1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 0 0  
2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0  
2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0  

Cartes ian-Z Quarter  Core 

Figure 4 (cont): Radial material geometry figures for different 
core  geometr ies  and symmetr ies  
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0 0 0 0 5 5 5 0 0 0 0  
0 5 5 5 5 5 5 5 5 5 5 0  

0 5 5 5 5 4 4 4 5 5 5 5 0  
0 5 5 5 4 4 4 4 4 4 5 5 5 0  

5 5 5 4 4 4 1 4 1 4 4 4 5 5 5  
5 5 4 4 4 4 3 3 3 3 4 4 4 4 5 5  

5 5 4 4 1 3 3 3 3 3 3 3 1 4 4 5 5  
0 5 4 4 4 3 3 2 3 3 2 3 3 4 4 4 5 0  

0 5 5 4 1 3 3 3 3 3 3 3 3 3 1 4 5 5 0  
0 5 5 4 4 3 3 3 3 3 3 3 3 3 3 4 4 5 5 0  

0 5 5 5 4 4 3 2 3 3 3 3 3 2 3 4 4 5 5 5 0  
0 5 5 4 4 3 3 3 3 3 3 3 3 3 3 4 4 5 5 0  
0 5 5 4 1 3 3 3 3 3 3 3 3 3 1 4 5 5 0  
0 5 4 4 4 3 3 2 3 3 2 3 3 4 4 4 5 0  
5 5 4 4 1 3 3 3 3 3 3 3 1 4 4 5 5  
5 5 4 4 4 4 3 3 3 3 4 4 4 4 5 5  
5 5 5 4 4 4 1 4 1 4 4 4 5 5 5  
0 5 5 5 4 4 4 4 4 4 5 5 5 0  
0 5 5 5 5 4 4 4 5 5 5 5 0  
0 5 5 5 5 5 5 5 5 5 5 0  
0 0 0 0 5 5 5 0 0 0 0  

H e x a g o n a l - 2  Fu l l  Core 

0 5 5 5 4 4 3 2 3 3 3  
0 5 5 4 4 3 3 3 3 3 3  
0 5 5 4 1 3 3 3 3 3 3  
0 5 4 4 4 3 3 2 3 3 2  
5 5 4 4 1 3 3 3 3 3 3  
5 5 4 4 4 4 3 3 3 3 4  
5 5 5 4 4 4 1 4 1 4 4  
0 5 5 5 4 4 4 4 4 4 s  
0 5 5 5 5 4 4 4 5 5 5  
0 5 5 5 5 5 5 5 5 5 5  
0 0 0 0 5 5 5 0 0 0 0  

Hexagonal -Z Third  Core 
3 

3 3  
3 3 3  

2 3 3 2  
3 3 3 3 3  

4 3 3 3 3 4  
4 4 1 4 1 4 4  

5 4 4 4 4 4 4 5  
5 5 5 4 4 4 5 5 5  

5 5 5 5 5 5 5 5 5 5  
0 0 0 0 5 5 5 0 0 0 0  

Hexagonal -Z S ix th  Core 

Figure 4 (cont): Radial material geometry figures for different 
core  geometr ie s  a n d  symmetr ie s  
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IV.3 Cross-Section Data File 
(Unit 3 =>"XSECT" & Unit 33 => "AXSCZN") 

NG 

Total number of energy groups. 

NGT 

Number of thermal energy groups. 

ICOLXY 

Total number of material colors (Le. cross section sets). 

NBUMAX 

Maximum of the number of burnup mask values input for the cross-sections. 

IF(NXSEC.EQ."Y") THEN READ 

NPFZEC 

Number of delayed neutron precursor groups. 

NDECAY 

Number of decay heat precursor groups. 

NTERMMACR0,NTERMMACRI 

Number of cross-section coefficients input for macroscopic cross-sections 

w/o and w/ rods in. 

NTERMCSCATR0,NTERMCSCATRI 

Number of cross-section coefficients input for macroscopic scattering kernels 

w/o and w/ rods in. 

NTERMFPR0,NTERMFPRI 

Number of cross-section coefficients input for transient fission products 

microscopic absorption cross-sections w/o and w/ rods in. 

[In following, I X S m  values imply the following: 
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Base = I ,  Linear-Coolant Density (gm/cm3) = 2, Quadratic-Coolant Density (gm/cm3) = 3, 

finear-Coolant Temperature (OF) = 4, Linear in Square Root-Eflect. Fuel Temperature (OF) = 5, 

Linear-Soluble Poison Number Density (Ih) = 6, Qwdratic-Soluble Poison Number Density (lh) = 7), 

Cubic-Soluble Poison Number Density (Ih) = 81 

IF(NTERMMACRO.GT.0) READ 

& (IXSMACRO(ITERM),JTFiRM=l ,NTERMMACRO) 

Cross-section coefficients to be input for macroscopic cross-sections 

wlo rods in. 

IF(NTERMMACRI.GT.0) READ 

& (IXSMACRI(ITERM),ITERM=l ,NTERMMACRI) 

Cross-section coefficients to be input for macroscopic cross-sections 

w/ rods in. 

IF(NTERMCS C ATRO .GT.O) READ 

& (IXSCSCATRO(ITERM),ITERM=l ,NTERMCSCATRO) 

Cross-section coefficients to be input for macroscopic scattering kernels 

wlo rods in. 

IF(NTERMCSCATRI.GT.0) READ 

& (IXSCSCATRI(ITERM),ITERM= 1 ,NTERMCSCATRI) 

Cross-section coefficients to be input for macroscopic scattering kernels 

w/ rods in. 

IF(NTERMFPRO.GT.0) READ 

& (IXSFPRO(ITERM),ITERM= 1 ,NTERMFPRO) 

Cross-section coefficients to be input for transient fission products 

microscopic absorption cross-sections w/o rods in. 

IF(NTERMFPRI.GT.0) READ 
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& (IXSFPRI(ITERM),ITERM=l~RMFPRI) 

Cross-section coefficients to be input for transient fission products 

microscopic absorption cross-sections w/ rods in. 

IMICRO (A5) 

Microscopic cross-section option (“Y”/”N). 

IF(IMICRO.EQ.”Y”) THEN READ 

NTERMMICRO 

Number of cross-section coefficients input for microscopic cross-sections 

w/o rods in. 

NTERMMICRI 

Number of cross-section coefficients input for microscopic cross-sections 

w/ rods in. 

[In following, IXSxxx values imply the following: 

Base = 1, Linear-Coolant Density (gm/cm3) = 2, Quadratic-Coolant Density (gm/cm3) = 3, 

Linear-Coolant Temperature ( O F }  = 4, Linear in Square Root-Effect. Fuel Temperature ( O F )  = 5, 

Linear-Soluble Poison Number Density (lh) = 6, Quadratic-Soluble Poison Number Density (lh) = 7), 

Cubic-Soluble Poison Number Dens@ (Ub) = 81 

IF(NTERMMICRO.GT.0) READ 

& (IXSMICRO(ITERM),ITERM= 1 ,NTERMMICRO) 

Cross-section coefficients to be input for microscopic cross-sections 

wlo rods in. 

IF(NTERMMICRI.GT.0) READ 

& (IXSMICRI(ITERM),ITERM= 1 ,NTERMMICRI) 

Cross-section coefficients to be input for microscopic cross-sections 

wl rods in. 
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ENDIF MICRO 

ENDIF NXSEC 

AXSEC (A5) 

Cross-section colors are read from different input files (“Y’PN’). 

IF(NXSEC.EQ.”Y”) THEN READ 

RLI,IuX,PLP 

Decay constants (I’35, Xe135, Pm14’) (l/sec) 

(ALAJMDA( I) ,I= 1 ,NPREC) 

Delayed neutron precursor decay constants (l/sec). 

(XHIDMI(IG,IPREC),IPREC= 1 ,NPREC) 

Delayed neutron fission spectrum. 

(ZETA(I),I=l,NDECAY) 

Decay heat precursors decay rates (l/sec). 

IF(IMICRO.EQ.”Y”) THEN 

DO ISOT=l,NISOT. .. For each isotope (U234, U235, U236, U238, 

Pu239, Pu240, Pll241, Pu242) 

(BETAMI(ISOT,IPREC),IPREC= 1 ,NPREC) 

Delayed neutron yields for isotope. 

ENDDO ISOT ... Isotope loop 

DO IG=l,NG ... For each energy group 

(XHIPMI(ISOT,IG),ISOT= 1 ,NISOT) 

Prompt neutron spectra for each isotopes (U 234 , u235 ~ 2 3 6  ~ 2 3 8  
9 9 , 

Pu239, Pu240, Pu241 , Pu242) 

ENDDO IG ... Energy loop 

DO ISOT=l,NISOT. .. For each isotope (U234, U235, U236, U238, 



(ALPI-IAI(ISOT,IDECH),IDECH= 1 ,NDECAY) 

Decay heat group yields for isotope. 

ENDDO ISOT.. .Isotope loop 
DO ISOT=l,NISOT. .. For each isotope (U2%, U235, u236 Y u238 Y 

Pu239, pu240, PU241, Pu242) 

GINMI(ISOT),GXNMI(ISOT),GPNMI(ISOT) 

Transient fission product yields (I'35, Xe135, Prn14') for isotope. 

ENDDO ISOT ... Isotope loop 

DO IG=l,NG ... For each energy group 

RNUU4( IG) ,RNUUS (IG) ,RNUU6(IG) 

Nu values for isotopes (U 234 , ~ 2 3 5 ,  ~ 2 3 6 ) .  

RNUUS( IG),RNUP9(IG),RNUPO(IG),RNUP 1 (IG) ,RNUP2( IG) 

P U ~ ~ ' ,  ~ 1 3 ~ ~ ~ ) .  NU values for isotopes ( u ~ ~ ~ ,  ~ u ~ ~ ~ ,  

ENDDO IG ... Energy group loop 

RKU34,RKU35,RKU36 

Kappa values (Mev) for isotopes (U 234 , ~ 2 3 5 ,  ~ 2 3 6 ) .  

RKU38,RKPU39,RKPU40,RKPU4 1 ,RKPU42 

Kappa values (Mev) for isotopes (U238, P u ~ ~ ' ,  P u ~ ~ O ,  P u ~ ~ * ,  Pu 

GLFPl ,GLFP2 

Lumped fission products 1 and 2 yields. 

ENDIF IMICRO 

ENDIF NXSEC 

NFUEXY 

1 
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Number of non-fuel material colors. 

Cross section table sets input follow. 
Units: Macroscopic cross section (l/cm), microscopic cross sections (barns), 

bumup ( M W . . ~ ~ )  

DO ICOL=l,ICOLXY. ..For each material color 

{Note ‘I’ used below is determined from ICOL and denotes internal storage index 

of ICOL* material color entry. 1 

IF(AXSEC.EQ.”Y”) READ 

& AXSCIN(A40) 

Name of file containing cross-sections for a specific color. 

Following input onJile name “XSECT” ifAXSEC = “N” and on 

file name “AXSCIN” ifAXSEC = “Y“. 

Header Line (A80) 

NESTLE does not utilize-to help with data file preparation. 

Header Line (ASO) 

NESTLE does not utilize-to help with data file preparation. 

AFUEL (A5) 

Material cross-sections now to be entered corresponds to a fuel 

(i.e. fissionable) (“Y”/”N’). 

NCOLOR(1) 

Material color number of cross-sections to be entered. 

IF(AFUEL.EQ.”Y”) READ 

& NMAX(1) 

Number of burnup steps for fuel material color that cross sections 

provided at. [For non-fuels set equal to 1 .] 
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~ ~- 

ENDDO IG ... Energy group loop 

ENDDO N...Burnup step loop 

ENDDO ITERM...Cross-section coefficient loop 

IF(NXSEC.EQ.”Y”) THEN READ 

DO ITERM=l,NTERMMACRI. ..For each cross-section coefficient 

DO N=l,NMAX(I) ... For each burnup step 

DO IG=l,NG ... For each energy group 

(XSECRI(N,I,IRX,IG,IRM),IRX= 1 ,NRXMAX) 

Macroscopic cross sections coefficients w/ rods: 

IMICRO=”Y”: transport, absorption. 

IMICRO=”N’: transport, absorption, nu-fission, kappa-fission, 

nu. 

ENDDO IG ... Energy group loop 

ENDDO N...Burnup step loop 

ENDDO ITERM ... Cross-section coefficient loop 

DO ITERM=l,NTERMMACRI...For each cross-section coefficient 

DO N=l,NMAX(I) ... For each burnup step 

DO IG=l,NG ... For each energy group 

(XSECSCRI(N,I,IG,IGP,ITERM),IGP= 1 ,NG- 1 ) 

Scattering transfer macroscopic cross sections coefficients 

w/ rods; from group igp (or igp+l when upscatter) to group ig. 

(Note within group (ig to ig) scattering is not entered, hence the 

non-square matrix. 

ENDDO IG ... Energy group loop 

ENDDO N...Burnup step loop 
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-o(I),-(I),FuFR(I) 

Volume fractions for coolant w/o rods, coolant w/ rods, and fuel. 

RHOwREF(I) ,TCOLREiF(I) ,TFREF( I) 

Reference conditions cross-sections evaluated at: coolant density (lbdft3), 

coolant temperature (OF) and fuel effective temperature (OF). 

(BUBOS(N,I),N=l ,NMAC(I)) 

Burnup values the cross-sections are input at. 

DO ITERM=l,NTERMMACRO ... For each cross-section coefficient 

DO N=l,NMAX(I) ... For each burnup step 

DO IG=l,NG ... For each energy group 

(XSECRO(N,I,IRX,IG,I),IRX= 1 ,NRXMAX) 

Macroscopic cross sections coefficients w/o rods: 

IMICRO=”Y”: transport, absorption. 

IMICRO=”N’: transport, absorption, nu-fission, kappa-fission, nu. 

ENDDO IG ... Energy group loop 

ENDDO N...Burnup step loop 

ENDDO ITERM ... Cross-section coefficient loop 

DO ITERM=l,NTERMMACRO ... For each cross-section coefficient 

DO N=l,NMAX(I) ... For each burnup step 

DO IG=l,NG ... For each energy group 

(XSECSCRO(N ,I,IG,IGP,ITERM) ,IGP= 1 ,NG- 1) 

Scattering transfer macroscopic cross sections coefficients w/o rods; 

from group igp (or igp+l when upscatter) to group ig. 

(Note within group (ig to ig) scattering is not entered, hence the 

i non-square matrix. 

I -  
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ENDDO ITE RM... Cross-section coefficient loop 

ENDIF NXSEC 

DO N=l,NMAX(I) ... For each burnup step 

DO IG=l,NG ... For each energy group 

B2COL(N,I,IG) 

Buckling ( l/cm2) {Normally input as 0's for 3D geometries.} 

ENDDO IG ... Energy group loop 

ENDDO N...Burnup step loop 

IF (AFUEL.EQ."Y") THEN READ 

DO N=l,NMAX(I) ... For each burnup step 

(XHIPN(N,I,IG),IG=l,NG) 

Prompt fission neutron spectrum 

ENDDO N...Burnup step loop 

ENDIF AFUEL 

DO N=l,NMAX(I) ... For each burnup step. 

DO IG=l,NG ... For each energy group 

(ADFS (1,N ,IADF,IG),I ADF= 1 ,NADFS) 

Assembly Discontinuity Factors w/o rods: 

(Cartesian (NADFS=6): N, E, S, W, UP, DOWN) 

(Hexagonal (NADFS=8): NE, E, SE, SW, W, NW, UP, DOWN) 

ENDDO IG ... Energy group loop 

ENDDO N...Burnup step loop 

IF(NXSEC.EQ."Y") THEN READ 

DO N=l,NMAX(I) ... For each burnup step 

DO IG=l,NG ... For each energy group 
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(ADFSRD(I,N,IADF,IG),IADF= 1 ,NADFS) 

Assembly Discontinuity Factors w/ rods: 

(Cartesian (NADFS=B): N, E, S, W, UP, DOWN) 

(Hexagonal (NADFS=8): NE, E, SE, SW, W, NW, UP, DOWN) 

ENDDO IG ... Energy group loop 

ENDDO N...Burnup step loop 

DO N=l,NMAX(I) ... For each burnup step 

(VELOCN(N,I,IG),IG=l,NG) 

Neutron velocity (cdsec). 

ENDDO N...Burnup step loop 

IF (AFUEL.EQ.”Y”) THEN READ 

DO ITERM=l,NTERMFPRO ... For each cross-section coefficient 

DO N=l,NMAX(I) ... For each burnup step 

DO IG=l,NG ... For each energy group 

(XFPNRO(N,I,IG,lFP,ITEFM),IFP= 1,2) 

Microscopic absorption cross-sections coefficients w/o 

rods: (Sm’49, Xe’35) 

ENDDO IG ... Energy group loop 

ENDDO N...Burnup step loop 

ENDDO ITERM ... Cross-section coefficient loop 

DO ITERM=l,NTERMFPRI ... For each cross-section coefficient 

DO N=l,NMAX(I) ... For each burnup step 

DO IG=l,NG ... For each energy group 

(XFPNRI(N,I,IG,IFP,ITEFM),IFP= 1,2) 

Microscopic absorption cross-sections coefficients 
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w/ rods: (SrnI4', Xe'35) 

ENDDO IG ... Energy group loop 

ENDDO N...Burnup step loop 

ENDDO ITERM...Cross-section coefficient loop 

IF(IMICRO.EQ."N") THEN READ 

DO N=l,NMAX(I) ... For each burnup step 

GIN(N,I),GXN(N,I),GPN(N,I) 

Transient fission products yields (I135, Xe135, 

ENDDO N...Burnup step loop 

DO N=l,NMAX(I) ... For each burnup step 

(BETAN(N,I , IPREC),I= 1 ,NPREC) 

Delayed neutron yields. 

ENDDO N...Burnup step loop 

DO N=l,NMAX(I) ... For each burnup step 

(ALPHAN(N,I,IDECH),IDECH= 1 ,NDECAY) 

Decay heat group yields. 

ENDDO N...Burnup step loop 

ENDIF IMICRO 

ENDIF AFUEL 

ENDIF NXSEC 

IF(NXSEC.EQ."Y") THEN READ 

IF (AFUEL.EQ."Y") THEN READ 

IF(IMICRO.EQ."Y") THEN READ 

Number densities of isotopes in following order (nuclei/cm3x 1 0-24): 

(UPUDEN(I,IRX),IRX=1,3) 
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234 ~ 2 3 5 ,  ~ 2 3 6 )  (U ? 

(VpLJDEN(I,IRX),rrUr48) 

u238 pu239, pu240, ~ ~ 2 4 1 ,  ~ ~ 2 4 2 )  
Y 

(UPUDEN(I,IRX),IRX=9y10) 

(Lumped FP# 1, Lumped FP#2) 

UPUDEN(1,ll) 

(Burnable Poison) 

DO ITERM=l,NTERMMICRO ... For each cross-section coefficient 

DO N=l,NMAX(I) ... For each burnup step 

DO IG=l,NG ... For each energy group 

(UCHAINRO(N,I,IRX,IG,ITERM),IRX= 1,6) 

(UCHAINRO(N,I,IRX,IG,I"ERM),IRX=7,12) 

(UCHAINRO(N,I,IRX,IG,ITERM),IRX=l3,16) 

Microscopic cross sections coefficients w/o rods: 

(absorption, fission) for each isotope: 

1st line ( u ~ ~ ~ ,  u~~~ 9u 236 1 

2nd line (U238, P u ~ ~ ' ,  P u ~ ~ O )  

3rd line ( P u ~ ~ ' ,  P u * ~ ~ )  

(UCHAINRO(N,I,IRX,IG,ITERM),IRX= 17,18) 

Microscopic absorption cross sections coefficients w/o 

rods: Lumped FP#1, Lumped FP#2 

UCHAINRO(N,I, 19,IG,ITERM) 

Microscopic absorption cross sections coefficients w/o 

rods: Burnable Poison 

ENDDO IG ... Energy group loop 
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ENDDO N...Burnup step loop 

ENDDO ITE RM... Cross-section coefficient loop 

DO ITERM=l,N'lXlWMIC RI... For each cross-section coefficient 

DO N=l,NM.AX(I) ... For each burnup step 

DO IG=l,NG ... For each energy group 

(UCHAINRI(N,I,IRX,IG,ITERM),IRX=7,12) 

(UCHAINRI(N,I,IRX,IG,ITEFW),IRX=13,16) 

Microscopic cross sections coefficients w/ rods: 

(absorption, fission) for each isotope: 

lstline(U 234 , ~ 2 3 5 ,  ~ 2 3 6 )  

2nd line (U238, P u ~ ~ ' ,  P U ~ ~ )  

3rd line ( P L I ~ ~ ~ ,  Pu242) 

(UCHAINRI(N,I,IRX,IG,ITERM),IRX=17,18) 

Microscopic absorption cross sections coefficients w/ 

rods: Lumped FP#1, Lumped FP#2 

UCHAINRI(N,I, 19,IG,ITERM) 

Microscopic absorption cross sections coefficients w/ 

rods: Burnable Poison 

ENDDO IG ... Energy group loop 

ENDDO N...Burnup step loop 

ENDDO ITERM ... Cross-section coefficient loop 

ENDIF IMICRO 

ENDIF AFUEL 

ENDIF NXSEC 
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End of input on file name "AXSCIN" ifAXSEC = "Y" & returning to file name 66XSECT". 

ENNDO I...Material color loop 

Remaining input on file name "XSECT". 

Blank Line 

IF (NXSEC.EQ."Y") THEN READ 

REFB 

Reference soluble poison concentration (PPM) 

NFRODS 

Number of fuel rods per bundle (assembly) 

FUELRAD 

Fuel rod radius (in) 

wc,wP 
Fuel temperature rise and average fuel temperature Doppler effective fuel I 
temperature weight factors. 

NPOLTAF 

Order of polynomial fitting average fuel temperature versus linear power density. 

(COF-TAF( I),I=O,NPOLTAF- 1 ) 

Fitting coefficients for average fuel temperature (OF) versus 

linear power density (kw/ft). 

NPOLHFF 

Order of polynomial fitting effective heat transfer coefficient versus fuel temperature. 

(COF-HFF(I),I=O,NPOLHFF- 1) 

Fitting coefficients for effective heat transfer coefficient (kw/fi2-OF) versus 

fuel temperature (OF). 

NPOLTSF 
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Order of polynomial fitting surface fuel temperature versus linear power density. 

(COF-TSF(I) ,I=O,NPOLTSF- 1) 

Fitting coefficients for surface fuel temperature (9) versus 

linear power density (kw/ft). 

MOLW-COL 

Molecular weight of coolant. 

ATMW-SOLP 

Atomic weight of soluble poison. 

ABUN-SOLP 

d o  of absorbing isotope of soluble poison (e.g. B'O). 

PIN 

Coolant pressure (psia). {Only use within NESTLE is for editing. } 

TCOLS AT,UCOLG,RHOG 

Coolant saturation temperature (OF), saturated vapor internal energy (BTUAbm) 

and saturated vapor density (lbm/ft3). 

DEPF 

Fraction of fission energy deposited directly within fuel. 

TCOLIN 

Coolant inlet temperature (9). {Only used for non-transient problems.} 

TCOLMIN,TCOLMAX 

Coolant inlet temperature (OF) search range for criticality or power level search. 

GMASS 

Coolant mass velocity (lb/hr-ft2). {Only used for non-transient problems. } 

NPOLUCOL 

Order of polynomial fitting coolant liquid internal energy versus temperature. 
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(COF-UCOL(1) ,I=O,NPOLUCOL- 1) 

Fitting coefficients for coolant internal energy (BTUAbm) versus temperature (9). 

NPOLTCOL 

Order of polynomial fitting coolant liquid temperature versus internal energy. 

(COF-TCOL(I),I=O,NPOLTCOL- 1) 

Fitting coefficients for coolant liquid temperature (OF) versus internal energy 

(BTUAbm). 

NPOLRHOWC 

Order of polynomial fitting coolant liquid density versus internal energy. 

(COF_RHOWC(I),I=O,NPOLRHOWC- 1) 

Fitting coefficients for coolant liquid density (lbdft3) versus internal energy 

(BTUA bm) . 

NPOLCPF 

Order of polynomial fitting fuel specific heat versus temperature. 

(COF-CPF(1) ,I=O,NPOLCPF- 1 ) 

Fitting coefficients for fuel specific heat (BTUAbm-OF) versus temperature (OF). 

RHOWTF 

Fuel density (lbm/ft3). 

RATIOHMFUEL 

Ratio of heavy metal density to fuel material density. 

(Used to convert MTM to MT fuel material) 

QQT 

Core power density at rated full power (kwAiter). 

ENDIF NXSEC 

(RT(IG),IG=l .NG) 
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Initial estimates of relative group flux values. 

(SEXT(IG),IG=l ,NG) 

External source strengths ( l/cm3-sec). 
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n7.4 Kinetic Data File 
(Unit 4 =>"KINET") 

IF (ITRAN.EQ."Y") THEN READ 

NPERT 

Number of times that time-dependent input parameters are provided. 

NPRTNT 

Number of times that time-dependent output is to be printed. 

NTSPN 

Total number of time spans, each utilizing a constant time step size over the 

time span. 

ENDDO ITRAN 

IF I X E 4  OR 5 THEN READ 

NFP 

Number of time-steps for transient fission product case. 

ENDIF IXE 

IF(ITRAN.EQ."Y")THEN READ 

DO IT=l,NPERT. ..For each transient time perturbation 

TIMETR(IT),PMT(IT) ,TINT( IT) ,GMINT(IT) 

Time (sec), soluble poison concentration (PPM), coolant inlet temperature (OF), 

coolant mass flow rate (lb/ft2-sec) (4 values per line) 

TIMETR(IT),(ZPT( IB K,IT), IB K= 1 ,NB ACU) 

Time (sec), control banks steps withdrawn (l+NBACU values per line) 

[Note TIMETR( 1) must equal 0.1 

ENDDO ... Transient time perturbation loop 

(TIMEPR(IT),IT= 1 ,NPRINT) 
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Time (sa) output is to be printed. 

(TIMESP(IT),DELT(IT),lT= 1 ,NTSPN) 

Use time step size DELT(IT) (sec) from time TIMESP(lT-1) to TIMESP(lT) (sec) 

where TIMESP(0) = 0. 

ENDDO ITRAN 

IF M E 4  OR STHEN READ 

DO IFP=l,NFP. ..For each fission product transient time perturbation 

TIMEFP(IFP) ,PRFP( IFP) ,PMFP(IFP) ,TINFp(IFP) 

Time (hrs), core power (relative), soluble poison (PPM), 

coolant inlet temperature (OF). 

[Note that if IBOR=”Y” the parameter being searched upon will overwrite the 

input value of this parameter.] 

TIMEFP(IFP),(ZBFP(IBK,IFP),IBK= 1 ,NBACU) 

Time (hrs), Control banks steps withdrawn( l+NBACU values per line) 

[Note that if IBOR=”Y” the parameter being searched upon will overwrite the 

input value of this parameter.] 

ENDDO ... Fission product transient time perturbation loop 

ENDIF IXE 
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IV.5 Solution Method Control Data File 
(Unit 5 => “PERF’M”) 

N_THRMITR 

Maximum number of thermal scattering iterations. 

KITR 

Maximum number of outer iterations. 

EPSK 

Outer iteration eigenvalue convergence criteria 

EPSOT 

Outer iteration residual convergence criteria 

EPSIN 

Outer iteration Li,f convergence criteria 

EPSDET 

Inner iteration relative error reduction convergence criteria 

AMETHOD (A5) 

Solution method (“FDM’P’NEM’’) 

IF (AMETHOD.EQ “NEM”) THEN READ 

NNEM 

Frequency of NEM coupling coefficients’ updates 

T-H Off: Number of outer iteratiodupdate 

T-H On: Number of T-H callshpdate 

ENDIF AMETHOD 

IF (IBURN.EQ.”Y”) THEN READ 

ADEPL 

Depletion method: Predictor or Predictor-Corrector (“PRED’P’CORR’) 
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IF(ADEPL.EQ.”CORR”) THEN READ 

NDELPC 

Frequency of Corrector updates for Predictor-Corrector method 

T-H OR Number of outer iteratiodupdate 

T-H On: Number of T-H callshpdate 

ENDIF ADEPL 

ENDIF IBURN 

ACHEBY ( A 3  

Chebyshev acceleration on (“Y”/”N’) 

IF (ACHEBY.EQ.”Y” THEN READ 

IUPCHE 

Upper limit on Chebyshev polynomial order 

ENDIF ACHEBY 

AISC (A5) 

Steady-state scaling factor acceleration on (“Y’PN’) 

IF (AISC.EQ.”Y”) THEN READ 

ISC 

Outer iteration when steady-state scaling factor acceleration first applied. 

ASPSH (A5) 

Steady-state spectral shift correction on (“Y”/”N”) 

ENDIF AISC 

IF (ITRAN.EQ.”Y”) THEN READ 

IONE 

Number of outer iterations per time step control logic. 

Convergence criteria controled= 1 
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Fixed number-:! 

IF (IOlW.EQ.2) THEN READ 

IOK 

Number of outer iterations per time step. 

ENDIF IONE 

AISCTR (A5) 

Transient scaling factor acceleration on (“Y”/”N’) 

IF (AISCTR.EQ.”Y”) THEN READ 

ISCTR 

Outer iteration when transient scaling factor acceleration first applied. 

ASPSHTR 

Transient spectral shift correction on (“Y’T’N) 

ENDIF AISCTR 

ENDIF ITRAN 
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V Programmer’s Guide 

This section presents information about the organization and coding of NESTLE that 

should prove useful to individuals who wish to understand and modify the officially released 

version of NESTLE. Since NESTLE contains over 23,000 lines of FORTRAN, 95 procedures (ie. 

subroutines, main program and function subprograms) and 78 fcb files (Le. files containing one or 

more named COMMON blocks referred to in INCLUDE statements), those wishing to understand 

the code structure should be prepared to commit significant time to this undertaking. 

V.l Dependence Diagram 
The dependence diagram for the NESTLE code is shown in Figure (5). With the exception 

of the main program, in Figure (5) the subroutines are listed alphabetically indicating the 

subroutines called one-level deep. Four main control paths exist within the code, associated with 

the solution of the eigenvalue and steady-state external source, eigenvalue adjoint, transient 

fission product, and transient neutronics problems. These main control paths utilize many of the 

same procedures. Where different subroutines are required to perform nearly the same function, a 

suffix at the end of the subroutine name is utilized to distinguish the function. For example the 

suffixes ‘k’ (or ‘tr’), ‘ss’ and ‘ad’ refer to respectively kinetic (or transient), steady-state, and 

adjoint; and, the suffixes ‘c’ and ‘h’ refer to respectively Cartesian and Hexagonal geometries. 

V.2 Summary of Procedures 
As noted above, there are a total of 95 procedures incorporated into NESTLE. There 

names and a brief description of their functions are given in Table (2). The header of each 

procedure contains a brief description via COMMENT lines. Most procedures have very long 

calling argument lists which are required to allow variables to have problem specific 

dimensionality without recompilation. This point will be further explained below in the 

subsection entitle Variables’ Storage. 
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V.3 Variables’ Definitions 
Rather than define variables throughout the source code of NESTLE, an e:lectronic 

dictionary has been created. The electronic dictionary consists of the F O R W W  code 

NESTLE.DICT and the associated data base containing variables’ names and definitions. To 

determine the definition of a variable, the user initiates execution of NESTLE-DICT, indicates 

that a definition is sought, and enters the variable name. NESTLE.DICT then oui;puts the 

variable’s definition. This is all done in an interactive manner. Options also exist to add and delete 

variables’ names and definitions. At the conclusion of the NESTLE.DICT execution the data base 

is updated reflecting any changes made, if so desired. Table (3) shows an interactive session 

utilizing NESTLE.DICT. It is most conveniently used by opening a separate window where 

NESTLE.DICT will be controlled from. This code and the associated data base are distributed 

with the NESTLE code. 

V.4 Variables’ Storage 
Variables with dimensionality are stored either in a container array or in commaln blocks 

of fixed dimensionality. The container array (Le. A Array) stores all variables whose dirnensions 

are problem specific, such as number of energy groups and number of spatial nodes. In this 

manner the dimensionality of variables can be specified at run-time without requiring 

recompilation for problems with different dimensionality. Also memory is only allocated for 

variables that will be employed for the specific problem as specified via input. For example, if an 

eigenvalue problem is to be solved no memory space is allocated for variables that only appear for 

a neutronic transient problem. The A array is specified (including its size indicated by a 

PARAMETER statement) in named COMMON block ‘array’ stored in file ‘array.fcb’. The 

starting address of all variables stored in the A array are determined in SUBROUTINE 

POINTER. The variable names associated with the starting addresses all have the: format 

‘LXXXXXXN’ where ‘XXXXXX’ is the name of the variable that the starting address is being 
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given for. The named COMMON block ‘varlen’ stored in file ‘varlen.fcb’ contains all the pointer 

variables. 

As noted above, COMMON blocks are utilized to store variables that are either scalar (Le. 

have no dimensionality) or have problem independent dimensionality. These named COMMON 

blocks are incorporated into the source code via the ‘include’ statement using the format ‘include 

yyyyyy.fcb’ where ‘yyyyyy.fcb’ is the file name of a file containing one or more named 

COMMON blocks. A listing of the fcb files is presented in Table (4). The advantage of the 

‘include’ statement is that modifications to a COMMON block need only be made in one place, 

the appropriate fcb file. The danger when using the UNIX ‘make’ feature is that not all procedures 

which ‘include’ the altered fcb file will be recompiled since they have not been ‘touched’. A 

sound programming practice when altering fcb files is to ‘grep’ on *.f files the fcb file names 

altered and ‘touch’ all the procedures containing the altered fcb files. 

V.5 Machine Specific Instructions 
The only machine specific instruction that is utilized by NESTE is the clock call used to 

provide timing information that is output. Rather than have the machine specific clock instruction 

scattered throughout the source code, a function subroutine named ‘FUNCTION GTIME’ is 

called. Within this subroutine are the machine specific clock calls. Currently the clock call 

instructions for DEC ULTRIX, IBM AIX and SUN OS operating systems are included, with the 

clock calls not utilized commented out. In this manner NESTLE can be ported to different 

platforms and only the file gtime.f needs to be modified. . 

V.6 Geometry ’lkeatment 
Since both Cartesian-Z and Hexagonal-Z geometry can be treated by NESTLE, the 

geometry treatment needs to be fairly flexible. Most of the setup of the geometry is completed in 

SUBROUTINE GEOMETRY. For most variables the indices associated with the two radial 
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directions (IX,IY) are rolled into a single index (IXY) indirectly indexed via 

IXY=NDNUM(IX,IY). This greatly facilitates handling both Cartesian-Z and Hex agonal-Z 

geometries. In addition, no memory is wasted to store variables outside the solution domain when 

a ‘raggedy edge’ solution domain is employed. In addition to the nodes associated with the 

solution domain, an extra layer of nodes is added radially about the core such that every surface 

associated with either an interior boundary (i.e. symmetry boundary) or exterior boundary has an 

extra node located across the surface. This is done to facilitate the various boundary condition 

treatments. Since these extra nodes IXY index starts after the solution domain nodes IXY index, 

they can be easily recognized by the value of IXY. In this manner whether a neighbor node is 

within the solution domain can be determined. If it is determined that the neighbor node is outside 

the solution domain, than a vector NBC(IXY) contains the information required to apply the 

specified boundary condition. For cyclic boundary conditions, NBC(IXY) stores the negative 

value of the IXY of the neighboring node associated with cyclic symmetry. The treatment just 

noted greatly simplifies code logic in regard to geometry. 

The SUBROUTINE GEOMETRY also determines for Cartesian geometry the boundaries 

of all fuel bundles (assemblies) by using the mesh layout and the bundle pitches in the x and y 

directions. The capability to treat ‘offset’ bundles as in C-E cores has been incorporated. The 

resulting information is utilized to determine bundle average attributes and in output control. 

V.7 Installation 
Three makefiles for different operating systems are included in the distribution as now 

indicated: DEC ULTRIX, IBM AIX, and SUN OS. If NESTLE is to be executed under either of 

these operating systems, just execute the appropriate makefile as indicated by the makefile tag 

(Le. makefile.xxx where ‘xxx’ indicates the operating system). Execution on other operating 

systems will require modifications to the makefile. 
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MAIN 
I 

INPDATA GTIME POINTER GEOMETRY INPEDIT CONVER GASCATC GASCATH INITAL DEPLETE 
XSFDBK STARTER STEADYN OUTPUTSS SLOWTRAN ADJOINT OUTPUTAD TRANSIT 

ADJOINT 
I 

XSFDADJ TRIDIAO OUTINADJ OUTPCRT 

AVGEDIT 
I 

RSTRING 

BURNNODE 
I 

CALACV CHAIN 

DEPLETE 
I 

MICROXNT BURNNODE XSECBU 

INITAL 
I 

FLUIDCON 

Figure 5: Dependence diagram of the NESTLE code 
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INIVAL 
I 

ECHOINP 

INPDATA 
I 

POINTER FILE-CNT FILE-GEO FILE-XSC FILE-KIN FILE-PRF CHECK INIVAL 

INPEDIT 
I 

INIVAL 

LSORB 
I 

SORCE TRIDIA 

LSORBO 
1 

SETUP0 

MFST 
I 

SPECSHFT RELPOWER THFDBKK THFDBKS XSFDBK SCALAPRX SHAPECOR AMF SCALEXCT SCALING 
LAMDASUB 

Figure 5 (cont): Dependence diagram of the NESTLE code 
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MICROXNT 
I 

PINTER 

NONNEMC 
I 

NONNETC NONPLMC NONONEC NONTWOC 

NONNEMH 
I 

NONNETH NONPLMH NONONEH NONTWOH 

NONONEC 
I 

DIRECT4 DIRECTSB DIR4FULL DIR2FULL 

NONONEH 
I 

DIRECT2X2 DIR4FULL DIR2FULL DIRECT4 DIRECTSB 

NONTWOC 
I 

DIRECT4 DIRECTSB DIRECTS DIRECT 16 

Figure 5 (cont): Dependence diagram of the NESTLE code 
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NONTWOH 
I 

DIRECT2X2 DIRECT8 DIRECT 16 

OUTIN 
I 

GTTME LSORB CHEBY 1 RELPOWER SXENON KSEARCH CNTROD PSEARCH NONNEMC NONNEMH THFDBKS 
DEPLETE MFST RELPOWER SFST XSFDBK TRIDIAO 
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I 

GTIME LSORB CHEBYI 

OUTINTR 
I 

GTIME LSORB CHEBYTR NONNEMC NONNEMH RELPOWER THFDBKK MFST SFST XSFDBK TRIDIAO 
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OUTPUTSS 
I 

AVGEDIT OUTPOINT 

Figure 5 (cont): Dependence diagram of the NESTLE code 
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OUTPUTTR 
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Figure 5 (cont): Dependence diagram of the NESTLE code 
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THFDBKK 
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FLUIDCON 

THFDBKS 
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I 

PINTER 

Figure 5 (cont): Dependence diagram of the NESTLE code 
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SUBROUTINE ADJOINT 
THIS SUBROUTINE CONTROLS THE CALCULATION OF THE ADJOINT FLUX 

SUBROUTINE AMF 
THIS SUBROUTINE DETERMINES (A-F)*FLUX FOR THE FDLED-SOURCE SCALE FACTOR METHOD 

SUBROUTINE AVGEDIT 
THIS SUBROUTINE EDITS OUT RADIAL AND AXIAL CORE AVERAGED PROPERTIES 

SUBROUTINE BURNNODE 
THIS SUBROUTINE SOLVES THE ISOTOPIC DEPLETION EQUATIONS 

SUBROUTINE CALACV 
THIS SUBROUTINE DETERMINES THE INTERACTION RATES REQUIRED TO SOLVE THE ISOTOPIC 
DEPLETION EQUATIONS 

SUBROUTINE CHEBY 1 
THIS SUBROUTINE APPLIES THE SEMI-IMPLICIT CHEBYSHEV POLYNOMIAL ACCELERATION 
METHOD AND CHECKS FOR CONVERGENCE FOR THE STEADY-STATE PROBLEM 

SUBROUTINE CHEBYTR 

METHOD AND CHECKS FOR CONVERGENCE FOR THE TRANSIENT PROBLEM 
THIS SUBROUTINE APPLIES THE SEMI-IMPLICIT CHEBYSHEV POLYNOMIAL ACCELERATION 

SUBROUTINE CHECK 

ERROR MESSAGE ALONG WITH SUGGESTION FOR THE ALTERNATIVE RUN CASE 
THIS SUBROUTINE RECOGNIZES THE DIFFERENT NON-PERMISSIBLE RUNS AND FLAGS BACK AN 

SUBROUTINE CNTROD 
THIS SUBROUTINE DETERMINES THE FRACTION OF CONTROL GROUP INSERTED 

SUBROUTINE CONVER 
THIS SUBROUTINE CONVERTS THE INPUT DATA UNITS TO NESTLE’S INTERNAL WORKING UNITS 

SUBROUTINE DECAYHN 
THIS SUBROUTINE SOLVES THE DECAY HEAT PRECURSOR EQUATIONS 

SUBROUTINE DEPLETE 
THIS SUBROUTINE CONTROLS THE DEPLETION, DETERMINING NUMBER DENSITIES FOR THE 

COEFFICIENTS 
MICROSCOPIC MODEL AND RETURNING THE MACROSCOPIC CROSS-SECTION EXPANSION 

SUBROUTINE DIR2FULL 
THIS SUBROUTINE ANALYTICALLY SOLVES A 2 x 2  MATRIX SYSTEM. VECTOR ARGUMENTS ARE 
EMPLOYED. ALL UNKNOWNS ARE EVALUATED. FULL MATRIX STRUCTURE ASSUMED IN 
ANALYTIC SOLUTION 

Table 2: Listing of procedures and their functions 
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SUBROUTINE DlR4FULL 
THIS SUBROUTINE ANALYTICALLY SOLVES A 4x4 MATRIX SYSTEM. VECTOR ARGUMENTS ARE 
EMPLOYED. ALLUNKNOWNS ARE EVALUATED. FULL MATRIX ASSUMED IN ANALYTIC SOLUTION 

SUBROUTINE DIRECT2X2 
THIS SUBROUTINE ANALYTICALLY SOLVES A 2x2 MATRIX SYSTEM. NO VECTOR ARGUMEiNTS ARE 
EMPLOYED. ALL UNKNOWNS ARE EVALUATED. FULL MATRIX STRUCTURE ASSINED IN 
ANLYTIC  SOLUTION 

SUBROUTINE DIRECT16 
THIS SUBROUTINE ANALYTICALLY SOLVES A 16x16 MATRIX SYSTEM. VECTOR ARGUMENTS ARE 
EMPLOYED. ONLY HALF OF UNKNOWNS ARE EVALUATED. MATRIX SPARSITY IS TAKEN 
ADVANTAGE OF IN ANALYTIC SOLUTION 

SUBROUTINE DIRECT4 
THIS SUBROUTINE ANALYTICALLY SOLVES A 4x4 MATRIX SYSTEM. VECTOR ARGUMENTS ARE 
EMPLOYED. ALL UNKNOWNS ARE EVALUATED. MATRIX SPARSITY IS TAKEN ADVANTAGE OF IN 
ANALYTIC SOLUTION 

SUBROUTINE DIRECT8 
THIS SUBROUTINE ANALYTICALLY SOLVES A 8x8 MATRIX SYSTEM. VECTOR ARGUMENTS ARE 
EMPLOYED. ONLY HALF OF UNKNOWNS ARE EVALUATED. MATRIX SPARSITY IS TAKEN 
ADVANTAGE OF IN ANALYTIC SOLUTION 

SUBROUTINE DIRECT8B 
THIS SUBROUTINE ANALYTICALLY SOLVES A 8x8 MATRIX SYSTEM. VECTOR ARGUMENTS ARE 
EMPLOYED. ALL UNKNOWNS ARE EVALUATED. MATRIX SPARSITY IS TAKEN ADVANTAGE OF IN 
ANALYTIC SOLUTION 

SUBROUTINE ECHOINP 
THIS SUBROUTINE ECHOES OUT THE RADIAL INPUT FIGURES 

SUBROUTINE FILE-CNT 
THIS SUBROUTINE READS THE GENERAL CONTROL INPUT PARAMETERS 

SUBROUTINE FILE-GEO 
THIS SUBROUTINE READS THE GEOMETRICAL PARAMETERS 

SUBROUTINE FILE-KIN 
THIS SUBROUTINE READS THE KINETIC PARAMETERS REQUIRED FOR TRANSIENT RUNS 

SUBROUTINE FILE-PRF 
THIS SUBROUTINE READS THE PARAMETERS USED TO CONTROL THE SOLUTION METHODS 
EMPLOYED AND PROVIDES THE CONVERGENCE CRITERIA 

SUBROUTINE FILE-XSC 
THIS SUBROUTINE READS THE CROSS-SECTION & T-H INPUT PARAMETERS 

Table 2 (cont): Listing of procedures and their functions 
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SUBROUTINE FLUIDCON 
THIS SUBROUTINE CALCULATES COOLANT TEMPERATURE, DENSITY & VOID FRACTION BASED 
UPON INTERNAL ENERGY 

SUBROUTINE GASCATC 
THIS SUBROUTINE IS USED FOR THE CART GEOMETRY ONLY. IT CALCULATES THE NEEDED 
PARAMETERS TO GATHER THE NODES WITH THE S A M E  COLOR TOGETHER (I.E. BLACKS WITH 
BLACKSJTC). FOR CART GEOMETRY, TWO DIFFERENT COLORS ARE USED. THIS WILL BE 
UTILIZED IN THE SOLUTION OF THE FINITE DIFFERENCE EQUATIONS 

SUBROUTINE GASCATH 
THIS SUBROUTINE IS USED FOR THE HEX GEOMETRY ONLY. IT CALCULATES THE NEEDED 
PARAMETERS TO GATHER THE NODES WITH SAME COLOR TOGETHER (I.E. BLACKS WITH 
BLACIQLETC). FOR HEX GEOMETRY, THREE DIFFERENT COLORS ARE USED. THIS WILL BE 
UTILIZED IN THE SOLUTION OF THE FINITE DIFFERENCE EQUATIONS 

SUBROUTINE GEOMETRY 
THIS SUBROUTINE SETS UP THE GEOMETRY INCLUDING B.C., MESH EXPANSION, AND BUNDLE 
BOUNDARY IDENTIFICATION FOR OUTPUT CONTROL 

FUNCTION GTIME 
THIS SUBROUTINE RETURNS BACK THE ELAPSED TIME IN [SECONDS] APPLICABLE TO ULTRIX OR 
AIX OPERATING SYSTEMS MACHINES: DECStation 5000 OR IBM RS-6000 WORKSTATIONS 

SUBROUTINE INITAL 

RESTART OPTION ON WADS IN THE RESTART FEE 
THIS SUBROUTINE INITIALIZES THE FLUX, FISSION SOURCE & T-H CONDITIONS GUESSES, OR FOR 

SUBROUTINE INIVAL 
THIS SUBROUTINE EDITS OUT THE INITIAL INPUT DATA, I.E.,CROSS SECTION DATA, GEOMETRY 
DATA AND CONTROL OPTIONS, IF USERS CHOOSE LONG EDITS FOR THE INPUT (AL3 = 'Y') 

SUBROUTINE INPDATA 
THIS SUBROUTINE CONTROLS THE OVERALL INPUT READING 

SUBROUTINE INPEDIT 
THIS SUBROUTINE EDITS OUT INPUT ASSOCIATED WITH THE TRANSIENT CASE, METHOD OF 
SOLUTION CONTROL, CONTROL OPTIONS, YO FILE NAMES, AND IF ELECTED CROSS-SECTIONS AND 
T-H PARAMETERS 

SUBROUTINE KSEARCH 
THIS SUBROUTINE PERFORMS CRITICALITY SEARCH, ON FOUR DIFFERENT PARAMETERS: 
SOLUBLE POISON, INLET COOLANT TEMPERATURE, POWER LEVEL AND CONTROL BANK 
INSERTION 

SUBROUTINE LAMDASUB 

METHOD 
THIS SUBROUTINE DETERMINES THE SCALE FACTOR FOR THE FIXED-SOURCE SCALE FACTOR 

Table 2 (cont): Listing of procedures and their functions 

131 



SUBROUTINE LINEAR 
THIS SUBROUTINE COMPLETES LINEAR INTERPOLATION OR EXTRAPOLATION 

SUBROUTINE LSORB 
THIS SUBROUTINE CALLS THE FOLLOWING TWO SUBROUTINES: SORCE: WHICH CAuJuLA,TES THE 
RHS OF THE FWllTE DIFFERENCE EQUATIONS FOR A SPECIFIC COLOR AND TRIDIA: WHICH SOLVES 
FOR THE FLUX BY SOLVING A TRIDIAGONAL SYSTEM OF EQUATIONS FOR A PARTICULAR COLOR. 

SUBROUTINE LSORBO 
THE FLUX IS ALSO ACCELERATED USING THE OMEGAS WHICH WERE PRE-CALCK4TED IN 

SUBROUTINE LSORBO 
THIS SUBROUTINE CALCULATES THE NUMBER OF INNERS PER OUTER AND THE 
ACCELERATION PARAMETERS FOR THE COLOR LINE SOR EQUATIONS 

PROGRAMMAIN 
THIS PROGRAM IS THE MAIN PROGRAM FOR NESTLE 

SUBROUTINE MFST 
THIS SUBROUTINE CONTROLS THE MULTI-FIXED-SOURCE SCALE FACTOR METHOD 

SUBROUTINE MICROXNT 
THIS SUBROUTINE DETERMINES THE MICROSCOPIC 
COEFFICIENTS FOR THE DEPLETABLE ISOTOPES 

CROSS-SECTION 

FUNCTION NEWPAGE 
FUNCTION STARTS A NEW PAGE OF OUTPUT 

EXPANSION 

SUBROUTINE NONNEMC 
THIS SUBROUTINE SOLVES THE NEM EQUATIONS. 

THE NODAL METHOD USED HERE IS NON-LINEAR NEM. WE SOLVE A ONE OR TWO NODE PROBLEM 
FOR EVERY INTERFACE IN THE CORE TO UPDATE THE COUPLING COEFFICIENTS 

****e***** FOR CARTESIAN GEOMETRY *************e 

SUBROUTINE NONNEMH 
THIS SUBROUTINE SOLVES THE NEM EQUATIONS. 
* * * * ** * * * * FOR HEXAGONAL GEOMETRY *** * * * *** * * * ** 
THE NODAL METHOD USED HERE IS NON-LINEAR NEM. WE SOLVED A ONE OR TWO NODE PROBLEM 
FOR EVERY INTERFACE IN THE CORE TO UPDATE THE COUPLING COEFFICIENTS 

Table 2 (cont): Listing of procedures and their functions 

132 



SUBROUTINE NONONEC 

CURRENT BOUNDARY CONDITION WHEN UPDATING THE NET CURRENTS BY NONNEM. 
THIS ROUTINE SOLVES A ONE-NODE PROBLEM. IT IS USED ONLY FOR EDGE NODES WITHOUT ZERO 

********** FOR CARTESIAN GEOMETRY *************e 

SUBROUTINE NONONEH 

ZERO CURRENT BOUNDARY CONDITION WHEN UPDATING THE NET CURRENTS BY NONNEM. 
THIS ROUTINE SOLVES A ONE-NODE PROBLEM. IT IS USED ONLY FOR EDGE NODES WITHOUT A 

*********+ FOR HEXAGONAL GEOMETRY ************** 

SUBROUTINE NONPLMC 
THIS SUBROUTINE CALCULATES THE LEAKAGES FOR EVERY NODE, IN EVERY DIRECTION, AND 
THE EXPANSION COEFFICIENTS FOR THE QUADRATIC LEAKAGE APPROXIMATION. 
******e*** FOR C m T E S w  GEOMETRY ************e* 

SUBROUTINE NONPLMH 
THIS SUBROUTLNE CALCULATES THE LEAKAGES FOR EVERY NODE, IN EVERY DIRECTION, AND 
THE EXPANSION COEFFICIENTS FOR THE QUADRATIC LEAKAGE APPROXIMATION. 
*** * *** *** FOR HEXAGONAL GEOMETRY ****e**** * **** 

SUBROUTLNE NONTWOC 
THIS SUBROUTINE SOLVES THE TWO-NODE PROBLEM AND RETURNS THE NEM CURRENT 'JNEM'. 

THIS SUBROUTINE FILLS IN THE 16x16 (FOR 2 GROUPS) OR 32x32 (FOR 4 GROUPS) MATRIX OF THE 

REGARDING THE NUMBER OF GROUPS. WE HAVE TAKEN ADVANTAGE OF THE REDUCIBILITY OF 

COEFFICIENTS FOR THE FLUX OF NODE L+l ARE THE SAME AS FOR THE ONES FOR THE 2-NODE 
PROBLEM INVOLVING NODE L+l AND L+2. SO WE DON'T HAVE TO SOLVE FOR THEM TWICE 

*** **** * FOR C m E S I A N  GEOMETRY ****** ***** *** 

2-NODE PROBLEM, AND CALLS THE ANALYTIC SOLVERS WHICH ARE DIFFERENT 

THE MATRIX. FOR ONE 2-NODE PROBLEM, INVOLVING SAY NODE LAND L+1, THE EVEN EXPANSION 

SUBROUTINE NONTWOH 
THIS SUBROUTINE SOLVES THE TWO-NODE PROBLEM AND RETURNS THE NEM CURRENT'JNEM'. 
* * * *** * *** FOR HEXAGONAL GEOMETRY * * * *** * *** *** * 
THIS SUBROUTINE FILLS IN THE 16x16 (FOR 2 GROUPS) OR 32x32 (FOR 4 GROUPS) MATRIX OF THE 

REGARDING THE NUMBER OF GROUPS. WE HAVE TAKEN ADVANTAGE OF THE REDUCIBILITY OF 
2-NODE PROBLEM, AND CALLS THE ANALYTIC SOLVERS WHICH ARE DIFFERENT 

THE MATRIX. FOR ONE 2-NODE PROBLEM, INVOLVING SAY NODE L AND L+ 1, THE EVEN EXPANSION 
COEFFICIENTS FOR THE FLUX OF NODE L+l ARE THE SAME AS FOR THE ONES FOR THE 2-NODE 
PROBLEM INVOLVING NODE L+1 AND L+2. SO WE DON'T HAVE TO SOLVE FOR THEM TWICE!! 

SUBROUTINE NORM 
THIS SUBROUTINE NORMALEES THE FLUX AND FISSION SOURCE TO A CORE RELATIVE AVERAGE 
POWER = 1. 

SUBROUTINE NORMFSP 
THIS SUBROUTINE NORMALIZES THE FLUX AND FISSION SOURCE TO AN INPUT SPECIFIED SCALING 

I -  
I -  
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SUBROUTINEi OUTIN 
THIS SUBROUTINE PERFORMS OUTER-INNER ITERATIONS UTlLIZING FDM OR NEM OITllON FOR 
STEADY-STATE SOLUTION 

SUBROUTINE OUTINADJ 

ADJOINT SOLUTION 
THIS SUBROUTINE PERFORMS OUTER-INNER ITERATIONS UTILIZING FDM OR NEM OPTION FOR THE 

SUBROUTINE OUTINTR 

TRANSIENT SOLUTION 
THIS SUBROUTINE PERFORMS OUTER-INNER ITERATIONS UTILIZING FDM OR NEM OP?'ION FOR 

SUBROUTINE OUTPCRT 
THIS SUBROUTINE O W U T S  VALUES TO THE SCREEN (I.E. CRT) 

SUBROUTINE OUTPOINT 
THIS SUBROUTINE OUTPUTS POINT-WISE VALUES OF PARAMETER PASSED THROUGH CALLING 
ARGUMENT LIST 

SUBROUTINE OUTPUTAD 
THIS SUBROUTINE OUTPUTS THE ADJOINT PROBLEM'S SOLUTION 

SUBROUTINE OUTPUTSS 
THIS SUBROUTINE OUTPUTS THE STEADY-STATE PROBLEM'S SOLUTION 

SUBROUTINE OUTPUTTR 
THIS SUBROUTINE 0 UTPUTS THE TRANSIENT PROBLEM'S SOLUTION 

SUBROUTINE PEAK 
THIS SUBROUTINE DETERMINES THE TOTAL PEAKING FACTOR AND LOCATION 

SUBROUTINE PERTURB 
THIS SUBROUTINE INTERPOLATES THE TIME DEPENDENT INPUT PARAMETERS F:OR THE 
TRANSIENT PROBLEM 

SUBROUTINE PINTER 
THIS SUBROUTINE COMPLETES QUADRATIC INTERPOLATION (OR EXTRAPOLATION) USING 
LAGRANGIAN INTERPOLATION POLYNOMIAL 

SUBROUTINE POINTER 
THIS SUBROUTINE DETERMINES THE A ARRAY POINTERS (LE. STARTING LOCATIONS OF ARRAYS) 

SUBROUTINE PRECR 
THIS SUBROUTINE SOLVES THE DELAYED NEUTRONS PRECURSOR EQUATIONS 

FUNCTION PROPPOLY 
THIS SUBROUTINE CALCULATES SPECIFIED PROPERTY AS FUNCTION OF A STATED DEPENDENCE 
(PARAM) 
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SUBROUTINE PSEARCH 
THIS SUBROUTINE PERFORMS POWER =VEL SEARCH, ON THREE DIFFERENT PARAMETERS: 
SOLUBLE POISON, INLET COOLANT TEMPERATURE AND CONTROL BANK INSERTION 

SUBROUTINE REL,POWER 
THIS SUBROUTINE DETERMINES THE TOTAL CORE POWER LEVEL ACCOUNTING FOR DECAY HEAT 
AND SCALES THE POWER DENSITY TO A RELATIVE CORE POWER LEVEL = 1. 

SUBROUTINE RSTRING 
THIS SUBROUTINE LOADS A NUMERIC VALUE INTO AN AL-C VARIABLE 

SUBROUTINE SCALAPRX 
THIS SUBROUTINE CALCULATES THE RATIO OF THE EFFECTIVE EXTERNAL SOURCE TO THE 
FISSION SOURCE USED BY THE FIXED-SOURCE SCALE FACTOR METHOD 

SUBROUTINE SCALEXCT 

TO GET SCALE FACTOR UPDATE 
THIS SUBROUTINE DETERMINES THE RATIO OF THE EFFECTIVE EXTERNAL SOURCE TO (A-F)*FLUX 

SUBROUTINE SCALING 
THIS SUBROUTINE SCALES THE FLUX AND FISSION SOURCE USING THE SCALE FACTOR FROM THE 
FIXED-SOURCE SCALE FACTOR METHOD 

SUBROUTINE SETUPO 

DETERMINING OPTIMUM RELAXATION PARAMETERS AND NUMBER OF INNER ITERATIONS PER 
OUTER ITERATION 

THIS SUBROUTINE SOLVES THE HOMOGENOUS PROBLEM USING COLOR LINE G-S IN SUPPORT OF 

SUBROUTINE SFST 
THIS SUBROUTINE PERFORMS THE SINGLE FIXED-SOURCE SCALING TECHNIQUE PROCEDURE FOR 
THE FSP STEADY-STATE CASE 

SUBROUTINE SHAPECOR 

SOURCE SCALE FACTOR METHOD 
THIS SUBROUTINE ADJUSTS THE FLUX FOR COOLANT SPECTRAL EFFECTS WITHIN THE FJXED- 

SUBROUTINE SLOWTRAN 
THIS SUBROUTINE PROVIDES OVERALL CONTROL OF THE TRANSIENT FISSION PRODUCT PROBLEM 

SUBROUTINE SORCE 
THIS SUBROUTINE CALCULATES THE RHS FOR THE TRIDIAGONAL SYSTEM TO BE SOLVED BY 
SUBROUTINE TRIDIA. THE TRIDIAGONAL SYSTEM RESULTS FROM USING THE COLOR LINE SOR 
METHOD WHICH IS USED TO SOLVE THE FINITE DIFFERENCE FORM OF THE DIFFUSION EQUATIONS. 
THE RHS HERE INCLUDES FISSION, SCATTERING, AND DIFFUSION TERMS 
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SUBROUTINE SORCEO 
THIS SUBROUTINE CA.LCULATES THE RHS FOR THE "RIDIAGONAL, SYSTEM TO BE SOLVED BY 
SUBROUTINE TRTDIA. THE EQUATION TO BE SOLVED IS A*PHI=O, WHERE A IS THE C0E;FFICIENT 
MATRIX AND PHI IS THE FLUX. THE RHS HERE DOES NOT INCLUDE ANY FISSION OR SCATTERING. 
IT ONLY INCLUDES DIFFUSION TERMS. IT IS USED IN OBTAINING THE COLOR LINE SOR 
EXTUPOLATION PARAMETERS AND NUMBER OF INNER ITERATIONS PER OUTER ITERATION 

SUBROUTINE SPECSHFT 
THIS SUBROUTINE DETERMINES THE B**2 VALUES USED IN MAKING THE COOLANT SPECTRAL 
SHIFT CORRECTION IN THE FIXED-SOURCE SCALE FACTOR METHOD 

SUBROUTINE STARTER 
THIS SUBROUTINE SETS INITIAL VALUES TO INITIATE THE TRANSIENT FROM 

SUBROUTINE STEADYN 
THIS SUBROUTINE PROVIDES OVERALL CONTROL OF THE STEADY-STATE SOLUTION 

SUBROUTINE SXENON 

FISSION PRODUCTS 
THIS SUBROUTINE SOLVES FOR THE STEADY-STATE NUMBER DENSITIES OF THE TRANSIENT 

SUBROUTINETHFDBKK 
THIS SUBROUTINE CALCULATES COOLANT INTERNAL ENERGY, COOLANT DENSITY A N D  FUEL 
TEMPERATURES FOR THE TRANSIENT PROBLEM 

SUBROUTINE THFDBKS 
THIS SUBROUTINE CALCULATES COOLANT INTERNAL ENERGY, COOLANT DENSITY AND FUEL 
TEMPERATURES FOR THE STEADY-STATE PROBLEM 

SUBROUTINE TRANSIT 
THIS SUBROUTINE PROVIDES OVERALL CONTROL OF THE TRANSIENT PROBLEM 

SUBROUTINE TRIDIA 
THIS SUBROUTINE SOLVES A TRIDIAGONAL SYSTEM OF EQUATIONS WHICH RESULTS FROM USING 
THE COLOR LINE SOR METHOD. IT SOLVES FOR THE FLUX OF A PARTICULAR COLOR EAClH TIME IT 
IS CALLED 

SUBROUTINE TRIDIAO 
THIS SUBROUTINE FACTORS THE TFUDIAGONAL MATRICES ASSOCIATED WITH COLOR ILINE SOR 
AND ASSIGNS TO ARRAYS FOR EACH COLOR 

SUBROUTINE TXENON 
THIS SUBROUTINE SOLVES FOR THE TRANSIENT NUMBER DENSITIES OF THE TRANSIENT FISSION 
PRODUCTS 

SUBROUTINE UPDATE 

TIME-STEP SOLUTION 
THIS SUBROUTINE SAVES TIME-STEP VALUES OF VARIOUS PARAMETERS FOR USAGE IN THE NEXT 
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SUBROUTINE XSECBU 

COEFFICIENTS) AT THE NODE COLOR AND BURNUP, EXCEPT FOR THE DEPLETABLE ISOTOPES 
MODELED USING THE MJCROSCOPIC OPTION 

THIS SUBROUTINE DETERMlNES THE NUCLEAR PROPERTIES (E.G. CROSS-SECTION EXPANSION 

FUNCTION XSECPOLY 

COOLANT DENSITY, FUEL TEMPERATURE AND SOLUBLE POISON FEEDBACK CORRECTIONS 
THIS SUBROUTINE CALCULATES X-SECTIONS ACCOUNTING FOR COOLANT TEMPERATURE, 

FUNCTION XSECPOLY2 

COOLANT DENSITY, FUEL TEMPERATURE AND SOLUBLE POISON FEEDBACK CORRECTIONS. 
DIFFERENCE WITH XSECPOLY IS DIMENSION OF CALLING ARGUMENT ARRAYS 

THIS SUBROUTINE CALCULATES X-SECTIONS ACCOUNTING FOR COOLANT TEMPERATURE, 

SUBROUTINE XSFDADJ 
THIS SUBROUTINE DETERMINES THE MATRIX TRANSPOSE OF THE COEFFICIENT MATRIX 
REQUIRED FOR THE ADJOINT FLUX SOLUTION 

SUBROUTINE XSFDBK 

OTHER NEUTRONIC NODE VALUES AND USES THEM IN DETERMMNG THE COEFFICIENT MATRIX 
THIS SUBROUTINE DETERMINES THE MACROSCOPIC AND MICROSCOPIC CROSS-SECTIONS AND 
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NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE 
NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE 
NESTLE NESTLE 
NESTLE NESTLE 
NESTLE VERSION 1.0 NESTLE 
NESTLE ELECTRIC POWER RESEARCH CENTER NESTLE 
NESTLE NORTH CAROLINA STATE UNIVERSITY NESTLE 
NESTLE COPYRIGHT 1994 - BY NCSU NESTLE 
NESTLE NESTLE 
NESTLE NESTLE 
NESTLE NESTLE 
NESTLE NESTLE 
NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE 
NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE NESTLE 

NESTLE DICTIONARY PROGRAM 

WHICH OPTION DO YOU WISH TO ENABLE 
(&EXIT, F=FIND, D=DELETE, A=ADD)? F 

WHAT IS THE VARIABLE NAME THAT YOU WISH THE 
DEFINITION FOUND FOR? SW 

DEFINITION: 
MESH DEPENDENT FLUX [ SOLUTION TO THE PROBLEM ] /EIGENVECTOR FOR THE 
EIGNVALUE PROBLEM 

WHICH OPTION DO YOU WISH TO ENABLE 
(E=EXIT, =FIND, D=DELETE, A=ADD)? A 

WHAT IS THE VARIALBE NAME YOU WISH TO ADD? TESTl 

INPUT DEFINITION FOR THE VARIABLE: 
JUST A TEST VARIABLE FOR THE DICTIONARY PROGRAM 

WHICH OPTION DO YOU WISH TO ENABLE 
(E=EXIT, F=FIND, D=DELETE, A=ADD)? F 

WHAT IS THE VARIABLE NAME THAT YOU WISH THE 
DEFINITION FOUND FOR? TESTl 

DEFINITION: 
JUST A TEST VARIABLE FOR THE DICTIONARY PROGRAM 
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WHICH OPTION DO YOU WISH TO ENABLE 
@=EXIT, F=FIND, %DELETE, A=ADD)? D 

WHAT IS THE VARIABLE NAME THAT YOU WISH THE 
DEFINITION DELETED FOR? TEST1 

ARE YOU CERTAIN THAT YOU WANT THE VARIABLE 
DEFINITION DELETED (Y,N)? Y 

VARIABLE DEFINITION DELETED. 

. 

WHICH OPTION DO YOU WISH TO ENABLE 
(&EXIT, F=FIND. D=DELETE, A=ADD)? E 

IF VARIABLE NAMES AND DEFINITIONS HAVE BEEN ADDED 
OR DELETED, DO YOU WANT TO SAVE CHANGES IN DATA BASE (Y,N)? Y 

? 
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adf.fcb 
adj.fcb 
array.fcb 
basic.fcb 
bcs.fcb 
bcshex.fcb 
buckl.fcb 
burn.fcb 
bypass.fcb 
che.fcb 
cheby.fcb 
cntl.fcb 
conv.fcb 
convfact.fcb 

crhs.fcb 
crit.fcb 
crod.fcb 
dataf.fcb 
depletepcfcb 
extsor.fcb 
flamdold.fcb 
fpxs.fcb 
gasch.fcb 
geom.fcb 
hexdim.fcb 

hgeo.fcb 
multit.fcb 
nemcnt.fcb 

nline.fcb 
nonfue.fcb 
nterm.fcb 
numsurf.fcb 
only.fcb 
opti.fcb 
outlong.fcb 
param.fcb 
perttr.fcb 
pertv.fcb 
power.fcb 
restinp.fcb 
restotp.fcb 
soln2.fcb 

spectral.fcb 
start.fcb 
temp1 .fcb 
temp 11 .fcb 
temp 12.fcb 
templ3.fcb 
temp6.f~ b 
temp7.fcb 
temp9.fcb 
th-cof.fcb 
thcoef.fcb 
thermk.fcb 
thermo.fcb 
thmargin.fcb 

tim.fcb 
time.fcb 
timel.fcb 
timetr.fcb 
varlen.fcb 
veloc.fcb 
xeopt.fcb 
xsecl.fcb . 
xsec2.fcb 
xspol ycom.fcb 
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